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Abstract

Background: Mycobacterium tuberculosis (Mtb) is reported to infect about a third of the world’s population but
only 10 % are thought to develop active tuberculosis (TB) disease. Host immunity regulated by human leukocyte
antigens (HLA) is an important determinant of the outcome of the disease. Here we investigate HLA class II gene
polymorphisms in susceptibility to TB, and whether particular HLA class II alleles were associated with TB in Uganda.

Methods: HIV negative patients with pulmonary TB (n = 43) and genetically related healthy household controls (n= 42)
were typed for their HLA II class alleles using polymerase chain reaction sequence specific primer amplification.

Results: The HLA-DQB1*03:03 allele was significantly less frequent in patients compared to healthy controls (10 % in
controls versus 0 % in patients, p = 0.003). After correction for multiple comparisons the difference remained significant
(p = 0.018).

Conclusions: Our results suggest that the HLA-DQB1*03:03 allele may be associated with resistance to TB.

Keywords: Human leukocyte antigen, Major histocompatibility complex, Polymerase chain reaction, Tuberculosis,
Uganda genotype

Background
Tuberculosis (TB) remains a major global cause of mor-
bidity, second only to HIV as a single leading infectious
cause of death worldwide [1], and estimated to have
caused 8.6 million new infections and 1.3 million deaths
in 2012 [2]. In Uganda, the annual incidence of TB is esti-
mated to be 330 cases of all forms and 136 new smear
positive cases per 100,000 inhabitants [3]. Uganda ranks
16th among the 22 TB high burden countries [4]. In
Uganda the emerging Uganda genotype of Mycobacterium
tuberculosis (Mtb) is the prevalent cause of pulmonary
TB, and accounts for up to 70 % of isolates [5].

Infection with Mtb is estimated to occur in approxi-
mately one third of the world’s population, but 10 % of
infected immune competent individuals develop clinic-
ally active disease during their lifetime [6]. The outcome
of TB infection may depend on host genetic factors, as
well as environmental and bacterial factors [7]. Host fac-
tors associated with TB pathogenesis are complex and a
number of genes contribute to initiation and orchestra-
tion of the immune response to TB [8]. Evidence for
host determined susceptibility to TB emanates from twin
studies that showed significant differences in morbidity
between monozygotic and dizygotic twins, [9, 10], gen-
ome wide linkage studies [11, 12] and case-control asso-
ciation studies [13].
The human leukocyte antigen (HLA) gene family, i.e.,

the major histocompatibility complex (MHC) in humans,
plays an important role in immune modulation and is
essential in initiating an efficient cell mediated immune
response [14, 15].
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The HLA system is highly polymorphic due to select-
ive influence by infectious diseases, and HLA polymor-
phisms may influence antigen presentation specificity by
modifying peptide binding motifs. Increased binding of
the pathogen peptide to binding motifs of the MHC
leads to enhanced immunogenicity compared to weak
MHC-peptide binding [16].
HLA class II molecules are expressed by antigen-

presenting cells, and lymphocytes reactive to class II mole-
cules express CD4 and are often helper T cells. Several
studies on the role of HLA II alleles in conferring resist-
ance or susceptibility to TB have been done [17–20] pro-
ducing conflicting results.
Using polymerase chain reaction amplification with se-

quence specific primers (PCR-SSP), we here investigate
the frequency of HLA Class II alleles in TB patients and
healthy controls in Uganda to evaluate whether particu-
lar HLA II alleles were associated with susceptibility or
resistance to Mtb and in particular to the Mtb Uganda
genotype.

Methods
The study was reviewed and granted ethical approval by
Makerere University School of Medicine Internal review
Board and Uganda National Council of Science and
Technology. Written informed consent to obtain human
blood and sputum samples as well as to use isolates
from the sputum samples for studies was obtained from
all enrolled study participants or their legal guardians.

Study design
This was a family -based case- control study conducted
between 2011 and 2013 at Mulago Teaching and National
Referral Hospital (MTNRH), Kampala TB clinic, aimed at
determining HLA class II (HLA-DR and -DQ) alleles that
confer susceptibility and resistance to TB in general and
Mtb Uganda genotype in particular.

Study population
Forty-three HIV negative ethnic African patients with
pulmonary TB referred to MTNRH, Kampala TB Clinic
were included in the study. In all cases the diagnosis of
TB was confirmed with light microscopy that revealed
acid fast bacilli in sputum after staining with Ziehl
Neelsen stain, and by positive Mtb culture. Forty-two
healthy, ethnically and geographically matched controls
that were the patients’ biological first degree relatives
and living in the same household for 6 or more months
but had no pulmonary TB were recruited as controls.
The health status of the controls was assessed by elicit-
ing a pertinent medical history and performing general
and systemic medical examinations to clinically exclude TB.
Control subjects were excluded if they i) had a previous
history suggestive of TB ii) previous diagnostic evaluation
suggestive of TB iii) prior treatment suggestive of TB iv)
symptoms and signs suggestive of TB (cough > 3 weeks,
weight loss, dyspnoea, evening fever, night sweats or
haemoptysis).
Early morning sputum was collected from each pa-

tient. Four ml of peripheral blood were collected from
each study subject (pulmonary TB patients and controls)
into EDTA vacutainers and stored at −80 °C until used.

Extraction of DNA
Peripheral venous samples (4 ml) were collected in
EDTA vacutainers and stored at −80 °C. 200 μl of whole
blood was transferred into a micro-centrifuge tube and
DNA extracted using an Epicentre MasterPure DNA
purification kit according to the kit manufacturer’s
instructions.

DNA quantification
The DNA quantity was optimized using a GeneQuest
(Model Number CE2302), as per the manufacturer’s in-
structions and confirmed per extraction batch by run-
ning a gel with a standard marker.

Table 1 Observed numbers and percentages of human leukocyte antigen Class II HLA-DRB and -DQB antigens in pulmonary TB
patients compared to healthy controls for alleles where either the patients or the controls have frequencies > 10 %

HLA Allele Total
count

Pulmonary TB patients Controls OR (95 % CI)b p- valuec p- valuea,c

(N = 43) (N = 42)

No. % No. %

DRB1*13:01 33 16 19 17 20 0.9 (0.4–1.9) 0.848 1.000

DQB1*03:03 8 0 0 8 10 0.003 0.018

DQB1*02:01 33 17 20 16 19 1.0 (0.5–2.2) 1.000 1.000

DQB1*03:01 24 15 17 9 11 1.8 (0.7–4.3) 0.272 0.816

DQB1*05:01 44 24 28 20 24 1.2 (0.6–2.5) 0.601 1.000

DQB1*06:01 35 17 20 18 21 0.97 (0.4–1.9) 0.851 1.000
aAdjusted with Benjamini & Hochberg (FDR) for 6 test
bcalculated for alleles where both frequencies > 0 %
cFisher Exact Test
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HLA allele typing
To analyze for the presence of a given allele, flanking se-
quences were amplified using alleleic primers based on a
sequence-specific oligonucleotide primers (SSP) principle.
This was done using the One lambda Micro SSP DNA
Typing kit according to the kit manufacturer’s instruc-
tions. DNA was amplified by polymerase chain reaction
(PCR) for HLA- DR and DQ alleles using sequence spe-
cific oligonucleotide primers (PCR-SSP) following the
method previously described [21, 22] using an MJ-96 well
thermocycler PTC 200.

Detection of allele amplification
The amplicons were detected by electrophoresis on 2.5 %
agarose gels and their patterns visualized under UV after
ethidium bromide staining as previously described [22].
The Gel was photographed using a Bioimager- UV transil-
luminator system (Upland, California).
Typing results were interpreted using the One lambda

Micro SSP worksheet provided along with the trays. An
internal control band (slower-migrating) was always vis-
ible in negative wells (except in the negative control
well) as a control for successful amplification. The in-
ternal control band was weak or absent in positive wells.
A faster-migrating, positive typing band was observed

on the electrophoresis gel when a specific HLA gene
was amplified during PCR which indicated a positive test
result in a given well. The pattern of positive wells was
matched with the information on the Micro SSP work-
sheet to obtain the HLA type of the DNA sample.

Genotyping of the Mtb strains
Sputum was homogenized by digestion and decontaminated
using the standard N-acetyl-L-cysteine (NALC)-Sodium hy-
droxide/Sodium citrate method [23] and the resulting sedi-
ment was used for making smears and culture on solid
Lowenstein Jensen medium and the BACTEC MGIT 960
(Becton Dickinson Diagnostic Systems, Sparks, Md).
DNA was extracted from growth using standard proto-

cols [24] (Reagents from Sigma life Science, USA). Capi-
lia TB assay (TAUN, Numazu, Japan), based on lateral
flow immunochromatographic detection of a protein
which is highly specific for MTB complex(MPB64) was
used to differentiate M. tuberculosis complex isolates
from non-tuberculous mycobacteria [25].

Bacterial DNA quantification
DNA was quantified to ascertain its presence and
quality using agarose gel electrophoresis and bio
image visualization.

Spoligotyping
All Mtb complex strains were analyzed by spoligotyping
using standard protocols [26] (reagents from Ocimum

Biosolution) and assigned specific spoligotype nomencla-
ture (SIT) according to the SITVITWEB database [27].
The Uganda genotype is characterized by a spoligotype
pattern lacking spacers 40, or both 40 and 43 as previ-
ously described [28].

Region of difference (RD) analysis
All isolates were analyzed for a deletion at the RD724
locus, which is specific for the Uganda genotype as pre-
viously described [5].

Statistical analysis
The research subjects’ Bio data and HLA-DRB and
HLA-DQB genotypic frequencies were entered into
excel and exported to R v 3.1.3 for analysis.
The number of HLA-DRB1 and HLA-DQB1 geno-

types in patients and controls were determined by direct
counting. The HLA-DRB and HLA-DQB frequencies
were calculated using the following formula: n/Nx2 ×
100, where n is the number of alleles found positive for
a particular genotype and N is the total number of indi-
viduals in each group i.e., pulmonary TB patients and
healthy controls. The individual HLA difference in fre-
quency comparisons between TB patients and healthy
controls, was assessed using Fisher’s exact test for alleles
where either the patients or the controls had an allele
frequency > 10 % and the odds ratios (OR) and 95 %
confidence intervals (CI) were presented. A p value ≤
0.05 was considered statistically significant. The p-values
were adjusted for multiple comparisons using the
Benjamini and Hochberg method.

Results
The study included 43 TB patients (17 women and 26
men) and 42 control subjects (17 women and 25 men).
The mean age of the patients was 27.7 years (range 13–
70 years) and the mean age of the controls was 30 years
(range 3–57 years). Mtb isolates from 32 TB patients
were genotyped, 15 were Uganda genotype and 17 non-
Uganda genotype.
The frequencies of each DRB and DQB allele are

shown in Additional file 1: Table S1. The most frequent
alleles in both the patient and the control groups were
DRB1*13:01 (19 and 20 % respectively), DQB1*06:01 (20
and 21 %), DQB1*05:01 (28 and 24 %) and DQB1*02:01
(20 and 19 %) as shown in Table 1. There was no signifi-
cant difference in the frequency of any HLA-DRB allele
between the patients and the controls.
Among the HLA-DQB alleles derived from the 42

controls there were 8 DQB1*03:03 alleles, whereas this
allele was not found among the alleles from the 43 TB
patients (p = 0.003.
No significant differences in allelic frequency of HLA

Class II DR and DQ alleles were seen between alleles
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from patients infected with Mtb Uganda genotype and
patients with Mtb Non-Uganda genotypes.

Discussion
In this study, we analyzed the distribution of HLA-DRB
and HLA-DQB alleles in 43 TB patients and 42 healthy
controls. We found no HLA class II allele associated with
susceptibility to TB. This is in agreement with previous
genome-wide scan studies in South Africa and Gambia
that did not identify any single major TB-susceptibility
gene among Africans [29].
By contrast we found a negative correlation between

the HLA- DQB1*03:03 allele and susceptibility to TB
(p = 0.003) indicating that this allele may confer protection
against TB in the study population. After correction for
multiple testing, the difference remained statistically sig-
nificant (p = 0.018).
There are now numerous studies from various geo-

graphical and ethnic settings on the relation between
HLA and TB, and several HLA loci and/or alleles have
been associated with both susceptibility and resistance to
TB [30]. The association between HLA class II alleles and
TB has been studied in different populations with conflict-
ing results [17–20, 31–33]. However, variations in typing
methods, small sample size and genetic heterogeneity in
the populations studied, both in terms of ethnicity and
disease manifestation, makes general conclusions on the
role of specific alleles difficult. Early studies were per-
formed by serological tests [30] and need to be confirmed
by genetic methods like gene sequencing or PCR-SSP typ-
ing to precisely identify the alleles involved.
Studies done in Iran [34] and Thailand [35] found

DQB alleles to be associated with susceptibility and or
resistance to TB. In a study to analyze HLA-DRB1,
DQA1 and DQB1 allelic polymorphism in Iranian pa-
tients with pulmonary TB, HLA-DRB1*07 and HLA-
DQA1*0101 alleles apparently conferred susceptibility to
TB while HLA-DQA*0301 and HLA-DQA*0501 con-
ferred protection against this infection [34]. In Thailand
the frequency of DQA1*0601 and DQB1*0301 were de-
creased in TB patients [35].
In India DRB1 15 and DRB1 16, were reported to

confer susceptibility to TB in some communities [36] but
there was no association in others [17]. Studies conducted
on South Indian patients showed no association of HLA-
DR and HLA-DQ genes with pulmonary TB. Studies con-
ducted in Indonesia revealed a significant association of
DRB1*1202 with pulmonary TB [32], while HLA-
DRB1*0212 and HLA-DRB1*16 were associated with
resistance to TB in Indonesia and India respectively
[32, 33]. HLA-DRB1 13 alleles apparently conferred
resistance to TB in a Polish population [17].
Allele frequencies vary between different ethnic groups

and geographical populations [37, 38]. Studies previously

done on human HLA allele distribution demonstrated that
populations of the same ethnic origin, exposed to similar
environmental conditions and sharing a common spectrum
of pathogenic exposure tend to have homogenous HLA fre-
quencies [39]. Thus the family based controls used in this
study are appropriate in an urban ethnically heterogenous
population to reduce confounding factors such as race, eth-
nicity and genetic background [40, 41].
In our study population DQB1*06:01 and DQB1*05:01,

DQB1*02:01 and DRB1*13:01 were the most prevalent
alleles but were neither associated with susceptibility nor
resistance to TB infection. This is in agreement with the
observation that pathogens tend to adapt to the most
frequent MHC alleles and rare alleles have selective ad-
vantages as perpetual host-pathogen interaction may re-
sult in adaptive genetic changes in both the pathogens
and host clusters [42]. This may explain why the most
frequent alleles in this study population did not confer
protection against TB.
In most studies the HLA-DQB1*03:03 allele is of rela-

tively low frequency [34, 38, 43–45], or completely absent
[46, 47]. Infection episodes in a population usually result
in the emergence of HLA class II alleles through gene mu-
tations or conversion that enable the mounting of an ef-
fective immune response to clear the infection [48].
It is interesting to note that the HLA-DQB1*03:03 allele

may have a specific role to play in TB pathogenesis. The
Mtb culture filtrate protein (CFP) 10 is a potent T cell
antigen, and peptide antigens from CFP10 were found to
be recognized by CD4+ in the context of, among others,
DQB1*03, and in particular HLA-DQB1*03:03 [49].
No DQ or DR alleles were significantly associated with

Mtb Uganda genotype. However the material was too small
to draw any conclusions. Further studies should explore the
potential role of HLA-DQB1*03:03 in protection against in-
fections with strains of various genotypes, including the
Uganda genotype. A previous study in South Africa demon-
strates an association between human HLA types and spe-
cific Mtb genotypes and shows that both host and pathogen
genetics are important in the development of TB [50].
Strains from a specific lineage may be selected by a human
population within a defined geographical background [51].
The findings of this study have implications in product

formulation as the discovery of vaccine epitopes that induce
protective responses in a particular community is crucial in
the development of a new-epitope based protective vaccine.
A major limitation of this study is that it is most likely

statistically underpowered due to the small sample size.
Possible associations between various HLA-DRB and -DQB
alleles and TB may have been missed.

Conclusions
The HLA-DBQ*03:03 allele was absent in the TB pa-
tients and therefore this allele appeared to be associated
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with resistance to TB. This finding merits further explor-
ation in a larger population. A potential association of
HLA Class II DR or DQ genes with TB due to Mtb
Uganda genotype could not be ascertained due to lack of
statistical power.

Additional file

Additional file 1: Table S1. Observed numbers and percentages of
human leukocyte antigen Class II HLA-DRB and -DQB antigens in pul-
monary TB patients compared to healthy controls. Description of data:
Table comparing the observed numbers and the percentages of HLA
Class II HLA-DRB and -DQB antigens in pulmonary TB patients and
healthy controls. (XLS 32 kb)
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