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Abstract: We have performed a direct calculation of Witten index I in N = 1, 2, 3

supersymmetric Yang-Mills Chern-Simons (SYMCS) 3d theories. We do it in the framework

of Born-Oppenheimer (BO) approach by putting the system into a small spatial box and

studying the effective Hamiltonian depending on the zero field harmonics. At the tree

level, our results coincide with the results of ref. [1], but there is a difference in the way

the loop effects are implemented. In Witten’s approach, one has only take into account the

fermion loops, which bring about a negative shift of the (chosen positive at the tree level)

Chern-Simons coupling k. As a result, Witten index vanishes and supersymmetry is broken

at small k. In the effective BO Hamiltonian framework, fermion, gluon and ghost loops

contribute on an equal footing. Fermion loop contribution to the effective Hamiltonian

can be evaluated exactly, and their effect amounts to the negative shift k → k − cV /2

for N = 1 and k → k − cV for N = 2, 3 in the tree-level formulae for the index. In our

approach, with rather natural assumptions on the structure of bosonic corrections, the shift

k → k+ cV brought about by the gluon loops also affects the index. Since the total shift of

k is positive or zero, Witten index appears to be nonzero at nonzero k, and supersymmetry

is not broken.

We discuss possible reasons for such disagreement
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1 Introduction

It is known since [2, 3] that N = 4 supersymmetric Yang-Mills theory in 4 dimensions

is dual to supersymmetric string theory (10d supergravity in the leading strong coupling

approximation) on AdS5 × S5 background. In other words, many nontrivial results for

N = 4 SYM theory for large Nc and large ’t Hooft coupling can be obtained by string

theory methods. Recently, a new interesting duality has been established. It relates certain

3d supersymmetric gauge theories, involving the Chern-Simons terms and a particular set

of matter fields and enjoying N = 8 or N = 6 supersymmetry, to string theories on

AdS4 × S7 or AdS4 × CP
3 backgrounds, respectively [4, 5]. This means that, by duality,

one can derive many nontrivial results for these 3d theories.

The theories in question are not so simple, and we do not understand their dynamics as

well as we do it for 4d theories. In our opinion, it makes sense to study it in as much details

as possible by purely field theory methods in order to be able to confront the results thus

obtained with the results following from string-gauge duality. A wish to develop tools that

would eventually allow us to perform such a comparison and to test the duality conjecture

once again was the main motivation behind the present study.

As was mentioned, the 3d theories, for which duality was established, are complicated.

Thus, we have decided to study first the simplest N = 1 SYMCS theory and, in particular,

its vacuum dynamics. This question was addressed previously in ref. [1]. Witten calculated

the index (the difference of the numbers of bosonic and fermionic vacuum states) for this
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theory. His result for the theory with SU(N) gauge group at the level k = κ/(4π) is

I(k,N) =
1

(N − 1)!

N
2
−1
∏

j=−N
2

+1

(k − j) . (1.1)

This is zero at |k| < N/2. For |k| ≥ N/2, it can be presented as

I(k,N) = (−1)N−1

(

|k| +N/2 − 1

N − 1

)

. (1.2)

The way this result was derived was not direct, however. That is why we have tried to

evaluate the index anew using more direct and clear physical reasoning. We use the same

method as Witten successfully applied in [6] for 4d supersymmetric gauge theories: put the

system in a small spatial box and impose periodic boundary conditions on all fields. If the

size of the box is made small enough, most of the variables in the field Hamiltonian become

fast with large characteristic excitation energies. One can integrate them over and study

the dynamics of the effective BO Hamiltonian that depends only on few slow variables (zero

Fourier modes of gauge fields belonging to the Cartan subalgebra and their superpartners).

However, it turns out that carrying out this program for 3d SYMCS theories is a more

difficult task than for 4d gauge theories. It might even seem that it fails in the 3d case

because it is not sufficient to restrict oneself here with the tree-level effective Hamiltonian.

Loop corrections are important and they change essentially the value of the index. At the

one-loop level, these corrections can be determined, however, and one can conjecture that

higher-loop effects do not further change the result. This conjecture is not quite proven by

now, but, following Witten, we find it plausible (the arguments in its favor will be discussed

later) and adopt it.

As we will see, the index of the effective finite volume BO Hamiltonian depends on the

r-th Chern class of a certain Abelian gauge field on the moduli space of flat connections,

with r being the rank of the group. In the case of SU(2), it is just the magnetic fiel

flux on the dual torus. There are one-loop contributions to this (generalized) flux, both

due to fermion loops and due to gluon loops. These corrections are associated with the

renormalization of the Chern-Simons coefficient k in the infinite volume theory. Thus, the

index can be evaluated in two steps.

• At the first step, one evaluates the index for the tree-level effective BO Hamiltonian.

We have performed it by another method than Witten and confirmed his result,

Itree(k,N) =

(

k +N − 1

N − 1

)

(1.3)

(This is for the SU(N) gauge group and positive k).

• At the second step, one takes into account loop effects, which boil down (we will

argue that later) to 1-loop renormalization of k due to both fermions and bosons,

kren = k − cV
2

(fermions) + cV (bosons) = k +
cV
2
, (1.4)
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where cV is the adjoint Kasimir eigenvalue. [For SU(N), cV = N . For Sp(2r), cV = r + 1.

Another name for cV is the dual Coxeter number h.] Substituting (1.4) in (1.3), we obtain

[SU(N), positive k]

I(k,N) =

(

k + 3N/2 − 1

N − 1

)

, (1.5)

Note that one would obtain Witten’s result (1.1) by doing the same, but leaving only the

contribution of the fermionic loops in (1.4). The fact that gluon loops contribute to the

shift of k is firmly established [7, 8]. It is less clear, however, whether such boson-induced

shift of k is directly translated into the shift of index. In Witten’s approach, it does not. In

our finite volume approach, a direct and quite honest evaluation of the gluon contribution

to the effective BO Hamiltonian is, technically, a more complicated problem than for the

fermion contribution (the latter can be evaluated exactly), which is still to be solved. But

under very natural assumptions, the boson contribution has the same structure as the

fermion one. The result (1.5) is obtained under this assumption.

The difference between (1.5) and (1.1) is essential. The product (1.1) vanishes at k <

N/2, which suggests spontaneous breaking of supersymmetry. But the expression (1.5) does

not display such feature meaning that supersymmetry is not broken. Neither is it broken

in N = 2, 3 theories, where fermion loop and gluon loop effects in the renormalization of k

cancel out (scalar loops contribute to renormalization of g2, but not to renormalization of

κ), and the index is given by the tree level expression (1.3). We will discuss this controversy

in more details in the last section.

In the next section, we fix notations and calculate the index at the tree level. The

index of the original theory is evaluated as the index of the effective SQM Hamiltonian,

where one should impose the additional constraint of Weyl invariance of wave functions

(this is a corollary of gauge invariance of wave functions in the full theory). Before this

restriction is imposed, one finds NkN−1 vacuum states for the SU(N) gauge group. The

wave functions of all these states can be explicitly determined: they represent generalized

theta functions. Not all these functions are invariant under Weyl transformations, however,

the total number of Weyl-invariant functions being given by the expression (1.3).

We also calculate the index for the symplectic gauge groups Sp(2r) and for G2. For

symplectic groups, the calculation is even more transparent than for unitary groups. The

(tree level) result is

I[Sp(2r)] =

(

k + r

r

)

. (1.6)

The result for G2 is

Itree
G2

(k) =

{

(|k|+2)2

4 for even k
(|k|+1)(|k|+3)

4 for odd k

}

. (1.7)

In section 3 we discuss one-loop corrections. We show that they amount to shifting

k, as dictated by (1.4). We discuss also the N = 2, 3 SYMCS 3d theories including extra
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adjoint Majorana fermions and extra adjoint real scalars, and show that the index there is

just given by eqs. (1.3), (1.6) with unshifted k.

Section 4 is devoted to discussions. We spell out again the reasoning leading to the

result (1.5) and confront it with Witten’s reasoning. In addition, we address the unclear by

now question of what might be wrong with the string-inspired arguments of ref. [9], which

favor the result (1.1) rather than (1.5).

2 Tree level

The action of N = 1 SYMCS theory is1

L=
1

g2
Tr

∫

d3x

{

−1

2
F 2
µν+iλ̄/Dλ

}

+κTr

∫

d3x

{

ǫµνρ
(

Aµ∂νAρ−
2i

3
AµAνAρ

)

− λ̄λ

}

(2.1)

with the conventions ǫ012 = 1, DµO = ∂µO − i[Aµ,O]; λα is a 2-component Majorana 3d

spinor belonging to the adjoint representation of the gauge group. We choose

γ0 = σ2, γ1 = iσ1, γ2 = iσ3 . (2.2)

This is a 3d theory and the coupling constant g2 carries the dimension of mass. The

physical boson and fermion degrees of freedom in this theory are massive,

m = κg2 . (2.3)

In three dimensions, the nonzero mass brings about parity breaking.

The parameter κ is dimensionless. It cannot be an arbitrary number, however. The

functional integral should be invariant with respect to large gauge transformations that

change the Chern-Simons number of the gauge field configuration,

NCS =
1

8π2
ǫµνρTr

∫

d3x

(

Aµ∂νAρ −
2i

3
AµAνAρ

)

(2.4)

by an integer. The requirement for eiS to be invariant under such transformation leads to

the quantization condition

κ =
k

4π
. (2.5)

with integer k. Two reservations are in order, however. First, we consistently assume in

this paper that the field theory (2.1) is regularized in the infrared by putting it on a spatial

torus with periodic boundary conditions. If the so called twisted boundary conditions were

imposed [11–13], Chern-Simons number could change by an integer multiple of 1/N , in

which case k would be quantized to be an integer multiple of N [1]. Second, we have not

taken into account loop effects yet. We shall learn in section 3 that the loops may in some

cases modify the quantization condition such that k must be half-integer.

The parameter k is called the level of the theory.

1See e.g. [10] for a nice review.
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2.1 Effective Hamiltonian

We put the system in a spatial box of size L and impose periodic boundary conditions on

the fields. The Witten index does not depend on the size of the box and we are allowed to

consider the limit

mL≪ 1 and hence g2L≪ 1 . (2.6)

[The second inequality follows from the first one, from the definition (2.3) and from the

quantization condition (2.5)]. We expand the dynamic field variables in the Fourier series.

Aj(x) =
∑

n

A
(n)
j e2πixn/L (j = 1, 2),

λα(x) =
∑

n

λ(n)
α e2πixn/L (2.7)

with integer n. When the condition (2.6) is satisfied, the zero Fourier components A
(0)
j

and λ
(0)
α belonging to the Cartan subalgebra of the full Lee algebra play a special role:

the characteristic excitation energies associated with these degrees of freedom are of order

E(0) ∼ g2, which is much less than the characteristic excitation energy Ehigher modes ∼ 1/L

associated with higher Fourier harmonics and much less than the characteristic energy

associated with non-Abelian components of the vector potential Enon−Ab ∼ (g/L)2/3. We

can thus integrate over the fast variables A
(n6=0)
j , etc. and build up the effective BO

Hamiltonian (and the corresponding Lagrangian) depending only on the slow variables

A
(0) Cartan
j and λ

(0) Cartan
α . The situation is exactly the same as for 4d theories [6].

In the tree approximation, the effective Lagrangian is obtained by a simple truncation

of all fast modes in (2.1). Proceeding in a similar way for 4d theories, we would obtain

the Lagrangian/Hamiltonian describing free motion on T ×T ×T , with T representing the

maximal torus of the group [6]. In the 3d case, the situation is more complicated.

Consider first the simplest SU(2) case. There are two slow bosonic variables

Cj ≡ A
(0) 3
j (2.8)

and their superpartners ψα ≡ λ
(0) 3
α . The truncated Lagrangian is

L =
L2

2g2
Ċ2
j −

κL2

2
ǫjkCjĊk +

iL2

2g2
ψαψ̇α +

iκL2

2
ǫαβψαψβ (2.9)

To find the corresponding Hamiltonian, it is convenient to introduce ψ± = ψ1 ± iψ2. Then

the fermion part of the Lagrangian is represented as

Lf =
iL2

2g2
ψ+ψ̇− +

κL2

2
ψ−ψ+ . (2.10)

We see that the only fermion dynamic variable is ψ− ≡ ψ. Note that it is transformed as

ψ → eiθ/2ψ (2.11)
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under spatial plane rotations. The canonical momentum is πψ = iL2ψ+/(2g
2). After quan-

tization, it goes over to −i∂/∂ψ ≡ −iψ̄. Ordering the product ψ̄ψ in a proper (Weyl) way

and introducing also bosonic canonical momenta Pj , we derive the quantum Hamiltonian

H =
g2

2L2

(

Pj −
κL2

2
ǫjkCk

)2

+
κg2

2
(ψψ̄ − ψ̄ψ) . (2.12)

It describes the motion in the presence of a uniform magnetic field B = κL2 on the

dual 2-dimensional torus Cj=1,2 ∈ (0, 4π/L). The motion is finite because all the points

Cj + 4πnj/L with integer nj are gauge-equivalent.

The motion of electron in a uniform magnetic field is the first and the simplest su-

persymmetric quantum problem ever considered [14]. The bosonic and fermionic sectors

of the Hamiltonian (2.12) correspond in the usual approach to spin-up and spin-down

electrons. The index of this Hamiltonian I = Tr{(−1)F e−βH} can be calculated as a func-

tional integral, which is reduced for small β (semiclassical limit) to an ordinary phase space

integral [15].2

I =

∫

∏

j=1,2

dPjdCj
2π

dψ̄dψ e−βH =
1

2π

∫

B(C) dC . (2.13)

When the motion extends over the whole plane, the index is infinite, indicating the infinite

ground state degeneracy. When the motion is finite, the number of vacuum states is finite,

being proportional to the total magnetic flux. In our case, B = κL2 and

I =
κL2

2π

(

4π

L

)2

= 8πκ = 2k . (2.14)

It is not difficult to generalize this analysis to other gauge groups. In general, we have

2r slow bosonic variables Cja and their superpartners ψa. The index a = 1, . . . , r labels

the generators of the Cartan subalgebra with the usual convention Tr{tatb} = δab/2. The

effective Hamiltonian belongs to the class of supersymmetric Hamiltonians

H =
g2

L2

[

(Pja + Aja)
2

2
+

1

2
Bab(ψaψ̄b − ψ̄bψa)

]

, (2.15)

where Bab = ǫjk∂ajAbk, describing a generalized multidimensional Landau-Dubrovin-

Krichever-Novikov problem. For the tree-level Hamiltonian that corresponds to the trun-

cated Lagrangian of eq. (2.1),

Aaj = −κL
2

2
ǫjkCak ,

Bab = κL2δab . (2.16)

By the same token as in the SU(2) case, the motion is finite and extends for each C over

a parallelepiped formed by simple coroots of the group (alias, the maximal torus T of

the group). For SU(3), this is a rhombus represented in figure 1 (do not pay attention

for a while to the dashed lines bounding the Weyl alcove, neither to special fundamental

coweight points marked by the box and triangle).

2In the Hamiltonian (2.12), the magnetic field is constant, but, in view of future applications, we write

the index for a generalized Hamiltonian describing the motion in a non-uniform magnetic field [16, 17].
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a

b

Figure 1. Maximal torus and Weyl alcove for SU(3). a and b are simple coroots. The points �

and △ are fundamental coweights.

The index of the effective Hamiltonian is evaluated semiclassically as a generalized

magnetic flux (this is nothing but that the r-th Chern class of the U(1) bundle over T × T

with the connection Aja),

I =
1

(2π)r

∫

T×T

∏

ja

dCja det‖Bab‖ . (2.17)

In the case of SU(N),

ISU(N) = NkN−1 . (2.18)

2.2 Counting Weyl invariant vacuum functions

The index of the effective Hamiltonian (2.15), (2.16) is given by the expression (2.18). But

the index of the original theory is not. There are two reasons by which the result (2.18) is

modified. The first reason (loop effects) was already mentioned. We will deal with loops

in the next section. The second reason is that the Schrödinger equation with the effective

Hamiltonian (2.15) should in fact be supplemented by the condition of Weyl invariance,

which is a corollary of the gauge invariance of the original theory [6]. For example, for

SU(2), wave functions should be invariant under the reflection Cj → −Cj, ψ → −ψ. Not

all eigenfunctions of (2.15) satisfy this requirement. As a result, the value of the index is

less than ”pre-Weyl” index (2.18).

To find it, we simply write down explicit expressions for all vacuum wave functions and

pick up Weyl-invariant ones. To begin with, consider the simplest SU(2) case and let first k

be positive. The ground states of the effective Hamiltonian have then zero fermion charge

such that the second term in the Hamiltonian (2.12) brings about a negative contribution

to the energy.

Let us introduce x = C1L/(4π) ∈ (0, 1) and y = C2L/(4π) ∈ (0, 1). All eigenfunctions

of the Hamiltonian satisfy the following boundary conditions

Ψ(x+ 1, y) = e−2πikyΨ(x, y) ,

Ψ(x, y + 1) = e2πikxΨ(x, y) . (2.19)

– 7 –
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Their origin can be traced back to the fact that the shifts x → x + 1 and y → y + 1

represent contractible (this is the non-Abelian specifics) gauge transformations. In most

gauge theories, wave functions are invariant under such transformations. But the YMCS

(or Maxwell + CS) theory is special in this respect [18]. Indeed, the Gauss law constraint

in the YMCS theory has the form

Ga =
δL
δAa0

= DjΠ
a
j +

κ

2
ǫjk∂jA

a
k ,

where Πa
j = F a0j/g

2 +(κ/2)ǫjkA
a
k are the canonical momenta. The second term gives rise to

the phase factor associated with an infinitesimal gauge transformation δAaj (ξ) = Djα
a(ξ)

(we denote here the usual spatial coordinates by ξ rather than x not to confuse them with

rescaled vector potentials),

Ψ[Aaj +Djα
a] = exp

{

− iκ
2

∫

dξ∂jα
aAak

}

Ψ[Aaj ] .

This property holds also for the finite contractible gauge transformations αa =

(4πξ1,2/L)δa3 implementing the shifts C1,2 → C1,2 + 4π/L. The phase factors thus ob-

tained coincide with those quoted in eq. (2.19); they are nothing but the holonomies

exp
{

i
∫ 4π/L
0 A1dC1

}

and exp
{

i
∫ 4π/L
0 A2dC2

}

.

Thereby, the eigenfunctions of H are elliptic functions — a variety of theta functions.

The 2k ground states can be chosen in the form

Ψm ∼
∑

n

exp

{

−2πk
(

n+ y +
m

2k

)2
− 2πikxy − 4πikx

(

n+
m

2k

)

}

, (2.20)

where the sum runs over all integer n, and m = 0, . . . , 2k − 1. Not all of these states are

invariant, however, under Weyl reflection {x→ −x, y → −y}. There are only k + 1 Weyl

invariant combinations:

Ψ0, Ψk, and Ψm + Ψ2k−m (m = 1, . . . , k − 1) .

In other words, the (tree-level) index is

Itree[SU(2)] = k + 1 . (2.21)

This explicit analysis was done for the constant magnetic field. However, the symmetry

properties of the wave functions are robust with respect to deformations. We thus can

be sure that the number of Weyl-invariant wave functions is equal to k + 1 also for the

Hamiltonian with nonuniform magnetic field of a given flux 2k.

Fast Hamiltonian and its ground state. What happens at negative nonzero k? The

ground states of the effective Hamiltonian (2.15) are in this case not bosonic, but fermionic,

involving ψ as a factor. This factor is odd under Weyl reflection. At first sight, to provide

for Weyl-evenness of the wave function, this should be compensated by picking up Weyl-

odd combinations of the functions (2.20). There are |k|−1 such combinations which would

– 8 –
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lead to the conclusion that the index is equal to k + 1 also for negative k (giving |k| − 1

fermionic states). This is obviously wrong, however, the number of vacuum states cannot

depend on the sign of k. To resolve this paradox, one should go into some details of the

BO procedure.

When k is positive, the wave functions (2.20) are the ground states of the effective

Hamiltonian (2.15). They depend on the slow variables C1,2 and the factor ψ is absent in

this case — the states are bosonic. The corresponding ground states of the full Hamilto-

nian are obtained when Ψm are multiplied by the ground states of the fast Hamiltonian

depending on all Fourier modes (2.7) of the charged (with respect to A(0) 3) fields Aa=1,2
i (x)

and λa=1,2(x) ≡ λa=1,2
1 (x) − iλa=1,2

2 (x). The fault in the argument above (leading to the

paradoxical result I(k < 0) = k + 1) does not depend, however, on the presence of higher

Fourier modes, and it is sufficient to analyze the dimensionally reduced theory where the

fields do not depend on x. Let us assume that

Cj = Cδj1 (2.22)

and C ≫ m = κg2. Then the fast Hamiltonian (in the quadratic with respect to fast

variables approximation) acquires the form

H fast =
g2

2

(

P aj − κ

2
ǫjkA

a
j

)2
+
C2

2g2
(Aa2)

2 +

iC

4g2
ǫab
(

4g4λ̄aλ̄b + λaλb
)

+
m

2

(

λaλ̄a − λ̄aλa
)

, (2.23)

where we have set for simplicity L = 1, and the index a takes two ”transverse” values,

a = 1, 2. Let us look first at the bosonic part. For each a, it describes the motion of a

scalar particle in the magnetic field B = κ with an additional oscillatoric potential ∝ (Aa2)
2.

The spectrum of a generic such Hamiltonian,

H =
1

2M

(

px −
By

2

)2

+
1

2M

(

py +
Bx

2

)2

+
1

2

(

ω2
1x

2 + ω2
2y

2
)

, (2.24)

is well known [19, 20],

Enl =

(

n+
1

2

)

Ω1 +

(

l +
1

2

)

Ω2 (2.25)

with

Ω1,2 =
1

2M

[

√

B2 +M(ω1 + ω2)2 ±
√

B2 +M(ω1 − ω2)2
]

. (2.26)

In the case under consideration,

Ω1 =
√

C2 +m2 , Ω2 = 0 . (2.27)

The presence of two zero modes (as was mentioned above, H fast
bos represents the sum of two

identical Hamiltonians for a = 1, 2) is very natural. They are none other than the gauge

modes corresponding to the action of the Gauss constraints operators Ga on the vacuum

– 9 –
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and all other physical wave functions. If resolving explicitly the Gauss law constraints and

expressing everything in terms of physical gauge-invariant variables, the zero modes asso-

ciated with gauge rotations disappear. It is convenient, however, to leave the constraints

unresolved. The bosonic vacuum wave function has then the form

Ψfast
bos = exp

{

− iκ
2
Aa1A

a
2 −

√
C2 +m2

2g2
(Aa2)

2

}

(2.28)

It is annihilated by the operator G3. The vanishing of G1,2Ψ is not explicit, but that is

because the operators G1,2 mix Aaj and Cj , while (2.28) was written in the assumption that

the slow bosonic variables have only the third color component. The corresponding eigen-

functions of the full bosonic Hamiltonian depend only on gauge-invariant combinations,

like Rjk =
∑3

a=1A
a
jA

a
k and are annihilated by all three constraint operators.

The wave function (2.28) is multiplied by the ground state of the fermionic part of the

Hamiltonian (2.23),

Ψfast
ferm = 4ig2 +

√
C2 +m2 −m

C
ǫabλaλb . (2.29)

The total energy is zero as it should: the contribution
√
C2 +m2 of the bosonic part

cancels the fermionic contribution −
√
C2 +m2. The Hamiltonian (2.23) and the wave

functions (2.28), (2.29) were written in the assumption (2.22). It is equally easy to write

them for arbitrary Cj . We will only need the expression for the fermion wave function:

Ψfast
C = 4ig2 +

(C1 − iC2)
(√

C2 +m2 −m
)

ǫabλaλb

C2
. (2.30)

Recalling (2.8) and the bosonic ( for k > 0) nature of the ground state of the effective

Hamiltonian (2.12), we see that the ground states of the full Hamiltonian have the structure

Ψ
(0)
k>0 = Φ1(Rjk) + Φ2(Rjk) ǫ

abc(A1 − iA2)
aλbλc (2.31)

(where now a = 1, 2, 3). These wave functions are gauge invariant.3 In the vicinity of the

valley ǫabcAbjA
c
k = 0 and for large C ≫ m, the approximate equality Φ1 ≈ 4ig2|C|Φ2 holds.

Restoring the distinction between the fast and slow variables, we can represent

Φ1 = Ψslow(Cj)Ψ
fast
C (A1,2

j ) , (2.32)

and the gauge invariance of Φ1, which means in particular its G-parity (invariance under

rotations by π along the second color axis), entails the Weyl invariance of Ψslow(Cj). We

reproduce thereby our previous result.

We are ready now to go over to the negative k case and to understand how the paradox

is resolved. The point is that, when k < 0, the expression (2.30) is inconvenient. The

convenient expression is obtained from (2.30) by multiplying it by the factor C1 + iC2,

Ψ̃fast
C = 4ig2(C1 + iC2) +

(

√

C2 +m2 + |m|
)

ǫabλaλb . (2.33)

3They are also invariant with respect to O(2) rotations, see eq. (2.11).
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Indeed, as far as the fast Hamiltonian and its eigenfunctions are concerned, the factors

depending only on slow variables are absolutely irrelevant and can be chosen arbitrar-

ily. The product ψΨ̃ can now be easily promoted to a gauge-invariant eigenstate of the

full Hamiltonian,

Ψ
(0)
k<0 = 2Φ2(Rjk)(A1 + iA2)

aλa +
1

6
Φ1(Rjk) ǫ

abcλaλbλc . (2.34)

Again, Φ1 can be represented as in (2.32), and the coefficients Ψslow(Cj) (the effective wave

functions being obtained from them by multiplying by ψ) should be even rather than odd

with respect to Weyl reflections, such that

Itree(k < 0) = k − 1 . (2.35)

Going back to (2.33), one can notice that, in contrast to the function (2.30), this function

is odd with respect to rotations by π around the second color axis producing the reflections

C ≡ A3 → −C, λ1 → −λ1, λ2 → λ2. This oddness compensates for the Weyl-oddness of

the factor ψ and requires for the coefficient Ψslow(Cj) to be Weyl-even.

Higher unitary groups. Consider first SU(3) and let k be positive. There are 2r = 4

slow bosonic variables, which are convenient to choose as xa = Ca1L/(4π), ya = Ca2L/(4π).

Both xa and ya vary within an elementary cell of the SU(3) coroot lattice, alias the maximal

torus. The latter represents a rhombus shown in figure 1 such that exp{iLCata} = 1 in the

vertices of the rhombus. The effective Hamiltonian (2.15) can be represented in the form

Heff =
g2

2L2

(

P ax − κL2

2
ya
)2

+
g2

2L2

(

P ay +
κL2

2
xa
)2

+
κg2

2
(ψaψ̄a − ψ̄aψa) . (2.36)

We have found earlier [see eq. (2.18)] that this Hamiltonian has 3k2 ground states. The

corresponding wave functions represent generalized theta functions defined on the coroot

lattice of SU(3). They satisfy the boundary conditions

Ψ(x + a,y) = e−2πikayΨ(x,y) ,

Ψ(x + b,y) = e−2πikbyΨ(x,y) ,

Ψ(x,y + a) = e2πikaxΨ(x,y) ,

Ψ(x,y + b) = e2πikbxΨ(x,y) , (2.37)

where a = (1, 0), b = (−1/2,
√

3/2) are simple coroots. When k = 1, there are 3

such states:

Ψ0 =
∑

n

exp
{

−2π(n + y)2 − 2πixy − 4πixn
}

,

Ψ△ =
∑

n

exp
{

−2π(n + y + △△)2 − 2πixy − 4πix(n + △△)
}

,

Ψ� =
∑

n

exp
{

−2π(n + y + ��)2 − 2πixy − 4πix(n + ��)
}

, (2.38)

– 11 –



J
H
E
P
0
1
(
2
0
1
0
)
0
8
6

where the sums run over the coroot lattice, n = maa+mbb with integer ma,b. Now, △△, ��

are certain special points on the maximal torus (called fundamental coweights) satisfying

△△a = ��b = 1/2, ��a = △△b = 0 .

The group elements that correspond to the points 0,△, and � belong to the center of

the group,

U0 = diag(1, 1, 1) ,

U� = diag(e2iπ/3, e2iπ/3, e2iπ/3) ,

U△ = diag(e4iπ/3, e4iπ/3, e4iπ/3) . (2.39)

They are obviously invariant with respect to Weyl symmetry, which permutes the eigenval-

ues.4 Thus, all three states (2.38) at the level k = 1 are Weyl invariant. But for k > 1, the

number of invariant states is less than 3k2. For an arbitrary k and in the constant field,

the wave functions of all 3k2 eigenstates can be written in the same way as in (2.38),

Ψn =
∑

n

exp
{

−2π(n + y + wn)
2 − 2πixy − 4πix(n + wn)

}

, (2.40)

where wn are coweights whose projections on the simple coroots a, b represent integer mul-

tiples of 1/(2k). Only the functions (2.38) with wn lying of the vertices of the Weyl alcove

are Weyl invariant. For all other wn, one should construct Weyl invariant combinations

Ψ =
∑

x̂∈W

x̂Ψwn . (2.41)

As a result, the number of Weyl invariant states is equal to the number of the coweights wn

lying within the Weyl alcove. For example, in the case k = 4, there are 15 such coweights

shown in figure 2 and, correspondingly, 15 vacuum states.

For a generic k, the number of the states is

Itree
SU(3)(k > 0) =

k+1
∑

m=1

m =
(k + 1)(k + 2)

2
. (2.42)

The analysis for SU(4) is similar. The Weyl alcove is the tetrahedron with the vertices

corresponding to the center elements of SU(4). A pure geometric counting gives

Itree
SU(4)(k > 0) =

k+1
∑

m=1

m
∑

p=1

p =
(k + 1)(k + 2)(k + 3)

6
. (2.43)

The generalization for an arbitrary N is obvious. It gives the result (1.3).

4 For a generic coweight, the Weyl group elements permuting the elements (12), (13) and (23) are

represented as the reflections with respect to the dashed lines bounding the Weyl alcove (≡ the quotient

T/W ) in figure 1.
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Figure 2. SU(3): 15 vacuum states for k = 4. The dotted line marks the boundary of the Weyl

alcove for G2.

The large k asymptotics is I ∼ kN−1/(N − 1)!, which is simply the ”pre-Weyl” in-

dex (2.18) divided by the order of the Weyl group. For negative k, the ground states of

the effective Hamiltonian acquire the fermionic factor

∼
N−1
∏

a=1

ψa .

For odd N , the ground states are still bosonic and the index is still positive. For even N ,

the ground states are fermionic and the index is negative. One need not perform here a

detailed analysis, as we did in the case of SU(2), but simply use the symmetry requirements.

They dictate the formula

Itree
SU(N)(any k) = [sgn(k)](N−1)

(

N + |k| − 1

N − 1

)

. (2.44)

Symplectic groups. The counting of vacuum states for the symplectic groups Sp(2r)

is simpler (sympler?) than for unitary groups. The maximal torus of Sp(2r) can be

represented as g = exp
{

i
∑r

p=1 αpep

}

, where

e1 =
1

2
diag (1, 0, . . . , 0,−1)

· · ·
er =

1

2
diag (0, . . . , 0, 1,−1, 0, . . . , 0) (2.45)
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a

b

Figure 3. Coroot lattice and Weyl alcove for G2.

is the orthonormal basis in the Cartan subalgebra and αk ∈ (0, 4π). The coroot lattice is

thus hypercubic.5

The effective BO Hamiltonian represents a simple sum of r copies of the BO Hamil-

tonian for Sp(2) ≡ SU(2). The path integral for the pre-Weyl index is the r-th power of

such path integral for SU(2) giving

I
Sp(2r)
pre−Weyl = (2k)r . (2.46)

The vacuum wave functions represent the products of the SU(2) wave functions (2.20). The

Weyl group changes the sign for each αk and permutes them. Its order is thus 2rr!. Thus,

the number of Weyl-invariant vacuum states can be counted as the number of components

of a symmetric tensor of rank r where each index can take k+1 values. For positive k, it is

given by eq. (1.6). The index for negative k is restored by symmetry, I(−k) = (−1)rI(k).

G2. The simple coroots for G2 are a = (1, 0) and b = (−3/2,
√

3/2). The lattice of

coroots and the maximal torus look exactly in the same way as for SU(3) (see figure 3).

Hence, the pre-Weyl index is equal to 3k2, as for SU(3). The difference is that the Weyl

group involves now 12 rather than 6 elements, and the Weyl alcove is two times smaller

than for SU(3). As a result, for k = 4, we have only 9 (rather than 15) Weyl-invariant

states (see figure 2). The general formula is given in eq. (1.7).

3 Loop corrections

In (nonchiral) 4d SYM theories, the evaluations of the index based on the analysis of the

tree effective BO Hamiltonian are not modified when loops are taken into account. For 3D

SYMCS theories, this is not so and loop effects are important. It seems plausible, however,

that one can restrict oneself by one-loop analysis; second and higher loops do not further

modify the result. We will argue this point a bit later.

3.1 Infinite volume

We are interested in one-loop corrections to the effective Hamiltonian in finite volume.

But they are genetically related to one-loop renormalization of the infinite volume the-

5 There are r − 1 long and one short simple coroot,

a1 = e1 − e2, . . . , ar−1 = er−1 − er, b = er .

But the basis (2.45) is more convenient than the basis {a1, . . . , ar−1, b}.
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ory [21–23]. For pure YMCS theory, the latter was dealt with in ref. [7]. For N = 1, 2, 3

SYMCS theories, the corresponding calculations have been performed in [8]. Let us remind

their salient features.

After fixing the gauge and introducing the ghosts, the Lagrangian acquires the form

L = − 1

2g2
Tr
{

F 2
µν

}

+ κǫµνρTr

{

Aµ∂νAρ −
2i

3
AµAνAρ

}

+ ∂µη̄a∂µη
a

+fabc∂µη̄aAbµη
c − 1

2ξ
(∂µAaµ)

2 + fermion terms (3.1)

It is convenient to use Landau gauge ξ → 0. Then the tree gluon propagator is

∆(0)
µν = − ig2

p2 −m2

[

gµν −
pµpν
p2

+
imǫµνρp

ρ

p2

]

. (3.2)

It has the pole at p2 = 0 associated with gauge degrees of freedom and the physical pole

at p2 = m2. The transverse gluon polarization operator has two structures

Πµν = (p2gµν − pµpν)Πe(p
2) − iǫµνρp

ρΠo(p
2) . (3.3)

Introducing also the ghost polarization operator Π̃(p2), the bosonic part of the renormalized

Lagrangian is expressed as6

Lren = − 1

2g2
[1 + g2Πe(0)]Tr

{

F 2
µν

}

+ κ

(

1 − Πo(0)

κ

)

ǫµνρTr

{

Aµ∂νAρ −
2i

3
AµAνAρ

}

+ [1 + Π̃(0)]∂µη̄a∂µη
a + fabc∂µη̄aAbµη

c + gauge fixing term . (3.4)

(Π̃(0) is the ghost polarization operator). Redefining the fields η,A, it can be rewritten as

Lren =− 1

2g2
ren

Tr
{

F 2
µν

}

+κrenǫ
µνρTr {Aµ∂νAρ+. . . }+∂µη̄

a∂µη
a+fabc∂µη̄

aAbµη
c+. . . , (3.5)

where

κren = κ

[

1 − 1

κ
Πo(0) + 2Π̃(0)

]

,

1

g2
ren

=
1

g2

[

1 + g2Πe(0) + 2Π̃(0)
]

. (3.6)

The relevant 1-loop graphs are depicted in figure 4. Let us discuss first the renormalization

of κ. The simplest is the contribution of the fermion loop in figure 4a. It gives

ΠF
o (0) = mcV

∫

d3p

(2π)3
1

(p2 +m2)2
=

cV
8π

, (3.7)

p being the Euclidean momentum. The bosonic contribution can be obtained from

eqs. (17),(18) of ref. [8],

ΠB
o (0) − 2κΠ̃(0) = −2mcV

3

∫

d3p

(2π)3
5p2 + 2m2

p2(p2 +m2)2
+

4mcV
3

∫

d3p

(2π)3
1

p2(p2 +m2)

= −2mcV

∫

d3p

(2π)3
1

(p2 +m2)2
= −cV

4π
. (3.8)

6It happens that the ghost-ghost-gluon vertex is not renormalized in Landau gauge at the one-loop level.
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a)                                          b)                                   c)

d)                                                            e)

Figure 4. Gluon and ghost polarization operators.

Thus, the fermion loop leads to the shift k → k − cV /2, while the boson loops give k →
k + cV , such that

kren = k + cV /2 . (3.9)

(That was for positive k. When k is negative, kren = k − cV /2. ) Note the same structure

of momentum integrals in the fermionic and bosonic contributions.

The coefficient k is not renormalized beyond one loop. The proof is simple. Consider

the case k ≫ cV . This is the perturbative regime where the loop corrections are ordered

such that ∆k(1 loop) ∼ O(1), ∆k(2 loops) ∼ O(1/k), etc. But the corrections of order ∼ 1/k

to k are not allowed. To provide for gauge invariance, kren should be integer. Thereby, all

higher loop contributions in kren must vanish.

When cV is odd (in particular, when N is odd for SU(N) groups), the coefficient k is

shifted by a half-integer. The physical requirement for k to be integer refers to kren rather

than ktree. This implies that, for consistency, ktree should be half-integer.7

The renormalization of the coefficient 1/g2 of the kinetic term can be obtained from

the result

mren = m

[

1 +
2cV
k

]

(3.10)

for the mass renormalization,8 from eq. (3.9), and from the relation (2.3). One obtains

1

g2
ren

=
1

g2

(

1 − 3cV
2k

)

. (3.11)

7Another way to see this is to notice that, for odd cV , a topologically nontrivial gauge transformation

brings about the extra factor −1 due to the level flow in the fermion determinant. As a result, the

quantization condition is not exp{2πiktree} = 1, but rather exp{2πiktree} = −1, giving half-integer ktree [1,

24, 25].
8See eq. (23) in ref. [8]. Note that eq. (22) there involves a misprint with misplaced factor ln 3.
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Background field calculation. The calculations [7, 8] were done in the conventional

diagrammatic approach. But to generalize them to the finite volume case, the background

field technique is more appropriate and relevant. We are not aware of a honest background

field calculation in SYMCS or YMCS systems. However, the bosonic shift k → k+ cV can

be reproduced rather easily in the background field technique, if making a little surgery in

the regulator sector and replacing the gauge-invariant YM action by a simple-minded gluon

mass term [26, 27]. Consider the pure CS term and split the gauge field Aµ in two parts,

Aµ = Acl
µ +

1√
κ
aqu
µ (3.12)

(the factor 1/
√
κ being introduced for convenience). The background field Acl

µ is assumed

to satisfy the classical equations of motion F cl
µν = 0. Then the CS action is reduced in the

quadratic in a approximation to

SCS = SCS(A
cl
µ ) + ǫµνρ Tr

∫

d3x aµDνaρ . (3.13)

To do perturbative calculations, one has to fix the gauge. The most convenient one is

the background Landau gauge Dµaµ = 0, where the covariant derivative Dµ involves only

the classical part. We are using then a slightly nonstandard way to implement this gauge

condition by introducing the Lagrange multiplier φ and adding to the Lagrangian the term

∆L = [φDµaµ − (Dµφ)aµ] . (3.14)

There are also ghosts with the Lagrangian Lghost = −Tr
{

c̄D2
µc
}

, but they do not affect

the renormalisation of κ we are interested in. One can now combine aµ and φ into a four-

dimensional object BM = {aµ, φ} (M = 1, . . . , 4), such that the (relevant part of) the

quantum action takes form

Squ = iTr

∫

d3xBDµΓµB , (3.15)

where Γµ are certain traceless 4×4 matrices satisfying the same (anti)commutation relations

as Pauli matrices. This Lagrangian is very similar to the Dirac Lagrangian. There are two

differences: (i) There are twice as many BM ’s as λα’s, giving a twice as large contribution

to the effective action. (ii) BM are bosons rather than fermions and contribute to the

effective action with an opposite sign.

Thus, the bosonic contribution in this approach has exactly the same structure as

the fermion one, up to a factor −2. Of course, we are a little bit cheating here. The

renormalization of κ in the theory with the action (3.15) is zero or, better to say, not

defined until it is regularized in the infrared. A natural regularization is provided by the

Yang-Mills term in the action. But the calculation of ref. [27] uses instead a simple-minded

regularization consisting in adding to the Lagrangian the gauge boson mass term

∆Lm ∼ mTr{BMBM} (3.16)

(with a properly chosen sign). This regularization is not so nice as the YM one (it is not

gauge invariant, etc), but it has the advantage that the calculations become very simple.

Actually, one does not need to do them again, but can simply use the fermion results. This

gives ∆kbos = −2∆kferm = cV , which coincides with the result of [7].
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3.2 Finite volume

Consider first the SU(2) theory. As was mentioned above, the coefficient κ (with the factor

L2) has the meaning of magnetic field on the dual torus for the effective finite volume BO

Hamiltonian. Renormalization of κ means renormalization of this magnetic field. At the

tree level, the magnetic field was constant. The renormalized field is not constant, but

depends on the slow variables C. To find this dependence, one has to substitute

p → 2πn/L− C
∫

dp

(2π)2
→ 1

L2

∑

n

(3.17)

in the integral ∼
∫

d3p for ∆κ.9 We derive for positive k

∆BF (C) = −2m

∫ ∞

−∞

dǫ

2π

∑

n

1
[

ǫ2 +
(

2πn
L − C

)2
+m2

]2

= −m
2

∑

n

1
[

(

2πn
L − C

)2
+m2

]3/2
,

∆BB(C) = −2∆BF (C) . (3.18)

For most values of C, this correction is of order ∼ mL3 = κg2L3, which is small

compared to Btree ∼ κL2 if g2L ≪ 1, which we assume. Also in the “corner” of the

torus |C| ≪ m, the correction ∆B ∼ 1/m2 is small compared to Btree for very large k,

k ≫ 1/(mL)2. Otherwise, ∆B dominates there.10 In any case, the integral for the flux

associated with the corrections (3.18) is saturated by the regions |C| . m, etc in the

vicinity of Weyl fixed points, being equal to

∆ΦF = −m
2

∑

n

∫

Cj∈(0,4π/L)
d2C

1
[

(

2πn
L − C

)2
+m2

]3/2

= −2m

∫

d2p

(p2 +m2)3/2
= −4π , (3.19)

which should be compared with the tree flux Φtree = 4πk. The total flux is thus

Φtot = Φtree + ∆ΦF + ∆ΦB = 4π (k − 1 + 2) (3.20)

The renormalized flux means the renormalized index. For SU(2), we obtain the result

2(k + 1) for the pre-Weyl index. After taking into account the Weyl invariance condition,

9Heuristically, the appearance of C in (3.17) is due to replacing the usual derivative by the covariant one,

evaluated in the constant potential background. The accurate calculation performed for the fermions in the

appendix confirms this rule, but we will see that the mechanism by which the combination 2πn/L−C arises

is not so trivial. It appears, indeed, in the integral for the induced magnetic field, but the corresponding

integral for Ak(C) (which enters the effective Lagrangian) has a more complicated structure.
10The same concerns all the points C = 2πn/L. Note that there are four such points in the dual

torus Cj ∈ (0, 4π/L) with n = (0, 0), (0, 1), (1, 0), (1, 1), corresponding to the group elements Ωj =

exp{iLt3Cj} = {±1,±1}. These points are invariant with respect to the action of the Weyl group.
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we derive

I(k 6= 0) = sgn(k)(|k| + 2) . (3.21)

When k = 0, the magnetic flux giving the pre-Weyl index is zero, and loop corrections

do not modify this result (when ktree vanishes, this is also the case for kren). A vanishing

index suggests breaking of supersymmetry, but whether or not supersymmetry is actually

broken in this case is a nontrivial question requiring special studies.

The result (3.21) involves the tree contribution and the one-loop correction. One

can argue that higher-loop corrections must vanish. The reasoning is the same as for

renormalization of k in the infinite volume: for large k a two-loop correction should be

suppressed as ∼ 1/k. But the coefficient of 1/k should vanish - otherwise the renormalized

flux and renormalized index would not be integer.

A similar analysis (see appendix) can be done for the groups of higher rank. It dis-

plays that, at the level of one loop, the generalized magnetic flux (2.17) evaluated with

renormalized Bab(Ca) is obtained from the corresponding tree expression by substituting

k → k+cV /2. This suggests (though does not prove rigourously ) that there is no nontrivial

renormalization of the generalized flux due to second and higher loops.11 For SU(N > 2),

the result is

I(k 6= 0, N) = [sgn(k)]N−1

(

|k| + 3N/2 − 1

N − 1

)

. (3.22)

For symplectic groups,

I(k 6= 0, r) = [sgn(k)]r

(

|k| + 3r/2 + 1/2

r

)

. (3.23)

For G2, cV = 4, and the result for the index is given by the expression (1.7) with |k|
being substituted by |k| + 2. When k = 0 (this is allowed for even N and for odd r), the

index vanishes.

Metric and the index. Let us restrict ourselves here by the discussion of SU(2). The

index is a topological quantity and is determined by relevant topological invariants, like

the magnetic flux (alias, the first Chern class of the relevant to the problem U(1) bundle

on the moduli space of flat SU(2) connections on T 2).12 Thus, it is sensitive only to the

modifications of the flux due to loops and is robust with respect to other loop corrections

to BO Hamiltonian. In particular, the index is not sensitive to corrections to the metric,

which are well there and might modify significantly the effective Hamiltonian in corner

of the torus and other Weyl fixed points.13 At the one loop level, these corrections are

11 To prove it, one has to exclude a nontrivial two- and higher-loop renormalization of the generalized

flux not reduced to renormalization of k.
12The pre-Weyl index is just equal to the first Chern class. The index taking into account the Weyl-

invariance of wave functions can be related to a certain more complicated invariant [1].
13 Such corrections are also present for 4d theories. In 4d supersymmetric QED, they were calculated by

us long time ago [28]. For non-Abelian 4d theories, this was done in [29].
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associated to the renormalization (3.11) of the coupling 1/g2 by the same token as the

correction (3.18) is associated with renormalization of κ. The explicit calculation gives

δg1 loop(C) =
cV g

2

L2 (C2 +m2)3/2
. (3.24)

To see insensitivity of the index to the metric explicitly, let us write the supersymmet-

ric Hamiltonian for the system with nontrivial metric and calculate the corresponding

phase space integral, as in eq. (2.13). The Hamiltonian is derived from the supersymmet-

ric Lagrangian

L =

∫

dθ̄dθ

[

g(Z̄, Z)

4
DZ̄D̄Z + Φ(Z̄, Z)

]

, (3.25)

with

D = − ∂

∂θ̄
+ iθ

∂

∂t
, D̄ =

∂

∂θ
− iθ̄

∂

∂t
. (3.26)

Z is a chiral superfield, DZ = 0, which is convenient to write in components as

Z = z +

√
2

√

g(z̄, z)
θψ̄ − iżθθ̄ . (3.27)

Then

L = g ˙̄zż − żA− ˙̄zĀ +
i

2
(ψ̄ψ̇ − ˙̄ψψ) +

iψ̄ψ

2

(

˙̄z∂̄ ln g − ż∂ ln g
)

+
B
g
ψ̄ψ , (3.28)

where A = i∂Φ and B = 2∂∂̄Φ. The canonical Hamiltonian is

H = f2(π + A)(π̄ + Ā) + if ψ̄ψ
[

π∂̄f − π̄∂f + ∂̄(Af) − ∂(Āf)
]

(3.29)

with f = g−1/2. It can be represented as the Poisson bracket {Q̄,Q} of the supercharges

Q = f(z, z̄)ψ(π + A)

Q̄ = f(z, z̄)ψ̄(π̄ + Ā) . (3.30)

When f = 1, the Hamiltonian (3.29) coincides with (2.15) (with g2/L2 set to 1 and color

index a suppressed) after identification z = (C1 − iC2)/
√

2, π = (P1 + iP2)/
√

2,A =

(A1 + iA2)/
√

2. It is straightforward to see that the index does not depend on the metric

and the relation (2.13) still holds.

3.3 Higher N
N = 2. The N = 2 SYMCS theory involves one more adjoint Majorana fermion and an

extra adjoint real scalar Φ. It has the following Lagrangian

L =
1

g2
Tr

∫

d3x

{

−1

2
F 2
µν + (DµΦ)2 −m2Φ2 + iλ̄f/Dλf

}

+

κTr

∫

d3x

{

ǫµνρ
(

Aµ∂νAρ −
2i

3
AµAνAρ

)

− λ̄fλf

}

, (3.31)
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f = 1, 2. Its Yang-Mills part is obtained by dimensional reduction from the standard

N = 1 4d SYM theory. The effective finite-volume Lagrangian depends now on 3r bosonic

variables Ca,Φa, and on 2r holomorphic fermion variables λaf , a = 1, . . . , r. The Lagrangian

enjoys N = 2 SQM symmetry.14

Similar to the effective Lagrangian for chiral 4d theories [30, 31], the Lagrangian

belongs to the class of generalized de Crombrugghe-Rittenberg supersymmetric Hamilto-

nians [32]. When r = 1, the latter reads

H =
1

2
(P + A)2 +

1

2
K2 + Bjψ̄σjψ , (3.32)

where B = ∇ × A = −∇K, and K is an arbitrary function of three bosonic variables

A. For chiral 4d QED, the function K was singular, K ∝ 1/|A|. The corresponding

Hamiltonian described the motion in a monopole field with extra scalar potential ∼ 1/A2.

The singularity at |A| = 0 led to nontrivial Berry’s phase [30]. In our case, K is much

simpler, K = mΦ̃ (Φ̃ ≡ Φ3(0)). This corresponds to uniform magnetic field supplemented

by an oscillatoric potential in z direction. The Hamiltonian can be presented in the form

L2

g2
H =

1

2

(

Pj −
B

2
ǫjkCk

)2

+
P̃ 2 +B2Φ̃2

2
+
B

2
(ψf ψ̄f − ψ̄fψf ) (3.33)

with B = κL2 (to establish its relationship to (3.32), one should rename ψ̄2 ↔ ψ2). In spite

of the presence of potential (such that the configuration space Cj, Φ̃ has not the meaning

of moduli space), the characteristic excitation energies associated with Φ̃ are of the same

order as the energies associated with Cj, and to ignore Φ̃ would be inconsistent.

For positive k, the index of the Hamiltonian (3.33) is given, again, by the 2-dimensional

flux of magnetic field as in (2.13). But, in contrast to what happens in N = 1 theory, it

does not change sign for negative k. We derive for SU(2)

IN=2
pre−Weyl = 2|k| . (3.34)

When imposing the condition of Weyl-invariance we are left with only |k| + 1 bosonic

vacuum states.

Loop corrections do not change this result because, for N = 2 theory, fermion and

gluon loop contributions in the renormalization of k and in the magnetic field flux cancel

out. A generalization to higher N is straingforward. The final result for the index coincides

with (2.44), but without the factor (−1)N−1. When k 6= 0, supersymmetry is unbroken.

If k = 0, the pure N = 2 3d SYM field theory is known to involve the “runaway”

vacuum: the degeneracy of the vacuum valley is lifted by a superpotential generated by

instantons such that the minimum of energy is achieved at infinitely large field values [33,

34]. It would be interesting to understand how this is reflected in the finite-volume version

of the theory.

14This is in a conservative convention meaning that the system involves two complex conserved super-

charges. Most experts in SQM prefer now to define N as the number of real supercharges, but, bearing

in mind that the theory with a single real supercharge is in fact not supersymmetric (does not involve a

double spectral degeneracy), this devaluation of N does not seem to us to be a convenient innovation.
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N = 3. The Lagrangian of N = 3 theory, involves four fermions, ψf=1,2,3 and χ. The

fermion χ has the mass of opposite sign compared to that of ψf . Besides, there are three

real adjount scalars Φf . The effective Hamiltonian (for SU(2) theory) has the form

L2

g2
H =

1

2

(

Pj −
B

2
ǫjkCk

)2

+
P̃ 2
f +B2Φ̃2

f

2
+
B

2
(ψf ψ̄f − ψ̄fψf ) −

B

2
(χχ̄− χ̄χ) (3.35)

The pre-Weyl index of this Hamiltonian is

IN=3
pre−Weyl = −2|k| (3.36)

(the vacuum states involve the factor χ and have negative fermion charge). After imposing

the Weyl invariance condition, only |k|+1 fermion vacuum states are left. Loop corrections

do not modify this value, because positive (at positive k) shift of the magnetic flux due to

gluon and χ loops cancels its negative shift due to ψf loops. The final result for the index

with arbitrary N, k coincides up to a sign15 with the result in N = 2 theory.

4 Discussion

A paradox. The problem of calculating the index (i.e. the number of vacuum states)

in SYMCS theory is closely related to the problem of calculating the total number of

states in the topological pure CS theory. Indeed, the canonical momenta derived from

the Lagrangian

LCS = −κǫjk
[

Tr{AjȦk} + Tr{A0Fjk}
]

(4.1)

are

Πa
j =

κ

2
ǫjkA

a
k . (4.2)

There is no time derivatives in the r.h.s. , and we obtain thereby a set of second class (they

do not all commute) constraints Gaj = Πa
j − (κ/2)ǫjkA

a
k = 0 supplemented by the gauge

constraints F ajk = 0. When quantizing, we have to replace, as usual Πa
j → −iδ/(δAaj ) and

impose the conditions

(Ĝa1 + iĜa2)Ψ[A] = 0 or (Ĝa1 − iĜa2)Ψ[A] = 0 (4.3)

on the wave functions (one has to use a kind of Gupta-Bleiler quantization procedure here

and implement only a half of Gaj [35]).

On the other hand, it is not difficult to see that the supercharges of the SYMCS

model (2.1) can be represented as

Q =
g2

2

∫

d2xλa−G
a
1−i2 ,

Q̄ =
g2

2

∫

d2xλa+G
a
1+i2 (4.4)

15An overall sign of the index is, of course, a convention.
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(λ± ≡ λ1 ± iλ2). For positive k, ground states are bosonic and are annihilated by Q̄ in a

trivial way. The condition Q|Ψ〉 = 0 is equivalent to the set of constraints Ĝa1−i2Ψ = 0.

For negative k, the condition Q̄|Ψ〉 = 0 is equivalent to the set of constraints Ĝa1+i2Ψ = 0.

It is not surprising therefore that our results [like (1.3)] for the tree-level index coincide

with those derived earlier for pure CS theories. A conventional way to count the number

of states in CS theories is to use their relationship [26] to 2d WZNW theories [36–39], the

correspondance between WZNW theories and conformal theories, and the full conformal

machinery [40]. But it can also be done by resolving directly the constraints (4.3) [41–44].

The SYMCS theory in question involves, however, also the supersymmetric YM part

in the action, which might affect the index. Witten suggested that only the fermion part

of this action does. His logic was the following [45]. Let us integrate over the fermions

(after which the effective coupling is shifted according to k → k − cV /2) and obtain a

purely bosonic theory. At low energies, this is the pure CS theory. It involves also the YM

term and still higher derivative terms. Though these terms are irrelevant at low energies

in a sense that the dynamics depends exclusively on the lowest dimension CS term in the

Wilsonian effective Lagrangian, they can affect the coefficient of this term. However, in

contrast to what happens, e.g., in a conventional 4d YM theory supplemented by a higher-

derivative term ∼ Tr{FD2F}/M2, where the effective low-energy YM coupling constant

involves a logarithmic dependence of M , in this case, renormalization of κ does not depend

on the coefficient 1/g2 of the YM term. Moreover, it does not depend on the form of the

higher derivative terms, the result

kbosonic = ktree + cV (4.5)

bein robust with respect to these details. One can therefore consider this shift as an

immanent feature of pure CS theory, with quantum effects taken into account. Indeed, the

shift k → k + cV appears in many exact formulae, like those for the energy-momentum

tensor or Wilson loops expectation values, etc [26, 40]. On the other hand, this shift does

not show up in the formula (1.3) for the number of states in CS theory (on the conformal

side, it is the number of so called conformal blocks). Thus, concludes Witten, one should

not take into account the renormalization of k due to bosonic loops. The known pattern of

the exact solution of pure CS theory displays that bosonic loops are present, indeed, they

affect κ and other quantities, but do not affect the number of states.

This reasoning looks OK. Besides, supersymmetry breaking at small k that it implies

follows also from heuristically suggestive D-brane constructions [46, 47]. However, it is

somewhat formal, relying heavily on the correspondence with conformal theories and exact

results there. It does not give a clear physical picture of what really happens. Our method,

consisting in explicit evaluation of the low-energy Hamiltonian in finite volume, gives such

physical picture, but, surprisingly, the result of this analysis is different - bosonic loops do

contribute to the index. This is an obvious paradox, which should be resolved somehow.

Being unable now to make essential comments on the conformal way of reasoning, let us try

to see whether one can modify our prediction following from the analysis of the effective

finite-volume Hamiltonian.16

16This analysis is done in the region g2L ≪ 1, while the pure CS dynamics refers to the limit g2L ≫ 1.
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One of the places in our proof, which might involve a loophole17 is the following. In

appendix, we evaluated accurately the contribution of the fermion loop into the effective

finite-volume BO Hamiltonian and confirmed that, as far as the expression for the induced

magnetic field is concerned, the simple rules (3.17) work and, as a result, the flux of

induced magnetic field is rigidly connected with renormalization of κ in infinite volume.

This generalizes to bosonic loops if the latter are evaluated with the simplistic infrared

regularization (3.16). It is difficult to imagine that the results may depend here on the

regularization, but we cannot logically exclude now that, when accurate calculations are

done in full SYMCS theory, and the extra terms in the action involve a couple of derivatives,

the recipe (3.17) breaks down for bosonic loops. As a result, the flux of the induced

magnetic field might be zero in spite of the nonvanishing renomalization of κ in the infinite-

volume theory... To patch the hole, such an accurate calculation should be performed.

Another potential source of trouble is the fact that the BO approximation we use

breaks down near some special points (fixed points of Weyl transformation) on the flat

connection space [see the footnote 10]. This allows one to suspect the presence of some

extra contributions in the index that we did not take into account. They might be (i) extra

one-loop contributions and/or (ii) higher-loop contributions. Speaking of the latter, we

have not rigourously excluded their presence for higher-rank groups [see the footnote 11],

but, for SU(2), we did. (We remind: for SU(2), higher-loop contributions (if any) should

involve inverse powers of k, this is not allowed at large k and hence the coefficient should be

zero for any k). Speaking of the former, we analyzed accurately only a possible correction

to the index due to renormalization of the metric and showed that it vanishes. However,

there are many other corrections with four and more derivatives in the Lagrangian. As

the index is a topological quantity, it is difficult to imagine that something else besides the

(generalized) flux might contribute, but, again, it is not a mathematical theorem. There is

a logical possibility that something queer, like higher-derivative terms, contributes to the

index and this cancels the contribution of the flux induced by the bosonic loop.

The third possibility is the following. The Weyl group W has a natural Z2 gradation

involving even and odd elements. (For example, for SU(N), the Weyl group SN involves

even and odd permutations.) Imagine now that, for some reason, we should have picked up

not Weyl invariant wave functions, but rather Weyl antiinvariant ones, i.e. the functions

that are invariant under the action of even elements of W and change sign under the

action of odd elements [41, 48]. Weyl antiinvariant wave functions can be represented as

[cf. eq. (2.41)]

Ψ =
∑

x̂∈W

x̂Ψwn P (x) , (4.6)

where P (x) = ±1 depending on whether the element x is even or odd.

It is not difficult to see then that the number of such Weyl antiinvariant states is equal

to the number of points in the Weyl alcove excluding the points on its boundary. Indeed,

The usual wisdome tells, however, that the number of vacuum states should not depend on L.
17It goes without saying that there are a lot of loopholes if mathematical standards of rigour are applied.

This concerns this paper, the paper [1], and, basically, all other papers on quantum field theory published

in physics journals.
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the latter are invariant with respect to a Z2 subgroup of the Weyl group that involves

the unity and some odd element of W of second order. [For the Weyl alcove of SU(3)

depicted in figure 2, this odd element is one of the permutations (12), (13), or (23) — see

the footnote 4]. A glance at figure 2 tells that, for k = 4, there are only three points in the

interior of the alcove. And this coincides with the number of points in the Weyl alcove for

k = 1 counted in the conventional way (with inclusion of the boundary). One can note now

that 1 = 4−3, i.e., for k = 4, the number of Weyl antiinvariant states for the SU(3) effective

Hamiltonian that takes into account the contribution of the gluon loops bringing about the

shift k → k+3 is equal to the number of Weyl invariant states for the unshifted Hamiltonian.

A pure geometric inspection of larger triangles and multidimensional tetrahedrons displays

that this pattern also holds for all k and N . For higher unitary groups, Weyl antiinvariance

condition “unwinds” the gluon loop shift k → k + N . We enjoyed observing this also for

symplectic groups Sp(2r) (where counting the points in the interior of the alcove unwinds

the shift k → k + cV = k + r + 1) and for G2. Indeed, looking at the Weyl alcove for

G2 in figure 2, one observes that, for k = 4, only one state is left, and this corresponds

to unwinding k → k − 4 = k − cV [G2]. This theorem can be proven for an arbitrary

group [41, 48]: Weyl antiinvariance requirement amounts always to the negative shift

k → k − cV that compensates the shift (4.5) due to gluon loops. In other words, by

imposing Weyl antiinvariance requirement on the wave functions, we would reproduce

Witten’s result. The problem is, however, that we do not see a reason to do that in the

framework of our approach.

Going down onto the quotient. We calculated the index by studying the dynamics

on the moduli space of all (not necessarily gauge equivalent) Abelian flat connections and

imposing then the Weyl invariance condition on the quantum states. The advantage of this

approach is simplicity of such moduli space - just the product T × T of two copies of the

maximal torus of the gauge group. An alternative approach is to factorize [T ×T ] over the

Weyl group W at the classical level and study the dynamics on the (more complicated)

moduli space thus obtained. This is the way the index was calculated in section 3 of ref. [1].

This calculation uses a bunch of nontrivial mathematical facts, which we have understood

(with the help of colleages mathematicians) only partially. Still, we have decided to make

here few explanatory comments, which might be useful for an unsophisticated physicist

reader who shares with the author his mathematical illiteracy.

The first nontrivial fact is that the moduli space M = [Tmax × Tmax]/W of gauge

equivalent classes of flat SU(N) connections on T 2 is CP
N−1 [49]. In fact, the proof of

a similar statement for symplectic groups (that MSp(2r) = [Tmax
Sp(2r) × Tmax

Sp(2r)]/WSp(2r) =

CP
r) is much simpler. Consider first Sp(2) = SU(2). In this case, Tmax is just a circle

and the Weyl group is Z2. Then M is a set of points (x, y) identified by periodicity

(x, y) ≡ (x+1, y) ≡ (x, y+1) and by simultaneous Weyl reflection (x, y) ≡ (−x,−y). This

gives a triangle with glued edges depicted in figure 5: the points symmetric with respect

to the middles of the edges are identified. An “envelope” thus obtained is topologically

equivalent to S2.

For Sp(2r), Tmax is a direct product of r such circles. The Weyl group has 2r·r! elements
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Figure 5. T 2/Z2 = S2.

including reflections on each such circle and their permutations. It is clear then that

MSp(2r) =
S1×S1

Z2
× · · · × S1×S1

Z2

Sr
=

S2 × · · · × S2

Sr
(4.7)

with r S2 factors. Introduce a complex structure on each factor. A point in M can be

represented as an unordered set of r complex numbers (z1, . . . , zr). One can represent this

set as a set of roots of some polynomial of order r and map the set of all such sets to

the set of all complex polynomials of degree r factorized over multiplication by a complex

factor λ. Bearing in mind that a polynomial of degree r is represented by a set of r+ 1 its

coefficients, we derive M ≡ CP
r, as promised.

Let us go over to unitary groups. The maximal torus of SU(N) is a set of matrices

diag(eiα1 , . . . , eiαN ) with
∑N

l=1 αl = 0. The product of two such tori can be represented

as the space of sets {z1, . . . , zN}, where zl = αl + iβl belongs to T 2 [αl, βl ∈ (0, 2π)]

and
∑

l zl = 0. The Weyl group permutes zl. Thus, MSU(N) is a set of unordered N -

tuples on T 2 that add to zero. Similarly to what was done in the case of Sp(2r), such

N -tuple can be represented by meromorphic elliptic functions defined on T 2 that have

simple zeroes at N selected points and the pole of N -th order at zero.18 There is a

one-to-one correspondence between these N -tuples and the classes of such functions F (z)

with identification F (z) ≡ λF (z). It is a known mathematical fact that the space of all

such elliptic functions is a vector space of complex dimension N . Bearing in mind the

identification with respect to multiplication by λ, the projective space CP
N−1 arises.

Witten then relates the index to a certain topological invariant of CP
N−1 associated

with the presence of extra Abelian gauge field on this manifold. We do not want to go

into further details (bearing especially in mind that we do not understand this question

completely), but we would like to mention here that an elementary calculation of this

invariant19 was performed in [50]. The number of the states depends at the tree level on

18If one of the coordinates zl is zero, the pole is of order N − 1, if two of them are zero, the pole is of

order N − 2, etc.
19It uses the explicit form of the metric on CP

N−1 and directly counts the normalized states annihilated

by the properly chosen second class constraints [cf. eq. (4.3)].
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the parameter k and is given by (1.3). As was discussed above, Witten suggests that k

should be shifted due to fermion loops to k− cV /2, while our analysis suggests the positive

shift k → k + cV /2.

Strings and walls. The last rather confusive issue that we want to discuss here are

the arguments of ref. [9] relating the Witten index in 3d SYMCS theory at the level k

to the multiplicity of domain walls in N = 1 4d SYM theory with SU(k) gauge group.

The standard reasoning displaying the appearance of these walls is the following. The

tree Lagrangian of this theory involves axial U(1) symmetry. Like in QCD, this symmetry

is anomalous, being broken by instantons. An instanton possesses 2k gluino zero modes,

the ’t Hooft determinant involves the factor ∼ λ2k, and that means that the discrete Z2k

subgroup of the axial U(1) group remains unbroken. This discrete symmetry is further

spontaneously broken down to Z2, with the phase of the gluino condensate,

〈λλ〉l = Σe2πil/k , l = 1, . . . , k , (4.8)

playing the role of the order parameter of this breaking [51, 52]. This implies the existence of

k distinct vacua and domain walls separating them [53]. There are domain walls of different

kind interpolating between the vacua with phase differences p = l − l′ = 1, . . . , k − 1. For

given k, p, there are several different domain walls, their multiplicity being evaluated (by

brane methods) in [9] as

#walls(k, p) =

(

k

p

)

. (4.9)

Based on certain D-brane and duality arguments, Acharya and Vafa relate this number to

the number of vacuum states in N = 2 3d SYMCS SU(p) theory at level k (the main idea

is that the effective theory on the domain wall is in fact a 3d SYMCS theory). And this

relation holds if using the N = 2 generalization [46, 47]

I =

(

k − 1

p− 1

)

(4.10)

of original Witten’s formula (1.1) and not our formula (1.5)!20

Even though this agreement looks to be rather remarkable, it is not conclusive enough

in the framework of our restricted rules of the game, where only pure field theory reasoning

is admissible, and duality arguments are not.

SYM theory is a theory with strong coupling, and it is difficult to perform a honest

study of domain walls there and count their number. The only “braneless” way to do it

is to modify the theory by adding there extra fundamental matter multiplets [54]. If the

matter fields are light enough, one can integrate over all other degrees of freedom to obtain

20The exact agreement between (4.9) and (4.10) is achieved, if taking into account the presence of an

extra U(1) factor in the effective theory. As a result, the number of walls is given by the SU(p) index (4.10)

multipled by the factor k/p [9], which coincides with (4.9).
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the effective ADS Lagrangian [55, 56]. It is a Lagrangian of Wess-Zumino type, with super-

potential involving a special instanton-generated term. It has, indeed, k different vacua,

and the classical solutions describing different domain walls can be explicitly constructed

and counted, their number being given by eq. (4.9). But it is not evident that the number

of walls in the pure SYM theory should be the same. The latter can be achieved from

the weakly coupled theory with light matter fields by increasing their mass. If the mass

becomes very large, these fields decouple. If the number of walls is not changed under

such deformation, the counting (4.9) works also for pure SYM.

This condition seems not to be fulfilled, however. In refs. [57–62], this very question was

studied in the framework of the Taylor-Veneziano-Yankielowicz Lagrangian [63] involving

on top of matter superfields also the chiral superfield S, which takes effectively into account

the gluon and gluino degrees of freedom.21

This study has revealed that, when the mass is increased, a chain of phase transitions

(or rather bifurcation points) occur such that most of the walls disappear at large masses.22

For example, for k = 2, both walls disappear. For k = 3 only two “tenacious” walls out

of three are left, etc. In other words, the counting (4.9) works for the ADS Lagrangian,

but probably does not work for SYM theory. Bearing this in mind, the agreement between

eq. (4.9), which does not count correctly the number of walls, and eq. (4.10), which is not

a correct value of the 3d index, looks really misterious...

We are indebted to E. Witten for profound illuminating discussions and many valuable

remarks. We aknowledge also useful discussions with B. Feigin, A. Gorsky, E. Ivanov, A.

Pajitnov, V. Rubtsov, and S. Theisen.

A Magnetic flux induced by loops.

SU(2). The formula (3.18) for the induced magnetic field on the dual torus is very nat-

ural and follows almost directly from (3.7) and the rules (3.17). However, this simple

correspondence is formulated for the magnetic field B, while the bosonic part of the effec-

tive Lagrangian involves vector-potential A rather than B, and the formula for Leff is more

complicated. Because of this and because of the controversy concerning the bosonic loop

contribution, we decided to make here some explanatory comments.

21The TVY Lagrangian has correct symmetry properties, but it is not a Wilsonean effective Lagrangian,

and one cannot be sure that the results obtained in the TVY framework hold also for the full SYM theory.

Anyway, it is the only known to us field theory method to study domain walls in strongly coupled regime.
22Disappearance of walls in the pure SYM theory might be associated the fact that the standard inter-

pretation with spontaneous breaking of discrete chiral symmetry is actually questionable. The pure SYM

theory, unlike a theory with fundamental matter, admits not only instanton Euclidean configurations with

integer topological charge, but also configurations with fractional charge. Such configurations (’t Hooft

torons [11–13]) are certainly there in a theory defined on a spatial torus with twisted boundary conditions

[cf. a remark after eq. (2.5)]. And then the phase of the fermion condensate 〈λλ〉 in eq. (4.8) is not an order

parameter, but plays the same role as the vacuum angle θ - it should be chosen once for ever, and there

are no physical walls connecting vacua with different θ. See refs. [54, 62] for discussion of this controversial

issue.
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C E1

2

0

Figure 6. EC contribution to Leff .

Consider the fermion contribution. To find the correction to the effective Lagrangian,

we have to evaluate the fermion loop in finite volume in external background field

C(τ) = C0 + Eτ , (A.1)

where τ is Euclidean time (to evaluate the graphs, we are going to perform, as usual,

Wick rotation, etc.). For any multileg graph in the expansion of Tr ln(iD/ −m), we have

thus to insert such C(τ) in each leg and keep only linear in E terms.23 The way the

calculations are done here [64, 65] is very much parallet to the technique of calculations in

background nonperturbative Euclidean 4d fields developped in [66] and based on the gauge

choice [67–70] (x− x0)µAµ = 0 leading to

Aµ(x) =

∫ 1

0
sds (x− x0)νFνµ[x0 + s(x− x0)] =

1

2
(x− x0)νFνµ +

1

3
(x− x0)ν(x− x0)αDαFνµ + . . . (A.2)

This gauge is not translationally invariant, but the physical results must not (and do not)

depend on the choice of the “fixed point” x0. This choice is in our hands. Likewise, the

point τ0 at which the linear term in the decomposition (A.1) vanishes, is a convention. We

will choose τ0 = 0 coinciding with the position of one of the legs in the graphs.

The graphs with an odd number of legs vanish, and we have to consider only the graphs

with even number of legs. There is only one two-leg graph depicted in figure 6. The factor

1/2 coming from the expansion of ln(iD/ − m) is displayed. The blob marks the “fixed

point” - the vertex at τ = 0. At this point, one can plug only the constant part of C(τ),

the linear term vanishes there. There are three nonzero 4-leg graphs depicted in figure 7.

The expansion factors 1/4 are displayed.

The EC contribution to the effective Lagrangian is proportional to

Leff
figure 6 ∝ 1

2

∑

n

CjEk

∫

dǫ

2π
Tr

{

γjGγk
∂G

∂ǫ

}

, (A.3)

where G(ǫ, 2πn/L) is fermion Green’s function, and we took care to display explicitly the

factor 1/2 coming from the expansion of the logarithm, but not other numerical factors.

We have also suppressed from now on the subscript 0 for C. For the graphs in figure 7, the

23We are hunting for the structure ∼ ĊA(C) in Leff . The quadratic in Ċ terms give corrections to the

metric, there are also cubic and all higher-order terms, but they do not affect the index, as was discussed

in section 3.
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Figure 7. ECCC contribution to Leff .

C E1

2

0

Figure 8. Two-leg graph with thick Green’s functions.

factor τ multiplying Ek goes over into the operator ∂/(∂ǫ) acting on all Green’s functions

between the point where Ekτ is inserted and the blob in, say, the clockwise direction [66].

For example, the graph in figure 7b gives

Leff
figure 7b

∝ 1

4

∑

n

CjClEkCp

∫

dǫ

2π
Tr

{

γjGγlGγk
∂

∂ǫ
(GγpG)

}

, (A.4)

Again, only the expansion factor 1/4 is explicitly displayed. The 6-leg graphs ∼ EC5

involve the expansion factor 1/6, etc.

To resum all such contributions, let us compare the expressions (A.4) etc. to the cor-

responding terms in the expansion of the graph in figure 8, where the thick lines stand

for Green’s functions in the constant background C. These expansion terms have the

same structure as in eq. (A.4), but the coefficients 1/4, 1/6, etc are replaced by a uni-

versal combinatorial prefactor 1/2. To find Leff to any order in C, we have thus to take

the expression

mǫjkCjEk
∑

n

∫ ∞

−∞

dǫ

2π

1
[

ǫ2 +
(

2πn
L − C

)2
+m2

]2 (A.5)

for the graph in figure 8, expand it in C, and divide the 2p-th term of this expansion by

p+ 1. We obtain

Leff
EC···C = −EkAk(C) (A.6)

with

Ak(C) = −2mǫjkCj
∑

n

∫ 1

0
sds

∫ ∞

−∞

dǫ

2π

1
[

ǫ2 +
(

2πn
L − sC

)2
+m2

]2 . (A.7)
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This is nothing but Fock-Schwinger gauge representation (A.2) for the vector potential via

magnetic field. We thus arrive at the result (3.18) for ∆BF (C).

An explicit evaluation of ∆BB(C) in SYMCS theory is technically more involved. In

the background field method, there are two types of vertices with single and double external

field insertions. In addition, the expression for the gluon propagator is more complicated.

What we can easily do, however, is to calculate the induced magnetic field in the model

where the YM term in the action is replaced by the gluon mass term (3.16). Then the

action is exactly the same as for the fermions and the results are also exactly the same up

to the factor -2,

∆BB(C) = −2∆BF (C) . (A.8)

In view of the controversy discussed in the paper (whether gluon loops are relevant or not),

it would make sense to perform this calculation with the “honest” YM action. It is difficult

to imagine, however, that some other result than (A.8) would be obtained. At C = 0, the

equality (A.8) is manifest with any regularization.

SU(3). For an arbitrary group, the loop-corrected expression for the generalized

flux (2.17) is obtained from (2.18) by substituting k → k + cV /2. Let us show how

this comes about in the simplest nontrivial SU(3) case. Consider the fermion contribu-

tion. The charged [with respect to the background (A3,A8)] fermions circulating in the

loops, like in figures 6, 7, can be directed along three root vectors of SU(3), ψ1±i2, ψ4±i5,

and ψ6±i7. They give contributions depending on the roots A3, (−A3 +
√

3A8)/2 and

−(A3
√

3 + A8)/2, correspondingly.

The total 1-loop contribution to the effective Lagrangian is expressed as

Leff = −E3
kA3

k − E8
kA8

k (A.9)

with

A3
k = Ak(A

3) − 1

2
Ak

(

−A3 +
√

3A8

2

)

− 1

2
Ak

(

−A3 +
√

3A8

2

)

A8
k =

√
3

2

[

Ak

(

−A3 +
√

3A8

2

)

−Ak

(

−A3 +
√

3A8

2

)]

, (A.10)

where a universal function Ak(C) is taken from (A.7). Let us add now the contribution from

gluon loops (this amounts to changing sign of Ak) and calculate Bab and its determinant.

We obtain

det ‖Bab‖ = (κL2)2 + κL2

[

B(A3) + B
(

−A3 +
√

3A8

2

)

+ B
(

−A3 +
√

3A8

2

)]

+
3

4

[

B(A3)B
(

−A3 +
√

3A8

2

)

+ B(A3)B
(

−A3 +
√

3A8

2

)

+

B
(

−A3 +
√

3A8

2

)

B
(

−A3 +
√

3A8

2

)]

(A.11)
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with

B(C) = 2m

∫ ∞

−∞

dǫ

2π

∑

n

1
[

ǫ2 +
(

2πn
L − C

)2
+m2

]2 . (A.12)

Integrating (A.11) over dA3dA8 within Tmax[SU(3)] × Tmax[SU(3)] gives 3(k + 3/2)2.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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