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Abstract

Duplex sequencing was originally developed to detect rare nucleotide polymorphisms normally obscured by
the noise of high-throughput sequencing. Here we describe a new, streamlined, reference-free approach for
the analysis of duplex sequencing data. We show the approach performs well on simulated data and precisely
reproduces previously published results and apply it to a newly produced dataset, enabling us to type
low-frequency variants in human mitochondrial DNA. Finally, we provide all necessary tools as stand-alone
components as well as integrate them into the Galaxy platform. All analyses performed in this manuscript
can be repeated exactly as described at http://usegalaxy.org/duplex.
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Background
The term “genetic variation” is often used to imply
allelic combinatorics within a diploid organism such as
humans or Drosophila. Yet the majority of organisms
in the biosphere are not diploid (prokaryotes and
viruses), and even those that are include non-diploid
genomes such as mitochondria and chloroplasts. Iden-
tification of genetic variants—e.g., single nucleotide
polymorphisms (SNPs) and small indels—is especially
challenging in non-diploid systems due to the lack of a
simple “homozygote-or-heterozygote” expectation: a
heterozygous site may have not just two but multiple
allelic variants, with frequencies ranging anywhere from
0 to 1 [1, 2]. Because high-throughput sequencing tech-
nologies exhibit considerable amounts of noise [3], it
becomes increasingly difficult to reliably call variants
with frequencies below 1 % [4–9]. In these situations
increased sequencing depth does not improve the pre-
dictive power but instead introduces additional noise.
This complicates the identification of low-frequency

variants that is becoming critically important in a var-
iety of applications. For example, humans have numer-
ous disease-causing mitochondrial variants where the
disorder penetrance is proportional to the allele fre-
quency [10]. Because dramatic shifts in allele frequency
can occur during mitochondrial bottleneck during oo-
genesis, a disease-causing variant present at a very low
frequency in the mother may increase in frequency in
the child to exhibit a disease phenotype. The lack of
cures for diseases caused by mitochondrial DNA muta-
tions and the recent regulatory approval of tri-parental
in vitro fertilization by the UK House of Commons
makes it critical to identify low-frequency variants in
the human mitochondrial genome [11]. Other examples
illustrating the importance of discovering low-frequency
genome alterations include tracking mutational dynamics
in viral genomes, malignant lesions, and somatic tissues
[12, 13].
Today the vast majority of strategies for the identi-

fication of low-frequency sequence variants rely on
next-generation sequencing technologies. Noise reduc-
tion in these approaches ranges from simple base-
quality filtering to complex statistical strategies in-
corporating instrument and mapping errors [4, 7, 14].
However, there is still considerable uncertainty about
alternative alleles with frequencies below 1 %. For ex-
ample, Fig. 1 illustrates the number of potential
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polymorphisms observed within the human mitochon-
drial genome as a function of the allele frequency
cutoff. At 1 % there is an average of three sites [7],
while at 0.75 % the number surpasses 10, and, finally,
around 0.1 % almost all sites appear polymorphic.
Clearly, the majority of these sites are false-positives
but how does one know for certain? Potentially,
highly sensitive techniques with a high dynamic
range, such as droplet digital PCR [15, 16], can be
used to validate each site, but it would quickly be-
come prohibitively expensive and laborious to perform
this on hundreds or thousands of sites.
An approach that offers a potential solution is du-

plex sequencing [17]. This recently developed method
was designed to increase sequencing accuracy by over
four orders of magnitude. Duplex sequencing uses
randomly generated barcodes to uniquely tag each
molecule in a sample. The tagged fragments are then
PCR amplified prior to the preparation of a sequen-
cing library, creating fragment families characterized
by unique combinations of barcodes at both 5′ and
3′ ends (a conceptually similar primer ID approach
[12] allows tagging of cDNA fragments at the 5′ end
only). A family contains multiple reads, each originat-
ing from a single input DNA fragment. A legitimate
sequence variant will thus be present in all reads
within a family. In contrast, sequencing and amplifi-
cation errors will manifest themselves as “polymor-
phisms” within a family and so can be identified and
removed. A consensus can be called from these read
families. The consensus of all the reads originating
from the same strand reduces errors originating from
sequencing and PCR amplification. Then, comparing
consensus sequences from complementary strands can
identify early PCR errors.

Despite the fact that duplex sequencing promises
great advances, the methods for both experimental
and computational aspects of this technique are still
evolving. In fact, the latter is lagging as it is based on
alignment to a reference genome, which is disadvanta-
geous for several reasons. The use of a reference gen-
ome biases results toward that reference, affecting
studies using de novo assembly or studies examining
indels or other alleles that diverge far enough from
the reference to cause alignment difficulties. The
current analysis method also removes a large (and po-
tentially useful) fraction of the original data due to
stringent filters and uses suboptimal tools for variant
identification. Here we describe an alternative analysis
strategy which removes reliance on a reference se-
quence, preserves a higher proportion of the input
reads, and can be deployed as a standalone application or
as a part of the Galaxy system. We demonstrate the
application of this approach by validating rare variants in
the human mitochondrial genome.

Results and discussion
A reference-free approach
Our approach is outlined in Fig. 2. First, paired reads
generated from a duplex sequencing experiment are
merged into families. This is performed by sorting
according to the barcode. Each fragment is expected to
be represented by two single-stranded families corre-
sponding to each strand. These two single-stranded
families are expected to have the same unique tags but in
the opposite order: the α tag from one single-stranded
family will be the β tag in the other (also see Fig. 1
in [17]). In order to group single-stranded families
from the same fragment together, we normalize the
order of the concatenation to produce a “canonical

Fig. 1 The relationship between the minor allele frequency (maf) threshold (x-axis) and the total number of variable sites (y-axis) detected by [7].
Lowering the MAF threshold leads to an exponential increase in the number of variable positions. The image was generated by applying variable
MAF thresholds to data from 156 human samples and plotting the average number of variable sites at a given MAF threshold. The line thickness
corresponds to the 95 % confidence interval around the mean value
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barcode” (a concatenated string consisting of α and β
tags), which will be identical for both strands. The
order of the canonical barcode is determined by a
simple string comparison. Sorting the output groups
the reads so that the two families constituting each
duplex will be adjacent, with the read pairs separated
by strand.
Next, the reads in each single-stranded family are

aligned to themselves and these alignments are used
to call the single-stranded consensus sequence (SSCS).
First, a threshold is applied, requiring a user-specified
number of reads to produce a consensus (three by
default). The consensus calling is conducted by deter-
mining the majority base at each position. If no base
is in the majority, “N” is used. Positions with gaps are
considered in the same way as bases. Quality filtering
is performed at this stage: bases with a Phred quality
score [18] lower than a user-specified threshold are
not counted (20 is used by default). For positions
with gaps, a quality score is calculated by considering
the qualities of eight neighboring bases. The calcu-
lated score is a weighted average, with the weight de-
creasing linearly with distance from the gap. Finally, a
duplex consensus is called using the two SSCSs. The
SSCSs are aligned using the Smith–Waterman algo-
rithm [19] and then each pair of bases is compared.
If the bases agree, that base is used in that position
to generate duplex consensus. If they disagree, the
International Union of Pure and Applied Chemistry
(IUPAC) ambiguity code for the two bases is used.
Gap and non-gap characters produce an “N”. In the
end the above approach reduces the initial set of
sequencing reads to a collection of duplex consensus
sequences (DCSs; as the duplex sequencing experi-
ments are performed with paired-end reads, the
output of the procedure also consists of pairs corre-
sponding to forward and reverse double-stranded
consensuses). DCSs are then filtered (i.e., sequences
with ambiguous nucleotides can be removed or
trimmed), mapped against the reference genome, and
realigned to normalize gap-containing regions and the

resulting alignments are used to call variants. In this
scenario variants are expected to have the full
spectrum of allele frequencies between 0 and 1 and
do not follow a diploid expectation. For that reason
we use variant callers capable of dealing with this
limitation such as the Naive Variant Caller (NVC)
[20] or Freebayes [21]. Finally, variant calls are post-
processed to compute the strand bias (using formulae
from Guo et al. [22]). This approach is implemented
in a pipeline relying exclusively on open-source soft-
ware (https://github.com/galaxyproject/dunovo and ac-
cessible through the Galaxy system). We termed this
approach Du Novo—for duplex sequencing de novo
assembly-based calling.

Du Novo reliably identifies very low frequency variants
First, we evaluated the performance of Du Novo by ap-
plying it to a dataset generated from a simulated mixing
experiment. The advantage of performing the simulation
is that the “truth” is known explicitly. We randomly
generated 21 “heteroplasmies” by modifying human
mitochondrial sequence. This altered version of the
mitochondrial genome was then “mixed” with unmodi-
fied reference sequence at a ratio of 1:10,000 (thus, each
“heteroplasmy” in this mix has the frequency of 0.0001)
and a duplex experiment was simulated on the mixture.
This was done by randomly generating 2500 fragments
from the altered sequence and 25,000,000 fragments
from unmodified reference, adding barcodes, and per-
forming in silico PCR and sequencing (see “Methods”).
The polymerase error rate in PCR and sequencing was
set at 0.1 % per base. After applying Du Novo to the
simulated reads and aligning the DCSs to the mitochon-
drial reference, the median read depth was 166,574×.
Next, we identified all variable sites and filtered them
using a series of minor allele frequency (MAF) thresh-
olds and requiring a minimum DCS coverage of 10,000.
The relationship between MAF thresholds and the
numbers of false positives and false negatives is shown
in Additional file 1: Figure S1. Du Novo correctly
identifies 20 of the 21 variants with no false positives.

Fig. 2 The Du Novo approach. First, reads tagged with identical barcodes are grouped into strand-specific families. Reads within each family are
aligned and single-stranded consensus sequences (SSCSs) are generated. Finally, the SSCSs are reduced into duplex consensus sequences (DCSs)
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The remaining variant was present at a frequency of
0.00004 (likely a result of random fluctuation), along with
46 false positives with an equal or higher MAF.

Comparison with original approach: Du Novo replicates
published estimates
To assess the performance of our method on real-world
data and to compare it head-to-head with the original
approach of Kennedy et al. [23], we re-analyzed a re-
cently published dataset by Schmitt and colleagues [13]
using both methods. In [13] the authors employed
duplex sequencing to identify a rare mutation at the
ABL1 locus responsible for resistance to the chronic
myeloid leukemia therapeutic compound imatinib. The
resistance is conferred by the presence of G-to-A
substitutions within the ABL1 coding region resulting
in an E279K amino acid replacement. This substitution
is present in a small sub-clonal subset of cells at an
~1 % frequency. The dataset (Sequence Read Archive
accession SRR1799908) contains 6,921,891 read pairs
representing 1,468,089 unique tag combinations (po-
tential families; Table 1).
First, we analyzed this dataset with Du Novo. Requiring

each family to contain at least three reads reduced this
number to 120,365 SSCSs and reconciling these into
DCSs further reduced this number to 20,746 DCSs con-
structed from 2,083,140 read pairs (the remaining
6,921,891 − 2,083,140 = 4,838,751 were represented by
families with less than three reads and were omitted;
see Additional file 2: Figure S2). Mapping DCSs to the
reference human genome showed the G-to-A substitu-
tion with frequency varying from 1.28 to 1.31 % de-
pending on the variant caller (NVC [20] and FreeBayes
[21], respectively) but irrespective of the mapper used
(BWA-MEM [24] or BWA [25]).

Next, we repeated this experiment with the published
duplex sequencing pipeline [23]. This produced 1.29 and
1.31 % frequencies at the G-to-A substitution site for
NVC and FreeBayes, respectively. Thus, the allele fre-
quency estimates were essentially identical between the
two approaches. Du Novo produced a higher depth at
the variable site: 1099 for our method versus 618 for the
published pipeline [23]. However, at such low allele fre-
quencies even formidable coverage results in a relatively
small proportion of reads supporting the minor allele.
For example, in the case of this analysis the minor allele
(“A”) is supported by 14 duplex consensuses from the
total of 1099, resulting in a MAF of 1.28 %. Yet each of
these 14 families is in turn derived from multiple start-
ing reads ranging from a minimum of 5 to a maximum
of 102 (Fig. 3a), providing additional support for the
reliability of the minor allele calls.

Using Du Novo to call low-frequency heteroplasmies at
mitochondrial DNA
After ensuring the adequate performance of Du Novo
on the ABL1 data, we applied it to the identification of
low-frequency variants in human mitochondrial DNA
(mtDNA). Previously, we have reported 174 point
heteroplasmies identified from the analysis of mtDNA
in 39 mother–child pairs (a total of 156 samples = 39
mothers × 2 tissues + 39 children × 2 tissues [7]). We
chose family SC8 as it displays significant variability
across samples and individuals. This family contains
two heteroplasmic sites—at positions 7607 and 13,708.
According to our published results [7], the MAFs at site
7607 are 0.7, 1.1, 0.0, and 0.0 % in mother’s buccal
tissue, mother’s blood, child’s buccal tissue, and child’s
blood, respectively. The corresponding MAFs at site
13,708 are 0.0, 0.0, 2.2, and 1.6. To verify these frequen-
cies, we performed the duplex sequencing experiment
using genomic DNA extracted from SC8 child buccal
tissue in which mtDNA has been enriched via long-
range PCR as previously described in [7]. We started
with 17,385,100 read pairs that contained 2,100,704
unique tags and were assembled into 82,230 DCSs. The
estimated allele frequency at position 13,708 was
0.53 %, a figure substantially lower than the 2.2 % esti-
mated previously [7]. The coverage at this site was
1138 with six reads representing the minor allele (“A”).
To check the reliability of this call we estimated strand
bias (SB; using formula 1 from [22]) for all sites with
MAF ≥0.5 %. There were 20 sites (excluding 13,708)
with MAF ranging from 0.51 to 21.2 % and with SB values
ranging from 0.94 to 6.08 (the lower the value, the less SB
there is at a site; 0 is an ideal value [22]). SB = 0.01 at site
13,708, which is outside of the SB distribution for all other
variable sites in our sample, strongly suggesting that this is
the only true heteroplasmy in this sample. In addition,

Table 1 Characteristics of ABL1 and SC8 duplex sequencing
experiments

Number of ABL1 SC8

Read pairs 6,921,891 17,385,100

Unique tags 1,467,768 2,100,705

Unique αβ configurations 748,411 1,148,444

Unique αβ configurations with 1 read pair 677,069 884,295

Unique αβ configurations with ≥3 read pairs 60,333 222,823

Unique βα configurations 743,669 1,092,748

Unique βα configurations with 1 read pair 672,946 832,875

Unique βα configurations with ≥3 read pairs 60,032 140,486

Unique αββα 24,313 140,485

Unique αββα with ≥3 read pairs on both strands 20,746 109,999

Reads within αββα families with ≥3 read pairs on
both strands

2,156,105 8,636,692
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examining individual DCSs at this site indicates that each
of them is generated from a large number of original reads
(Fig. 3b) confirming this polymorphism, albeit at a signifi-
cantly lower frequency.

The utility of SSCSs
In the SC8 experiment described above, we estimated the
MAF at site 13,708 to be 0.53 %—a much lower value
compared with the original one (2.2 %) obtained from re-
sequencing [7]. The likely cause of this deviation lies in
the design of the duplex experiment. In this study we
performed duplex sequencing not directly on mtDNA but
instead on products of a long-range PCR (see “Methods”).
In this particular case this is unavoidable as the samples
are obtained by a minimally invasive “cheek swab”, result-
ing in a very low concentration of mtDNA. The core issue
is that complementary strands of the resulting PCR
products (the starting material for our duplex sequencing
experiment) can randomly pair after amplification, form-
ing heteroduplexes and leading to an underestimation of
MAFs when using DCSs only (Additional file 3: Figure
S3). To test whether this indeed is the cause of MAF
underestimation, we performed variant calling using
SSCSs instead of DCSs and obtained a MAF of 1.7 %
(strand bias = 0.02 and depth = 4548), a value much closer
to the 2.2 % reported in the original publication. Thus,
although the background error frequency is higher for
SSCSs in comparison with DCSs [17] in certain situations,
such as experiments using ampliconic DNA, the use of
SSCSs for polymorphism detection may be preferable to
obtain more accurate allele frequencies.

Loss of data as a result of sequencing errors in duplex tags
One of the fundamental weaknesses of duplex sequen-
cing is the fact that the majority of families in a duplex
experiment contain only a single read pair (Additional

file 4: Figure S4). This eliminates a substantial amount
of otherwise useful data from the analysis, contributing
to the inefficiency of the current protocol. To under-
stand the potential sources of read loss, we examined
individual stages of the duplex analysis process. This in-
formation is compiled in Table 1 and is based on the re-
analysis of both previously published data (ABL1 data)
[13] and results generated in our laboratory (the SC8
dataset described above). Both cases feature a large
number of initial read pairs and unique tags. However,
these numbers are rapidly reduced by requiring at least
three reads within each single-stranded family. Combin-
ing SSCSs into DCSs also greatly reduces the number of
useful sequences since both strands must be present and
meet the three-read threshold. One potential explan-
ation for the large number of families with only one read
pair is sequencing errors within duplex tags. Each bar-
code with an error will almost certainly be unique, creat-
ing an entirely new apparent family with only one
member. The number of reads with an erroneous bar-
code may be a minority but this can still result in the
number of families with erroneous barcodes being very
high (a majority). The fraction of erroneous barcodes (r)
can be expressed in the following form:

r ¼ 1– 1 –Eð Þl ð1Þ

where E is the per-base error rate and l is the barcode
length (in this case 24 as it is a combination of α and β
tags, each of which is 12 nucleotides). Here, E is a
cumulative error rate taking into account the chance of
a mutation at every cycle of PCR plus the sequencing re-
action. The cumulative error rate can be calculated from
the error rate at each stage using the same equation
(Eq. 1), this time using E as the error rate per base per
stage, l as the number of stages (number of PCR cycles

Fig. 3 Distribution of family sizes (number of reads per family) supporting A and G alleles on both strands (plus and minus) for a site 130,872,141
in the ABL1 dataset and b site 13,708 in the SC8 dataset
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plus 1 for the sequencing reaction), and r as the cumula-
tive error rate. Even assuming a low per-stage error rate
of 0.1 %, this gives a cumulative error rate of about 3 %.
Using this in Eq. 1 again, we obtain the fraction of
barcodes expected to contain an error to be 52.5 %:

r ¼ 1– 1–0:03ð Þ24≈ 0:525 ð2Þ

Now, suppose in a hypothetical duplex experiment ten
initial fragments of DNA were ligated with α and β
adapters (a unique α and β for each of the ten frag-
ments) and the subsequent PCR amplification and Illu-
mina sequencing process produced 100 read pairs (10
pairs per original fragment). If there are no errors, these
100 read pairs should be recognized as members of ten
duplex families during the analysis stage. If we now fac-
tor in the erroneous barcode rate of ~52 % calculated
above, one would observe 62 total families: ten real fam-
ilies and 52 artifactual families consisting of a single read
pair. This phenomenon increases the total number of
families by reducing the read count within legitimate
families—a trend apparent in real data (Additional file 2:
Figure S2). Furthermore, the relationship between the
number of single-read families and the total number of
reads can serve as a proxy for the error rate. For example,
in the SC8 experiment there were 1,717,170 single read
families and 17,385,100 total read pairs. Assuming that all
single read families are byproducts of sequencing errors
within duplex tags, this gives 1,717,170/17,385,100 = 0.098
as the fraction of erroneous barcodes (r). With l = 24 we
can solve Eq. 1 for E obtaining an estimate of ~0.4 % for
the cumulative error rate.
To test this reasoning we simulated duplex experiments

with different error rates. The starting distribution of
family sizes was constant in each case, with 1.20 % of
fragments producing a family with only one read. With an
error rate of zero, the proportion of output families which
were composed of a single read was, as expected, pre-
cisely 1.20 % (Additional file 4: Figure S4), meaning no
excess beyond those with a natural family size of one.
When the error rate was raised to 0.1 % per base per
cycle of PCR/sequencing reaction, 75.5 % of output
families were composed of a single read. This meant
that 74.3 % of families were artifacts consisting of a
read originating from a fragment that produced mul-
tiple reads. Instead of being grouped with its sibling
reads, each of these instead was grouped by itself be-
cause of an error in the barcode.
While this was only a simulation and the above calcu-

lations make a number of simplifying assumptions, they
nevertheless highlight the significance of sequencing er-
rors within tags as one of the main causes of data loss.
We are currently developing a family reconstruction
approach that would allow mismatches in tags and is

expected to significantly reduce the number of single
read families.

Interactive analysis of duplex data
The underlying components of the Du Novo process
are distributed as an open source software and can be
used from the command line (https://github.com/
galaxyproject/dunovo). However, to increase the number
of potential users we also make Du Novo accessible
through the Galaxy system (http://usegalaxy.org). Figure 4
illustrates all stages of the duplex analysis workflow. This
example begins with fastq datasets generated by an Illu-
mina machine that are used as inputs in the Du Novo
pipeline. Initially, reads are processed to identify and
count duplex tags (Make families). Reads having identical
tags (families) are aligned (Align families) and alignments
are reduced to DCSs (Make consensus reads). The DCSs
are trimmed to remove ambiguous nucleotides (Sequence
Content Trimmer), converted to fastq format (this is
because DCSs are reported as fasta datasets; Combine
FASTA and QUAL), and mapped to the reference ge-
nomes (in this example with both BWA and BWA-
MEM). BAM datasets produced by mappers are combined
(MergeSamFiles) and realigned (BamLeftAlign) and vari-
able sites are identified with the Naive Variant Caller
(NVC). A Variable Call Format (VCF) dataset generated
by NVC is processed by Variant Annotator, which tabu-
lates allele frequencies and strand bias values. Finally, the
data are filtered on MAF (≥0.5 %) and strand bias (<1).
This workflow is available at https://usegalaxy.org/u/aun1/
w/duplex-analysis-from-reads. The most computationally
demanding portion of the workflow is the alignment of
reads within each family (Align Families). For instance,
processing of 6,921,891 read pairs comprising the ABL1
dataset [9] took an average of 0.004 s per pair or approxi-
mately 9 h of wall time on a 16-CPU cluster node. One of
the advantages of using Galaxy at https://usegalaxy.org for
the analysis of duplex sequencing data is that its under-
lying infrastructure relies on high-performance resources
provided by the Texas Advanced Computing Center
(TACC) and the Extreme Science and Engineering
Discovery Environment (XSEDE), making it possible to
perform analyses of multiple duplex datasets by multiple
users simultaneously.

Conclusions
The continuing drop in the price of massively parallel
sequencing will expand the use of the duplex technique
and will amplify the need for a scalable analysis solution
such as Du Novo reported here. Our approach allows
the use of both single- and double-stranded consensuses
for variant discovery depending on the experimental
design and is parallelized to take advantage of the
advanced high performance compute infrastructure. By
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allowing our tools to be used both from the command
line and through the Galaxy interface we hope to reach
a wide audience of computational and experimental
researchers.

Methods
Duplex sequencing protocol used for human
mitochondrial amplicons
Two overlapping mtDNA regions (each ~9 kb, represent-
ing the entire mitochondrial genome) were amplified from
sample SC8C1-k1169-A*B (DNA extracted from buccal
swabs of the child of family SC8 collected under IRB
30432EP), using the primer pairs L*2817 +H*11570 and
L10796 +H3370 and mixed at equimolar quantities, as de-
scribed previously [7, 26]. Amplicons (2 μg) were sheared
to ~550 bp and purified using 1.6 volumes of Agencourt
AMPure XP beads (Beckman Coulter). Duplex sequencing

libraries were prepared as described in Kennedy et al.
[23] with several minor modifications. Briefly, T-tailed
adapters were prepared by hybridization of MWS51
and MWS55, followed by extension, and a restriction
digest with TaaI (HypCH4III) at 60 °C for 16 h.
Adapters were purified by precipitation with two volumes
of absolute ethanol and 0.5 volumes of 5 M NH4OAc. The
hybridized PCR amplicon was end-repaired with the End-
Repair Enzyme Mix provided in the Illumina TruSeq Kit
according to the manufacturer’s protocol and A-tailed
and the adapter was ligated with 1800 units of T4 ligase
(NEB) with 20× molar excess at 16 °C for 30 min. Amp-
lified tag families were generated from 15 attomoles of
adapter-ligated amplicon by 23 cycles of PCR (the opti-
mal cycle number was evaluated by real-time PCR).
The library was quantified with the KAPA Library
Quantification Kit (Kapa Biosystems) according to the

Fig. 4 A complete workflow implementing the Du Novo approach to variant discovery from duplex sequence data. It is accessible
from http://usegalaxy.org/duplex
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manufacturer’s instructions. Sequencing was performed
on an Illumina MiSeq platform using 301-bp paired-
end reads.

Construction of read families
Read pairs are grouped into families according to the
random tags which constitute the first 12 bp of each read
using the Du Novo pipeline either in Galaxy or through
the command line. For each pair, we first construct a
barcode which is the concatenation of the two tags from
the two reads. Then the reads are sorted according to this
compound barcode. Single-stranded families from the
same fragment will have the same 12-bp tags but in the
opposite order: the α tag from one family will be the β tag
in the other. In order to group single-stranded families
from the same fragment together, we normalize the order
of the concatenation to produce a “canonical barcode”
which will be identical for both strands. The order of the
canonical barcode is determined by a simple string com-
parison. Then the original order of the tags is recorded in
a separate field. Sorting the output groups the reads so
that the two families constituting each duplex will be adja-
cent, with the read pairs separated by strand.

Aligning families and consensus calling
The reads in each single-stranded family are aligned to
themselves using a script calling the MAFFT multiple
sequence aligner [27]. These alignments were used to
call the SSCSs. First, a threshold is applied, requiring a
specified number (default = 3) of reads to produce a
consensus. Then, the consensus calling is performed by
determining the majority base at each position. If no
base is in the majority, “N” is used. Positions with gaps
are considered in the same way as bases. Quality filter-
ing is done at this stage: bases with a PHRED quality
score lower than a user-given threshold are not counted
(default = 20). For positions with gaps, a quality score is
calculated by considering the quality scores of the eight
nearest bases. The calculated score is a weighted aver-
age, with the weight decreasing linearly with distance
from the gap. Finally, duplex consensus sequences are
called using the two SSCSs. The two sequences are
aligned using the Smith–Waterman algorithm (using an
existing C implementation from https://code.google.-
com/archive/p/swalign/) and then each pair of bases is
compared. If the bases agree, that base is used in that
position. If they disagree, the IUPAC ambiguity code
for the two bases is used. Gap and non-gap characters
produce an “N”. If a SSCS has no matching opposite
strand consensus, the user may choose to include the
single-stranded consensus in the output, direct it to a
separate file, or discard it.

In silico mixture experiment
We randomly generated 21 heteroplasmies and inserted
them into the human mitochondrial genome (Revised
Cambridge Reference Sequence (rCRS), NC_012920.1)
at a spacing of at least 600 bp from each other and from
the chromosome ends (the genome is circular but its
textual representation is not). This in silico mutated se-
quence is referred to as mt-mut to distinguish it from
the unmodified reference, which we would call mt-ref.
Next, 600-bp fragments were randomly generated using
wgsim (version 0.3.1-r13) with the error and mutation
rate set to 0. For mt-mut and mt-ref we generated 2500
and 25,000,000 of such fragments, respectively. Each of
the fragments was tagged on each end with a random,
12-bp barcode and a 5-bp linker sequence. Each was
then subjected to in silico PCR and sequencing to create
a family of reads descended from the same fragment. To
determine the size of the family, a random number was
chosen from an empirically determined distribution,
with a peak at nine reads. A phylogenetic tree was simu-
lated for the reads by starting at the last PCR cycle and
coalescing backward, randomly joining branches based
on the probability of two reads sharing an ancestor at
that cycle (2-cycle). Thirty cycles of PCR were simulated.
Then, PCR polymerase errors were simulated by introdu-
cing random errors at each cycle, accumulating errors from
each parent molecule. The error rate was 0.001 probability
of an error per base, per cycle. Indels were given a 0.15
fraction of the errors and a 0.3 probability of extension per
base. Finally, a pair of 250-bp reads was generated from
each final fragment sequence. Sequencing polymerase er-
rors were introduced at the same rates as PCR polymerase
errors. Quality scores were not simulated and set to a
PHRED value of 40. The strandedness of each read pair
was determined according to the initial two potential
daughters of the original fragment it was descended from.
Duplex consensus reads were created from these simu-

lated reads using Du Novo with three reads required per
single-stranded consensus and base quality filtering turned
off (PHRED threshold of 0). The reads were aligned to the
mitochondrial genome (rCRS) with BWA-MEM and fil-
tered for alignments with a minimum mapping quality
(MAPQ) of 20.

Error rate-singleton correlation simulation
In silico duplex sequencing of the human mitochondrial
reference sequence (rCRS) was performed as described
above but with 10,000 400-bp fragments and 100-bp
final reads to save computational time. Then, the reads
were processed with the first part of the Du Novo pipeline,
creating a strand-independent barcode from each read
pair. Then, the total number of unique barcodes was
counted and the fraction of those that were present only
once. This was performed once for each error rate setting.
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Additional files

Additional file 1: Figure S1. Receiver operating characteristic (ROC) for
Du Novo detecting 21 artificial heteroplasmies in a simulated duplex
sequencing experiment. Shown are true positives versus false positives
detected using different minor allele frequency thresholds, in steps of
0.00001 (the depth of coverage threshold was held constant at 10,000×).
At the bottom left, no heteroplasmies at all are detected at a threshold
MAF of 0.00016. The first variant is detected at a MAF of 0.00015, with no
false positives. Continuing upward, no false positives are detected while
increasing true positives are found until the upper left corner at a MAF of
0.00008, with 20 true positives and no false positives. Then, increasing
false positives are found with no gain in true positives until the last true
single-nucleotide variant (SNV) is found at a MAF of 0.00004, with 46 false
positives also observed at that threshold. (PNG 23 kb)

Additional file 2: Figure S2. Distribution of reads per family in ABL1 (a)
and SC8 (b) datasets. (JPEG 114 kb)

Additional file 3: Figure S3. Here there are two distinct types of
mitochondrial genomes: carrying A and G. Because the population of
genomes is enriched via PCR, heteroduplex formation takes place,
skewing frequency estimates performed using DCSs. If this PCR-derived
DNA is now used as the starting material for a duplex sequencing
experiment, the heteroduplex molecules will manifest themselves as
having an N base at this site (because Du Novo interprets disagreements as
Ns during consensus generation). So, DCSs produced from this dataset will
have A, G, and N at the polymorphic site. Yet, SSCSs will only have A and G.
Thus, SSCS will give a more accurate estimate of the allele frequency at this
site in this particular case. (JPEG 196 kb)

Additional file 4: Figure S4. Effect of errors on the number of single-
read families. Duplex sequencing was simulated using different values for
the PCR/sequencing polymerase error rates. In each case, 10,000 400-bp
fragments were generated from the mitochondrial reference sequence.
After simulating the duplex method, the number of reads observed for
each unique barcode was counted. Shown are the fraction of families
with only one read versus the polymerase error rate. (PNG 26 kb)

Abbreviations
DCS: duplex consensus sequence; MAF: minor allele frequency;
mtDNA: mitochondrial DNA; NVC: Naïve Variant Caller; PCR: polymerase chain
reaction; SB: strand bias; SNP: Single nucleotide polymorphism; SSCS: single-
stranded consensus sequence
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