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optimally robust estimators
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Abstract

Background: The preprocessing of gene expression data obtained from several platforms routinely includes the
aggregation of multiple raw signal intensities to one expression value. Examples are the computation of a single
expression measure based on the perfect match (PM) and mismatch (MM) probes for the Affymetrix technology,
the summarization of bead level values to bead summary values for the Illumina technology or the aggregation of
replicated measurements in the case of other technologies including real-time quantitative polymerase chain
reaction (RT-qPCR) platforms. The summarization of technical replicates is also performed in other “-omics”
disciplines like proteomics or metabolomics.
Preprocessing methods like MAS 5.0, Illumina’s default summarization method, RMA, or VSN show that the use of
robust estimators is widely accepted in gene expression analysis. However, the selection of robust methods seems
to be mainly driven by their high breakdown point and not by efficiency.

Results: We describe how optimally robust radius-minimax (rmx) estimators, i.e. estimators that minimize an
asymptotic maximum risk on shrinking neighborhoods about an ideal model, can be used for the aggregation of
multiple raw signal intensities to one expression value for Affymetrix and Illumina data. With regard to the
Affymetrix data, we have implemented an algorithm which is a variant of MAS 5.0.
Using datasets from the literature and Monte-Carlo simulations we provide some reasoning for assuming approxi-
mate log-normal distributions of the raw signal intensities by means of the Kolmogorov distance, at least for the
discussed datasets, and compare the results of our preprocessing algorithms with the results of Affymetrix’s MAS
5.0 and Illumina’s default method.
The numerical results indicate that when using rmx estimators an accuracy improvement of about 10-20% is
obtained compared to Affymetrix’s MAS 5.0 and about 1-5% compared to Illumina’s default method. The improve-
ment is also visible in the analysis of technical replicates where the reproducibility of the values (in terms of Pear-
son and Spearman correlation) is increased for all Affymetrix and almost all Illumina examples considered. Our
algorithms are implemented in the R package named RobLoxBioC which is publicly available via CRAN, The
Comprehensive R Archive Network (http://cran.r-project.org/web/packages/RobLoxBioC/).

Conclusions: Optimally robust rmx estimators have a high breakdown point and are computationally feasible.
They can lead to a considerable gain in efficiency for well-established bioinformatics procedures and thus, can
increase the reproducibility and power of subsequent statistical analysis.

Background
Affymetrix microarrays consist of a number of probe
cells, each probe cell containing a unique probe. There
are two types of probes, perfect match (PM) and mis-
match (MM) occurring as pairs. The sequences for PM

and MM are almost identical. The difference consists of
a single base change in the middle of the PM probe
sequence to the Watson-Crick complement for the MM
probe sequence. A series of such probe pairs forms a
probe set which represents a transcript [1].
Hence, it is part of the preprocessing of Affymetrix

arrays to compute a single expression value for the dif-
ferent probe sets. One of the most popular algorithms
for this purpose is MAS 5.0, developed by Affymetrix
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[1]. It is the algorithm that, for instance, was most fre-
quently applied within the framework of phase II of the
microarray quality control (MAQC) project [2].
MAS 5.0 uses PM and Ideal Match (IM) to compute

the expression values where, for probe set i and probe
pair j,
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with default values τ1 = 0.03 (contrast tau) and τ 2 =
10 (scale tau). The specific background (SBi) is deter-
mined using Tukey’s biweight one-step estimator (Tbi)
where Affymetrix’s version of Tukey’s biweight disre-
gards all observations outside of median ±5 median
absolute deviation (MAD) (i.e. unstandardized MAD)
leading to a very robust estimator:

SB PM MMbii i j i j iT j n= = …(log ( / ), , , ), ,2 1 (2)

Then, the signal log value for each probe set is
obtained via

SigLogVa PVbi1 1i i j iT j n= = …( , , , ), (3)

with probe value PVi, j = log2(Vi, j) and Vi, j = max
{PMi, j - IMi, j, δ}. The constant δ with default value δ =
2-20 is introduced for numerical stability.
However, as table three in Section 2.6 of Hampel et al.

(1986) [3] suggests there are more efficient robust esti-
mators than Tukey’s biweight, e.g. the Tanh-estimator.
In addition, Table eight.five in Section 8.7 of Kohl
(2005) [4] shows that in the infinitesimal robust setup
for normal location and scale one may lose up to 54.9%
asymptotic efficiency if one uses Tukey’s biweight in
combination with MAD (TuMad) instead of the opti-
mally robust estimator. Consequently, we implemented
an algorithm along the l ines of MAS 5.0 where we sub-
stituted the Tukey biweight one-step location estimator
by an in infinitesimally robust radius-minimax (rmx) k-
step (k ≥ 1) location and scale estimator [5].
Illumina BeadArrays are based on 3-micron silica

beads that are randomly positioned on fiber optic bun-
dles or planar silica slides. Each bead is covered with
hundreds of thousands of copies of a specific oligonu-
cleotide sequence assigning the bead to a certain bead
type, where each bead type is represented in high redun-
dancy with more than 30 replicates on average. The
intensity values of the single beads are called bead level

data. It is part of the preprocessing to aggregate the
bead level data to so-called bead summary data leading
to a single expression value for each bead type. In this
paper we only consider data from single-channel gene
expression BeadArrays. Besides that, BeadArrays can
also be used for SNP genotyping, methylation profiling,
and copy number variation analysis [6].
In Illumina’s proprietary BeadStudio Software an out-

lier rejection method (median ±3 × MAD) combined
with mean and standard deviation is used to aggregate
the bead level data to bead summary data. The MAD in
this setup is standardized by 1.4826 to be consistent at
the normal model. That is, the location part of Illumi-
na’s estimator is a Huber-type skipped mean and is very
close to estimator X42 of Hampel (1985) [7], which uses
3.03 × MAD. Quoting Hampel et al. (1986) [3], p. 69,
the X42 estimator is “frequently quite reasonable,
according to present preliminary knowledge”. However,
Monte-Carlo studies show that there may be an effi-
ciency loss of 5-25% compared to more sophisticated
robust estimators [7]. Hence, we implemented an algo-
rithm which uses rmx k-step estimators for summarizing
bead level data. The goal of this paper is to demonstrate
that the application of optimally robust rmx estimators
can lead to a considerable efficiency gain and increased
reproducibility for well-established preprocessing algo-
rithms. First, we argue for normal location and scale as
the ideal model, at least for the log-transformed values
of some publicly available Affymetrix and Illumina data
sets, using minimum Kolmogorov distance. Second, we
use Monte-Carlo simulations and those publicly avail-
able datasets to compare MAS 5.0 and Illumina’s default
method with our modified algorithms based on rmx
estimators. The proposed preprocessing algorithms are
implemented in the R package RobLoxBioC[8,9]. A
brief overview of infinitesimal robustness is given in the
Methods section at the end of the manuscript.

Results and Discussion
Affymetrix Data
We replace Tukey’s biweight which only provides a
location estimate by an rmx estimator for normal loca-

tion and scale  ( , )  2 . The Tukey biweight and the

rmx estimator are constructed as one-step and k-step
estimates based on median and MAD, respectively. As
both estimators are so called asymptotically linear (AL)
estimators, a straightforward way to compare these esti-
mators is to observe the corresponding influence
curves/functions (ICs) displayed in Figure 1.
In both cases, the location part of the IC is redescending.

In contrast to Tukey’s biweight rejecting observations
more than about 3.35 (standardized) MAD times away
from the median, the rmx estimator only downweights
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large observations. Moreover, the plot shows that Tukey’s
biweight is mostly affected by undiscoverable (very likely
to occur in the normal model) gross errors located around
1.51 (standardized) MAD-times away from the median
where the IC of Tukey’s biweight (and the MAD) is maxi-
mal, whereas the rmx estimator is mostly deflected by
large observations where the Euclidean length of the loca-
tion and scale IC is maximal.
However, for applying the rmx estimator for normal

location and scale, one first should check if it is plausi-
ble to assume normal location and scale as the ideal
model for the Mi, j := log2(PMi, j/MMi, j) values. As we
can not test for approximate normality (there is no such
statistical test), we use the minimum Kolmogorov dis-
tance for this purpose. That is, we minimize, in μ Î ℝ
and s Î (0, ∞),

d F x F xM
x

Mi i   ( ( , ), ) sup | ( ) ( ) |
^ ^

, 2 = −
∈

Φ (4)

where Fμ,s is the cumulative distribution function of

F̂Mi
and F̂Mi

is the empirical distribution function of

the sample Mi,j,..., Mi,ni. Working with a right-continu-
ous empirical distribution function the above supremum
is equal to
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where Mi,(1), ..., Mi,(ni) is the increasingly sorted sam-
ple. In particular, the minimal possible Kolmogorov dis-
tance for sample size n is (2n)-1.
Of course, it would be possible to use some other dis-

tance (e.g. Cramér von Mises) or the test statistic of
some test for normality for this purpose. However, we
decided to use the Kolmogorov distance since there is a
certain connection between Kolmogorov neighborhoods
and the gross-error model in infinitesimal robustness
(see Rieder (1994), Lemma 4.2.8 and Proposition 5.3.3
[10]) and the Kolmogorov distance can be computed
efficiently via equation (5). Nevertheless, the computa-
tions take more than 100 minutes for the HGU95A
dataset and more than 130 minutes for the HGU133A
dataset, which consist of 59 and 42 GeneChips, respec-
tively, using function KolmogorovMinDist of our
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Figure 1 Location and scale ICs. Comparison of location and scale ICs for Tukey’s biweight, the rmx estimator (rmx IC) and the maximum
likelihood estimator (MLE).
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package RobLoxBioC on an Intel P9500 (64 bit Linux,
8 GByte RAM). For more details on these Latin square
spike-in datasets we refer to Cope et al. (2004) [11] and
Irizarry et al. (2006) [12].
Table 1 shows the number of probe sets per number

of probe level pairs for the HGU95A and HGU133A
GeneChips. Figure 2 displays the minimum Kolmogorov
distances for the HGU95A and HGU133A Latin square
datasets as well as for normal random samples (50000
Monte-Carlo replications for each sample size) where
we selected only those probe level pairs with a consider-
able number of probe sets. In Table 2 we recorded the
differences of the medians of the minimum Kolmogorov
distances between the Latin square datasets and

corresponding normal random samples. The results for
95% and 99% quantiles are very similar. Based on these
results it is very reasonable to assume normal location
and scale as the ideal model for Mi, j expecting only
minor deviations from normality.
To get a rough estimate of the corresponding size of

the contamination neighborhood (i.e. Tukey’s gross-
error model [13]), which is required for selecting an

Table 1 Number of probe sets

No. of PP 6 7 8 9 10 11 12 13 14 15 16 20 69

HGU95A 8 3 4 4 1 4 11 53 45 40 12386 66 1

HGU133A 0 0 1 0 1 21765 0 4 4 2 482 40 1

Number of probe sets per number of probe level pairs (No. of PP) for HGU95A
and HGU133A GeneChips.
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Figure 2 Minimum Kolmogorov distance for Affymetrix data. Minimum Kolmogorov distances for HGU95A and HGU133A datasets as well as
for normal (pseudo) random samples (50000 Monte-Carlo replications). The grey boxes indicate the mode of the number of probes in a probe-
set. The figure indicates that the considered Affymetrix data is in good agreement with the normal location and scale model.

Table 2 Minimum Kolmogorov distances for Affymetrix
data

No. of PP 6 7 8 9 10 11 12

HGU95A 0.002 0.0012 0.0157 -0.0009 -0.0146 0.0267 0.0040

HGU133A -0.0098 -0.0079 0.0007

No. of PP 13 14 15 16 20 69

HGU95A 0.0020 0.0022 0.0036 0.0014 0.0006 0.0156

HGU133A 0.0076 0.0033 0.0117 0.0026 0.0032 0.0148

Differences of the medians of the minimum Kolmogorov distances between
the Latin square datasets and the normal random samples for each number
of probe level pairs (No. of PP).
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appropriate rmx estimator, we use the following heuris-
tics: for Kolmogorov (Uk), total variation (Uv) and con-
tamination neighborhoods (Uc) of size s Î (0,1) it holds

U s U s U sc v( ) ( ) ( )⊂ ⊂  (6)

In addition, at least in the one-dimensional case and
under symmetry, the optimally robust ICs for Uc(2s) and
Uv(s) coincide. Moreover, if the optimally robust IC is
monotone, then it is also the solution for Uk (s) [10].
Based on these considerations we multiply the median
difference between the observed and the simulated Kol-
mogorov distance by two, leading us to a neighborhood
size s Î [0, 0.05].
We use the corresponding rmx 3-step estimator

instead of Tukey’s biweight to compute the specific
background values SBi and the signal log values SigLog-
Vali. Asymptotically (i.e. classical first-order asymptotics)
speaking it makes no difference which k we choose to
construct the rmx estimator and differences only occur
if one takes a look at higher-order asymptotics as shown
by unpublished results of P. Ruckdeschel. However, to
date, there are no finite-sample results indicating an
optimal choice for k if there is any. The use of three
steps is motivated by the observation that in all situa-
tions we considered so far, the estimates were stable
and did not change very much after the third iteration.
The results in Section 8.7 of Kohl (2005) [4] show that,

in the infinitesimal robust setup and for known contami-
nation radius, the optimally robust AL estimators clearly
outperform the TuMad estimator for the estimation of
normal location and scale with respect to the asymptotic
maximum MSE, where the maximum efficiency loss is
54.9%. Moreover, the results of the following Monte-
Carlo study, which is in the spirit of the Princeton
robustness study [14], indicate that this is also true for
the rmx estimator in the case of an unknown neighbor-
hood radius and finite-sample size. Due to the finite-sam-
ple size and the shrinkage of the neighborhoods, we use a
finite-sample correction of the neighborhood radius
determined by a large simulation study. The finite-sam-
ple correction leads to a larger neighborhood radius; i.e.,
to a more conservative estimation procedure. It can be
computed with function finiteSampleCorrection
of the R package RobLox [15].
For the simulations we chose a sample size n = 11 as

most of the probes sets have this number of probe pairs
on HGU133A GeneChips (cf. Table 1) and performed
M = 105 Monte-Carlo replications. As the ideal model

we used  ( , )0 1 which is no restriction due to equivar-

iance of the location and scale model. As contaminating
(gross errors generating) distributions we employed:

•  ( , )0 9 , t3 and Cauchy(0, 1) leading to an

increased variance

•  ( , )3 1 and  ( , )10 1 causing a positive bias

• Dirac measures at 1.51 (D1.51) and 1000 (D1000),
which are approximations for the least favorable
contaminations (i.e. leading to maximum risk) for
the Tukey and the rmx estimator, respectively.

We selected s Î {0.01, 0.02, 0.04} as sizes of the gross
error models. The results for other contaminating distri-
butions or amounts of gross errors can easily be com-
puted with function AffySimStudy of our R package
RobLoxBioC.
Since there is no estimator yielding reliable results if

there are 50% or more gross errors, we wanted to admit
only random samples with less than 50% contamination.
The probability for rejecting a sample is ≤ exp{-2n(0.5 -
s)2} by Theorem 2 of Hoeffding (1963) [16]; i.e., decays
exponentially in the sample size n. At n = 11 and s Î
{0.01, 0.02, 0.04} a replacement of a sample is necessary
with probability 4.4 · 10-10, 2.7 · 10-8 and 1.6 · 10-6,
respectively. Hence, unsurprisingly, there was no single
sample that had to be replaced in our Monte-Carlo
study.
The results in Table 3 show that the rmx location

estimate in all situations considered has a smaller
empirical MSE than Tukey’s biweight. The efficiency
loss of Tukey’s biweight in nearly all situations is about
15-20%.
Next, we present some results demonstrating the

accuracy of the two procedures for the HGU95A and
HGU133A Latin square datasets. For the computations
we also used the rmx 3-step estimator for s Î [0, 0.05]
which is implemented as default in function RobLox-
BioC of our R package RobLoxBioC. The results for
the MAS 5.0 with Tukey’s biweight were determined
with function mas5 of Bioconductor package affy
[17,18]. In addition to the availability of different robust
estimators, the implementation in RobLoxBioC is
more efficient. The normalization using RobLoxBioC
on an Intel P9500 (64 bit Linux, 8 GByte RAM) requires
about 1 minute in contrast to about 9 minutes for
mas5.
In Figure 3 analogously to Figure 2 in Cope et al.

(2004) [11], the mean standard deviations (SDs) are
plotted against the mean log-expression values for the
two datasets. The curves were determined by smoothing
the resulting scatterplots, which include SDs and mean
log expressions for each gene not spiked-in. These plots
indicate an improvement of the accuracy of MAS 5.0
when using the rmx estimator instead of Tukey’s
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biweight as the variability in terms of mean SD for the
rmx estimator is clearly smaller especially for HGU95A.
Some quantiles of the computed SD values are given in
Table 4. The results for the log fold-changes observed
for non-differentially expressed genes (null log-fc) -i.e.,
genes not spiked-in - confirm these results; see Table 4.
Overall we expect that using the rmx estimator
increases the accuracy of MAS 5.0 by 10-20%.
The comparisons of the two robust procedures were

performed with the Bioconductor package affycomp
[19]. The full assessments of Cope et al. (2004) [11] and

Irizarry et al. (2006) [12] can be computed using the R
code specified in the file AffymetrixExample.R in
the scripts folder of our package RobLoxBioC. The
simulation study can be recomputed by the R code
given in the file AffymetrixSimStudy.R also pro-
vided in the scripts folder.
As the following results indicate, the higher accuracy

of rmx estimators increases the reproducibility of gene
expression analyses. We analyzed a random subset of
the MAQC-I study [20] provided by the Bioconductor
package MAQCsubsetAFX [21]. Regarding the

Table 3 Simulation study: Tukey’s biweight versus rmx estimator

increased variance positive bias least favorable

 ( , )0 9 t3 Cauchy  ( , )3 1  ( , )10 1 D1.51 D1000

s = 0.01

Location.

MLE 1.802 1.022 300.548 1.100 2.103 1.017 > 104

median 1.554 1.516 1.522 1.551 1.551 1.551 1.551

biweight 1.325 1.316 1.317 1.343 1.319 1.346 1.318

rmx 1.109 1.096 1.098 1.131 1.105 1.117 1.097

Location and scale:

MLE 6.987 1.638 3293.342 1.745 7.616 1.541 > 105

median & MAD 2.919 2.864 2.876 2.930 2.936 2.908 2.936

TuMAD 2.700 2.663 2.671 2.723 2.704 2.703 2.704

rmx 1.811 1.736 1.752 1.804 1.853 1.742 1.855

s = 0.02

Location:

MLE 2.575 1.045 405.083 1.216 3.387 1.037 > 104

median 1.575 1.519 1.528 1.593 1.595 1.595 1.595

biweight 1.339 1.318 1.322 1.380 1.327 1.386 1.326

rmx 1.131 1.100 1.106 1.184 1.135 1.149 1.105

Location and scale:

MLE 12.311 1.756 4439.072 1.975 13.890 1.548 > 105

median & MAD 2.986 2.870 2.892 3.014 3.032 2.963 3.032

TuMAD 2.749 2.669 2.685 2.802 2.764 2.755 2.764

rmx 1.931 1.744 1.777 1.907 2.071 1.761 2.093

s = 0.04

Location:

MLE 4.192 1.096 > 104 1.497 6.557 1.125 > 104

median 1.643 1.526 1.546 1.696 1.701 1.627 1.701

biweight 1.368 1.322 1.331 1.476 1.344 1.415 1.338

rmx 1.182 1.106 1.119 1.326 1.285 1.197 1.116

Location and scale:

MLE 23.633 2.063 > 105 2.513 27.267 1.690 > 105

median & MAD 3.151 2.883 2.930 3.232 3.301 3.030 3.301

TuMAD 2.875 2.680 2.716 3.012 2.944 2.818 2.938

rmx 2.305 1.759 1.828 2.192 2.984 1.858 3.289

Empirical MSE (multiplied by n) for normal location and scale estimators at sample size n = 11 (105 Monte-Carlo replications) and contamination s Î {0.01,
0.02, 0.04}.
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Affymetrix platform, a total of 120 U133 Plus 2.0 Gene-
Chips have been generated and four different reference
RNAs have been used. (A) 100% of Stratagene’s Univer-
sal Human Reference RNA, (B) 100% of Ambion’s
Human Brain Reference RNA, (C) 75% of A and 25% of
B and (D) 25% of A and 75% of B. Each reference has

been repeated five times on six different test sites. The
datasets refA,..., refD provided by package MAQCsub-
setAFX consist of the data of six randomly chosen
U133 Plus 2.0 GeneChips (one for each test site) for
each reference RNA. As Figure 4 shows, the assumption
of approximate normality is fulfilled. We measured the
reproducibility in terms of the Spearman correlation of
the normalized data and the Pearson correlation of the
log2-transformed normalized data. In all cases the corre-
lation was found to be higher for the rmx estimators.
The relative increase is 0.6-1.2% (absolute. 0.006-0.011)
in the case of Spearman correlation and 1.2-1.9% (abso-
lute. 0.011-0.017) in the case of Pearson correlation.
The results can be recomputed using the R code spe-

cified in the file AffymetrixReproducibility.R
in the scripts folder of the package RobLoxBioC.

Illumina Data
Since we intend to apply the rmx estimators for normal
location and scale to summarize the bead level data, we
first checked whether the normal model is appropriate
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Figure 3 Tukey’s biweight versus rmx estimator. Mean standard deviation (SD) versus mean log expression for Tukey’s biweight and the rmx
estimator for s Î [0,0.05]. The curves were determined by smoothing the resulting scatterplots which include SDs and mean log expressions for
each gene not spiked-in. As the variability in terms of mean SD for the rmx estimator is clearly smaller especially for HGU95A, these plots
indicate an improvement of the accuracy of MAS 5.0 by using the rmx estimator instead of Tukey’s biweight.

Table 4 Accuracy measures: Tukey’s biweight versus rmx
estimator

HGU95A HGU133A

Estimator rmx biweight rmx biweight

25% SD 0.285 0.298 0.136 0.153

median SD 0.535 0.595 0.256 0.292

75% SD 0.844 0.918 0.498 0.639

99% SD 1.391 1.524 1.266 1.381

null log-fc IQR 0.789 0.842 0.400 0.468

null log-fc 99% 3.073 3.356 2.504 2.866

null log-fc 99.9% 4.098 4.455 3.827 4.214

Accuracy measures of [11] and [12] (smaller is better) for Tukey’s biweight and
the rmx estimator for s Î [0,0.05].
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for these data. We use the spike-in data investigated in
Dunning et al. (2008) [22] consisting of eight custo-
mized Mouse-6 version 1 BeadChips hybridized with a
complex mouse background. Each BeadChip contains
six BeadArrays each made up of two strips on the chip
surface. In total each of the BeadArrays includes 49283
bead types. The raw bead level values were sharpened
and background subtracted [22]. Due to the random
positioning of the beads, the number of beads per bead
type varies from array to array. In Figure 5 and 6 we
have depicted those bead types with 30 to 50 replicates
and 15 to 65 replicates, respectively. The results were
obtained using function KolmogorovMinDist of the
R package RobLoxBioC where the computations took
about 9 hours for the spike-in dataset. Both figures indi-
cate that the assumption of normal location and scale as
the ideal model is more appropriate for the log-trans-
formed bead level data. Hence, we propose to use the
rmx 3-step estimator for normal location and scale and
s Î [0, 0.05] in combination with the already mentioned
finite-sample correction instead of Illumina’s method,
which is a Huber-type skipped mean and standard

deviation [7], to summarize the log-transformed bead
level data. The use of three steps and the choice s Î [0,
0.05] is driven by the same heuristics as in the Affyme-
trix case.
In a further step we have performed a simulation

study using a very similar setup as in the Affymetrix
case. Due to the higher redundancy of the Illumina data,
we chose a sample size of 30 instead of 11. Moreover,
we replaced the Dirac measure at 1.51 by the Dirac
measure at 3 (D3) which is an approximation for the
least favorable contamination for Illumina’s default
method. The results for other contaminations can easily
be computed with the function IlluminaSimStudy
of the R package RobLoxBioC. As in the Affymetrix
setup, we applied the modification that less than 50% of
the observations contained in a sample may be contami-
nated where again no single sample had to be modified.
The results in Table 5 show that the two estimators per-
form similarly with a slight advantage for the rmx esti-
mator. Due to the outlier rejection step included in the
Illumina method, it is unsurprising, that it performs
especially well if the contaminating distribution puts
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number of probes are depicted. The boxplots show that the data is in good agreement with the normal location and scale model.
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mass on large values. In contrast, the rmx estimator
outperforms the Illumina method in situations where
the outliers are less obvious like in the case of t3 or

 3 1,( ) . Furthermore, looking at the maximum

empirical risk for the simultaneous estimation of loca-
tion and scale Illumina’s method shows an efficiency
loss of about 15% compared to the rmx estimator. In
view of these results it is no surprise that Illumina’s
method performs best in Figure 2 of Dunning et al.
(2008) [22] where outliers at 216 were used and average
bias and log2 variance are plotted versus percentage of
simulated outliers for several summary methods. Besides
that, the approach of Dunning et al. (2008) [22] contains
a flaw from a statistical point of view. the original data
is contaminated irrespective of the bead type. That is,
one gross-error model for the whole dataset was used
instead of a gross-error model for each bead type in the
dataset. This approach might reflect the way contamina-
tion occurs in practice but, already at moderate contam-
ination rates, one obtains many bead types where 50%
or more of the bead values are contaminated and conse-
quentially no reliable estimator exists. We postulate that

this is the reason why the reported breakdown points
are clearly smaller than the “real” breakdown points of
the considered estimators (10% trimmed mean and SD:
5% vs. 10%, median and MAD: 30% vs. 50%, Illumina
method: 30% vs. 50%).
Next, we report some results representing the accu-

racy of the two procedures for the spike-in data of Dun-
ning et al. (2008) [22]. For the computations we again
used the rmx 3-step estimator for s Î [0, 0.05] which is
the default in function RobLoxBioC of the R package
RobLoxBioC. The results for Illumina’s method were
determined with the function createBeadSummary-
Data of the Bioconductor package beadarray [23].
The computations of the bead summary values take
about 100 seconds and about 500 seconds using cre-
ateBeadSummaryData and RobLoxBioC, respec-
tively. So far, the rmx estimator is implemented in
interpreted R code. By switching to compiled code (e.g.,
C/C++ or FORTRAN) we probably could compete with
createBeadSummaryData which is calling C code.
For the comparisons we use the approach of Cope

et al. (2004) [11] and Irizarry et al. (2006) [12] as in
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with the normal location and scale model.
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the case of the Affymetrix data. In a first step we plotted
the mean SDs against the mean log-expression values for
those genes not spiked-in, results are depicted in Figure 7.
The plot indicates a slight improvement of the accuracy
by using the rmx estimator instead of Illumina’s default
method as the mean SD is slightly smaller for the rmx
estimator. Some quantiles for the SD values are given in
Table 6. Secondly, we took a look at the log fold-changes
observed for the non-differentially expressed genes (null
log-fc). This statistic also confirms the above results; see
Table 6. Moreover, we added the results for the other
methods implemented in package beadarray which are
mean and SD, median and MAD, 5% trimmed mean and
SD as well as 5% winsorized mean and SD. The numerical
results show that these other methods perform worse than
Illumina’s default method and the rmx estimator. Overall
the rmx estimator performs the best and we expect an
increase in accuracy of at least 1-5% by using the rmx esti-
mator instead of the other methods.
The results mentioned can be recomputed via the R

code provided in files IlluminaExample.R and
IlluminaSimStudy.R which are included in the
scripts folder of our R package RobLoxBioC.
As the following results indicate, the higher accuracy

of our rmx estimators is reflected in an increased

reproducibility of gene expression analyses. We have
again used the spike-in data of Dunning et al. (2008)
[22] which can be divided into twelve sets each includ-
ing four technical replicates. For these twelve sets we
measured the reproducibility in terms of the Spearman
and Pearson correlation of the summarized log2-trans-
formed data, overall leading to 72 pairwise comparisons.
In 69 (Spearman correlation) and 66 (Pearson correla-
tion) cases respectively, the correlation was higher for
the rmx estimators. As before, the differences between
the two procedures were found to be small and
remained well below 0.5% in all cases.
The results can be recomputed using the R code given

in the file IlluminaReproducibility.R in the
scripts folder of our package RobLoxBioC.

Conclusions
As the variability of the estimation is clearly reduced as
well as the reproducibility is increased when we apply
rmx estimators for preprocessing, it is reasonable to
assume a higher power for subsequent statistical
analyses.
In the case of Illumina data the rmx summarization

method can be combined with different preprocessing
methods that can be applied to bead summary data,

20 30 40 50 60

0.
05

0.
10

0.
15

0.
20

50% and 99% quantiles of minimum Kolmogorov distances

sample size

qu
an

til
e 

of
 m

im
im

um
 K

ol
m

og
or

ov
 d

is
ta

nc
es

99% quantiles

50% quantiles

normal samples
bead level data
log bead level data

Figure 6 Quantiles of Minimum Kolmogorov distance for Illumina data. 50% and 99% quantiles of minimum Kolmogorov distances for 48
Mouse-6 version 1 BeadChips as well as for normal (pseudo) random samples (50000 replications). The plot confirms that the log-transformed
bead level data is in good agreement with the normal location and scale model.

Kohl and Deigner BMC Bioinformatics 2010, 11:583
http://www.biomedcentral.com/1471-2105/11/583

Page 10 of 15



e.g. the variance-stabilizing transformation (VST) of Lin
et al. (2008) [24].
In the case of Affymetrix data there are several other

well-known normalization methods based on parametric
models e.g. the robust multi-array average (RMA [25])
or the variance stabilization and calibration (VSN [26])
which can be used. The RMA procedure is based on a
linear additive model where one uses median polish [27]
for parameter estimation. A replacement of the median
polish by a corresponding rmx polish may further
improve the algorithm. In the case of VSN a possible

modification could consist of replacing the least
trimmed sum of squares (LTS) regression [28] by an
rmx estimator for regression [4,10]. As the above results
and the results in Chapters 7 and 8 in Kohl (2005) [4]
indicate, these modifications lead to an increased accu-
racy. At the same time we can retain the high break-
down point of the already available robust estimators by
using the k-step construction in combination with
bounded rmx ICs [29].
The reported results and the universality of the infini-

tesimal robustness approach suggest that optimally

Table 5 Simulation study: Illumina’s default method versus rmx estimator

increased variance positive bias least favorable

 ( , )0 9 t3 Cauchy  ( , )3 1  ( , )10 1 D3 D1000

s = 0.01

Location.

MLE 1.787 1.022 42.929 1.119 2.297 1.110 > 104

median 1.526 1.499 1.505 1.537 1.537 1.537 1.537

Illumina 1.093 1.080 1.086 1.138 1.083 1.177 1.083

rmx 1.095 1.084 1.088 1.119 1.091 1.124 1.086

Location and scale:

MLE 12.482 1.699 1243.738 1.801 13.366 1.704 > 105

median & MAD 2.869 2.818 2.828 2.882 2.885 2.885 2.885

Illumina 1.806 1.786 1.796 1.901 1.780 1.994 1.780

rmx 1.755 1.689 1.705 1.764 1.779 1.778 1.779

s = 0.02

Location:

MLE 2.563 1.040 756.039 1.282 4.132 1.264 > 104

median 1.553 1.500 1.510 1.583 1.584 1.584 1.584

Illumina 1.110 1.083 1.091 1.214 1.087 1.310 1.087

rmx 1.107 1.085 1.091 1.170 1.099 1.185 1.089

Location and scale:

MLE 23.974 1.880 22605.549 2.190 26.926 1.995 > 105

median & MAD 2.934 2.824 2.842 2.970 2.977 2.977 2.977

Illumina 1.838 1.794 1.810 2.056 1.780 2.276 1.780

rmx 1.862 1.695 1.724 1.886 1.941 1.930 1.941

s = 0.04

Location:

MLE 4.150 1.080 > 104 1.768 9.587 1.732 > 104

median 1.611 1.502 1.524 1.717 1.720 1.720 1.720

Illumina 1.149 1.096 1.111 1.458 1.102 1.716 1.102

rmx 1.139 1.091 1.102 1.343 1.137 1.413 1.099

Location and scale:

MLE 49.559 2.221 > 105 3.285 59.046 2.879 > 106

median & MAD 3.090 2.833 2.876 3.232 3.256 3.256 3.256

Illumina 1.923 1.816 1.848 2.534 1.787 3.091 1.787

rmx 2.236 1.710 1.781 2.311 2.591 2.485 2.598

Empirical MSE (multiplied by n) for normal location and scale estimators at sample size n = 11 (105 Monte-Carlo replications) and contamination s Î {0.01, 0.02,
0.04}.
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robust rmx estimators should also be of interest for
other bioinformatics applications.

Methods
Infinitesimal Robustness
The approach of Huber-Carol (1970) [30], Rieder (1978)
[31], Bickel (1981) [32] and Rieder (1980) [33], Rieder

(1994) [10] to robust testing and estimation employs
shrinking neighborhoods of the parametric model,
where the shrinking rate n-1/2, as the sample size n ®∞,
may be deduced in a testing setup [34]. Due to the
shrinkage of the neighborhoods and the asymptotics
involved this approach to robustness is called infinitesi-
mal. A brief comparison and distinction to the robust-
ness approaches of Huber (1981) [35], Hampel et al.
(1986) [3] and Maronna et al. (2006) [36] is given in the
Introduction of Kohl et al. (2010) [29].

Denoting by  1( ) the set of all probability mea-

sures on some measurable space ( , )Ω  , one considers

a smoothly parameterized model

  = ∈ ⊂{ | } ( )P  Θ 1 (7)

whose parameter space Θ is an open subset of some
finite-dimensional ℝk, and which is dominated. dPθ = pθ
d μ (θÎ Θ). The smoothness of the model  , at any
fixed θ Î Θ is characterized by the requirement of L2
differentiability (also called differentiability in quadratic
mean); see Section 2.3 of [10]. The ℝk-valued L2 deriva-

tive is denoted by Λ ∈ L Pk
2( ) and its covariance
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Figure 7 Illumina’s default method versus rmx estimator. Mean standard deviation (SD) versus mean log expression for Illumina’s default
method and the rmx estimator for s Î [0,0.05]. The plot indicates a slight improvement of the accuracy by using the rmx estimator instead of
Illumina’s default method as the mean SD is slightly smaller for the rmx estimator.

Table 6 Accuracy measures: Illumina’s default method
versus rmx estimator

Estimator rmx Illumina Mean median 5%
trim

5%
winsorize

25% SD 0.114 0.116 0.125 0.121 0.117 0.122

median SD 0.133 0.135 0.140 0.142 0.133 0.137

75% SD 0.150 0.153 0.157 0.160 0.150 0.153

99% SD 0.308 0.309 0.314 0.310 0.310 0.313

null log-fc IQR 0.186 0.187 0.208 0.208 0.188 0.192

null log-fc
99%

0.362 0.366 0.412 0.408 0.377 0.388

null log-fc
99.9%

0.495 0.504 0.584 0.555 0.525 0.546

Accuracy measures of [11] and [12] (smaller is better) for the rmx estimator
for s Î [0, 0.05], Illumina’s default method as well as mean and SD (mean),
median and MAD (median), 5% trimmed mean and SD (5% trim) and 5%
winsorized mean and SD (5% winsorize).
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underPθ is the Fisher information of  at θ which is
assumed of full rank k. This type of differentiability is
for instance implied by continuous differentiability of pθ
and continuity of Iθ with respect to θ and then

Λ = ∂
∂ log p the classical scores; see Lemma A.3 of

Hájek (1972) [37].
Given the so-called ideal model  one defines

asymptotically linear (AL) estimators S to be any
sequence of estimators Sn: Ω

n ® ℝk such that

n S
n

x p nn

i

n

i
n( ) ( ) ( )− = +

=
∑  

1

1

0o
(8)

for some, necessarily unique, influence curve (IC)ψθ Î
Ψ(θ), where

Ψ Λ( ) { ( ) | , }        = ∈ = ′ = L Pk
k2 0E E  (9)

Here we used the stochastic Landau-notation of Pfan-

zagl (1994) [38], i.e. op
n n( )0 0→ in product P n

 prob-

ability as n ®∞, and ℐk denotes the k × k identity
matrix. For more details we refer to Rieder (1994), Sec-
tion 4.2 [10].
In infinitesimal robustness, the i.i.d. observations x1,...,

xn may follow any law Q in some shrinking neighborhood
about Pθ. In this article, we consider the (convex) con-

tamination neighborhood system c( ) which consists

of all contamination neighborhoods, at size 0 ≤ s ≤ 1,

U s s P sQ Qc( , ) {( ) | ( )} = − + ∈1 1  (10)

Subsequently, s = sn = rn-1/2 for starting radius r Î [0,
∞) and n ®∞.
Given this setup, the aim is to minimize the asympto-

tic maximum risk

lim sup ( ( ))
( , )

/

/n Q U rn
n n

n

c

n S dQ
→∞ ∈ − ∫ −




1 2

1 2 (11)

with continuous loss function ℓ: ℝk ® [0, ∞).
Throughout this article we will use square loss ℓ (z) = |
z|2 which leads to the (asymptotic maximum) mean
squared error MSEθ(ψθ, r).
To simplify notation, the fixed θ will be dropped from

notation henceforth.
The optimally robust ψ*, the unique solution to mini-

mize MSE(ψ, r) among all ψ Î Ψ for given radius r, is
given in Theorem 5.5.7 of Rieder (1994) [10]: there exist
some vector z Î ℝk and matrix A Î ℝk × k, A positive
definite, such that

  = −A z w( )Λ (12)

w b A z= − −min{ , | ( ) | }1 1Λ (13)

where

r b A z b2 = − − +E(| ( ) | )Λ (14)

and

0 = −E( )Λ z w (15)

A z z w− = − − ′1 E( )( )Λ Λ (16)

Conversely, form (12) - (15) suffices for ψ* to be the
solution. The minimax solution to more general risks is
derived in Ruckdeschel and Rieder (2004) [39].
In applications, the starting radius r for the neighbor-

hoods Uc(θ, rn
-1/2) is unknown or only known to belong

to some interval [rlo, rup) ⊂ [0, ∞). For this situation Rie-
der et al. (2008) [5] propose to consider the relative

MSE of  s
 at radius r, defined as

relMSE MSE MSE( , ) : ( , ) / ( , )  s s rr r r  = (17)

and IC  r0
 which minimizes

sup relMSE
upr r r

s r
∈[ , )

( , )
lo

  (18)

among all s Î [rlo, rup) is called radius-minimax (rmx).
Given the rmx IC the corresponding rmx estimator

can then be determined via the one-step construction
respectively, an iterated one-step - that is, k-step (k ≥ 1)
-construction

S S
n

xn
k

n
k

S r
i

n

i
n
k

( ) ( )
,( ) ( )= +−

=

−∑1

1

1
1

0
  (19)

based on a suitable starting estimate Sn
( )0 [29].

The normal location and scale model, i.e.

P  =  ( , )2 with θ = (μ, s)’, μ Î ℝ, s Î (0, ∞)

forms an L2 differentiable exponential family. As starting
estimator one can use median and median absolute
deviation (MAD) as justified by Kohl (2005), Section
2.3.4 [4]. Since the rmx IC in this model is bounded, the
breakdown point of the starting estimator, which is 50%
for median and MAD, is inherited to the rmx one-step
estimator [29].
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