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Abstract. A parallel array of coupled short Josephson junctions under boundary ac driving is theoreti-
cally investigated. The driving response is monitored via numerical simulations on the associated Frenkel-
Kontorova model as an oscillating output current at the other boundary junction. The theoretical analysis
is conducted assuming the phase locking of boundary driving with exact stationary solution of sine-Gordon
equation that can be represented by a kink (fluxon) motion back and forth in the restricted geometry of
the array. As a consequence the results suggest the conception of a device which could switch to the con-
ducting regime not according to intensity range but rather to given (quantized) frequency range. Moreover
our findings indicate also a frequency converting scenario by choosing appropriately the system length and
injected fluxon number.

PACS. 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects – 05.45.Yv Solitons
– 74.81.Fa Josephson junction arrays and wire networks

1 Introduction

A subject of the present paper is a theoretical investigation
of boundary driven stationary regimes in parallel array
of small Josephson junctions (often referred as Josephson
transmission line (JTL)) which is successively described
in terms Frenkel-Kontorova model or its continuous anal-
ogy (sine-Gordon equation) [1,2]. At the same time, these
models have reappeared in a great number of physical
contexts, including description of domain walls motion
in ferro- and antiferromagnetic crystals, charge-density
waves in solids, pseudospin model of quantum Hall bi-
layers and even nonlinear excitations in hydrogen-bonded
molecules (see e.g. Refs. [3–5] and references therein).
Thus the results derived in the present paper could be
readily extended to those completely different physical
systems. In particular, in the present paper we show the
possibility of the division of the driving frequency by odd
fractions, in other words, applying a fixed frequency (3Ω)
driving at one boundary of JTL we shall demonstrate by
numerical simulations the output current oscillations with
frequency Ω at the other boundary. Such a regime is ar-
gued analytically as a phase locking of boundary excita-
tion with an exact stationary solution of associated sine-
Gordon equation describing fluxon motion forth and back
inside the JTL.

The analysis of the fluxon motion in JTL mostly ap-
pears in literature in the context of ac or dc homogeneous
driving by a bias current. One can quote the perturba-
tion analysis [6] and modulation instability studies [7] of
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the process, theoretical [8,9] and experimental [10,11] in-
vestigations of the resonances between fluxons and lin-
ear plasma oscillations, fluxon dynamics studies in case of
coupled JTL-s [12,13], fluxon induced directed transport
under homogeneous ac driving with broken time symme-
try [14] and many other interesting phenomena. At the
same time, much less studies have been devoted to the
dynamics of nonlinear excitations under the local (bound-
ary) driving: In this connection one should mention the
investigation of hysteretic regimes appearing due to the
phase locking effect between the boundary driving and
breather type localizations [15–17] (where the breathing
frequency coincides with the driver frequency [18–20]) or,
on the other hand, boundary driving can maintain station-
ary motion of the fluxon which creates a new frequency
in the system being an odd fraction of the driving fre-
quency [21–23]. However, in all of the previous studies the
driving is applied from the both ends and in order to ob-
serve the effect one has to measure the averaged quantities
or some emitted radiation. In the present paper I consider
the scenario when the ac magnetic field is applied only
at one boundary (input) while one can monitor the cur-
rent at the other boundary (output) as displayed on the
schematics of Figure 1. Then in stationary regime one can
get the output signal with three times smaller frequency
than at the input realizing thus frequency dividing device.
For longer chain when the frequency division could not be
observed because of the damping, one can think about
a high precision frequency filter, since for given parame-
ters of the junction the stationary fluxon motion could be
induced by very narrow range of driving frequency. The
aim of the present paper is to represent the analytical
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Fig. 1. (Color online) Main plot displays schematic represen-
tation of the Josephson junction parallel array built with N
junctions. IS(t) is the input current (induced by microwave ra-
diation) with frequency Ω and amplitude a (in units of Icλ

2
J ).

The response is detected at the right end as an output cur-
rent Iout(t). Inset (the upper graph) shows the possibility of
phase locking mechanism between different fractional frequen-
cies. As it is clarified in the text below, only the locking with
odd fractional frequencies could be realized.

description of such a stationary regime assuming the ex-
ternal driving locking with the exact stationary solution
of sine-Gordon model and compare it with numerical sim-
ulations.

2 Analytical stationary solution for fluxon
motion

Let us consider one dimensional array of N short
Josephson junctions coupled through super-conducting
wires as represented by Figure 1. It obeys the following
set of equations [4,10] for the phase differences un across
n-th junctions:

ü1 + γJ u̇1 − λ2
J [u2 − u1] + sin u1 = IS(t)/Ic,

ün + γJ u̇n − λ2
J [un+1 + un−1 − 2un] + sin un = 0, (1)

üN + γJ u̇N − λ2
J [uN−1 − uN ] + sin uN = −Iout(t)/Ic,

where n = 2, . . . , N − 1 and one has the input signal cur-
rent IS(t) (induced by microwave radiation S(t)) at the
left junction of the array and detects Iout(t) at the right
end. The time is normalized to the inverse plasma fre-
quency ωp = 1/

√
LJC, C stands for the junction capaci-

tance and LJ = �/(2eIc) is the Josephson inductance and
Ic is a Josephson critical current in the single junction.
The parameter λJ is defined by λ2

J = LJ/LS where LS is
the inductance representing by the superconducting wires
connecting the junctions. γJ =

√
�/(2eIcR2

JC) is a damp-
ing parameter and RJ the junction resistance. In typical
experiments on Josephson junction parallel array [12], the
parameters have the values: RJ ≈ 100 Ω, C ≈ 300 fF,
Ic ≈ 10 μA, LS ≈10 pH and thus γJ ≈ 0.1 and λJ ≈ 3.
However, by changing the critical current density and the
temperature one can easily control the two parameters of
the model γJ and λJ . For our numerical simulations we
choose λJ = 3 and γJ = 0.02.

One can easily define the measured quantities from the
phase variables un in equations (1), particularly, longitu-
dinal current In (flowing from junction n − 1 to n) and
the voltage across n-th junction could be expressed as:

In = Icλ
2
J (un−1 − un) , Vn = (�ωp/2e)u̇n. (2)

Now let us consider the ac driving source at the left in the
form

IS(t)/Icλ
2
J = a cos(Ωt), (3)

where the amplitude a is connected with a magnetic
and/or electric coupling strength [24]. At the right, as far
as Iout(t) is unknown variable, in addition one has to use
an ohmic law VN (t) = RIout(t), where R is the resistance
of the external circuit (see Fig. 1). Then using the second
equation from (2) one automatically gets:

Iout(t) = γλ2
JIcu̇N (4)

where γ = ωpLs/R is a damping parameter associated
with external circuit. Numerical simulations are made on
the model equations (1) putting there the relations (3)
and (4). Making simulations for the different input pa-
rameters a and Ω and also in case of different length N
of the system I monitor corresponding output current ac-
cording to the relation (4).

For the analytical consideration we rewrite (1) in the
form of Frenkel-Kontorova model [3]):

ün + γJ u̇n − λ2
J [un+1 + un−1 − 2un] + sin un = 0, (5)

where n = 1 . . .N and the following definitions for virtual
junctions u0 and uN+1 have been introduced according to
the relations (3) and (4):

u0 = u1 + a cos(Ωt), uN+1 = uN − γu̇N . (6)

Now let us work in the limit when the external resistance
is small (R → 0), consequently γ → ∞ and it is easy
to see from (6) that one has a vanishing boundary con-
dition at the right end u̇N = uN = 0. Then taking into
account that for strong coupling constants λ2

J � 1 one
can proceed with continuous approximation of (5), i.e. in-
troducing continuous n via un ≡ u(n) and rewriting the
combination un+1 + un−1 − 2un ≈ ∂2u(n)/∂n2, we get
in case of negligible damping parameter γJ the equation
with dirichlet boundary condition at the right end and
Neumann condition at the left:

x ∈ [0, L] : ∂2
t u − ∂2

xu + sin u = 0, (7)
ux(0, t) = aλJ cos(Ωt) u(L, t) = 0

where the boundary condition at the left automatically
follows from the first relation of (6); time is scaled again in
inverse plasma frequency units, space variable x is defined
as x = n/λJ and L = N/λJ . Then the longitudinal current
and voltage could be expressed according to (2) as follows:

I(x, t) = −IcλJ∂xu, V (x, t) = (�ωp/2e)∂tu. (8)
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Our approach is based on the assumption that the bound-
ary driving is locked to the exact stationary solution of the
sine-Gordon equation (7). Using the analogical approach
as in reference [4] one can find the following periodic sta-
tionary solution vanishing at x = L:

u(x, t) = 4 arctan
[√

rs

b
X (x)T (t)

]
,

X = cn [β(x − L) + K(μ), μ] , T = cn [ωt, ν] , (9)

where cn and sn are the standard Jacobi elliptic func-
tions [25], K(μ) stands for a complete elliptic integral of
the first kind of modulus μ and the solution is param-
eterized by the two free constants ω and ν ∈ [0, 1], the
remaining parameters are given by

b = ω4ν2(1 − ν2), s = ω2ν2,

2r = 1 − ω2 + 2ω2ν2 +
√

(1 − ω2)2 + 4ω2ν2, (10)
β2 = (b + r2)/r, μ2 = r2/(b + r2).

Further let us assume that the frequency of the time de-
pendent part T (t) of the stationary solutions (9) coin-
cide with an odd integer fractions of the boundary driv-
ing frequency Ω. It should be especially mentioned that
stationary motion in the system with some specific fre-
quency could be excited only by excitations characterized
with odd fractions of that frequency (and not even frac-
tions). The schematics for justification of this statement
is displayed in the inset of Figure 1. Indeed the positions
of maximums and minimums of 3Ω and Ω coincide with
each other, while this is not the case for the frequency
oscillations 2Ω and Ω. This is why only the locking with
only odd fractional frequency oscillations takes place in
numerical simulations with (5).

3 Frequency division scenario

Recalling that the period of T (t) is 4K(ν)/ω we require
thus

ω = 2ΩK(ν)/(mπ), (11)

where m is an odd integer. For a given value of the pa-
rameter ν ∈ [0, 1], the above relation fixes the second pa-
rameter ω in terms of the driving frequency Ω and only
one free parameter ν is left. Therefore fixing Ω (driver
frequency) and varying ν one can plot the output cur-
rent amplitude in terms of the input signal amplitude
from the analytic expressions (9). Let us just note that
signal and output current could be calculated according
to (8) from (9) as IS(t) = I(0, t) = −IcλJ∂xu(0, t) and
Iout(t) = I(L, t) = −IcλJ∂xu(L, t), respectively.

This input-output current dependence for the oscilla-
tion frequency Ω/m = 0.1843 and system length L = 6 is
displayed as a full line in a main plot of Figure 2. The next
step for the definition of the particular solution is to as-
sume that the driving amplitude a from (3) must coincide
with the amplitude of ∂xu(0, t) and this condition fixes
the set of possible values for ν. In numerical simulations I
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Fig. 2. (Color online) Main plot: Input-Output current ampli-
tude dependence (in units of Icλ

2
J , λJ = 3) according to the an-

alytical formula (9) for the oscillation frequency Ω/m = 0.1843
and system length L = 6. Vertical line shows the position of
input current amplitude a = 0.2 intersections of which with
the curve corresponds to the multiple possible output current
amplitudes. Crosses indicate the stable solution points and the
insets display the time evolution of input (dashed line) and out-
put (solid line) for these stable solutions. Lower inset describes
the evanescent wave oscillations, while upper one manifests a
stationary motion of the fluxon.

use the value a = 0.2 which is depicted as vertical dashed
line in main plot of Figure 2. However as it is seen from
Figure 2 there are multiple possible solutions for ν from
which (that is seen from numerical simulations) only two
ones indicated by crosses are stable: the lower intersection
point corresponds to the negligible output current ampli-
tude (see the lower inset in the same Figure 2 for the time
evolution of input-output current) and the upper intersec-
tion is responsible for the stationary fluxon motion regime
(see the input-output current time evolution in the upper
inset of Fig. 2). This latter solution (the space time depen-
dence of which is displayed in the graph (a) of Fig. 3) is a
subject of our interest and we will compare that analytical
solution with the results of numerical simulations.

The numerical simulations have been made for the
Frenkel-Kontorova chain (5) with the parameters γJ =
0.02, λJ = 3 and the conditions at the extremities (6)
where I take the driving amplitude a = 0.2 and frequency
Ω = 0.1843 (like in analytical calculations) and exter-
nal damping γ = 50; the junction number is N = 18 such
that the effective length L = N/λJ appears the same as in
analytical calculations. Then I monitor longitudinal cur-
rent according to the relation (2) and input and output
currents are calculated using expressions (3) and (4), re-
spectively.

As a result in the graph (b) of Figure 3 the space time
dependence of the longitudinal current is displayed. As
seen the graph is almost identical with the analytical so-
lution presented in graph (a) of the same figure. The only
difference is the method of driving: in numerical simula-
tions I use harmonical driving while the analytic solution
requires rather complicated time dependence of the input
∂xu(0, t) (please compare dotted curves in the insets of the
graphs (a) and (b)). However this difference does not play
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Fig. 3. (Color online) Main plots display three dimentional
graphs of space-time evolutions of longitudinal current, while
the insets represent the input (thin-blue) and output (thick-
red) current time evolutions. (a) represents the analytical so-
lution (9) with the same parameters as in Figure 2. (b) and (c)
display the same dependence obtained from numerical simula-
tion on the model (5) with the conditions at the extremities (3)
and (4). Junction number in both cases is N = 18, damping
parameters are γJ = 0.02 and γ = 50 and driving frequency in
(b) is Ω = 0.1843 and in (c) Ω = 3 × 0.1843.

the crucial role (note that the driving amplitudes in nu-
merical simulations and the input ∂xu(0, t) amplitude in
analytics are the same) and this deviation is compensated
by damping. As a result the output currents have similar
values and time dependences (solid curves in the insets).
Finally in the last graph of Figure 3 I take three times
larger frequency Ω/3 = 0.1843 (thus m = 3 in definitions
of (11)) and as it is seen from the figure this driving is
also locked with the analytical solution for the oscillation
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Fig. 4. (Color online) Emitted powers versus time: dashed line
stands for the total power losses of the parallel array and solid
line is a power released from the right extremity. The constants
in numerical simulations are the same as in previous figures.

frequency Ω = 0.1843 (the driving amplitudes a = 0.2 are
kept the same in all numerical simulations and analytical
calculations). Irrespective of the different character of the
driving the output current has the same characteristics as
in graphs a and b (see the solid curves in the insets).

4 Conclusions and comments

Concluding, it is suggested how the frequency of input
source could be divided by odd fractions in underdamped
parallel array of short Josephson junctions. As further
numerical simulations show it is possible to change the
range of frequencies which could be divided by changing
the point of the connection of the external circuit, effec-
tively decreasing by this the system length. For shorter
chain of Josephson junctions one can achieve higher di-
vision numbers (e.g. the frequency could be divided by
factors m = 1, 3, 5, 7...) realizing thus the frequency divid-
ing device.

It should be mentioned here that one can detect the di-
vided frequency measuring emitted radiation coming from
the whole array of Josephson junctions. In the definitions
of (5) the emitted power from the whole chain could be

expressed as
N−1∑

n=1
γJ (u̇n)2, while the power release form

the right extremity (see Fig. 1) is γ (u̇N )2. The typical
dependences of those powers versus time are displayed in
Figure 4. As seen power released locally at the chain ex-
tremity exceeds one from a total chain. Note that part of
the total power goes to the internal losses and detected
radiation will be less than the value depicted as a dashed
line in Figure 4. Besides that one can not increase γJ suf-
ficiently in numerical simulations as far as this will cause
destruction of the stationary motion of fluxon. Therefore
it seems much more efficient to detect frequency division
locally at the extremity (solid line in Fig. 4) than measur-
ing the emitted radiation.

For longer chain (N > 24) the subharmonic locking
can not provide the long living stationary regime and
only fundamental frequency can support the motion of the
kink forth and back. Thus for such a chain one can think
about a frequency filter, i.e. only the frequencies from
very narrow range will provide the transmission regime. It
should be especially mentioned that in all the considered
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cases the driving frequency lies within the forbidden band
gap, therefore one can switch the transmitting regime by
injecting a fluxon from the right end of the chain and then
support its motion by the driving from the left.

Obviously the analytical model (7) should work for
long Josephson junction, although the numerical simula-
tions require the proper discretization of the continuous
model. Besides that, it seems more appropriate to work
with discrete chain of junctions since with the latter model
it will be easier to decouple input and output from the ex-
perimental point of view.

Variation of the system parameters will affect the divi-
sion scenarios, particularly, it is easy to see from (1) and its
analytical approximation (7) that if one decreases param-
eter λJ this will lead to the rescaling of the effective length
of the chain (it will increase) and for the same number of
junctions in (1) we will have a “onger” system (7). Thus
for the junctions with large critical currents Ic one should
take smaller number of junctions to observe frequency di-
vision scenario. We performed the numerical simulations
also for this highly discrete case and although the effect is
still there, one can not use the analytical model (7) since
it works only in continuous approximation.

Considered effect is not restricted only to the sine-
Gordon equation but generally speaking it can charac-
terize any nonlinear system which permits the existence
of moving localized solutions, particularly, the resent ex-
perimental observation of the similar stationary regime as
a motion forth and back of solitary shallow water waves
could be quoted as an example [26].
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