
Recurrent Cartesian Genetic Programming of Artificial
Neural Networks

Andrew James Turner1 • Julian Francis Miller1

Received: 5 November 2015 / Revised: 5 July 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Cartesian Genetic Programming of Artificial Neural Networks is a

NeuroEvolutionary method based on Cartesian Genetic Programming. Cartesian

Genetic Programming has recently been extended to allow recurrent connections.

This work investigates applying the same recurrent extension to Cartesian Genetic

Programming of Artificial Neural Networks in order to allow the evolution of

recurrent neural networks. The new Recurrent Cartesian Genetic Programming of

Artificial Neural Networks method is applied to the domain of series forecasting

where it is shown to significantly outperform all standard forecasting techniques

used for comparison including autoregressive integrated moving average and

multilayer perceptrons. An ablation study is also performed isolating which specific

aspects of Recurrent Cartesian Genetic Programming of Artificial Neural Networks

contribute to it’s effectiveness for series forecasting.

Keywords Cartesian Genetic Programming � Genetic Programming �
NeuroEvolution � Forecasting

1 Introduction

NeuroEvolution (NE) is the application of Evolutionary Algorithms to the training of

Artificial Neural Networks (ANNs) [15, 78]. Earlywork in NE evolved the connection

weights of fixed topologyANNs [53, 77]; referred to as Conventional NE (CNE). This

method brought many advantages over popular gradient based methods, such as

standard Back Propagation [56]. These advantages include: ability to escape local

& Andrew James Turner

andrew.turner@york.ac.uk

Julian Francis Miller

julian.miller@york.ac.uk

1 Department of Electronics, University of York, York, UK

123

Genet Program Evolvable Mach

DOI 10.1007/s10710-016-9276-6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81533367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-016-9276-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-016-9276-6&domain=pdf

optima, reduced sensitivity to initial connection weights, suitability for deep ANNs

and an ability to handle non-differentiable neuron transfer functions [79]. NE is also

suited to supervised and reinforcement learning applications, whereas back propa-

gation alone is suited only to supervised learning.Other ANN trainingmethods such as

restricted Boltzmann machines are also suited to unsupervised learning [60], whereas

NE is typically not.

A significant advantage ofmanyNEmethods is they allow the evolution of network

topology in addition to the connection weights.1 Such methods include GNARL [2],

NEAT [61], SAGA [10] and CGPANNs [35, 64]. The ability to automatically find

suitable topologies is significant as topology has been shown to strongly influence the

effectiveness of back propagation [40] and weight only evolving NE [65]. Indeed,

evolving the topology of ANNs may even be more significant than solely evolving

connection weights [65]. Although some non-evolutionary ANN training methods do

adapt topology, they typically achieve this by iteratively adding or removing neurons

during training. This approach is akin to a local search of topologies, and is

consequently likely to become trapped in topology local optima [2].

It has previously been shown that NE produced results that are comparable with

back propagation applied to hand-crafted topologies [8]. This demonstrates the

benefit of topology optimising NE, the topology is self optimising and does not have

to be hand-crafted by the user. Additionally, gradient descent methods struggle to

train deep ANNs [17, 40], whereas the depth of the network has no impact on NE

algorithms. This, coupled with the fact that deep neural networks are thought to be

more efficient in terms of the number of neurons required to solve a given task [5],

suggests there may be further advantages to topology optimisation via NE.

Cartesian Genetic Programming (CGP) [44, 46] is a form of Genetic Program-

ming (GP) [38, 49] which represents computational structures as directed acyclic

graphs. This brings many advantages over the more commonly used tree structure.

For instance: CGP is naturally suited to multiple-input multiple-output (MIMO)

tasks, it allows internally calculated values to be reused, it benefits from explicit

neutral genetic drift and does not suffer from program bloat.

Cartesian Genetic Programming of Artificial Neural Networks (CGPANNs)

[35, 64] is a NE method based on CGP. The CGPANNs technique is a weight and

topology optimising NE method capable of evolving homogeneous and heteroge-

neous ANNs. Recently CGP, the algorithm on which CGPANNs is based, has been

extended to be capable of evolving recurrent programs [69, 70]. This technique is

called Recurrent Cartesian Genetic Programming (RCGP). This paper presents the

application of the same recurrent extension to CGPANNs to allow the evolution of

recurrent ANNs. The method is referred to as Recurrent Cartesian Genetic

Programming of Artificial Neural Networks (RCGPANNs).

This paper investigates the suitability of RCGPANNs using the application of

series forecasting (time series prediction) [12, 26]. Series forecasting is an important

application of machine learning and statistical modelling techniques, including GP

[16, 31, 39, 57] and ANNs [21, 83, 84], finding application in many disciplines

1 Sometimes referred to as TWEANNs: Topology and Weight Evolving Artificial Neural Networks.

Genet Program Evolvable Mach

123

including: economics, politics and planning. Series forecasting is also a common

application of NE [13, 32, 61] including CGPANNs [32, 52].

CGPANNs with an imposed Jordan type architecture2 [30] has previously been

used to create a form of recurrence with application to series forecasting [33].

However such a method is much more limited in terms of the topologies which can

be produced, as the user must preselect which outputs (no internal recurrence is

present) are to be fed back as inputs; that is to say it is much more restricted. The

method proposed in this work allows any recurrent topology to be created, limited

only by the total number of nodes and their maximum arity. Standard CGP has also

recently been applied to the domain of series forecasting [71].

We examine the suitability of the proposed RCGPANNs algorithm by comparing

its performance with standard CGP, RCGP and CGPANNs. This enables an

evaluation of the various extensions which have been applied to CGP in order to

create RCGPANNs. Firstly the benefit of the recurrent extension is evaluated by

comparing CGP and RCGP as well as comparing CGPANNs with RCGPANNs.

Secondly the benefit of optimising ANNs rather than using standard mathematical

functions commonly used by GP is evaluated by comparing CGP and CGPANNs as

well as RCGP and RCGPANNs. This ablation study3 allows insight into which

aspects of the RCGPANNs approach are beneficial.

We also evaluate the performance of RCGPANNs generally by comparing their

effectiveness with two naive and three more complex standard forecasting methods:

random walk, mean, exponential smoothing (EPS), autoregressive integrated

moving average (ARIMA) and multilayer perceptrons (MLP) respectively. The

comparison with at least two naive and two complex standard forecasting methods

(including mean and ARIMA) follows the methodology recommended by Hyndman

[26], an acknowledged expert in the field of forecasting, on benchmarking new

forecasting methods.4 Comparisons to MLPs are also made as they represent the

current standard approach for training ANNs.

The remainder of this paper is as follows. Section 2 introduces and describes the

newly proposed RCGPANNs algorithm. Section 3 describes how CGP and its

derivatives can be applied to series forecasting. Section 4 introduces the standard

series forecasting methods used for comparison and Sect. 5 describes the benchmarks

to which they are applied. Finally, Sect. 6 presents the results of the experiments

undertaken with a discussion and conclusions given in Sects. 7 and 8 respectively.

2 Recurrent Cartesian Genetic Programming of Artificial Neural
Networks

The RCGPANNs algorithm introduced in this paper is a combination of two

techniques: RCGP and CGPANNs. Accordingly, this section first introduces CGP,

the base algorithm, followed by the two extensions utilised by RCGPANNs; the

2 A topology where certain outputs are made available as inputs.
3 Here the term ablation study refers to repeatedly investigating the algorithm with an individual

component removed (ablated) in order to isolate it’s influence on the algorithm as a whole.
4 This particular advice is given on his personal blog http://robjhyndman.com/hyndsight/benchmarks/.

Genet Program Evolvable Mach

123

http://robjhyndman.com/hyndsight/benchmarks/

ability to create recurrent networks and the application to evolving ANNs. Once

these two extensions of CGP have been introduced, their combination as

RCGPANNs is then described. Interested practitioners are directed to an open

source implementation of CGP, RCGP, CGPANN and RCGPANN which includes

documentation and tutorials for use and [67].

2.1 Cartesian Genetic Programming

Cartesian Genetic Programming [44, 46] is a form of GP [38, 49] which typically

evolves directed acyclic computational structures of nodes (graphs) indexed by their

Cartesian coordinates. CGP does not suffer from program bloat [43, 66]; a

recognized drawback of many GP methods [59]. CGP chromosomes contain

explicitly inactive or non-functioning genes which are subject to neutral genetic

drift aiding the escape from local optima and giving improved navigation of the

search landscape [73, 81]. CGP typically uses point or probabilistic mutation, no

crossover,5 and a ð1þ kÞ-ES. Although CGP chromosomes are of static size, the

number of active nodes varies during evolution enabling variable length phenotypes.

The user specifies a maximum number of available nodes, of which only a

proportion are active (used). Overestimating the number of available nodes has

shown to greatly aid evolution [45, 63]; which is thought to heighten neutral genetic

drift but could also be compensating for length bias [18, 19].

The reason it is thought that such a simple evolutionary strategy is so effective

for CGP is twofold. Firstly, CGP does not typically utilise crossover and so there is

no requirement to maintain genetic diversity. Secondly, the reason this does not not

lead to CGP easily becoming trapped in local optima is due to the inactive genes

creating plateaus in the search space which are navigated across via neutral genetic

drift [63, 73].

CGP could be described as an indirect encoding scheme due to the fact that there

is a process of decoding CGP genotypes into phenotypes. However as this process

only removes the explicitly redundant/inactive genes which do not contribute to

phenotype semantics, it is arguably more akin to a direct encoding scheme.

Interestingly, unlike most direct encoding schemes CGP contains redundant genes

which do not contribute to the phenotype but can become active later during

evolution.

Each CGP chromosome comprises function genes (Fi), connection genes (Ci;j)

and output genes (Oi); where i indexes each node and j indexes the inputs of each

node. The function genes represent indexes in a function look-up-table and describe

the functionality of each node. The connection genes describe where each node

gathers its inputs. For regular acyclic CGP, connection genes may connect a given

node to any previous node in the program, or any of the program inputs. The output

genes can address any program input or internal node and define which are used as

program outputs.

Originally CGP programs were organized with nodes arranged in rows (nodes per

layer) and columns (layers); with each node indexed by its row and column.

5 Applying crossover to CGP has been previously investigated [9].

Genet Program Evolvable Mach

123

However, in most circumstances this is an unnecessary constraint as any

configuration possible using a given number of rows and columns is also possible

using one row with many columns; provided the total number of nodes remains

constant. This is because CGP can evolve where each node obtains its inputs.

Consequently, here the chromosomes are defined with one row and n columns; with

each node only indexed by its column. A generic (one row) CGP chromosome is

given in Eq. 1; where a is the arity of each node, n is the number of nodes and m is

the number of program outputs.

F0C0;0. . .C0;a�1. . .Fn�1Cn�1;0. . .Cn�1;a�1 : O0. . .Om�1 ð1Þ

An example CGP phenotype is given in Fig. 1 together with its corresponding

chromosome. As can be seen, all nodes are connected to previous nodes or program

inputs. Not all program inputs have to be used, enabling evolution to decide which

inputs are significant. Not all available nodes have to be used giving rise to inactive

genes and the ability for evolution to adapt program size. An advantage of CGP over

tree-based GP, again seen in Fig. 1, is that node outputs can be reused multiple

times, rather than requiring the rediscovery of the same functionality if it is needed

again. In addition it can be seen that CGP is directly suited to multiple-input

multiple-output problems.

2.2 Recurrent Cartesian Genetic Programming

Recurrent Cartesian Genetic Programming (RCGP) [69, 70] is a recent extension to

CGP which allows recurrent or cyclic connections (i.e. feedback).

In regular CGP, connection genes are restricted to only allow connections to

previous nodes in the graph; including inputs. In RCGP this restriction is lifted to

allow connection genes to connect a given node to any node, including itself, or

program input. Once the acyclic restriction is removed, RCGP solutions can contain

recurrent connections. An example RCGP phenotype is given in Fig. 2 along with

its corresponding chromosome.6

Placing no restriction on connection genes results in mutations creating as many

recurrent as feed-forward connections [69]. However, it is likely that most problems

6 RCGP chromosomes, like CGP chromosomes, can also: describe multiple-input multiple-output

phenotypes, contain inactive genes and choose which inputs to utilise. These characteristics are not shown

in Fig. 2 for simplicity.

Fig. 1 Example CGP phenotype corresponding to the chromosome: 012 233 124 3 4

Genet Program Evolvable Mach

123

do not require half of all the connections to be recurrent. For this reason a new

parameter was introduced called recurrent connection probability. This parameter

controls the probability that a mutation to a connection gene results in a recurrent

connection. For instance a value of 5 % results in 5 % of connection gene mutations

creating cyclic connections. Additionally a value of 0 % would result in only

acyclic connections, thus implementing standard CGP. This parameter does not

however limit the maximum or minimum number of recurrent connections (except

for values of 0 and 100 %), it only places a bias on whether mutations create a

recurrent connection.

RCGP chromosomes are executed identically to standard CGP chromosomes.

The inputs are applied, each active node is updated in order of node index (i), and

the outputs are read. The next set of inputs are then applied and the process

repeated. RCGP differs from CGP in that the program output(s) can be determined

by the current inputs and the current state of the internal nodes.

One important aspect of RCGP is that it makes it possible for node output values

to be read before they have been calculated [69]. For this reason all nodes are

initialised to output zero until they have calculated their own output value. This is

akin to the initial conditions of recursive equations. Interestingly, other non-zero

initial node values might be more suitable depending upon the transfer functions

used [70], but this is not investigated here.

An alternative, simpler, but less flexible method of using CGP to create recurrent

programs is to enforce a Jordan type architecture [34, 47]; where some

predetermined program outputs are made available as program inputs. A slightly

more complex and domain specific multi-chromosome version of CGP has also

been adapted to be capable of creating transistor circuits which contain cyclic

connections [74].

2.3 Cartesian Genetic Programming of Artificial Neural Networks

Cartesian Genetic Programming of Artificial Neural Networks (CGPANNs)

[35, 36, 64] is the application of CGP to the creation and training of ANNs. CGP

is adapted to evolving ANNs by the inclusion of connection weight genes (Wi;j) for

each connection gene and by using transfer functions often used by ANNs; for

instance logistic sigmoid functions. CGPANNs exhibits all of the benefits of CGP

and is a NE training method which can evolve connection weights, topology [65]

and transfer functions [68] of ANNs.

Fig. 2 Example RCGP phenotype corresponding to the chromosome: 212 005 134 5

Genet Program Evolvable Mach

123

When initialising CGPANN chromosomes the same process is followed as for

CGP. The additional connection weights not present in standard CGP are initialised

as random floating point values taken from a user defined range i.e. �1. When

mutating connection weight genes the new value is also randomly chosen from the

same range. However recent studies suggest that less naive methods for connection

weight manipulation may be more appropriate [82].

Although CGPANNs evolves topology, it is required that the user specifies a

maximum network size (number of nodes). This could be considered a drawback,

but overestimating the required number of nodes has been shown to be highly

beneficial for CGP [45]. Additionally it has been shown for CGPANNs that the

choice of the number of nodes has a far lower impact on performance than the

choice of topology for non-topology evolving NE methods [65]. This is due to

CGPANNs ability to optimise the topology including the number of nodes which

are used up to the specified maximum.

In CGPANNs the user must also specify a maximum neuron arity. However, the

effective arity used by each neuron can be lower than this maximum [64]. This

occurs when the chromosome describes a pair of neurons that have two or more

connections between each other. In this case, multiple connections between two

neurons are equivalent to one connection; with the connection weight value equal to

the sum of the individual weights.7

It is important to note that the types of ANNs created using CGPANNs are

unconventional and often cannot be described using the standard terms of layers and

nodes per layer. Figure 3 gives an example of the type of ANN which can be created

using CGPANN. In Fig. 3 it can be seen that the connections between neurons are

highly unconstrained; any neuron can receive it’s inputs from any previous neuron

in the network including input neurons. It can also be seen that any neuron in the

network can be used as an output; again including input neurons. Figure 3

demonstrates that by allowing NE to adapt the topology, evolution is capable of

discovering topologies which would be unlikely to be considered by a human

designer.

2.4 Combining RCGP and CGPANNs

Recurrent Cartesian Genetic Programming of Artificial Neural Networks applies the

same recurrent extension of RCGP to CGPANNs. This is undertaken to allow

RCGPANNs to evolve recurrent ANNs. The modifications required to extend

CGPANNs to RCGPANNs are the same as used to extend CGP to RCGP. The

requirement of all connection genes to be acyclic is lifted and the probability of

mutation creating recurrent connections is controlled via a recurrent connection

probability. As with RCGP, the chromosomes are executed by applying each set of

inputs, updating each active node/neuron in index order (i) and then reading the

outputs. Again as with RCGP, this can result in node/neuron outputs being read

before they have been calculated. As with RCGP, here each node/neuron is

7 Other decoding strategies are also possible such as decoding only the first of multiple connections

between two neurons in the phenotype [64].

Genet Program Evolvable Mach

123

initialised to output zero until they have calculated their own output value;

alternative initial output values may be more suitable but this is not investigated

here.

Once these changes have been incorporated RCGPANNs can be used to evolve

recurrent ANNs. It is important to note that RCGPANNs can create feed-forward

and recurrent ANNs; as allowing recurrent connections does not force evolution to

use them. Additionally RCGPANNs can be easily restricted to creating only feed-

forward ANNs (CGPANNs) by setting the recurrent connection probability to zero.

RCGPANNs is therefore a superset of CGPANNs.

3 Application to series forecasting

In this paper CGP, RCGP, CGPANNs and RCGPANNs are applied to series

forecasting using a recursive forecasting method [20, 29]. This method involves the

feedback of previously made forecasts as inputs to be used in the prediction of

subsequent forecasts. Using this method it is possible to make forecasts to any given

horizon.

A common technique used by forecasting techniques is to calculate the

embedding dimension (D) and time delay (T) of the training data. This provides a

suitable number of past data points, and a suitable number of time steps between

these data points, in order to accurately predict the next data point. For instance if

D ¼ 4 and T ¼ 2 then the inputs would be ½xðtÞ; xðt � 2Þ; xðt � 4Þ; xðt � 6Þ�; where t
indexes each sample in the series x() and the task would be to predict xðt þ 1Þ. Here
suitable embedding dimensions and time delays are calculated for each benchmark

and these determine the number of past values to be used as inputs. The embedding

dimensions and time delays are calculated using the pdc package [7] for the R

programming language [51]; using entropy.heuristic.

As an example, Fig. 4 shows how recursive forecasting using multiple previous

values is used. Here D ¼ 3 and T is left unspecified. The buffer containing xðt � 4Þ

Input 0 Logistic

-1.26

-2.38

Logistic3.37Input 1

Logistic

0.51

-2.37

4.04

Logistic

1.38

-2.93

Logistic

3.80

-3.51

2.00

Logistic

0.20

-1.21

4.39

-0.86

Logistic

-2.71

-3.74
Logistic

2.57

-4.98

-3.95

-1.80

-0.02

Output0

-0.23

1.10

Output1

Fig. 3 Depiction of the types of ANN created using CGPANN

Genet Program Evolvable Mach

123

through to x(t) is initially populated with known observed values which are replaced

with predicted values during the recursive forecasting process.

A disadvantage of using multiple inputs determined by D and T is that it reduces

the amount of training data which can be used. For instance if D ¼ 2 and T ¼ 2 at

time t ¼ 0, xðt � 2Þ is before the start of the training data and so xðt þ 1Þ cannot be
predicted.

The fitness function used here represents how well the solutions recursively

predict sections of the training data. This is achieved by recursively predicting the

next fifty samples8 from t ¼ 50, t ¼ 100, ..., t ¼ 950. The predictions start from

t ¼ 50 and not t ¼ 0 to compensate for the use of embedding dimensions and time

delays removing the first few samples from the training data. The fitness awarded is

the mean square error between the predicted and observed values.

Unlike feed-forward programs, when using RCGP and RCGPANNs the outputs

are a function of the current inputs and the current program state (node outputs).

This means the program must be ‘primed’ before it can be used to make forecasts.

The priming process is to apply previous observed values to the program, in

sequence, and execute the program in each case. The outputs are not used. This

causes the internal nodes to calculate suitable values before the forecasting begins.

Here, when using RCGP and RCGPANNs, the previous 50 samples from each

starting point are applied to the network before making future predictions. For

instance if the predictions were to be from t ¼ 150 then all the values from t ¼ 100

to t ¼ 150 are applied in turn and the program executed in each case.

A disadvantage of many machine learning techniques is that they can easily over-

fit on the training data and consequently lose their ability to generalise. CGP and its

derivatives are no exception and are also likely to suffer from over-fitting when

applied to series forecasting. For this reason a validation scheme is used. Here

generalisation is assessed by recording how well the solutions perform beyond the

forecast horizon used during training. Starting at times t1 ¼ 100, t2 ¼ 200, ..., t9 ¼
900 the programs are used to make forecasts up to a horizon of 100 samples. The

mean square error of the forecasts occurring between a time horizon of ti þ 50

samples and ti þ 100 samples are then used as a validation fitness score (where

1� i� 9).

The validation score could be used by any of a range of early stopping techniques

[50] in order to prevent over-training. However the choice of early stopping

technique is likely to influence results. For this reason, here, the chromosome which

is awarded the best validation score is retained throughout evolution and is used as

the final chromosome to be assessed using the testing data. For instance, if the

chromosome with the best validation score is found on generation x, after the

maximum number of generations have elapsed, this chromosome is used as the final

chromosome to be evaluated on the testing data. Although this means the training

does not stop early, in terms of the overall training time, it does help prevent over

training.

8 The number of predictions could take any value. Fifty is used here as a compromise between

forecasting to a similar horizon required by the testing data and allowing for a reasonable number of

separate forecasts.

Genet Program Evolvable Mach

123

In the work presented the following parameters are used: a ð1þ 4Þ-ES, a

maximum of 10,000 generations and a probabilistic mutation method.9 In all cases

the number of available nodes is set as 100. In the case of CGP and RCGP the

mutation rate is set as 3 % and the function set comprises [x1 þ x2, x1 � x2, x1 � x2,
x1=x2, sinðx1Þ, cosðx1Þ, expðx1Þ, logðx1Þ]; where each node has an arity of two (x1
and x2) with some transfer functions only utilising the first input (x1). In the case of

CGPANN and RCGPANN, the mutation rate is set as 1 % and the transfer function

used is unipolar logistic sigmoid with a connection weight range of ±5. In the case

of CGP and CGPANN the recurrent connection probability is set as 0 %. In the case

of RCGP and RCGPANN the recurrent connection probability is set as 10 %.

The chosen parameters are relatively ‘off-the-shelf’ choices and have not been

optimised for each benchmark. Mutation rates of 3–5 % is standard for CGP [44]. A

slightly lower mutation rate is used for CGPANN, as in the authors’ experience,

using a lower mutation rate for CGPANN than for CGP results in better

performance. Although speculative, this may be because CGPANN is more suited

to gradual hill climbing through the adjustment of connection weights whereas CGP

relies on larger beneficial mutations.

4 Comparative methods

A number of comparative methods are used to evaluate the performance of

RCGPANNs; as well as CGP, RCGP and CGPANNs. These methods are: random

walk forecasting (RWF), mean forecast (MEAN), exponential smoothing (ETS),

autoregressive integrated moving average (ARIMA) and multilayer perceptrons

(MLP). These methods are used to compare RCGPANNs to standard forecasting

techniques and to the more common method of training ANNs.

9 Where each gene is mutated with a given probability.

Fig. 4 Depiction of recurrent forecasting and the use of embedding dimension and time delay to
determine the number of inputs; D ¼ 3

Genet Program Evolvable Mach

123

4.1 Random walk forecasting

The random walk forecasting (RWF) method is a very simple naive forecasting

technique which is useful to compare new forecasting methods against; as any

newly proposed forecasting method should at least be able to outperform it. RWF

predicts that all future unknown values are equal to the last observed value.

4.2 Mean

The mean forecasting method is again a very simple naive forecasting technique

which is also useful to compare new forecasting methods against. The mean

forecasting method predicts that all future values are equal to the arithmetic mean of

the observed values i.e. the training set.

4.3 Exponential smoothing

Exponential smoothing (ETS) [22] is a popular forecasting technique which, in its

simplest form, bases its prediction on a weighted average of previous observations.

Commonly the further ahead the prediction is from the last observation, the more

previous values are used in the weighted average.

The exponential smoothing used in this paper is from the Forecast package [27]

for the R programming language [51]. When creating exponential smoothing

models the ets function is used to find suitable parameters using the methods

described in [25].

4.4 Autoregressive integrated moving average

Autoregressive integrated moving average (ARIMA)10 [6] is a popular generalised

forecasting technique. ARIMA models use a collection of three forecasting

techniques: autoregressive (AR), integrated (I) and moving average (MA); hence

ARIMA. ARIMA models are often written in the form ARIMA(p,d,q), with the

p,d and q values referring to the AR, I and MA aspects of the ARIMA model

respectively. By using different p,d and q parameters ARIMA models can

implement a wide range of forecasting techniques including Random-Walk,

Random-trend, autoregressive and exponential smoothing models.

The ARIMA implementation used in this paper is from the Forecast package [27]

for the R programming language [51]. When creating ARIMA models the

auto.arima function [24] is used to find suitable p, d and q parameters as well as

further sub parameters associated with the specific model. The auto.arima function

uses a variation of the Hyndman and Khandakar algorithm [24] to obtain a

suitable ARIMA model.

10 Also referred to as Box–Jenkins after the original authors.

Genet Program Evolvable Mach

123

4.5 Multilayer perceptron

Multilayer perceptrons (MLPs) are a standard ANN training method which makes

use of the back propagation algorithm. When applied to series forecasting it is

common practice to use multiple inputs determined by the embedding dimension

and time delay of the series; so this is undertaken here.

The MLP implementation used in this paper is the Fast Artificial Neural Network

(FANN) library [48]. The FANN library is configured to use standard fully

connected ANNs of unipolar logistic sigmoid transfer functions trained using a

variant on back propagation called resilient back propagation (Rprop) [54] for 1000

epochs. As back propagation does not optimise topology a range topologies are

investigated comprising one and two hidden layers of five, ten, twenty and fifty

nodes per hidden layers (eight separate topologies in total).

As MLPs use a strictly supervised learning method they must be trained using

input–output pairs. However this style of learning is not directly compatible with

recursive forecasting. This is because future forecasts are made using previously

made forecasts. When using previous forecasts as inputs the input–output pair (the

current inputs and the correct outputs) do not represent a correct learning example.

In this case the ANN would be trained using incorrect data.

Therefore, here, the MLPs are trained for one-step-ahead prediction; always

using valid input–output pairs. The recursive forecasting performance of the ANN is

then recorded after each epoch by using the ANN to recursively predict the next 100

samples starting at t ¼ 100, t ¼ 200, ..., t ¼ 900. After the maximum number of

epochs have elapsed the configuration which resulted in the best recursive

forecasting performance is then returned as the final trained ANN. This method

effectively trains for one-step-ahead prediction and uses the recursive forecasting

performance to prevent over-training.

5 Benchmarks

In this paper three series forecasting benchmarks are utilised, one of which is a

mathematical series generated from chaotic equations (Mackey–Glass) and two are

real world recordings (Laser and Sunspots).

All of the benchmarks consist of a training set of 1000 data points and a testing

set of 100 data points. In each case the embedding dimension and time delay are

calculated using the pdc package [7].

5.1 Laser

The Laser benchmark is the recording of a ‘‘81.5-micron 14NH3 cw (FIR) laser,

pumped optically by the P(13) line of an N2O laser via the vibrational aQ(8,7) NH3

transition’’ [23]. The benchmark was used in the Santa Fe Competition [76] and the

dataset is publicly available [75].

Two versions of the dataset exist, one containing one thousand samples and

another extended version with ten thousand. The one thousand sample version used

Genet Program Evolvable Mach

123

by the Santa Fe Competition and the extended version is made available for further

testing of methods. Here the first 1000 samples of the extended version are used as a

training set and the following 100 samples are used as the testing set. This series is

also normalised into a [0,1] range using Eq. 2 where: xi is the sample to be

normalised, x0i is the normalised sample, X is the entire series and the min and max

functions return the minimum and maximum sample value in the series X respec-

tively. The Laser benchmark is plotted in Fig. 5.

The embedding dimension and time delay used for the Laser series are D ¼ 4 and

T ¼ 7 respectively.

x0i ¼
xi � minðXÞ

maxðXÞ � minðXÞ ð2Þ

5.2 Mackey–Glass

The Mackey–Glass equation was originally used to model blood cell regulation

[41]. However the Mackey–Glass equation has also been used as a forecasting

benchmark due to its interesting chaotic properties. The Mackey–Glass equation is

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time

M
ag

ni
tiu

de

200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Time

x(
t)

1840 1860 1880 1900 1920
0

0.2

0.4

0.6

0.8

1

Year

N
um

 S
un

sp
ot

s

(a) (b)

(c)

Fig. 5 Series forecasting benchmarks. a Laser. b Mackey–Glass. c Sunspots

Genet Program Evolvable Mach

123

given in Eq. 3. By adjusting the value of the delay parameter s the equation

produces chaotic and non-chaotic series; s[16:8 produces chaotic behaviour.

dxðtÞ
dt

¼ a � xðt � sÞ
1þ xcðt � sÞ � b � xðtÞ ð3Þ

Here the Mackey–Glass equation parameters are set as a ¼ 0:2, b ¼ 0:1 and

c ¼ 10. The delay parameter s is set as 17 and xðtÞ ¼ 0 when t� 0. A series is

produced using the 4th order Runge–Kutta integration method with a time step of

dt ¼ 0:01 s. This series is then sampled once a second to produce the series used as

the benchmark. This series is also normalised using Eq. 2. The first 117 s (samples)

are removed to avoid the transient response time. Then the following 1100 s

(samples) are used for the training and testing sets; plotted in Fig. 5. The first 1000 s

are used for training and the following 100 are used for testing.

The embedding dimension and time delay used for the Mackey–Glass series are

D ¼ 4 and T ¼ 1 respectively.

5.3 Sunspots

Predicting the number of yearly/monthly Sunspots [58] is a commonly used [37],

challenging [1], series prediction benchmark. The data is recorded by the SIDC-

team, at the World Data Center for the Sunspot Index, Royal Observatory of

Belgium [58] and is publicly available [55]. Here the smoothed number of monthly

sunspots is used covering 1100 months (samples) of data taken from November

1834 to June 1926. The first 1000 samples are used for training with the remaining

100 used for testing. The series is once again normalised using Eq. 2. The series is

plotted in Fig. 5.

The embedding dimension and time delay used for the smoothed monthly

sunspots series are D ¼ 5 and T ¼ 1 respectively.

6 Results

The results presented investigate the suitability of RCGPANNs by isolating the

benefit of the two extensions to CGP utilised by RCGPANNs; recurrence and

application to ANNs. The results also investigate the suitability of RCGPANNs

generally as a series forecasting method, achieved by comparing RCGPANNs with

a range of standard series forecasting methods; described in Sect. 4.

There are many measurements found in the literature which are used to assess the

performance of forecasting methods [4, 28]. However in the machine learning

literature the most commonly used methods are the Mean Square Error (MSE), Root

Mean Square Error (RMSE) and the Normalised Mean Square Error (NMSE). For

this reason MSE and NMSE are used here;11 despite other measurements possibly

11 As RMSE is simply the root of the MSE value it is not also explicitly presented.

Genet Program Evolvable Mach

123

being more representative of forecasting accuracy [4, 28]. This provides consistency

with other published machine learning methods.

The MSE and NMSE are given in Eqs. 4 and 5 respectively where: N is the

number of predicted samples, pi is the ith predicted value, oi is the ith observed

value and �o is the average of all the observed values. Note that the NMSE

measurement gives the MSE normalised by the MSE which would be achieved if all

predictions were equal to the arithmetic mean of the observed values.

MSE ¼ 1

N

XN

i¼1

pi � oið Þ2 ð4Þ

NMSE ¼
PN

i¼1 pi � oið Þ2
PN

i¼1 oi � �oð Þ2

 !
ð5Þ

The forecasts produced by the various forecasting methods are evaluated on the

testing data using the two measures described. For the stochastic methods (CGP,

RCGP, CGPANN, RCGPANNs and MLP) the average12 performance of 50 runs is

used for comparison; as this represents the typical performance. Additionally the

testing performance of the run which scored the best training fitness is also

presented. In a real scenario, this is likely the forecaster which would be used. Note

this is not the solution which produced the best testing fitness, as selection should

never be (and typically cannot be) based on testing performance.

In the case of MLPs, many topologies were investigated. Here the results of using

the best topology are presented. The best topology is determined by the average

training performance; not the testing performance which would typically not be

known in advance. Specifically the recursive prediction performance on the training

set is used as this more closely matches the actual final application.

Again in the case of the stochastic methods, statistical significance testing is used

to assess any differences. The non-parametric Mann–Whitney U-test and the non-

parametric Kolmogorov–Smirnoff test (KS) are used to test for statistical

significance. Typically a value of q� 0:05 is used to represent statistical

significance but as this work is undertaking eight pairwise comparisons Bonferroni

correction [14] will be used reducing the significance level to 6:25� 10�3.

Additionally the effect size, as defined in [72], is also used to indicate the

importance of any statistical difference; with values [0:56 indicating a small

effect size, [0:64 a medium and [0:71 a large. The spread of results are also

given graphically as box and whisker plots for visual inspection; with outliers

marked as follows: ‘?’ represents forecasts between 1.5 and 3 times the

interquartile range and ‘	’ represents forecasts greater than 3 times the interquartile

range.

The forecasts produced by each method are also given in Figs. 6, 7, and 8. In the

case of the stochastic methods, the best forecast as previously defined is presented.

12 Arithmetic mean.

Genet Program Evolvable Mach

123

6.1 Laser

The results of applying the various series forecasting methods to the Laser

benchmark are given in Table 1. In the case of the stochastic methods, Table 2 gives

the statistical analysis and Fig. 9 gives the box and whisker plots. The forecasts

produced are plotted in Fig. 6.

The MLP topology which produced the best recursive forecast on the training set

had two hidden layers each containing five nodes. The ARIMA model produced is

ARIMA(5,0,4) with non-zero mean.

Overall it can be seen in Table 1 that RCGPANNs produce the best average

forecast of all the methods investigated.

When comparing CGPANNs and MLPs as training methods for feed-forward

ANNs it can be seen that on average CGPANNs strongly outperformed MLPs with

statistical significance and a medium effect size. This indicates that CGPANNs

provide a superior training method to MLPs.

When evaluating the recurrent extension it can be seen that on average RCGP

outperformed CGP but with a small effect size and no statistical significance.

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

0

0.1

0.2

0.3

0.4

0.5
Observed
Prediction

0

0.1

0.2

0.3

0.4

0.5
Observed
Prediction

0

0.1

0.2

0.3

0.4

0.5
Observed
Prediction

0

0.1

0.2

0.3

0.4

0.5
Observed
Prediction

0

0.1

0.2

0.3

0.4

0.5
Observed
Prediction

0

0.1

0.2

0.3

0.4

0.5
Observed
Prediction

0

0.1

0.2

0.3

0.4

0.5
Observed
Prediction

0

0.1

0.2

0.3

0.4

0.5
Observed
Prediction

0

0.1

0.2

0.3

0.4

0.5
Observed
Prediction

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 Forecasts produced for the Laser benchmark. a RWF. b MEAN. c ETS. d ARIMA. e MLP.
f CGP. g RCGP. h CGPANN. i RCGPANN

Genet Program Evolvable Mach

123

Conversely it can be seen that on average RCGPANNs outperformed CGPANNs

with statistical significance and a large effect size. This indicates than the recurrent

extension is advantageous to RCGPANNs and is not detrimental to CGP.

Finally when comparing evolving ANNs to the use of standard GP mathematical

functions it can be seen that CGPANNs outperformed CGP but with no statistical

significance and a small effect size. Conversely RCGPANNs outperformed RCGP

with a medium effect size and statistical significance. This indicates that evolving

ANNs does not produce worse results than using standard GP mathematical

functions and can produce superior results.

6.2 Mackey–Glass

The results of applying the various series forecasting methods to the Mackey–Glass

benchmark are given in Table 3. In the case of the stochastic methods, Table 4 gives

the statistical analysis and Fig. 9 gives the box and whisker plots. The forecasts

produced are plotted in Fig. 7.

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7 Forecasts produced for the Mackey–Glass benchmark. a RWF. b MEAN. c ETS. d ARIMA.
e MLP. f CGP. g RCGP. h CGPANN. i RCGPANN

Genet Program Evolvable Mach

123

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

0

0.2

0.4

0.6

0.8

1 Observed
Prediction

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8 Forecasts produced for the Sunspots benchmark. a RWF. b MEAN. c ETS. d ARIMA. e MLP.
f CGP. g RCGP. h CGPANN. i RCGPANN

Table 1 Results for applying

various forecasting methods to

the Laser benchmark

Method MSE NMSE

Avg Best Avg Best

RWF 0.034227 1.260675

MEAN 0.027151 1.000030

ETS 0.034223 1.260508

ARIMA 0.034148 1.257749

MLP 0.043985 0.035237 1.620058 1.000184

CGP 0.027946 0.027091 1.029200 0.997707

RCGP 0.025823 0.004424 0.951000 0.162913

CGPANN 0.027655 0.029380 1.018500 1.081971

RCGPANN 0.021467 0.016424 0.790580 0.604839

Genet Program Evolvable Mach

123

The MLP topology which produced the best recursive forecast on the training set

had one hidden layer containing twenty nodes. The ARIMA model produced is

ARIMA(3,0,5) with non-zero mean.

Overall it can be seen in Table 3 that RCGPANNs produces the best average

forecast compared with all the other methods.

When comparing CGPANNs and MLPs as training methods for feed-forward

ANNs it can be seen that on average CGPANNs outperformed MLPs with statistical

Table 2 Statistical significance

testing between the stochastic

methods applied to the the Laser

benchmark

Comparison U-test KS-test Effect size

CGP–MLP 3.75e-2 3.76e-8 0.66820

RCGP–MLP 5.92e-6 2.97e-9 0.76280

CGPANN–MLP 1.49e-2 7.84e-10 0.68440

RCGPANN–MLP 1.21e-10 7.84e-10 0.87340

CGP–RCGP 3.64e-2 8.90e-3 0.62160

CGPANN–RCGPANN 1.43e-5 1.08e-8 0.75200

CGP–CGPANN 4.04e-1 5.08e-1 0.54860

RCGP–RCGPANN 6.81e-3 4.43e-3 0.65720

MLP CGP RCGP CGPANN RCGPANN
0

0.02

0.04

0.06

0.08

0.1

M
S

E

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

M
S

E

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
S

E

MLP CGP RCGP CGPANN RCGPANN

MLP CGP RCGP CGPANN RCGPANN

(a) (b)

(c)

Fig. 9 Spread of the forecasts produced using stochastic methods. a Laser. b Mackey–Glass. c Sunspots

Genet Program Evolvable Mach

123

significance but a small effect size. This indicates that MLPs and CGPANNs

represent similarly suitable training methods for ANNs.

When evaluating the recurrent extension of RCGP it can be seen that on average

RCGP outperformed CGP but without statistical significance and a small effect size.

Additionally on average RCGPANNs outperformed CGPANNs with statistical

significance and a large effect size. This indicates that the recurrent extension is

advantageous to CGPANNs and is not detrimental to CGP.

Finally, when comparing evolving ANNs to the use of standard GP mathematical

functions it can be seen that CGPANNs outperformed CGP but with no statistical

significance and a small effect size. Conversely RCGPANNs strongly outperformed

RCGP on average with statistical significance and a large effect size. This indicates

that evolving ANNs may be producing better results than standard mathematical

functions or at least does not produce worse results.

6.3 Sunspots

The results of applying the various series forecasting methods to the Sunspots

benchmark are given in Table 5. In the case of the stochastic methods, Table 6 gives

Table 3 Results for applying

various forecasting methods to

the Mackey–Glass benchmark

Method MSE NMSE

Avg Best Avg Best

RWF 0.109334 1.624736

MEAN 0.067324 1.000447

ETS 0.357603 5.314079

ARIMA 0.071481 1.062226

MLP 0.075798 0.048297 1.126385 0.717701

CGP 0.069947 0.058746 1.039400 0.872979

RCGP 0.064501 0.025706 0.958500 0.381999

CGPANN 0.065563 0.049188 0.974280 0.730944

RCGPANN 0.047575 0.033219 0.706980 0.493640

Table 4 Statistical significance

testing between stochastic

methods on the Mackey–Glass

benchmark

Comparison U-test KS-test Effect size

CGP–MLP 2.34e-1 3.63e-6 0.56920

RCGP–MLP 9.42e-1 2.11e-e-2 0.50440

CGPANN–MLP 7.59e-1 1.78e-4 0.51800

RCGPANN–MLP 1.70e-4 4.23e-4 0.71840

CGP–RCGP 2.29e-2 1.71e-2 0.63220

CGPANN–RCGPANN 5.19e-6 1.02e-5 0.76460

CGP–CGPANN 2.87e-1 6.78e-1 0.56200

RCGP–RCGPANN 8.15e-5 1.78e-4 0.72880

Genet Program Evolvable Mach

123

the statistical analysis and Fig. 9 gives the box and whisker plots. The forecasts

produced are given in Fig. 8.

One oddity seen in the results is the extremely poor average forecast achieved

using RCGP. This is due to one of the fifty runs producing multiple large spikes mid

forecast, resulting in a very large error which affected the average. If this one run is

removed, the average results in a MSE of 0.026701 and a NMSE of 0.910010;

which does outperform CGP. This outlier is also removed from the box-plots in

Fig. 9 in order for the other differences to be visible.

The MLP topology which produced the best recursive forecast on the training set

had two hidden layers each containing five nodes. The ARIMA model produced is

ARIMA(5,1,4).

Overall it can be seen in Table 5 that the best average result is achieved using

CGPANNs and RCGPANNs with almost no difference between the two.

When comparing CGPANNs and MLPs as training methods for feed-forward

ANNs it can be seen that on average CGPANNs strongly outperformed MLP with

statistically significant and a large effect size. This indicates that CGPANNs are

much more effective ANN training methods than MLPs.

When evaluating the recurrent extension of RCGP it can be seen that on average

RCGP is strongly outperformed by CGP but with no statistical significance and a

very small effect size. If the one very poor run is removed form the RCGP results,

Table 5 Results for applying

various forecasting methods to

the Sunspots benchmark

Method MSE NMSE

Avg Best Avg Best

RWF 0.176262 6.008159

MEAN 0.034399 1.172533

ETS 0.546006 18.61142

ARIMA 0.034972 1.192063

MLP 0.043773 0.035228 1.492071 1.200790

CGP 0.031940 0.026894 1.088600 0.916592

RCGP 1.20e?30 0.011922 4.10E?31 0.406331

CGPANN 0.024991 0.018114 0.851750 0.617360

RCGPANN 0.024992 0.004925 0.851770 0.167851

Table 6 Statistical significance

testing between stochastic

methods on the Sunspots

benchmark

Comparison U-test KS-test Effect size

CGP–MLP 6.97e-13 2.13e-14 0.91680

RCGP–MLP 1.09e-11 1.09e-13 0.89440

CGPANN–MLP 6.31e-16 3.28e-18 0.96920

RCGPANN–MLP 8.10e-15 2.07e-17 0.95080

CGP–RCGP 1.31e-1 3.17e-2 0.58780

CGPANN–RCGPANN 8.12e-1 8.41e-1 0.51400

CGP–CGPANN 3.51e-3 4.43e-3 0.66960

RCGP–RCGPANN 6.52e-1 2.41e-1 0.52640

Genet Program Evolvable Mach

123

then RCGP does outperform CGP but still without statistical significance or

meaningful effect size. Similarly, on average RCGPANNs produces very similar

results to CGPANNs with no statistical significance and a small effect size. This

indicates that the recurrent extension is not providing an advantage.

Finally when comparing evolving ANNs to the use of standard GP mathematical

functions it can be seen that on average CGPANNs strongly outperformed CGP with

statistical significance and a medium effect size. RCGPANNs also outperform

RCGP (with or without the outlier) but this is without statistical significance and a

small effect size. This indicates that evolving ANNs may be producing better results

than standard mathematical functions or at least does not produce worse results.

7 Discussion

As can be seen from the results, in all cases RCGPANNs produced the best (or joint

best) average forecasts compared with all the other methods used for comparison.

This demonstrates RCGPANNs is a highly competitive series forecasting technique

compared to a number of standard methods. RCGPANNs also outperformed all the

other methods based on CGP: CGP, RCGP and CGPANN. This clearly demon-

strates the suitability of the newly proposed RCGPANNs method.

When comparing CGPANNs with MLPs, CGPANNs outperformed MLPs on all

three benchmarks with statistical significance. Additionally in two of the three cases

CGPANNs outperformed MLPs with a medium or greater effect size. This indicates

that CGPANNs is a superior training method than MLPs when applied to the

domain of recursive series forecasting.

The results show that the inclusion of recurrent connections in RCGP and

RCGPANNs offers an advantage when applied to series forecasting. In the case of

RCGP the addition of recurrent connections always resulted in better results but

without statistical significance and only with a small effect size. In the case of

RCGPANNs, on two of the three benchmarks the addition of recurrent connections

produced better results with statistical significance and a large effect size; with

comparable results on the final benchmark. Therefore the addition of recurrent

connections were often seen to be beneficial and never worse. This further

demonstrates the suitability of the recurrent extension to create recurrent program

structures, complementing previous research [69, 70].

In the presented work, when applying CGP and its variants to series forecasting

multiple previous values from the sequence were made available to the evolved

programs. These previous values were determined by the embedding dimension and

time delay of the sequence. Therefore it would not have been unsurprising if the

recurrent extension present in RCGP and RCGPANNs failed to outperform their

non-recurrent counterparts; as a form of recurrence has effectively already been

added that has been specifically designed for predicting future values. The fact that

RCGP and RCGPANNs outperformed their non recurrent counterparts demonstrates

that evolution has found additional recurrence which improved again on the level of

recurrence already provided.

Genet Program Evolvable Mach

123

The results also show that the use of neuron transfer functions and connection

weights produce better forecasts on average than the use of standard GP

mathematical functions without connections weights. CGP or RCGP is never

shown to outperform CGPANNs and RCGPANNs respectively. CGPANNs

outperformed CGP on one of three benchmarks with statistical significance and a

medium effect size; in the other cases the difference is not statistically significant.

RCGPANNs outperformed RCGP on two of the three benchmarks with statistical

significance and a medium or large effect size; again in the remaining case the

difference is not statistically significant.

The fact that the use of neuron transfer functions and connection weights

produced superior results in comparison with using standard mathematical functions

may have wider implications for GP in general. It might be the case that many GP

methods could be improved by using neuron transfer functions, or the addition of

connection weights, or the use of both connection weights and neuron transfer

functions (thus implementing NE). It is true that both ANNs [11] and GP [80] are

(or can be depending on the function set used) universal approximators. However

this does not necessarily indicate how trainable or evolvable the programs are. For

instance the addition of connection weights to GP, previously termed weighted GP

[62], might make for a more evolvable fitness landscape. Future research should

investigate the use of weighted connections and neuron transfer function,

independently and in union, for other GP methods. This may help indicate whether

the power of ANNs is in their transfer functions, connection weights or training

methods. This could even lead to interesting mixtures of GP and ANNs such as back

propagation applied to a weighted form of GP.

A seemingly odd result is how well the Mean forecasting method preformed

compared to the other standard forecasting methods. Mean forecasting is seen to

outperform RWF, ETS, ARIMA and MLP for all of the benchmarks investigated.

However, as described in [26], ‘‘some forecasting methods are very simple and

surprisingly effective’’. Additionally it has previously been noted that in the real-

time forecasting M2-competition [42] that ARIMA (Box–Jenkins) ‘‘proved to be

one of the least-accurate methods and its overall median error is 17 % greater than

that for a naive forecast’’ [3]. Therefore it can be seen that it is not uncommon for

naive methods to perform very well.

Interestingly, many of the forecasts provided using CGP and it variants either

produced an output very close to a Mean forecast or exhibited behaviours which

eventually settled on an output close to the Mean forecast. Examples of this can be

seen in: Fig. 6f where CGP is applied to the Laser benchmark, Fig. 7o where CGP is

applied to the Mackey–Glass benchmark and Fig. 8x where CGP is applied to the

Sunspots benchmark. As the Mean approach is shown to produce a reasonable

forecast it may be the case that this method represents a local optima in the search

space. It could also be an example of evolutionary methods rediscovering a

previously known technique.

Although not explored in this paper, an additional advantage of using

evolutionary computation for forecasting is the ability to alter the fitness function

to favour certain characteristics. For instance the forecast horizon can easily be

altered. The maximum error during the forecast could be considered. Frequency

Genet Program Evolvable Mach

123

information from the training data could be used to award or penalise frequencies

present or not present in the produced forecasts. The fitness awarded could also

represent the number of time steps predicted with an error lower than a given

threshold, rather than the error up to a given forecast horizon. The solutions could

also be optimised for speed, complexity or size. As the ability to set custom fitness

functions also applies to NE this is another possible benefit of its use in series

forecasting.

Finally the best result of the stochastic methods often represented a much

superior forecast than the average. This is not surprising as early stopping methods

were utilised to prevent over training. Although the average performance is used

here for comparison, as it represents typical performance of the algorithms, in real

applications the best of many runs could be used. In this case RCGPANNs could be

argued to outperform the standard forecasting methods to an even greater extent

than has been presented; although the comparison would be less rigorous.

8 Conclusion

This paper has introduced RCGPANNs, a new NE method based on CGPANNs

which utilises the recurrent extension of CGP, known as RCGP. The application of

series forecasting has been used to assess the performance of RCGPANNs

compared to other CGP variants and a range of standard forecasting methods. The

results demonstrate that RCGPANNs produce highly competitive forecasts,

outperforming all of the other standard forecasting methods used for comparison.

RCGPANNs is therefore shown to be a powerful NE method; at least in the domain

of series forecasting.

RCGPANNs differs from standard CGP in two regards; it allows recurrent

connections and uses neuron transfer function with connections weights. Both of

these aspects were individually investigated revealing that they both provide

benefits to standard CGP; again at least in the domain of series forecasting. This

demonstrates the importance of these two previously presented CGP extensions and

helps explain why the RCGPANNs approach is shown to be so effective. This result

may also be significant for other GP methods which could also benefit from similar

extensions.

Finally, it is important to note that RCGPANNs is a superset of CGPANNs. By

setting the RCGPANNs recurrent connection probability to zero it implements

standard feed-forward CGPANNs. Additionally just because RCGPANNs is

capable of utilising recurrent connections does not force evolution to do so. For

instance it is possible for RCGPANNs to create purely feed-forward ANNs if there

were an evolutionary advantage in doing so. This, coupled with the advantageous

results presented, makes RCGPANNs an important extension to CGPANNs.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

Genet Program Evolvable Mach

123

http://creativecommons.org/licenses/by/4.0/

References

1. L. Aguirre, C. Letellier, J. Maquet, Forecasting the time series of sunspot numbers. Sol. Phys. 249(1),
103–120 (2008)

2. P. Angeline, G. Saunders, J. Pollack, An evolutionary algorithm that constructs recurrent neural

networks. IEEE Trans. Neural Netw. 5(1), 54–65 (1994)

3. J. Scott Armstrong (ed.), Extrapolation for time-series and cross-sectional data, in Principles of

Forecasting: A Handbook for Researchers and Practitioners (Springer, Berlin, 2001), pp. 217–243

4. J.S. Armstrong, F. Collopy, Error measures for generalizing about forecasting methods: empirical

comparisons. Int. J. Forecast. 8(1), 69–80 (1992)

5. Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of deep networks.

Adv. Neural Inf. Process. Syst. 19, 153 (2007)

6. G.E. Box, G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting and Control (Wiley, New

York, 2013)

7. A.M. Brandmaier, pdc: Permutation Distribution Clustering (2014). R package version 0.5. http://

CRAN.R-project.org/package=pdc

8. E. Cantú-Paz, C. Kamath, An empirical comparison of combinations of evolutionary algorithms and

neural networks for classification problems. IEEE Trans. Syst/ Man Cybern. Part B Cybern. 35(5),
915–927 (2005)

9. J. Clegg, J.A. Walker, J.F. Miller, A new crossover technique for Cartesian Genetic Programming, in

Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation,

pp. 1580–1587. ACM (2007)

10. D. Cliff, I. Harvey, P. Husbands, Incremental evolution of neural network architectures for adaptive

behaviour, in Proceedings of the European Symposium on Artificial Neural Networks (ESANN’93),

pp. 39–44 (1992)

11. G. Cybenko, Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst.

2(4), 303–314 (1989)

12. J.G. De Gooijer, R.J. Hyndman, 25 years of time series forecasting. Int. J. Forecast. 22(3), 443–473
(2006)

13. J.P. Donate, G.G. Sanchez, A.S. de Miguel, Time series forecasting. A comparative study between an

evolving artificial neural networks system and statistical methods. Int. J. Artif. Intell. Tools 21(01)
(2012). doi:10.1142/S0218213011000462

14. O.J. Dunn, Multiple comparisons among means. J. Am. Stat. Assoc. 56(293), 52–64 (1961)

15. D. Floreano, P. Dürr, C. Mattiussi, Neuroevolution: from architectures to learning. Evol. Intell. 1(1),
47–62 (2008)

16. S. Gaur, M. Deo, Real-time wave forecasting using genetic programming. Ocean Eng. 35(11),
1166–1172 (2008)

17. X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in

Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS10).

Society for Artificial Intelligence and Statistics (2010)

18. B. Goldman, W. Punch, Analysis of Cartesian genetic programmings evolutionary mechanisms.

IEEE Trans. Evol. Comput. PP(99), 1–1 (2014). doi:10.1109/TEVC.2014.2324539 (in press)

19. B.W. Goldman, W.F. Punch, Length bias and search limitations in Cartesian Genetic Programming,

in Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Con-

ference, pp. 933–940. ACM (2013)

20. L.J. Herrera, H. Pomares, I. Rojas, A. Guillén, A. Prieto, O. Valenzuela, Recursive prediction for

long term time series forecasting using advanced models. Neurocomputing 70(16), 2870–2880

(2007)

21. H.S. Hippert, C.E. Pedreira, R.C. Souza, Neural networks for short-term load forecasting: a review

and evaluation. IEEE Trans. Power Syst. 16(1), 44–55 (2001)

22. C.C. Holt, Forecasting seasonals and trends by exponentially weighted moving averages. Int.

J. Forecast. 20(1), 5–10 (2004)

23. U. Huebner, N. Abraham, C. Weiss, Dimensions and entropies of chaotic intensity pulsations in a

single-mode far-infrared NH 3 laser. Phys. Rev. A 40(11), 6354 (1989)

24. R.J. Hyndman, Y. Khandakar, Automatic time series forecasting: the forecast package for R. J. Stat.

Softw. 27(3) (2008). doi:10.18637/jss.v027.i03

Genet Program Evolvable Mach

123

http://CRAN.R-project.org/package=pdc
http://CRAN.R-project.org/package=pdc
http://dx.doi.org/10.1142/S0218213011000462
http://dx.doi.org/10.1109/TEVC.2014.2324539
http://dx.doi.org/10.18637/jss.v027.i03

25. R.J. Hyndman, M. Akram, B.C. Archibald, The admissible parameter space for exponential

smoothing models. Ann. Inst. Stat. Math. 60(2), 407–426 (2008)

26. R.J. Hyndman, G. Athanasopoulos, Forecasting: principles and practice, in OTexts (2014). https://

www.otexts.org/fpp/

27. R.J. Hyndman, G. Athanasopoulos, S. Razbash, D. Schmidt, Z. Zhou, Y. Khan, C. Bergmeir, E.

Wang, forecast: Forecasting functions for time series and linear models (2014). R package version

5.4. http://CRAN.R-project.org/package=forecast

28. R.J. Hyndman, A.B. Koehler, Another look at measures of forecast accuracy. Int. J. Forecast. 22(4),
679–688 (2006)

29. Y. Ji, J. Hao, N. Reyhani, A. Lendasse, Direct and recursive prediction of time series using mutual

information selection, in Proceedings of the 8th International Conference on Artificial Neural Net-

works: Computational Intelligence and Bioinspired Systems, pp. 1010–1017. Springer, Berlin (2005)

30. M.I. Jordan, Serial Order: A Parallel Distributed Processing Approach (Tech. rep, Institute for

Cognitive Science, 1986)

31. M.A. Kaboudan, Genetic programming prediction of stock prices. Comput. Econ. 16(3), 207–236
(2000)

32. G.M. Khan, S. Khan, F. Ullah, Short-term daily peak load forecasting using fast learning neural

network, in 11th International Conference on Intelligent Systems Design and Applications (ISDA),

2011, pp. 843–848. IEEE (2011)

33. G.M. Khan, A.R. Khattak, F. Zafari, S.A. Mahmud, Electrical load forecasting using fast learning

recurrent neural networks, in The 2013 International Joint Conference on Neural Networks (IJCNN),

pp. 1–6. IEEE (2013)

34. M. Khan, G. Khan, J. Miller, Efficient representation of recurrent neural networks for markovian/

non-markovian non-linear control problems, in 2010 10th International Conference on Intelligent

Systems Design and Applications (ISDA), pp. 615–620. IEEE (2010)

35. M.M. Khan, M.A. Ahmad, M.G. Khan, J.F. Miller, Fast learning neural networks using Cartesian

Genetic Programming. Neurocomputing 121, 274–289 (2013)

36. M.M. Khan, G.M. Khan, J.F. Miller, Evolution of neural networks using cartesian genetic pro-

gramming, in Proceedings of IEEE World Congress on Computational Intelligence CEC 2010 (2010)

37. M. Khashei, M. Bijari, An artificial neural network (p, d, q) model for timeseries forecasting. Expert

Syst. Appl. 37(1), 479–489 (2010)

38. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection

(MIT Press, Cambridge, 1992)

39. W.B. Langdon, W. Banzhaf, Repeated sequences in linear genetic programming genomes. Complex

Syst. 15(4 (c)), 285–306 (2005)

40. H. Larochelle, Y. Bengio, J. Louradour, P. Lamblin, Exploring strategies for training deep neural

networks. J. Mach. Learn. Res. 10, 1–40 (2009)

41. M.C. Mackey, L. Glass, Oscillation and chaos in physiological control systems. Science 197(4300),
287–289 (1977)

42. S. Makridakis, C. Chatfield, M. Hibon, M. Lawrence, T. Mills, K. Ord, L.F. Simmons, The M2-

competition: a real-time judgmentally based forecasting study. Int. J. Forecast. 9(1), 5–22 (1993)

43. J.F. Miller, What bloat? Cartesian genetic programming on Boolean problems, in 2001 Genetic and

Evolutionary Computation Conference Late Breaking Papers, pp. 295–302 (2001)

44. J.F. Miller (ed.), Cartesian Genetic Programming (Springer, Berlin, 2011)

45. J.F. Miller, S. Smith, Redundancy and computational efficiency in Cartesian Genetic Programming.

IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

46. J.F. Miller, P. Thomson, Cartesian genetic programming, in Proceedings of the Third European

Conference on Genetic Programming (EuroGP), vol. 1820, pp. 121–132. Springer, Berlin (2000)

47. M. Minarik, L. Sekanina, Evolution of iterative formulas using Cartesian Genetic Programming, in

Knowledge-Based and Intelligent Information and Engineering Systems, pp. 11–20. Springer, Berlin

(2011)

48. S. Nissen, Implementation of a fast Artificial Neural Network library (FANN). Report, Department of

Computer Science, University of Copenhagen (DIKU) (2003)

49. R. Poli, W.W.B. Langdon, N.F. McPhee, J.R. Koza, A field guide to Genetic Programming. Pub-

lished via http://lulu.com and freely available at http://www.gp-field-guide.org.uk (2008)

50. L. Prechelt, Early stopping—but when?, in Neural Networks: Tricks of the Trade (Springer, Berlin

2012), pp. 53–67

Genet Program Evolvable Mach

123

https://www.otexts.org/fpp/
https://www.otexts.org/fpp/
http://CRAN.R-project.org/package=forecast
http://lulu.com
http://www.gp-field-guide.org.uk

51. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Sta-

tistical Computing, Vienna, Austria (2014). http://www.R-project.org/

52. M. Rehman, J. Ali, G.M. Khan, S.A. Mahmud, Extracting trends ensembles in solar irradiance for

green energy generation using neuro-evolution, in Artificial Intelligence Applications and Innova-

tions (Springer, Berlin 2014), pp. 456–465

53. R.K. Belew, J. McInerney, N.N. Schraudolph, Evolving networks: using the genetic algorithm with

connectionist learning. Tech. rep., Cognitive Computer Science Research group, Computer Science

and Engr. Dept (C-014), Univ. California at San Diego (1990)

54. M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: the RPROP

algorithm, in IEEE International Conference on Neural Networks, 1993, pp. 586–591. IEEE (1993)

55. Royal Observatory of Belgium: World data center for the production, preservation and dissemination

of the international sunspot number (2014). http://sidc.be/silso/home

56. D.E. Rumelhart, G.E. Hintont, R.J. Williams, Learning representations by back-propagating errors.

Nature 323(6088), 533–536 (1986)

57. M. Santini, A. Tettamanzi, J.F. Miller, M. Tomassini, P.L. Lanzi, C. Ryan, A.G. Tettamanzi, W.B.

Langdon, Genetic programming for financial time series, in Genetic Programming, Proceedings of

EuroGP’2001, vol. 2038, pp. 361–370. Springer (2001)

58. SIDC-Team: The International Sunspot Number. Monthly Report on the International Sunspot

Number, online catalogue (1700–1987)

59. S. Silva, E. Costa, Dynamic limits for bloat control in genetic programming and a review of past and

current bloat theories. Genet. Program. Evol. Mach. 10(2), 141–179 (2009)

60. P. Smolensky, Parallel Distributed Processing: Explorations in the Microstructure of Cognition,

Chap. Information Processing in Dynamical Systems: Foundations of Harmony Theory (MIT Press,

Cambridge, 1986)

61. K. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evol.

Comput. 10(2), 99–127 (2002)

62. H.C. Tsai, Using weighted genetic programming to program squat wall strengths and tune associated

formulas. Eng. Appl. Artif. Intell. 24(3), 526–533 (2011)

63. A.J. Turner, J.F. Miller, Neutral genetic drift: an investigation using Cartesian Genetic Programming.

Genet. Program. Evol. Mach. 16(4), 531–558 (2015)

64. A.J. Turner, J.F. Miller, Cartesian Genetic Programming encoded Artificial Neural Networks: a

comparison using three benchmarks, in Proceedings of the Conference on Genetic and Evolutionary

Computation (GECCO-13), pp. 1005–1012 (2013)

65. A.J. Turner, J.F. Miller, The importance of topology evolution in neuroevolution: a case study using

cartesian genetic programming of artificial neural networks, in M. Bramer, M. Petridis (eds.), in

Research and Development in Intelligent Systems XXX (Springer, Berlin 2013), pp. 213–226. doi:10.

1007/978-3-319-02621-3_15. http://link.springer.com/chapter/10.1007%2F978-3-319-02621-3_15

66. A.J. Turner, J.F. Miller, Cartesian Genetic Programming: why no bloat?, in Genetic Programming:

17th European Conference, vol. 8599, EuroGP-2014, LNCS (Springer, Berlin, 2014), pp. 193–204

67. A.J. Turner, J.F. Miller, Introducing a cross platform open source cartesian genetic programming

library. Genet. Program. Evol. Mach. 16(1), 83–91 (2014). doi:10.1007/s10710-014-9233-1

68. A.J. Turner, J.F. Miller, NeuroEvolution: evolving heterogeneous artificial neural networks. Evol.

Intell. 7(3), 135–154 (2014). doi:10.1007/s12065-014-0115-5

69. A.J. Turner, J.F. Miller, Recurrent Cartesian Genetic Programming, in 13th International Conference

on Parallel Problem Solving from Nature (PPSN 2014), LNCS, vol. 8672, pp. 476–486 (2014)

70. A.J. Turner, J.F. Miller, Recurrent Cartesian genetic programming applied to famous mathematical

sequences, in Proceedings of the Seventh York Doctoral Symposium on Computer Science and

Electronics, pp. 37–46 (2014)

71. A.J. Turner, J.F. Miller, Recurrent Cartesian genetic programming applied to series forecasting, in

Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO-15),

pp. 1499–1500 (2015)

72. A. Vargha, H.D. Delaney, A critique and improvement of the CL common language effect size

statistics of McGraw and Wong. J. Edu. Behav. Stat. 25(2), 101–132 (2000)

73. V.K. Vassilev, J.F. Miller, The advantages of landscape neutrality in digital circuit evolution, in

Proceedings of International Conference on Evolvable Systems,LNCS, vol. 1801, pp. 252–263.

Springer (2000)

74. J.A. Walker, K. Völk, S.L. Smith, J.F. Miller, Parallel evolution using multi-chromosome Cartesian

Genetic Programming. Genet. Program. Evol. Mach. 10(4), 417–445 (2009)

Genet Program Evolvable Mach

123

http://www.R-project.org/
http://sidc.be/silso/home
http://dx.doi.org/10.1007/978-3-319-02621-3_15
http://dx.doi.org/10.1007/978-3-319-02621-3_15
http://link.springer.com/chapter/10.1007%2F978-3-319-02621-3%5f15
http://dx.doi.org/10.1007/s10710-014-9233-1
http://dx.doi.org/10.1007/s12065-014-0115-5

75. A. Weigend, Santa fe competition data sets (2014). http://www-psych.stanford.edu/*andreas/Time-

Series/SantaFe.html

76. A.S. Weigend, N.A. Gershenfeld, Time Series Prediction: Forecasting the Future and Understanding

the Past (Addison-Wesley, Reading, 1994)

77. A. Wieland, Evolving neural network controllers for unstable systems, in IJCNN-91-Seattle Inter-

national Joint Conference on Neural Networks, 1991, vol. 2, pp. 667–673. IEEE (1991)

78. X. Yao, A review of evolutionary artificial neural networks. Int. J. Intell. Syst. 8(4), 539–567 (1993)

79. X. Yao, Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

80. X. Yao, Universal approximation by genetic programming, in Foundations of Genetic Programming

(1999)

81. T. Yu, J. Miller, Neutrality and the evolvability of Boolean function landscape, in Genetic Pro-

gramming, vol. 2038, Lecture Notes in Computer Science, ed. by J. Miller, M. Tomassini, P. Lanzi,

C. Ryan, A. Tettamanzi, W. Langdon (Springer, Berlin, 2001), pp. 204–217

82. E. Z-Flores, L. Trujillo, O. Schütze, P. Legrand, A local search approach to genetic programming for

binary classification, in Proceedings of the 2015 Annual Conference on Genetic and Evolutionary

Computation, GECCO ’15, pp. 1151–1158. ACM, New York, NY, USA (2015). doi:10.1145/

2739480.2754797

83. G. Zhang, B.E. Patuwo, M.Y. Hu, Forecasting with artificial neural networks: the state of the art. Int.

J. Forecast. 14(1), 35–62 (1998)

84. G.P. Zhang, B.E. Patuwo, M.Y. Hu, A simulation study of artificial neural networks for nonlinear

time-series forecasting. Comput. Oper. Res. 28(4), 381–396 (2001)

Genet Program Evolvable Mach

123

http://www-psych.stanford.edu/%7eandreas/Time-Series/SantaFe.html
http://www-psych.stanford.edu/%7eandreas/Time-Series/SantaFe.html
http://dx.doi.org/10.1145/2739480.2754797
http://dx.doi.org/10.1145/2739480.2754797

	Recurrent Cartesian Genetic Programming of Artificial Neural Networks
	Abstract
	Introduction
	Recurrent Cartesian Genetic Programming of Artificial Neural Networks
	Cartesian Genetic Programming
	Recurrent Cartesian Genetic Programming
	Cartesian Genetic Programming of Artificial Neural Networks
	Combining RCGP and CGPANNs

	Application to series forecasting
	Comparative methods
	Random walk forecasting
	Mean
	Exponential smoothing
	Autoregressive integrated moving average
	Multilayer perceptron

	Benchmarks
	Laser
	Mackey--Glass
	Sunspots

	Results
	Laser
	Mackey--Glass
	Sunspots

	Discussion
	Open Access
	References

