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Abstract In this paper the first saturation throughput model of an IEEE 802.11 network is
presented, which includes the intra-access category prioritization introduced in the recently
approved IEEE 802.11aa standard. This new feature was proposed to support finer grained
prioritization of audio video streams in comparison to the existing Enhanced Distributed
Channel Access (EDCA) function. The presented model implements different transmission
probabilities for the primary and alternate voice and video queues. Additionally, it includes
such features as virtual collision handling, backoff differentiation, and Arbitration Inter-
Frame Space differentiation. The presented results show the difference in the operation of
IEEE 802.11aa intra-access category prioritization and EDCA inter-access category priori-
tization. They also allow to derive several novel conclusions.

Keywords Intra-access category prioritization · QoS · IEEE 802.11aa ·
Audio video streaming

1 Introduction

The new 802.11aa standard has recently been approved by IEEE [2]. It defines a number of
enhancements to IEEE 802.11 to allow robust audio and video streaming for consumer and
enterprise applications. These enhancements include: groupcast with retries (GCR), stream
classification service (SCS), overlapping basic service set (OBSS) management, interwork-
ing with the IEEE 802.1Q stream reservation protocol (SRP), and intra-access category
(intra-AC) prioritization. This last feature is investigated in this paper.

Intra-AC prioritization is an extension of the Enhanced Distributed Channel Access
(EDCA) function defined in the IEEE 802.11 standard [1]. Instead of only four transmit
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Fig. 1 Intra-AC traffic prioritization defined by the IEEE 802.11aa standard

queues, six of them are used to provide finer grained prioritization between individual
audio and video streams (Fig. 1). They are defined as follows: two queues for voice traf-
fic (primary—AC_VO and alternate—AAC_VO), two queues for video traffic (primary—
AC_VI and alternate—AAC_VI), one queue for best effort traffic (AC_BE), and one queue
for background traffic (AC_BK). These transmit queues are mapped to four independent
EDCA functions (EDCAF) to enable traffic differentiation over the wireless channel (Fig. 1)
using four EDCA Access Categories (ACs): VO, VI, BE, and BK [1]. The head-of-line
frames belonging to AC_VO and AAC_VO (AC_VI and AAC_VI) are passed to VO
EDCAF (VI EDCAF) according to a credit-based scheduler (with two queues) as defined in
IEEE 802.1Qav [3]. Additionally, the IEEE 802.11aa standard specifies that, for voice and
video streams, frames belonging to the primary queues are selected with a higher probability
than frames from the alternate queues.

In the literature, to the author’s best knowledge, no analytical model including the intra-
AC prioritization feature of IEEE 802.11aa has thus far been proposed. Therefore, this paper
presents the first such model. It is based on a previous comprehensive EDCA model [4]. The
modelling of BE and BK traffic remains the same as proposed in [4] while for VO and VI
traffic two additional transmit queues are considered.

2 Analytical Model

For each AC, let s(t), b(t), and c(t) denote the stochastic processes representing the backoff
stage, the backoff counter, and the remaining number of time slots during the deferring period
at time t , respectively. The 3-D process {s(t), b(t), c(t)} can be modelled as discrete-time
Markov chains shown in Fig. 2 (for BE and BK) and in Fig. 3 (for VO and VI). The param-
eter d in Fig. 2 indicates the differing period, i.e., the difference in the number of time slots
between the minimum AIFS (AIFSmin) and the AIFS of the vth AC (for EDCA v ∈ {0, 1, 2,
3}, which corresponds to BK, BE, VI, and VO, respectively). In Fig. 3, since both VO and
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Fig. 2 Markov chain for BE (v = 1) and BK (v = 0) ACs

VI have AIFS equal to AIFSmin, the parameter d equals zero. Additionally, Fig. 3 includes
the intra-AC feature of the IEEE 802.11aa standard in the form of different transmission
probabilities for the primary and alternate queues (p p

v and pa
v , respectively).

Let bi, j,k be the stationary distribution of the proposed Markov chains. Then, based on
the chain regularities the steady state probabilities for the vth AC can be calculated:

bi,0,0 = pi
vb0,0,0, 0 ≤ i ≤ m, (1)

bi, j,0 = Wiv − j

pbvWiv
pi
vb0,0,0, 0 ≤ i ≤ m, 1 ≤ j ≤ Wiv − 1, (2)
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Fig. 3 Markov chain for VO (v = 3) and VI (v = 2) ACs including the intra-AC prioritization feature of the
IEEE 802.11aa standard

where m is the frame retransmission limit, Wiv − 1 is the size of the contention window after
the i th retransmission, pv is the probability of collision, and pbv is the probability of an idle
medium in a time slot after AIFS.

From Fig. 2 and from the normalization condition, for BE and BK we have:

bi, j,k = bi,0,0

pk
tvWiv

+ 1 − pbv

pk
tv

bi, j,0, 0 ≤ i ≤ m, 1 ≤ j ≤ Wiv − 1, 1 ≤ k ≤ d, (3)

m∑

i=0

bi,0,0 +
m∑

i=0

Wiv−1∑

j=1

bi, j,0 +
m∑

i=0

Wiv−1∑

j=1

dv∑

k=1

bi, j,k = 1. (4)

From the normalization condition for VO and VI we get (Fig. 3):

m∑

i=0

bi,0,0 +
m∑

i=0

Wiv−1∑

j=1

bi, j,0 = 1. (5)

Equations (1)–(4) allow us to calculate b0,0,0 for BE and BK:

b0,0,0 =
⎡

⎣

(
1 − pdv
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(6)

123



A Throughput Model of IEEE 802.11aa 1079

Equations (1), (2), and (5) allow us to calculate b0,0,0 for VO and VI:

b0,0,0 =
[

m∑

i=0

Wiv − 1

2pbv

pi
v + 1 − pm+1

v

1 − pv

]−1

(7)

For a network with n stations, the following probabilities are additionally defined:

1. the overall transmission probability for the vth AC:τv =
(
1−pm+1

v

)

1−pv
b0,0,0,

2. the transmission probability of a frame from the primary queue of the VO and VI AC:
τ

p
v = p p

v τv , where p p
v is the probability of selecting the head-of-line frame from the

primary queue of the vth AC to be passed to the vth EDCAF,1

3. the transmission probability of a frame from the alternate queue of the VO and VI AC:
τ a
v = pa

v τv , where pa
v is the probability of selecting the head-of-line frame from the

alternate queue of the vth AC to be passed to the vth EDCAF, additionally it is assumed
that under saturation pa

v equals 1 − p p
v ,

4. the probability that after AIFS the wireless channel is idle: pbv = ∏3
x=0,x �=v (1 − τx )

n

(1 − τv)
n−1,

5. the probability of virtual and/or physical collisions: pv = 1 − ∏
x≤v (1 − τx )

n−1
∏

x>v (1 − τx )
n, 0 ≤ x ≤ 3,

6. probability of an idle channel in a time slot during the deferring period d ptv =∏
x>v (1 − τx )

n, 0 ≤ x ≤ 3.

For each AC, we define the throughput as:

T Hv = P Sv L

(1 − PT )δ + ∑N−1
x=0 P Sx Tsx +

(
PT − ∑N−1

x=0 P Sx

)
Tcv

, (8)

where L is the expected time spent on transmitting a DATA frame, P Sv is the probability
of a successful transmission for the vth AC: P Sv = nτv

∏
x≤v (1 − τv)

n−1 ∏
x>v (1 − τv)

n ;

PT is the probability that at least one AC transmits in a time slot: PT = 1−∏3
v=0 (1 − τv)

n; δ

is the time duration of one time slot, Tcx (Tsv) is the average time of a collision (successful
transmission) for the x th (vth) AC.

Tsv and Tcv depend on the channel access method used. For the basic channel access we
have:

Tsv = H + L + SIFS + ACK + AIFSmin + 2 × ε, (9)

Tcv = H + L + ε + EIFS, (10)

where H is the time occupied by the PHY and MAC headers, ε is the propagation delay,
SIFS is the Short Inter-Frame Space, and ACK is the time occupied by an ACK transmission.
For the four-way handshake mechanism we have:

Tsv = RTS + CTS + H + L + ACK + AIFSmin + 3 × SIFS + 4 × ε, (11)

Tcv = RTS + EIFS, (12)

1 This probability is directly based on the parameter configuration of the credit-based scheduler. However,
the exact configuration has not been specified in the IEEE 802.11aa standard.
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where RTS and CTS is the time required to send the Request To Send (RTS) and Clear To
Send (CTS) frames, respectively.

Additionally, for VO and VI, we can calculate the average saturation throughput for frames
belonging to the primary queues defined by IEEE 802.11aa:

T H p
v = P S p

v L

(1 − PT )δ + ∑3
x=0 P Sx Tsx +

(
PT − ∑3

x=0 P Sx

)
Tcv

, (13)

where P S p
v is the probability of a successful transmission for the vth AC of frames belonging

to the primary queue:

P S p
v = nτ p

v

∏

x≤v

(1 − τv)
n−1

∏

x>v

(1 − τv)
n, 0 ≤ x ≤ 3 (14)

Consequently, the average saturation throughput for frames belonging to the alternate VO
and VI queues defined by IEEE 802.11aa is:

T Ha
v = P Sa

v L

(1 − PT )δ + ∑3
x=0 P Sx Tsx +

(
PT − ∑3

x=0 P Sx

)
Tcv

, (15)

where P Sa
v is the probability of a successful transmission for the vth AC of frames belonging

to the alternate queue:

P Sa
v = nτ a

v

∏

x≤v

(1 − τv)
n−1

∏

x>v

(1 − τv)
n, 0 ≤ x ≤ 3. (16)

Finally, the overall saturation throughput for the VO and VI ACs is:

T Hv = T H p
v + T Ha

v , (17)

and it is equal to the throughput defined in (8).

3 Theoretical and Simulation Results

The proposed IEEE 802.11aa model was compared with simulations. The calculations were
done in Wolfram Mathematica 8.0 [5] and the simulations were performed using an extended
version of the ns-2 simulator [6]. IEEE 802.11b was chosen as the PHY layer and the standard
EDCA parameters were set at the MAC layer [1]. The DATA frame size was set to 1000 bytes.
Nodes were placed randomly, saturation conditions were assumed for each AC, and hidden
nodes were avoided. Finally, the simulations were repeated until the error of each simulation
point was smaller than 3 % assuming 95 % confidence intervals.

Table 1 presents a comparison of simulated and theoretical throughput values for voice
and video EDCA ACs, as well as their corresponding primary and alternate IEEE 802.11aa
queues. Two networks were analyzed: one composed of 10 nodes and the second composed
of 20 nodes. In both cases each node transmitted traffic belonging to all four ACs. Addi-
tionally, different values of p p

v and pa
v were chosen for different priority queues in each of

the analyzed networks. A close matching between the theoretical and simulated throughput
values was achieved.

Figure 4 constitutes a graphical representation of the gathered theoretical results for both
analyzed networks. The following conclusions can be derived. Firstly, prioritization between
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Table 1 Comparison of simulated and theoretical normalized throughput values for configuration 1 (10 node
network) and configuration 2 (20 node network)

Normalized throughput (%)
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(p p

3 = 0.75)
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3 = 0.25)

802.11aa
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(p p

2 = 0.80)

802.11aa
AAC_VI
(pa

2 = 0.20)

Configuration 1

Model 23.14 10.24 0.82 0.01 17.36 5.79 8.19 2.05

Simulation 26.17 7.99 0.14 0.01 19.63 6.54 6.39 1.60
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802.11aa
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2 = 0.40)
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Model 18.82 8.60 0.43 0.00 13.17 5.65 5.16 3.44

Simulation 20.06 6.93 0.03 0.00 14.04 6.02 4.16 2.77
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Fig. 4 Normalized throughput comparison for primary and alternate IEEE 802.11aa VO and VI queues as
well as for EDCA VO and VI ACs

AC VO and AC VI (i.e., inter-AC prioritization) is achieved. Furthermore, if frames are cho-
sen with higher probability from the primary queues (p p

3 , p p
2 ) than from alternate queues

(pa
3 , pa

2 ), as defined by the IEEE 802.11aa standard, then adequate intra-access category pri-
oritization between primary and alternate queues is also achieved. Interestingly, for certain
values of pa

3 frames belonging to the primary VI queue can achieve higher throughput than
those belonging to the alternate VO queue (c.f., configuration 1 in Fig. 4). In such a case
the majority of frames are selected from the VO primary queue (75 %) and, therefore, the
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probability pa
3 is small (equal to 0.25). At the same time, a larger number of frames is selected

from the VI alternate queue (80 %) than from the VO alternate queue (25 %), i.e., pa
2 > pa

3 .
Therefore, to assure strict prioritization of VO streams over VI streams under saturation
such configurations should be avoided. Finally, different networks can be served with differ-
ent prioritization patterns which was not possible when only EDCA inter-AC prioritization
procedures were applied (c.f., configuration 1 vs. configuration 2 in Fig. 4).

4 Conclusions

In this paper the first analytical saturation throughput model of the intra-AC prioritization
feature of the IEEE 802.11aa standard was described. The presented results show that the
new IEEE 802.11aa intra-AC prioritization feature provides a finer grained prioritization
of VO and VI streams, in comparison to the currently used EDCA inter-AC prioritization.
Additionally, it was shown that the proposed model can be used to analyze and compare
networks in which the intra-AC and inter-AC prioritization are applied.
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