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Introduction. Conformal symmetry [1, 2] and its WN and Kac-Moody extensions in 2d

are big enough to unambiguously define all correlation functions and essentially reduce them

to those of free fields: the only remaining freedom is the choice of evolution operators and

projection to various subsectors, closed under operator expansion. In higher dimensions,

the same role is presumably played by “higher-spin symmetries” [3–9], though reduction

to free fields is not yet fully described and understood. The simplest is the situation in 3d,

where the higher spin theories are actually identified with Chern-Simons theory [10], which

was much technically developed in recent years. An old conjecture [11, 12] identifies quan-

tum 3d gravity with SL(2,R) × SL(2,R) Chern-Simons (SL(2,C) in the Euclidean case),

and SL(N,R)×SL(N,R) is considered as a natural generalization towards higher spins [13].

Specifics of 3d is the lack of propagating gravitons, thus the corresponding (Chern-Simons)

sector of the theory is topological and essentially reduces to the study of 2d conformal blocks

and their modular transformations. Analytical continuation in N , needed for revealing the

true algebra of 3d higher spin theory [3–9], is a standard procedure in Chern-Simons case,

where observables (knot polynomials [14–21])1 are usually functions of parameters A and

q, and specialization to SL(N) is provided by putting A = qN . Here q = e
2πi
κ+N , where κ

is the Chern-Simons coupling constant. Moreover, if one considers the knot superpolyno-

mial [23–25] within the refined Chern-Simons [26, 27], one has to make, upon specialization,

an additional reduction in order to get categorification of the polynomial for a concrete

group [28–31]. This is much similar to the way how the higher spin algebra reduces at

integer values of N . Extension from SL(N) to other algebras, orthogonal, symplectic and

exceptional, is also possible and one can even search for “universality” [32–39], which sub-

stitutes two parameters q, A by a triple u, v, w and provides common description of the

“E8-sector” of representation theory for all simple Lie algebras at once.

Developments in the field follow the standard logic:

geometry −→ algebra

↓

generalized geometry ←− change of the algebra

(0.1)

The basic step in the first line is the substitution of metric gµν by the SL(2)-valued

dreibein eµ and spin-connection ωµ by the standard rule gµν = Tr eµeν and observation

that Einstein metrics, satisfying Rµν = 1
`2
gµν , are associated with flat SL(2) × SL(2) con-

nections A = 1
` e+ ω, Ā = 1

` e − ω. This allows one to embed classical general relativity

(with the Λ-term `−2) in 3d into Chern-Simons theory. However, for N > 2 this embedding

is not gauge invariant, and the same flat connection in different gauges can provide differ-

ent classical metrics, what is a rich source of speculations about the meaning of classical

gravity and enhancement of symmetries at quantum level. In practice, one just picks up

various flat connections and considers associated Wilson lines, which can be open.

1Note that, in the case of SL(N), one needs non-compact knot invariants, see a recent review in [22].
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In this way a number of interesting checks was already performed. Mainly one can

compare in various examples the geodesic lengths with the open Wilson line integrals and

identify

a function
(
− geodesic length

)
= matrix element (0.2)

In known examples the “function” is hyperbolic cosine and the ”matrix element” is a trace

of product of P-exponentials from two different SL(N)-constituents of the gauge group. In

the simplest cases of essentially constant connections the chain of relations is even richer:

eL = exp
(

entanglement entropy
)

= classical Wilson line =
〈
−hwρ|ewT++w̄T− |hwρ

〉
(0.3)

where geodesic and the Wilson line end at the boundary of AdS space. This is since emer-

gency of the entanglement entropy is here due to the second ingredient, to the AdS/CFT

correspondence. In contrast with the gravity/Chern-Simons correspondence, this one re-

quires dealing with Wilson lines ending at the boundary. The entanglement entropy is

defined by the replica method, as a limit of the Renyi entropies of CFT at the boundary

∂
(

AdS3

)
= S2 calculated in the standard way [40–44], when conformal theory on covering

of the Riemann sphere is identified with the one on S2 with insertion of ramification oper-

ators. Matrix element is that of the SL(2) generators within SL(N) between the highest-

and the lowest-vector states of the Weyl representation ρ, which is distinguished because

it is uncharged w.r.t. the generators of SL(N) beyond the principally embedded gravity-

subgroup SL(2) ∈ SL(N). Beyond-the-geometry deformation (i.e. the one from gravity to

“higher spin” theory) appears when the group element G does not belong to the SL(2)

subalgebra of SL(N). To get relation to higher spin theory one needs the answers with full

dependence on N to allow for the complete infinite higher spin algebra.

More generally, one can consider for closed Wilson lines the character

χR(G) = TrRG (0.4)

and for open lines the matrix elements

G±R = 〈±hwR|G|hwR〉 =
N−1∏
k=1

〈±hwωk |G|hwωk〉
rk =

N−1∏
k=1

Grk±k (0.5)

between the highest and/or lowest states of arbitrary representation R = [r1, r2, r3, . . .]

with the weight wR =
∑

k dkωk and dk = rk − rk+1.2 Here ωk are the fundamental

weights and for the Weyl representation ρ = [N − 1, N − 2, . . . , 1] of SL(N) the weight is

wρ = 1
2

∑
∆>0 α∆ =

∑
k ωk with unit coefficients. These objects are usually studied in the

theory of τ -functions, and this explains why relatively explicit formulas are often available

and analytical continuations are often straightforward.

2NB: when one studies decompositions of representation products like in knot theory applications [45],

one and the same representation can appear with non-trivial multiplicity; then factorization is true only in

a special basis, where the highest weights are products of the fundamental ones. Still, such a basis always

exists, and this facilitates study of the Racah matrices a la [46].

– 3 –



J
H
E
P
0
5
(
2
0
1
6
)
0
2
7

Quantum counterparts of these quantities, i.e. dependence on the parameter q (related

to the Chern-Simons coupling) can emerge in different ways.

Characters are naturally lifted to link polynomials, which depend on an extra param-

eter q 6= 1, and they are also analytically continued in N . More important, they depend

non-trivially (in an essentially non-Abelian way) on representations of other link compo-

nents. The open Wilson lines can sometime be related with link polynomials, when one

link component is considered as a “source”, which imposes non-trivial boundary conditions

for the “probe” component. An additional subject is interpretation of the matrix elements

as a classical (large-c and large-dimensions) limit of the conformal blocks, which implies a

quantization related to the link invariant one.

In fact, link polynomials are natural objects from quantum group theory. Therefore a

possible task for future considerations is to lift the series expansions for GR (in powers of

deviation of G from exactly solvable cases like the principally embedded SL(2) ∈ SL(N)

or low-triangular matrices) to the quantum group level, where expansions can probably be

related to those of the colored link polynomials H[r1r2] with r2 � r1 in powers of r2/r1.

Moreover, the group element G for quantum groups defined to preserve the factorization

property (0.5) is necessarily operator valued, hence such should be its matrix elements.

Taken literally, one can make this way the entanglement entropy operator valued as well.

The story naturally decomposes into three pieces.

The first one reduces a problem of calculating geodesic lengths in the Chern-Simons

reformulation and entanglement entropies to certain matrix elements representing classical

Wilson lines, what provides a formulation, which does not make much difference between

gravity and high spin theories.

The second is evaluation of these matrix elements by techniques of integrability theory.

The third are speculations about generalization from classical to quantum level.

Accordingly, in section 1 we remind, what kind of group theory quantities are needed

to represent physical observables (open Wilson lines, geodesic lengths and entropies) in 3d

gravity and its higher spin extensions.

In sections 2–5 we demonstrate that these are exactly the quantities studied in the

theory of integrable systems, which allows one to put the recent calculations of [47] into

this general setting.

Among other things, this sheds some additional light on the problem with analytical

continuation in N encountered in [47]. We briefly discuss this issue in section 6, with

emphasize on the peculiarities of forced integrable hierarchies.

In fact, in section 6 we discuss various quantization/deformation ideas, which are

implied by the formalism, but are not always easy to interpret in physical terms.

1 Physical background: three-dimensional gravity and Chern-Simons

theory

In this section we discuss physical aspects of the three-dimensional gravity/higher spin

theory in the AdS space and its relation to Chern-Simons theory. Our goal is to summarize

relevant physical observables.

– 4 –
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1.1 Generalities

It was originally proposed in [11, 12] that the pure gravity in AdS3 is classically equivalent

to the SL(2,R)×SL(2,R) Chern-Simons theory. Namely, a pair of SL(2,R) flat connections

can be mapped to solutions of the Einstein equations with a cosmological constant term,

Rµν = − 2

`2
gµν (1.1)

and gauge transformations convert into local frame rotations and diffeomorphisms. Strictly

speaking, this is true only on the equations of motion, e.g. in the first order formalism, i.e.

for the diffeomorphisms of Einstein geometries.

Chern-Simons theory is a topological theory whose natural observables are mono-

dromies, that is, path ordered exponentials of the connection over closed loops, i.e. Wilson

loops. These gauge invariant quantities measure topological information, they are non-

trivial only in the presence of sources (linkings) and, on the gravity side, correspond to

horizon lengths (which substitute areas in 3d). In classical gravity there is also a richer set

of observables: geodesic lengths between arbitrary points. It is a natural idea to identify

them in some way with open Wilson lines in Chern-Simons theory.

As argued in [11, 12], gauge invariance of Chern-Simons theory coincides with dif-

feomorphism invariance of gravity modulo Lorentz rotations. Thus, the geodesic length

between two points is related to Wilson average between these points modulo rotations at

the ends, what is exactly the gauge non-invariance of open Wilson line. The situation re-

sembles that in knot theory: Wilson averages in Chern-Simons theory provide invariants of

the framed knots, knot invariants themselves arise in a particular gauge or for a particular

choice of framing (called topological and defined as a specific property H� − 1 = O(~2) of

the average). Likewise in the case of 3d gravity the open Wilson lines describe a character-

istic of framed geodesics, and it turns into geodesic length for a particular choice of gauge.

The need for such freedom is clear from a look at a conical singularity. In this case, the

Wilson loop describes a non-trivial monodromy and its logarithm is non-vanishing. At the

same time, the geodesic length switches between two branches and vanishes again when one

end approaches the other after walking around the singularity. The above mentioned gauge

freedom in identification of the Wilson average and the hyperbolic cosine of the geodesic

length is exactly what is needed to describe this branch switch.

Quantization of Chern-Simons theories is well understood [48]. The quantum theory

studies expectation values of the Wilson loop operators, which yield topological invariants

of knots and links [14–21]. In this story, the quantum Hilbert space of the Chern-Simons

theory is a space of conformal blocks of certain CFT’s, which realize appropriate represen-

tations of the braid groups. The suggestion of [11, 12] was to identify quantum gravity in

3d with quantum Chern-Simons theory, and this continues to be a tantalizing source for

various speculations about the structure of quantum gravity [49, 50].

An obvious generalization from SL(2) to SL(N) on the Chern-Simons side can be

interpreted as lifting from gravity to higher spin theory, and, indeed, there is a lot of

evidence that analytic continuation in N (i.e. switching to the variable A = qN in knot

polynomials, which turn into “special” polynomials [51, 52] in the classical limit of q = 1

– 5 –
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and A fixed) has a lot to do with the 3d version of higher spin theory [13]. Even more is

expected at the quantum (q 6= 1) level. An enhanced gauge invariance of these theories

no longer reduces to diffeomorphism invariance and this provides non-trivial equivalencies

between higher spin theories in different geometric backgrounds (which are not equivalent

from the point of view of gravity per se), see [53] for simple, yet impressive examples.

An additional information on the subject is provided by the AdS/CFT correspon-

dence, where some gravitational/Chern-Simons observables should also possess a CFT

interpretation. In the 3d case, these are provided by classical (large-c) limits of various

conformal blocks and partition functions. The most spectacular examples so far are inter-

pretations of the geodesic lengths between points at the AdS boundary (which, according

to [54, 55], are open Wilson loops) as entanglement entropies in the boundary CFT [56] and

as the heavy-light limits of 4-point classical conformal blocks [57–64]. From this perspec-

tive, the quantization of gravity/high spin theory should lift the AdS/CFT correspondence

to the standard relation between Chern-Simons and Wess-Zumino-Witten conformal the-

ory [48, 65, 66]. Presumably, at this level the controversial open Wilson lines of classical

theory will be promoted to well defined link polynomials in sophisticated representations,

what will add value to further investigation of colored knot/link polynomials.

In the remaining part of this section we discuss what is actually known about the first

horizontal arrow in (0.1), namely, about the following maps:

• classical AdS3 geometries obtained from flat connections of 3d Chern-Simons theories;

• geodesic lengths from Wilson line integrals, in the cases of flat connections related

with the constant ones by a Cartan gauge transformation, when the P -exponential

coincides with the ordinary one;

• the bulk geodesic length in the near-boundary limit for the needs of entanglement

entropy of 2d CFT (Ryu-Takayanagi conjecture [56])

1.2 Metrics from connections

Let us start from reviewing a class of classical geometries which asymptote to the pure

AdS3 solution at the conformal boundary of the space-time. We will then remind how

these geometries can be obtained from flat connections of the SL(2,R) × SL(2,R) Chern-

Simons theory.

1.2.1 Metric on AdS3

There exist several conventional parameterizations of anti-de-Sitter space. One common

set of coordinates is called global, as it covers the entire space. In the global coordinate

patch, we will be interested in the class of metrics with the AdS3 boundary conditions

(a prescribed decay law sometimes called Brown-Henneaux boundary conditions, [67]):

ds2

`2
→ dρ2 + e2ρ

(
−dt2 + dφ2

)
+O(ρ0) , ρ→∞ , (1.2)

where ρ→∞ is the conformal boundary and t and φ are cylindrical coordinates φ ∈ [0, 2π].

– 6 –
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The simplest representative of this class of metrics is that of pure AdS3:

ds2

`2
= dρ2 − 4 cosh2ρ dt2 + 4 sinh2ρ dφ2 . (1.3)

It is sometimes convenient to map this patch to the interior of a cylinder via

1

2
eρ =

1 + sin θ

cos θ
,

1

2
e−ρ =

1− sin θ

cos θ
, (1.4)

with θ ∈ [0, π/2]. In terms of θ the empty AdS metric becomes

ds2

`2
=

1

cos2 θ

(
dθ2 − 4dt2 + 4 sin2 θdφ2

)
. (1.5)

We will also use the Euclidean version of this metric obtained via Wick rotation t→ iτ .

It is sometimes more convenient to use the Poincaré patch, which covers a half of the

global AdS. In a common choice of the Poincaré coordinates

ds2

`2
=
du2 − dt2 + dx2

u2
, (1.6)

where u → 0+ corresponds to the region near conformal boundary. In the Euclidean case

one can use a complex coordinate parameterization:

ds2

`2
=
du2 + dzdz̄

u2
, z = x+ iτ . (1.7)

Other asymptotically AdS metrics (1.2) can be obtained by coordinate rescaling. As

an example, consider the following transformation

t→
√
Mt , φ→

√
Mφ , ρ→ ρ− 1

2
logM , (1.8)

with a real positive parameter M . This takes (1.3) to

ds2

`2
= dρ2 −

(
eρ +M e−ρ

)2
dt2 +

(
eρ −M e−ρ

)2
dφ2 . (1.9)

This metric also satisfies the Einstein equations (1.1) everywhere, except at ρh = 1/2 logM .

Indeed at this radius the φ-cycle vanishes and since φ is 2π-periodic, this metric has a deficit

angle δ = 2π(1−
√
M). One can understand this deficit angle as created by a source placed

at ρh = 1/2 logM . For M < 0 it the time cycle that becomes contractible and the metric

becomes that of a black hole, whose mass is determined by the parameter M .

1.2.2 Connections

Einstein metrics (1.9) can be related to flat connections of the SL(2,R)×SL(2,R) [11, 12],

or SL(N,R) × SL(N,R) Chern-Simons theory [13]. One identifies the dreibein eµ and

the spin connection ωµ with a linear combinations of the corresponding pair of SL(N,R)

connections A and Ā:
e

`
=

1

2

(
A− Ā

)
, ω =

1

2

(
A+ Ā

)
. (1.10)

– 7 –
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The metric and the higher spin fields are then obtained as traces of symmetrized products

of eµ, e.g.

gµν =
1

trT 2
0

tr (eµeν) , φµνρ = tr
(
e(µeνeρ)

)
, etc. (1.11)

Here T0 and T± are the generators of SL(2,R) in SL(N,R). It is important how the

SL(2,R) are embedded in the SL(N,R) and in what follows the principal embedding will

be assumed. We will come back with the details and importance of the embedding in

latter sections.

Thus, flat connections are mapped to solutions of the Einstein equations. The gauge

transformation acting on the connections are consequently mapped to diffeomorphisms of

the metric. Specifically, the infinitesimal transformations

δA = dΛ +
[
A,Λ

]
, δĀ = dΛ̄ +

[
Ā, Λ̄

]
(1.12)

have the following action on the frame fields

δeµ = eνξ
ν

;µ +
1

2

[
eµ,Λ + Λ̄

]
, ξµ =

`

2
eµa

(
Λa − Λ̄a

)
. (1.13)

The class of flat connections relevant for (1.9) can be realized as the Cartan gauge

transformation with b = exp(ρT0) of the constant connections so that the uppercase flat

connections are

A = b−1(a+ ∂)b , Ā = b(ā+ ∂)b−1 (1.14)

and the lowercase connections are

a =

(
−T−+MT++

N∑
s=3

MsT
(s)
(s−1)

)
(dφ+dt) , ā =

(
T+−M̄T−+

N∑
s=3

M̄sT
(s)
−(s−1)

)
(dφ−dt) ,

(1.15)

where T
(s)
±(s−1) are the lowest (highest) weight generators of SL(N,R) classified by the spin

3 ≤ s ≤ N , and Ms are the corresponding physical charges, classifying the background

solution. The SL(2,R) charges M and M̄ will be related, in particular, to the Hamiltonian

of the gravity background.

In the SL(2) case, for M = M̄ , adopting the choice of the generators

T0 =

(
1/2 0

0 −1/2

)
, T− =

(
0 0

1 0

)
, T+ =

(
0 1

0 0

)
, (1.16)

one arrives at the following form of the uppercase connections

A =

(
0 e−ρM

−eρ 0

)
dw +

(
1/2 0

0 −1/2

)
dρ , (1.17)

Ā =

(
0 eρ

−e−ρM 0

)
dw̄ +

(
−1/2 0

0 1/2

)
dρ , (1.18)

where we have introduced complex coordinates

w = φ+ iτ , w̄ = φ− iτ . (1.19)

– 8 –
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Using (1.10) one recovers the Euclidean version of metric (1.9). The Minkowski version is

obtained through the Wick rotation iτ → t.

In the Poincaré coordinates the gauge transformation (1.14) is generated by

b = u−T0 . (1.20)

However, to describe the source in these coordinates the lowercase connections a and ā

must be coordinate dependent. The coordinate dependence enters through the charges

M(z), M̄(z̄). In the case with no sources M = M̄ = 0 the gauge connections take the form

A =

(
0 0

−1/u 0

)
dz +

(
−1/2u 0

0 1/2u

)
du , (1.21)

Ā =

(
0 1/u

0 0

)
dz̄ +

(
1/2u 0

0 −1/2u

)
du . (1.22)

Metric (1.6) now easily follows from (1.10).

1.2.3 Non-constant connections

The constant lowercase connections (1.15) are not the most general connections corre-

sponding to asymptotically AdS geometries. In fact, the metric still satisfies the Einstein

equations (1.1) up to a relevant source term, if one lets the coefficients M , Ms be holomor-

phic functions of w and M̄ , M̄s of w̄. In the SL(2) case, the connections look like

a = (−T− + J(w)T+) dw ā =
(
T+ − J̄(w̄)T−

)
dw̄ , (1.23)

The property ∂̄J = ∂J̄ = 0 is consistent with the flatness condition. The metric reads

ds2

l2
= dρ2 +(e2ρ+J+ J̄+JJ̄e−2ρ)dτ2 +(e2ρ−J− J̄+JJ̄e−2ρ)dφ2−2i(J− J̄)dτ dφ , (1.24)

where the real and imaginary part of J are related to the black hole mass and angular

momentum respectively.

The global and Poincaré coordinates are related through z ∼ e±iw. Thus the sources

in the global coordinates, which appeared in the center of the AdS3 bulk, are mapped to

the sources at z = 0 (equivalently, at z = ∞). As a result, to introduce a source (conical

defect) in Poincaré coordinates one has to use a coordinate-dependent connection a. Then,

the metric in the global coordinates is

ds2

l2
=
du2

u2
+

(
1

u
− uJ(z)

)(
1

u
− uJ̄(z̄)

)
dx2 +

(
1

u
+ uJ(z)

)(
1

u
+ uJ̄(z̄)

)
dy2 . (1.25)

For example, taking J = M
z2 , J̄ = M

z̄2 produces the metric [57–64]

ds2

l2
=

1

u2

(
du2 +

(
1− Mu2

r2

)2

dr2 +

(
1 +

Mu2

r2

)2

r2dη2

)
, (1.26)

where r and η are the polar coordinates on the z-plane.

– 9 –
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1.3 Geodesic lengths and Wilson lines

The connection between Chern-Simons theories and three-dimensional gravity can be fur-

ther elaborated. In [54, 55] it was suggested that such natural objects in Chern-Simons

theory as Wilson lines (loops) should be interpreted as geodesic distances. Specifically the

following relation (valid in the classical limit) was substantiated

2 cosh

(
−
√

2c2(R) ∆s(x1, x2)

l

)
= TrR P exp

(
−
∫ x1

x2

A

)
P exp

(
−
∫ x2

x1

Ā

)
. (1.27)

Here the geodesic proper distance between points x1 and x2 for a massive probe is compared

with a “composite” Wilson line along a path connecting x1 and x2. The probe’s mass is con-

trolled by the quadratic Casimir c2 of the representation R, in which the trace is computed,

and the contour for holomorphic components A and Ā is traversed in opposite directions.3

Two considerations immediately arise when looking at (1.27). First, the geodesic path

is almost uniquely specified by the geometry, while the Wilson lines of flat connections

are path independent. Second, Wilson lines are gauge dependent objects, they transform

non-locally under the gauge group action. One may wonder how this is resolved on the

gravity side.

As far as the choice of path for the geodesics is concerned it is in fact a gauge freedom.

In [55] it was explained how the proper geodesic path can appear from a convenient choice

of the gauge. Meanwhile the problem of gauge dependence is controlled by the specific

configuration of the Wilson line, in this case the composite Wilson line above [54]. This

particular choice is invariant under the diagonal SL(2,R)×SL(2,R) transformations Λ = Λ̄,

which from the point of view of (1.13) are Lorentz frame rotations, leaving the metric

invariant. On the other hand the non-diagonal transformations that do transform the

composite Wilson line correspond to those diffeomorphisms that change the metric:

δgµν = ξµ;ν + ξν;µ (1.28)

To show how things work, let us review some examples of the correspondence (1.27).

First, in the purely topological case, when there is no matter, consequently c2(R) = 0,

the right hand side of (1.27) is one. Accordingly, the Wilson operator in the trivial repre-

sentation is just a number, independent of x1 or x2.

1.3.1 Pure AdS

Poincaré coordinates. In the Poincaré AdS (1.6) the geodesics are simply half-circles

anchored at the boundary of the AdS:

u(x) =
√
R2 − (x− x0)2 , (1.29)

where the radius of the circle can be expressed in terms of the distance ∆x between the

endpoints of the half-circle at the boundary, R = ∆x/2. Thus, the general geodesic distance

3A somewhat independent motivation for this Keldysh-like choice of the contour came recently from the

work [68], where it was demonstrated how Chern-Simons fields appear from a thermofield description of a

quantum system.
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is the length of the arc connecting two points in the bulk. Below we parameterize the

geodesic distance by the hyperbolic parameter

∆s(X,Y ) ≡ ` log
(
ζ +

√
ζ2 − 1

)
, i.e. cosh

(
∆s(X,Y )

l

)
= ζ (1.30)

For two generic points X = (ε1, x1, 0) and Y = (ε2, x2, 0) the length would be given by

ζ =
1

2

(
ε1
ε2

+
ε2
ε1

+
(x1 − x2)2

ε1ε2

)
. (1.31)

Let us compare this result for the geodesic distance with the computation of a relevant

Wilson line. Since the Wilson line is path independent we select the path to consist of

two segments: from X to Z = (ε1, x2, 0) with constant z = ε1 and from Z to Y with

constant x = x2,

P exp

(
−
∫ Y

X
Ā

)
= P exp

(
−
∫ Y

Z
Āu du

)
P exp

(
−
∫ Z

X
Āx dx

)
=

(√
ε1/ε2 0

0
√
ε2/ε1

)(
1 −δx/ε1
0 1

)
=

(√
ε1/ε2 −δx/

√
ε1ε2

0
√
ε2/ε1

)
, (1.32)

where δx = x2 − x1. Similarly,

P exp

(
−
∫ X

Y
A

)
=

(
1 0

−δx/ε1 1

)(√
ε1/ε2 0

0
√
ε2/ε1

)
=

( √
ε1/ε2 0

−δx/√ε1ε2
√
ε2/ε1

)
. (1.33)

The product of the holomorphic and antiholomorphic parts yields(
ε1/ε2 −δx/ε2
−δx/ε2 ε2/ε1 + δx2/(ε1ε2)

)
(1.34)

Here we used the generators in the fundamental representation of SL(2). After taking the

trace, one gets

W�(X,Y ) =
ε21 + ε22 + (x2 − x1)2

ε1ε2
, (1.35)

Therefore one finds the following relation between the two results:

W�(X,Y ) = 2 cosh
∆s(X,Y )

`
. (1.36)

In the AdS/CFT applications, such as Ryu-Takayanagi formula, one need to take

ε1 ∼ ε2 � 1.

Global coordinates. The same exercise can be done in the global coordinates. In the

pure AdS space, specified by metric (1.3), an equal time geodesic can be presented by

the curve

φ− φ0 =
1

2
arctan

C cosh ρ√
sinh2 ρ− C2

, (1.37)

– 11 –



J
H
E
P
0
5
(
2
0
1
6
)
0
2
7

where C is the integration constant. The geodesics distance between two arbitrary points

is again provided by (1.30) with

ζ = cosh ρ1 cosh ρ2 cos 2(t1 − t2)− sinh ρ1 sinh ρ2 cos 2(φ1 − φ2) . (1.38)

Choosing X = (log ε1, 0, 0) and Y = (log ε2, 0, φ), one gets

ζ =
(ε21 + ε22) cos2φ+ (1 + ε21ε

2
2) sin2φ

2ε1ε2
. (1.39)

Now we proceed with the Wilson loop computation using connections (1.17) and (1.18).

The anti-holomorphic part of the Wilson line connecting points X and Y reads

P exp

(
−
∫ Y

X
Ā

)
= P exp

(
−
∫ Y

Z
Āρ dρ

)
P exp

(
−
∫ Z

X
Āφ dφ

)
=

=

(√
ε2/ε1 0

0
√
ε1/ε2

) cosφ −ε1 sinφ
1

ε1
sinφ cosφ

 =

( √
ε2/ε1 cosφ −√ε1ε2 sinφ√
1/ε1ε2 sinφ

√
ε1/ε2 cosφ

)
, (1.40)

where we first went from X to Z = (log ε1, 0, φ) at constant ρ = log ε1, and then, from Z

to Y at constant φ. For the holomorphic part one gets

P exp

(
−
∫ X

Y
A

)
=

 cosφ
1

ε1
sinφ

−ε1 sinφ cosφ

(√ε2/ε1 0

0
√
ε1/ε2

)

=

(√
ε2/ε1 cosφ

√
1/ε1ε2 sinφ

−√ε1ε2 sinφ
√
ε1/ε2 cosφ

)
. (1.41)

In the fundamental representation the trace of the product of the holomorphic and anti-

holomorphic contributions yields

W�(X,Y ) =
(ε21 + ε22) cos2φ+ (1 + ε21ε

2
2) sin2φ

ε1ε2
(1.42)

Again, we see that relation (1.36) holds.

1.3.2 Connections with conical singularity

So far we considered a topologically trivial case of the pure AdS. Our next example is

the metric with a conical singularity. We use connection (1.17) which gives the Euclidean

version of (1.5). This is a metric with a conical singularity at ρ = log
√
M with a deficit

angle 2π(1 −
√
M). We compute the Wilson loop of the connection A around the conical

singularity

P exp

(
−
∮
Aφ dφ

)
=

 cos
(

2
√
Mπ

)
−
√
Me−ρ sin

(
2
√
Mπ

)
eρ√
M

sin
(

2
√
Mπ

)
cos
(

2
√
Mπ

)
 (1.43)

This monodromy is non-trivial unless
√
M is a half-integer number.
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For the Wilson line with ρ1 = ρ2, ∆φ = φ2 − φ1 the result simply generalizes to

W (φ1, φ2) = P exp

(
−
∮
Aφ dφ

)
=

 cos
(√

M∆φ
)

−
√
Me−ρ sin

(√
M∆φ

)
eρ√
M

sin
(√

M∆φ
)

cos
(√

M∆φ
)

 .

(1.44)

Since the space is not simply connected there are two branches of the Wilson line, depend-

ing on the direction (clockwise/counterclockwise) the path encircles the singularity. The

corresponding Wilson lines are related via a transformation φ → φ − 2π, which can be

realized as a SO(2) gauge transformation via a left and/or right multiplication, e.g.

W2(φ1, φ2) =

 cos
(

2
√
Mπ

) √
Me−ρ sin

(
2
√
Mπ

)
− eρ√

M
sin
(

2
√
Mπ

)
cos
(

2
√
Mπ

)
.

W1(φ1, φ2) , (1.45)

where the transformation is understood as acting on the endpoint φ2 via a shift by 2π.

Similarly, for the geodesics, there are two distances to compute. Using (1.38), the

distance between two points with the same ρ and τ in empty AdS, is given by

ζ = cosh2ρ− sinh2ρ cos 2∆φ , (1.46)

which is invariant under the transformation φ → φ − 2π. This is not true if there is a

conical singularity, and there are two geodesic distances, which distinguish which direction

the singularity is bypassed:

ζ1(φ1, φ2) = cosh2ρ− sinh2ρ cos
(

2
√
M∆φ

)
(1.47)

ζ2(φ1, φ2) = cosh2ρ− sinh2ρ cos
(

2
√
M (∆φ− 2π)

)
= ζ1(φ1, φ2 − 2π). (1.48)

Clearly the same shift applies if ρ1 6= ρ2.

1.4 Living on the AdS boundary

So far we discussed relations between three dimensional gravity and Chern-Simons theory,

i.e. those of type (0.2). For these relations one should not put the endpoints of the geodesics

(or Wilson line) at the boundary of the AdS3 space. However, these relations has nothing

to do with the AdS/CFT correspondence.

Another point of interest are relations of the other, (0.3) type. Those are due to the

AdS3/CFT2 correspondence: the endpoints of the Wilson lines should be anchored at the

boundary, ρ = − log ε, with ε → 0. The initial point is taken to be at the origin, while w

stays for the final point. We will be further interested in that kind of Wilson lines.

Following [47], let us rewrite the uppercase A and Ā in terms of the SL(N) group

elements

A = L(x)dL−1(x) , Ā = R−1(x)dR(x) (1.49)

which in terms of the coordinates of metric (1.9) are

L = e−ρT0eaww+aw̄w̄ , R = eāww+āw̄w̄e−ρT0 (1.50)
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The combined Wilson line is

W = P exp

(
−
∫
C̄
A

)
P exp

(
−
∫
C
Ā

)
= L(xi)L

−1(xf )R−1(xf )R(xi) , (1.51)

where C is a contour going from xi to xf , C̄ is the reversed contour.

Thus, we need to evaluate the traces of W in arbitrary representations R

WR(C) = TrRW = TrR

(
e− log εT0e−aww−aw̄w̄e2 log εT0eāww+āw̄w̄elog εT0

)
(1.52)

at ε → 0. To this end, we introduce projectors P± onto the highest/lowest vector of the

representation R:

P± = | ± hw 〉〈±hw | = lim
ε→0

ε2hRe∓2 log εT0 , T0| ± hw 〉 = ±hR| ± hw 〉 (1.53)

and note that

WR(C) = e−4hRTrR
(
P+e−aww−aw̄w̄P−eāww+āw̄w̄

)
= e−4hR〈 hw |e−aww−aw̄w̄| − hw 〉〈−hw |eāww+āw̄w̄|hw 〉 (1.54)

as ε→ 0. Thus of the main interest will be the matrix elements of eΛ = e−aww−aw̄w̄ between

the highest and the lowest states.

In fact, in equation (1.54) the result comes in a form with the contributions of the left

and right sectors have factorized, we will be finally interested only in the matrix element

of eΛ = e−āww̄ with āw as in (1.15).

1.5 Summary

As we briefly surveyed in this section, the common lore in the field amounts to the following:

• Really interesting observables to consider in 3d classical higher-spin/Chern-Simons

theory are open Wilson lines, i.e. the P -exponentials of flat connections.

• It is already interesting to consider the flat connections (1.14) induced by constant

connections, (1.15), then the P -exponentials turn into ordinary matrix exponents.

• Of primary interest are their matrix elements between the highest and/or lowest

vectors of various representations R, then it is enough to study fundamental repre-

sentations, because such matrix elements factorize according to (0.5).

Common justification for all these points comes from the AdS/CFT studies, where the AdS

boundary plays a special role, and it is possible to restrict gauge invariance to transfor-

mations with the same asymptotics, i.e. constant at the boundary. Then, for the Wilson

lines with the ends at the boundary invariant are not only traces, but also their eigenvalues

(modulo permutations). Restriction to highest/lowest states is then also natural, because

the Wilson lines can diverge and such matrix elements provide the main contribution in

the near-boundary limit [47]. This justifies the following task:

• It deserves looking at families of exponentiated constant connections, which are fully

determined by their eigenvalues, and evaluate their corner matrix elements in all

fundamental representations.
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As we shall see in the next section, matrix elements distinguished by the above prop-

erties are also distinguished by their close relation to the standard integrability theory: as

often happens, the quantity interesting for physical needs is exactly the one that is covered

by powerful mathematical methods.

2 τ -functions

2.1 Generalities

We now switch to a more formal investigation of the problem. The task is to find a de-

scription of matrix elements of eΛ in arbitrary representation R. In general, representation

dependence is a subject of theory of (non-Abelian) τ -functions [69] and is attracting an

increasing attention (e.g. in the form of theory of Â-polynomials in knot theory [70–76]).

It is an unexpectedly hard problem and still an underdeveloped field. Fortunately, in

the present context there is a number of simplifications, provided exactly by the items of

section 1.5:

• Restriction to constant connections allows one to consider group elements of ordinary

Lie algebras, neither Kac-Moody, nor quantum extensions are immediately needed.

• Restriction to matrix elements between highest/lowest weight states reduces

through (0.5) the problem to that in the fundamental representations, what in the

τ -function language means restriction to Toda τ -functions. The simplification is con-

siderable: matrix elements in higher fundamental representations are just minors of

those in the first one.

• The peculiar form (1.15) of the connection Λ implies that for n non-vanishing “times”

ws the study of n × n matrices can be actually sufficient to solve the problem for

arbitrary N . This is still a trivial procedure for n = 2, because with (1.15) we deal

with the SL(2) subgroup of SL(N), but it is less trivial for n > 2, since (1.15) is in

no way a special embedding SL(n) ⊂ SL(N) (which simply can not exist), still there

should be a “lifting procedure” from n× n matrices to N ×N , generalizing the one

for n = 2.

Technically, this implies the following strategy.

Conceptually, τ -function is defined [69] as a generating function of all matrix elements

τR(t, t̄|G) =
∑
µ,ν

< µ|G|ν >R tµt̄ν (2.1)

where G is a group element, i.e. the representation dependence is controlled by the comulti-

plication rule ∆(G) = G⊗G. For quantum groups this means that G and thus τ is operator

valued [69, 77, 78], but within classical higher spin theory we do not need this (difficult)

generalization. According to [69], the τ -functions (2.1) always satisfy bilinear Hirota equa-

tions, which are just avatars of the representation multiplication R1 ⊗ R2 =
∑

QC
Q
R1R2

Q,

rewritten in a form of differential/difference equations in variables t, t̄. The difficult problem

in the theory of τ -function is a proper choice of the generating function, i.e. parametrization

of the states µ and ν within representation R.
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In the simplest case of the n-th fundamental representation, one can generate all of

them by the action of the-first-subdiagonal generator T+ and its degrees, which gives a set

of commuting “Hamiltonians” H,

τ[n] =< hw|eH(t)GeH̄(t̄)|hw >, H(t) =
∑
k

tkT
k
+, H̄(t̄) =

∑
k

t̄kT
k
− (2.2)

However, in other representations this does not produce all the states in R, this violates

completeness and jeopardizes the Hirota equations, which relate matrix elements in the

fundamental representations at different n’s. Hence, in these cases one has [69] to general-

ize (2.2) and to consider the generic Gauss decomposition,

τ =< hw|eU(t)GeL(t̄)|hw > (2.3)

where L and U are generic Borel (lower and upper triangular) matrices, i.e. associate time-

variables with non-Abelian, still nilpotent subgroups. One can definitely consider other

possibilities to have generating functions of all matrix elements (2.1) which correspond to

complicated non-linear changes of time variables in (2.3):

τ− =< hw|eU(t)GeU(t̄)| − hw >

τ∗− =< −hw|eL(t)GeL(t̄)|hw >

τ= =< −hw|eL(t)GeU(t̄)| − hw > (2.4)

| − hw > denotes here the lowest weight vector and we call these τ -functions skew and

double skew respectively. They sometimes still satisfy similar Hirota like bilinear identities,

however, the main problem with the skew τ -functions is that all the formulas are hardly

continued from fixed to arbitrary N , in contrast with the standard τ -functions. It is related

to the fact that a continuation of the lowest weight vector for arbitrary N is done much

harder than the highest weight vector.

Coming back to our problem, to put it to a τ -function language one needs to convert

eΛ into a Gauss decomposition form. This is a sophisticated non-linear transformation

of time variables, (u,ws) −→ (t, t̄). However, since ws are defined as coefficients in front

of the algebra generators, it can be performed, at least in principle, with the help of the

Campbell-Hausdorff formula, i.e. the transformation is “functorial”: it does not depend on

the representation R. Moreover, for n = 2 the non-vanishing ws the generators belong to

SL(2) ⊂ SL(N), and one can perform the transformation (Gauss decomposition) just for

2 × 2 matrices: it will be automatically continued to arbitrary N . This means that all

the multiple commutators in the Campbell-Hausdorff formula are expressed through just

three ones: the generators of SL(2). Unfortunately, this property disappears for n > 2:

multiple commutators of n2−1 generators V
(s)
i are not expressed through themselves, and

the problem requires a more sophisticated approach.

In the next sections, we provide some more details about these procedures and demon-

strate that the answers for the skew τ -functions indeed possess certain properties similar to

those of the standard τ -functions. This approach can help to systematize somewhat spo-

radic observations in the literature; this paper is, however, just a first step in this direction.
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2.2 SL(2) with SL(N)

We begin by reminding some basic facts from the elementary representation theory of

SL(N) Lie algebras (see also [69]). Occasionally, this subsection is almost the same as

appendix A of [53].

Representation [p] of principally embedded SL(2) by (p + 1) × (p + 1) matrices looks

as follows:

E(p) =



0
√
p

0
√

2(p− 1)

. . .

0
√
i(p− i+ 1)

0

. . .

0
√
p

0



F (p) =



0
√
p 0√

2(p− 1) 0

. . .

0√
i(p− i+ 1) 0

. . .

0
√
p 0



H(p) =
1

2


p

p− 2

p− 4

. . .

−p

 (2.5)

Then

[H,E] = E, [H,F ] = −F, [E,F ] = 2H (2.6)

Thus, in the fundamental representation of SL(r + 1)

F (r) =
r∑
i=1

√
i(r + 1− i) · T−αi (2.7)

In what follows we denote this linear combination in arbitrary representation by T−:

T− ≡
r∑
i=1

√
i(r + 1− i) · T−αi (2.8)

Together with

T+ ≡
r∑
i=1

√
i(r + 1− i) · Tαi (2.9)

and

H ≡
r∑
i=1

i(r + 1− i) ·Hαi (2.10)
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these generators form an SL(2) subalgebra of SL(N). Other generators of SL(N) are

naturally decomposed into integer spin representations w.r.t. this subalgebra:

spin dimension highest vector

1 3 T+ =
∑r

i=1 σi · Tαi

2 5 T
(2)
+ =

∑r−1
i=1 σiσi+1 · Tαi+αi+1

3 7 T
(3)
+ =

∑r−2
i=1 σiσi+1σi+2 · Tαi+αi+1+αi+2

. . .

r 2r + 1 T
(r)
+ = Tα1+...+αr

(2.11)

Here σi =
√
i(r + 1− i). The highest weight vectors T

(s)
+ are those annihilated by com-

mutating with T+, they have entries on a given upper subdiagonal. All other elements of

the representation are obtained by repeated commutation of highest weight vector with T−
(by adjoint action of T−). The lowest weight vector in the representation is

T
(s)
− =

r+1−s∑
i=1

 s∏
j=1

σi+j−1

 · T−αi−...−αi+s−1 (2.12)

3 Standard τ -function

Now we are ready to describe in detail what is the standard τ -function, the issue briefly

touched in s.1.1.

3.1 Extract from [69]

The first fundamental representation

F = {ψi = T i−ψ0 | i = 0 . . . r} (3.1)

is made from the highest weight |hwF >= ψ0 by a single generator (2.8). Note that

because of non-trivial coefficients in (2.8) the states ψi are non-trivially normalized:

< ψi|ψj > = δi,j ·
i∏

k=1

k(r + 1− k) =
i!r!

(r − i)!
· δi,j (3.2)

in particular,

< ψr|T r−|ψ0 > = < ψr|ψr > = (r!)2 (3.3)

< ψr|et̄T− |ψ0 > = t̄r · r! (3.4)
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and

< ψ0|etT+et̄T− |ψ0 > =

r∑
i=0

· (tt̄)
i

(i!)2

i!r!

(r − i)!
= (1 + tt̄)r (3.5)

where we assumed that < ψ0|ψ0 > ≡ 1. The operators T
(s)
± act in F just as the s-th

powers of T±:

T
(s)
± = T s±

∣∣∣
on F

(3.6)

Higher fundamental representations

Fk = Λk(F ) = {ψ[i1 . . . ψik] | 0 ≤ i1 < i2 < . . . < ik ≤ r} (3.7)

with k = 1, . . . , r are made from their highest weights |hwk >= ψ[0ψ1 . . . ψk] by k

generators

∆k(T
i
−) = T i− ⊗ I ⊗ . . .⊗ I+I ⊗ T i− ⊗ . . .⊗ I+. . .+I ⊗ I ⊗ . . .⊗ T i−, i = 1, . . . , k (3.8)

ψ0

ψ1

ψ2

ψ3

ψ4

...

ψr

T−

T−

T−

T−

T−

T−

T 2
−

ψ[01]

ψ[02]

ψ[12] ψ[03]

ψ[13] ψ[04]

ψ[23] ψ[14] ψ[05]

ψ[24] ψ[15] ψ[06]

ψ[34] ψ[25] ψ[16] ψ[07]

T−

. . .

T 2
−

T 2
−T 2

−

The “depth” of the representation Fk from hwk = ψ[0,...,k−1] to −hw−k = ψ[r,r−1,...,r−(k−1)]

is δk = k(N − k).

Matrix elements of the group element G in arbitrary Fk are expressed through those

in F by determinant formulas:

g(k)

(
i1 . . . ik
j1 . . . jk

)
=
〈
ψ[i1 . . . ψik]

∣∣∣G∣∣∣ψ[j1 . . . ψjk]

〉
= det

1≤a,b≤k
Giajb (3.9)

where Gab = < ψa|G|ψb >. In particular,

Gk = < hwk|G|hwk > = det
0≤a,b≤k−1

Gab (3.10)

and

G−k = < −hwk|G|hwk > = det
0≤a,b≤k−1

Gar−b (3.11)

The quantities g(k) satisfy a rich set of bilinear Plücker relations,

g(k)

(
i1 . . . ik[
j1 . . . jk

)
g(k′)

(
i′1 i′2 . . . i′k

jk+1

]
j′1 . . . j

′
k−1

)
= g(k+1)

(
i1 . . . ik

[
ik′

j1 . . . jk jk+1

)
g(k′−1)

(
i′1 . . . i

′
k−1

]
j′1 . . . j

′
k−1

)
(3.12)
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which are often expressed as differential KP/Hirota like equations for their generating

functions called τ -functions.

The standard τ -function is defined as a “time-evolution” of G−k:

τ (k)(t, t̄|G) = < hwk|eH GeH̄ |hwk > (3.13)

in t, t̄ variables, which are associated with the operators T
(s)
± . Namely, in accordance

with (3.6),

eH = exp

(
k∑
i=1

tiRk(T
i
+)

)
=

(
k∑
i=0

SiT i+

)⊗k
(3.14)

and

eH̄ = exp

(
k∑
i=1

t̄iRk(T
i
−)

)
=

(
k∑
i=0

S̄iT i−

)⊗k
(3.15)

where “coproducts”

Rk(T
i
±) = T i± ⊗ I ⊗ . . .⊗ I + I ⊗ T i± ⊗ . . .⊗ I + . . .+ I ⊗ I ⊗ . . .⊗ T i± (3.16)

and Si = Si(t) and S̄i = Si(t̄) are the Schur polynomials of the time-variables t and t̄

respectively: these are the Schur functions for pure symmetric representations satisfying

exp

( ∞∑
i=1

tiz
i

)
=

∞∑
i=0

Si(t)zi (3.17)

and
∂Sj(t)
∂ti

=
∂iSj(t)
∂ti1

= Sj−i(t) (3.18)

As a corollary of these formulas, the τ -function has a simple determinant representation:

τ (k)(t, t̄, G) =
∑
i1,...,ik
j1,...,jk

Si1 . . . Vik
〈

Ψ[r−i1,...,r+1−k−ik]

∣∣∣G∣∣∣Ψ[j1,...,k−1+jk]

〉
S̄j1 . . . S̄jk

= det
1≤α,β≤k

Hαβ (t, t̄, G) (3.19)

with

Hαβ (t, t̄, G) =
∑
i,j

Gij · Si−αS̄j−β (3.20)

This H is independent of k and it can be already considered as a function of infinitely

many t and t̄ time-variables, though for SL(N) it is actually constrained by

∂NH
∂tN1

=
∂NH
∂t̄N1

= 0

. . .

∂H
∂ti

=
∂H
∂t̄i

= 0 for i > N (3.21)
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It satisfies the characteristic shift relations

∂

∂ti
Hαβ = Hα+i

β ,
∂

∂t̄i
Hαβ = Hαβ+i (3.22)

Exactly like those of G itself, various minors of the matrix H satisfy the bilinear Plücker

relations (3.12), e.g.

H

(
1 . . . k

1 . . . k

)
H

(
k + 1 1 . . . k − 1

k + 1 1 . . . k − 1

)
−H

(
1 . . . k − 1 k

1 . . . k − 1 k + 1

)
H

(
k + 1 1 . . . k−1

k 1 . . . k−1

)
=

= H

(
1 . . . k + 1

1 . . . k − 1

)
H

(
1 . . . k + 1

1 . . . k − 1

)
(3.23)

however, now the shift property allows one to convert them into bilinear differential equa-

tions, of which the simplest example is the Toda lattice relation

τ (k)∂1∂̄1τ
(k) − ∂1τ

(k)∂̄1τ
(k) = τ (k+1)τ (k−1) (3.24)

As emphasized in [69, 79], if one defines the τ -function with the help of (3.19), but using

another set of polynomials instead of the Schur ones, one gets the same system of equations

in another form: e.g. for the q-Schur polynomials the Toda lattice equation will become

difference. This freedom leads to the notion of equivalent integrable hierarchies [80].

3.2 A simple exercise with Toda equations

In the case under consideration, there is a “boundary” condition for the standard τ -function

τn as a function of n: τ0 = 1. Then, the Toda equation (3.24) can be used to recursively

obtain any τ (k) from τ (1).

As an archetypical example consider the case of a single non-vanishing pair of time-

variable: t1, t̄1 6= 0. Then for

τ (k) =
〈

hwk

∣∣∣etT+et̄T−
∣∣∣hwk

〉
=

k(N−k)∑
i=0

ξ
(k)
i (tt̄)i (3.25)

we have a recursion in k:∑
i,j

ξ
(k+1)
i ξ

(k−1)
j (tt̄)i+j = −

∑
i<j

(i− j)2ξ
(k)
i ξ

(k)
j (tt̄)i+j−1 (3.26)

The degrees in tt̄ of both sides of this equation are 2Nk − k2 − 1.

For τ (1) = (1 + tt̄)r from (3.5) and τ (0) = 1, the Toda equation gives

τ (k) = (1 + tt̄)k(r+1−k) ·
k−1∏
j=1

j!(r + 1− k + j)j = (1 + tt̄)δk ·
k−1∏
j=0

〈
ψj

∣∣∣ψj〉 =

= (1 + tt̄)k(N−k) ·
〈
ψ[0 . . . ψk−1]

∣∣∣ψ[0 . . . ψk−1]

〉
(3.27)

what is indeed the right answer for
〈
ψ[0 . . . ψk−1]

∣∣∣esT+esT−
∣∣∣ψ[0 . . . ψk−1]

〉
.
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In other words, in this simple example one has

τ (k) ∼
(
τ (1)

) k(N−k)
N−1

(3.28)

Note that in this form there is a limit at N → ∞, when τ (k) →
(
τ (1)

)k
up to a factor.

In order to deal with the factor, one first needs to rescale the time variables t → t/
√
N ,

t̄→ t̄/
√
N in order to have finite τ (1) in the limit of N →∞. Then, τ (1) = exp(tt̄) and

τ (k) =

(
k−1∏
i=1

i!

)
× ektt̄ (3.29)

in this limit.

4 Skew τ -function

A skew τ -function, where the right state is the lowest rather than the highest weight is

independent of conjugate time-variables t̄, because eH̄ | − hwk > = | − hwk >:

τ
(k)
− (t, G) = < hwk|eH G| − hwk > =

(
∂

∂t̄1

)k(N−k)

τ (k)(s, s̄, G) (4.1)

At the first glance, this quantity is very far from possessing any nice properties: the multiple

differentiation destroys integrability structures, or at least, hides them very deeply, and the

results have hardly a finite limit of large N . Surprisingly or not, this expectation is not

quite true: the skew τ -functions turn out to be nice enough and deserve a separate study.

We consider below the skew τ -functions with differently parameterized group element

τ
(k)
− (w) = < hwk|eΛ(w)| − hwk > (4.2)

with parameters (times) wk defining the matrix

Λ(w) = T+ +
∑
s

wsT
(s)
− (4.3)

These parameters are related to t-variables in (2.4) by a non-linear transformation,

and (4.2) has to be reduced yet to form (2.4) by the Gauss decomposition. This

parametrization better suits the second section of this paper.

4.1 The simplest example: a smell of integrability

Especially simple is the case when G is made only from the T±. Despite eT++w2T− 6=
eT+ew

2T− , such a decomposition is easy to find (note that w2 = w1 in (4.3)). Indeed,

since T± are generators of the SL(2) subgroup in SL(N), one can just find the Gauss

decomposition for 2× 2 matrices and then lift it straightforwardly to arbitrary N :

exp

(
0 1

w2 0

)
=


coshw

sinhw

w

w sinhw coshw

 =

 1 sinhw
w·coshw

0 1


 cosh−1 w 0

0 coshw


 1 0

w·sinhw
coshw

1

 (4.4)
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implies

exp
(
T+ + w2T−

)
3×3

=exp


0

√
2 0

w2
√

2 0
√

2

0 w2
√

2 0

=



cosh2 w
√

2 sinhw coshw
w

sinh2 w

w2

w
√

2 sinhw coshw 2 sinh2 +1w
√

2 sinhw coshw
w

w2 · sinh2(w) w
√

2 sinhw coshw cosh2(w)


=

= exp


0
√

2 sinh(w)
w·coshw

0

0 0
√

2 sinhw
w·coshw

0 0 0

·


cosh−2 w

1

cosh2 w

· exp


0 0 0

√
2 w·sinhw

coshw
0 0

0
√

2 w·sinhw
coshw

0

 (4.5)

exp
(
T+ + w2T−

)
4×4

= exp



0
√

3 0 0

w2
√

3 0 2 0

0 2w2 0
√

3

0 0 w2
√

3 0


= (4.6)

=



cosh3 w
√

3 sinhw cosh2 w
w

√
3 sinh2 w coshw

w2

sinh3 w

w3

w
√

3 sinhw cosh2 w (3 sinh2 w + 1) coshw (3 sinh2 w+2) sinhw
w

√
3 sinh2 w coshw

w2

w2
√

3 sinh2 w coshw w (3 sinh2 w + 2) sinhw (3 sinh2 w + 1) coshw
√

3 sinhw cosh2 w
w

w3 · sinh3(w) w2
√

3 sinh2 w coshw w
√

3 sinhw cosh2 w cosh3(w)


= (4.7)

= exp



0
√

3 sinh(w)
w·coshw

0 0

0 0 2 sinh(w)
w·coshw

0

0 0 0
√

3 sinhw
w·coshw

0 0 0 0


·



cosh−3 w

cosh−1 w

coshw

cosh2 w


·

· exp



0 0 0 0

√
3 w·sinhw

coshw
0 0 0

0 2 w·sinhw
coshw

0 0

0 0
√

3 w·sinhw
coshw

0


and so on. Thus the first skew τ -functions, the matrix elements in the upper right corner

of above matrices in this case are immediately calculated from the decomposition formula

in the last line:

τ
(1)
−

(
eT++w2T−

)
=
(
eT++w2T−

)
1N

=
1

r!
·

(
r∏
i=1

σi

)(
sinh(w)

w · cosh(w)

)r
cosh(w)r=

(
sinh(w)

w

)N−1

(4.8)
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Likewise by taking adjacent minors of the size k, one gets

τ
(k)
−

(
eT++w2T−

)
= det

1≤a,b≤k

(
eT++w2T−

)
a,N−b

=

(
sinh(w)

w

)k(N−k)

=
(
τ

(1)
−

) k(N−k)
N−1

(4.9)

what is exactly the same relation as (3.28). Moreover, in order to have finite τ
(1)
− as N

goes to infinity, one has to rescale the time variables w → w/
√
N like it was in the case of

the standard τ (1) in the previous section.

Since
∑N−1

k=1 k(N − k) = N(N2−1)
6 , it follows that in this case

τρ−

(
eT++w2T−

)
=

r∏
k=1

τ (k) =

(
sinh(w)

w

)N(N2−1)
6

(4.10)

and, hence, one would need a different rescaling to have a finite limit at infinite N .

4.2 Importance of group structure

Before we proceed further, it deserves making an important comment. As explained in [69]

of crucial importance for integrability is the choice of time variables. Bilinear relations

are at the very core of Lie/Hopf algebra theory and they are immediately available for

arbitrary groups, classical or quantum, and families of their representations. The problem

is to convert these relations into equations for generating functions, and much depends on

the skill to build the proper ones. In fact, this is very well illustrated already by the simple

example of (4.8). Imagine that instead of the clever choice of the principally embedded

SL(2) generators T± we took just something “reasonable”, e.g.

exp


0 α0 0 0

α0w
2 0 β0 0

0 β0w
2 0 α0

0 0 α0w
2 0

 =

∞∑
n=0

1

(2n)!


ξnw

2n 0 ηnw
2n−2 0

0 ζnw
2n 0 ηnw

2n−2

ηnw
2n+2 0 ζnw

2n 0

0 ηnw
2n+2 0 ξnw

2n

+

+

∞∑
n=0

1

(2n+ 1)!


0 αnw

2n+2 0 γnw
2n

αnw
2n+4 0 βnw

2n+2 0

0 βnw
2n+4 0 αnw

2n+2

γnw
2n+6 0 αnw

2n+4 0


(4.11)

in the 4× 4 case.

Then, the evolution law for the α, β, γ parameters is(
αn+1

βn+1

)
=

(
α2

0 α0β0

α0β0 α
2
0 + β2

0

)(
αn
βn

)
γn+1 = α0β0αn + α2

0γn (4.12)

Symmetric shape of the matrices is preserved, because the evolution possesses a conserva-

tion law

α−2n
0

(
α0γn + β0αn − α0βn

)
= constant (4.13)
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On the other hand, if this quantity was zero at n = 0 (i.e. if γ0 = 0), it remains zero for

all n. Then, the evolution of the corner element γ simplifies:

γn+1 = α2
0βn (4.14)

and it remains to study only α, β sector. The eigenvalues of the evolution operator are ugly:

α2
0 +

β2
0

2
± β0

√
α2

0 +
β2

0

4
(4.15)

but they are already enough to distinguish between the “naive” choice α0 = β0 = 1 and

the “clever” (SL(2)) choice α =
√

3, β = 2. In these two cases, the eigenvalues we get

respectively:

n 0 1 2 3 4 5 6 7 8 9 . . .

αn 1 2 5 13 34 89 233 610 1597 4181

βn 1 3 8 21 55 144 377 987 2584 6765

γn 0 1 3 8 21 55 144 377 987 2584
γn

(2n+1)! 0 1
6

1
40

1
630

1
17280

1
725760

1
43243200

29
100590336000

47
16937496576000

1
47076277248000

(4.16)

and

n 0 1 2 3 4 5 6 7 8 9 . . .

αn =
√

3× 1 7 61 547 4921 44287 398581 3587227 32285041 290565367

βn 2 20 182 1640 14762 132860 1195742 10761680 96855122 871696100

γn 0 6 60 546 4920 44286 398580 3587226 32285949 290565366
γn

(2n+1)! 0 1 1
2

13
120

41
3024

671
604800

73
1140480

597871
217945728000

7913
87178291200

28009
11725959168000

(4.17)

The sequences of γn seem equally ugly in the both cases, but in fact in the latter case
γn

(2n+1)! are exactly expansion coefficients of sinh3(x), while they represent no nice function

in the former case. This is of course clear from looking at the eigenvalues (4.15): in the

latter case γn = 3
4(32n − 12n) and

∑
n
γnx2n+1

(2n+1)! = 1
4

(
sinh 3x − 3 sinh(x)

)
= sinh3(x), while

in the former case one rather gets γn = 1
2n
√

5

(
(1 +

√
5)2n− (1−

√
5)2n

)
and

∑
n
γnx2n+1

(2n+1)! =

2√
5

(
sinh

(1+
√

5)x
2

1+
√

5
− sinh

(1−
√

5)x
2

1−
√

5

)
= sinh x

2 cosh
√

5x
2 − 1√

5
cosh x

2 sinh
√

5x
2 . Clearly the sinh3

formula is easily continued to arbitrary N , while the other expression has low chances for

this. The reason for this lies rather deep in group theory (not so deep in this particular

case, but deeper in more complicated situations), and is not revealed and put under control

in full generality.

Thus, even this trivial example can serve as a non-trivial illustration to the general

formulation of the τ -function puzzle in [69].

4.3 Expression through eigenvalues

Coming back to our main line, once we suspect some integrability to be present, the next

natural thing to do is to look for matrix model representations, where at the core of
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integrability lies just the Vandermonde determinant. Not surprisingly, such representation

is immediately available:

τ
(1)
− =

(
sinh(w)

w

)r
=

r∑
i=0

(−)i r!

i!(r − i)!
· e

(r−2i)w

(2w)r
= r! ·

N∑
i=1

eλi∏
j 6=i(λi − λj)

τ
(2)
− =

(
sinh(w)

w

)2(r−1)

= −r!(r − 1)!

2!
·
N∑

i1,i2=1

(λi1 − λi2)2 · eλi1+λi2∏
j 6=i1(λi1 − λj)

∏
j 6=i2(λi2 − λj)

. . .

τ
(k)
− =

(
sinh(w)

w

)k(r+1−k)

= (−)k(k−1)/2 · r!(r − 1)! . . . (r + 1− k)!

2! . . . k!

·
N∑

i1,...,ik=1

∏k
a<b(λia − λib)2 · eλi1+...+λik∏

j 6=i1(λi1 − λj) . . .
∏
j 6=ik(λik − λj)

. . . (4.18)

where λi = (N+1−2i) ·w are eigenvalues of the matrix Λ = T+ + w2T−. This expression

through eigenvalues can seem unnecessary complicated, however, it essentially says that

τ (k) ∼ ∆2
k =

k∏
a<b

(λia − λib)
2, (4.19)

which allows us to immediately recognize a Toda-chain τ -function, see section 4.5 below.

Moreover, such a representation remains true for more general matrices (4.3), [47]

Λ = T+ +
∑
s

wsT
(s)
− (4.20)

This is despite particular eigenvalues λi are now incalculable roots of polynomials of degree

N : since the r.h.s. of (4.18) is actually made from symmetric polynomials of λi, one can

apply the Vieta formulas. In particular, they satisfy the condition

N∑
i=1

λi = 0 (4.21)

4.4 Vandermonde-diagonalizable case

We begin the study of relations (4.18) from a slightly simplified case. Since we are interested

in formulas expressed through eigenvalues of the matrix Λ, it is reasonable to substitute

Λ = V · diag(λ1, . . . , λN ) · V −1

τ
(1)
−

(
eΛ
)

=

N∑
i=1

V1iV
−1
iN · e

λi

τ
(2)
−

(
eΛ
)

=

N∑
i1,i2=1

(
V1i1V2i2 − V2i1V1i2

)
V −1
i1,N

V −1
i2,N−1 · e

λi1+λi2

. . . (4.22)
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Then (4.18) turns into λ-dependent conditions on the matrix V :

V1iV
−1
iN ·

∏
j 6=i

(λi − λj) = 1

1

2!

{(
V1i1V2i2−V2i1V1i2

)
V −1i1,N

V −1i2,N−1+(i1↔ i2)
}
·
∏
j 6=i1

(λi1−λj)
∏
j 6=i2

(λi2−λj) =
1

2!
(λi1−λi2)2

1

3!

{(
det

a,b=1,2,3
Vaib

)
V −1i1,N

V −1i2,N−1V
−1
i3,N−2+5 perms(i1, i2, i3

}
·

3∏
a=1

∏
j 6=ia

(λiq−λj) =
1

3!

3∏
a<b

(λia−λib)2

. . . (4.23)

The above mentioned simplification is that we slightly changed the normalization factors

at the r.h.s., so that the system (4.23) is solved by the Vandermonde matrix

V = Ṽ = {λi−1
j | i, j = 1, . . . , N} (4.24)

i.e. the story applies to the constant connection

Λ̃ = Ṽ · diag(λ1, . . . , λN ) · Ṽ −1 = T̃+ +
r+1∑
s=1

(−)s+1

 ∑
i1,...,is

∏
i1<...<is

λi1 . . . λis

Er,r+1−s =

=


0 1 0 . . . 0

0 0 1 0

. . .

0 0 0 . . . 1

(−)r
∏
i λi (−)r−1

∏
i λi
∑

i λ
−1
i (−)r

∏
i λi
∑

i<j(λiλj)
−1

∑
i λi

 =

= T̃+ +

r+1∑
s=1

(−)s+1S[1s](λ) · Er,r+1−s (4.25)

Since the diagonalizing matrix for (4.25) is Vij = λi−1
j , the eigenvector of (4.25) with eigen-

value λj is v
(j)
i = λij . Since (4.25) is not symmetric, the eigenvectors and the diagonalizing

matrix are not orthogonal.

Note that T̃+ in (4.25)

T̃+ =


0 1 0 . . . 0

0 0 1 0

. . .

0 0 0 1

0 0 0 0

 =

r∑
i=1

Tαi 6=
r∑
i=1

√
i(r + 1− i) · Tαi = T+ (4.26)

Thus there are two differences between (4.25) and (4.3): T̃+ 6= T+ and relations (4.23)

differ from (4.18) by the lack of some factorials. Remarkably, these differences compensate

each other. We provide an exhaustive explanation for this in subsection 4.8 below, but

before that it deserves looking closer at (4.25).
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4.5 Schur expansions

In (4.25) SR(λ) are Schur symmetric functions of variables {λi}, and only pure antisym-

metric (i.e. fundamental) representations R = [1k] contribute to Λ̃. The corner element of

this eΛ̃ is especially simple: (
eΛ̃
)

1N
=
∞∑
k

S[k](λ)

(k + r)!
(4.27)

where the (infinite) sum is now over all pure symmetric representations R = [k]. Since this

class of Schur functions is generated by

∞∑
k=0

zkS[k] = exp

( ∞∑
k=0

pkz
k

k

)
=

N∏
i=1

(1− zλi)−1 (4.28)

the sum in (4.27) is obtained by the Laplace/Pade transform:(
eΛ̃
)

1N
=
∞∑
k

S[k](λ)

Γ(k + r + 1)
=

1

π

∞∑
k

(−)kΓ(−k − r)S[k](λ) =
1

π

∫ ∞
0

e−xdx

xN

∑
k

S[k]

(−x)k
=

=
1

π

∫ ∞
0

e−xdx∏N
j=1(x+ λj)

−→
∑
i

eλi∏
j 6=i(λi − λj)

(4.29)

if the integral is substituted by the sum over residues at x = −λi.
This explains the first of peculiar formulas in (4.18). The simplest way to understand

what happens for higher fundamental representations is to look at the r = 1 case, then the

entire matrix

eΛ̃ = exp

(
0 1

−S[11] S[1]

)
=

 1− S[11]

∑∞
k=0

S[k]

(k+2)!

∑∞
k=0

S[k]

(k+1)!

−S[11]

∑∞
k=0

S[k]

(k+1)!

∑∞
k=0

S[k]

k!

 (4.30)

is 2× 2 and its determinant is a bilinear sum, giving rise to the double integral

S[11] ·
∑
n1,n2

(
1

(n1 + r + 1)!(n2 + r − 1)!
− 1

(n1 + r)!(n2 + r)!

)
S[n1]S[n2] =

=
S[11]

π2

∫ ∫
e−x−y dxdy∏N

j=1(x+ λj)(y + λj)

(
x

y
+
y

x
− 2

)
(4.31)

where the last factor comes from the deviations of the factorial argument shifts from r

and symmetrization w.r.t. x ↔ y. Switching to the residue sums, one obtains (for this

particular case) the second formula in (4.18)∑
i1,i2

(λi1 − λi2)2 · eλi1+λi2∏
j 6=i1(λi1 − λj)

∏
j 6=i2(λi2 − λj)

(4.32)

For arbitrary N = r + 1 eq. (4.27) is raised to(
eΛ̃
)
n,N−m

= (−)m
∞∑
k

S[k+n−1,1m](λ)

(k + r)!
(4.33)
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eq. (4.30) for r = 1 arises from this if one uses the recursions

S[km]
N=2
= Sm[11]S[k−m]

S[k+1]
N=2
= S[k]S[1] − S[k−1]S[11] (4.34)

4.6 Matrix model representations for τ−(eΛ̃) and integrable properties of the

skew τ -function

It remains to describe the differential equations (integrable hierarchy) which our skew tau-

functions satisfy.

As a straightforward generalization of (4.31), we obtain the skew τ function for the

“eigenvalue-inspired” constant connection (4.52) expressed by the multiple integral

τ
(k)
− (eΛ̃) =

∫
∆(x)2

k∏
a=1

e−txa∏N
i=1(xa + λi)

dxa
π

(4.35)

i.e. one can identify it with the Hermitian matrix model with a logarithmic potential.

Introduction of t is equivalent to rescaling ws −→ wst
s and τ

(k)
− −→ tk(N−k) · τ (k)

− .

Alternatively, one can substitute t-derivative by action of the dilatation operator
∑

i λi
∂
∂λi

As known from [81–88], the matrix integrals of kind (4.35) satisfy the Toda chain

equation in the variable t. This is immediately obvious already from (4.18). The action of

t-derivative on τ
(k)
− of this form provides

∑
a λi, then, say,

τ
(1)
−

∂2τ
(1)
−

∂t2
−

(
∂τ

(1)
−
∂t

)2

=
∑
i1,i2

et(λi1+λi2 )∏
j 6=i1(λi1−λj)

∏
j 6=i2(λi2−λj)

· (λ2
i2−λi1λi2) = τ

(2)
− (4.36)

because the symmetry between λi1 and λi2 allows one to substitute the last factor by
1
2!(λi1 − λi2)2. Similarly, acting on τ

(2)
− , one gets in the numerator

1

2! · 2!
(λi1 − λi2)2(λi3 − λi4)2 ·

(
(λi3 + λi4)2 − (λi1 + λi2)(λi3 + λi4)

)
(4.37)

which is equivalent to
1

3!
(λi1 − λi2)2(λi1 − λi3)2(λi2 − λi3)2 (4.38)

if the both quantities are totally symmetrized. In the same way, one gets for arbitrary k:

τ
(k)
−

∂2τ
(k)
−

∂t2
−

(
∂τ

(k)
−
∂t

)2

= τ
(k+1)
− τ

(k−1)
− (4.39)

Note that the matrix integral (4.35) has the determinant representation of the typical

Toda chain form:

τ
(k)
− = det

1≤i,j≤k
Ci+j−2 (4.40)

with

Ck =

N∑
i=1

λki e
λi∏

j 6=i(λi − λj)
=

∞∑
n

S[n]

(n+ r − k)!
(4.41)
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and

τ
(0)
− = 1, τ

(N+1)
− = 0 (4.42)

what means that it is a Toda molecule τ -function, see details in [89]. In the limit of N →∞,

it becomes the full Toda forced hierarchy [90]. In fact, in this limit, one would better look

at another form of the matrix integral (4.35) (at t = 1):

τ
(k)
− (eΛ̃) =

(
1∏
i λi

)k ∫
∆(x)2

k∏
a=1

e−xa+
∑∞
m=1 tmx

m
a
dxa
π

(4.43)

where the variables λi play the role of Miwa variables related with the time variables tm as

tm =
1

m

N∑
i=1

(−λi)−m (4.44)

At finite N only finitely many (N) time variables tm are independent, while in the limit of

N →∞ (4.35) becomes, up to a factor of
(∏

i λ
−1
i

)k
a full-fledged τ -function of the Toda

chain hierarchy in all times tm.

4.7 Diagonalizing (4.3)

Let us now return to our original (4.3). Our next goal is to express matrices (4.3) through

their eigenvalues: this should be possible, because the number of parameters ws is exactly

r, which is the number of independent eigenvalues of a traceless matrix of size r + 1. In

what follows,
∑N

i=1 λi = 0.

In the simplest 2× 2 (r = 1) case there is no difference between (4.3) and (4.25):

T+−λ1λ2︸ ︷︷ ︸
w2=λ2

1

·T−=

(
0 1

w2 0

)
=

(
0 1

−λ1λ2 λ1 + λ2

)
=

(
1 1

λ1 λ2

)(
λ1

λ2

)(
1 1

λ1 λ2

)−1

(4.45)

Accordingly, the only factorial r! = 1.

However, already for 3× 3 (r = 2) a difference shows up:

T+−
λ1λ2 + λ2λ3 + λ1λ3

4︸ ︷︷ ︸
w1

·T− +
λ1λ2λ3

4︸ ︷︷ ︸
w2

·T (2)
− =

 0
√

2 0√
2w1 0

√
2

2w2

√
2w1 0

 = (4.46)

=

 4 4 4

2
√

2λ1 2
√

2λ2 2
√

2λ3

λ2
1+λ2λ3 λ

2
2+λ1λ3 λ

2
3+λ1λ2


︸ ︷︷ ︸

V

 λ1

λ2

λ3


 4 4 4

2
√

2λ1 2
√

2λ2 2
√

2λ3

λ2
1+λ2λ3 λ

2
2+λ1λ3 λ

2
3+λ1λ2


−1

Now, we get (4.23) with missing factorials restored, exactly what is needed for (4.18):

V1iV
−1
iN ·

∏
j 6=i

(λi − λj) = 2!

1

2!

{(
V1i1V2i2−V2i1V1i2

)
V −1
i1,N

V −1
i2,N−1+(i1↔ i2)

}
·
∏
j 6=i1

(λi1−λj)
∏
j 6=i2

(λi2−λj) =
2!

2!
· (λi1−λi2)2

1

3!

{(
det

a,b=1,2,3
Vaib

)
V −1
i1,N

V −1
i2,N−1V

−1
i3,N−2+5 perms(i1, i2, i3

}
·

3∏
a=1

∏
j 6=ia

(λiq−λj) =
2!

2! · 3!

3∏
a<b

(λia−λib)2

(4.47)
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Similarly, for 4× 4 (r = 3) case:

T+−
1

10

(
4∑
i<j

λiλj

)
︸ ︷︷ ︸

w1

·T− +
1

24

 4∑
i<j<k

λiλjλk


︸ ︷︷ ︸

w2

·T (2)
− −

1

36

λ1λ2λ3λ4 −
9

100

(
4∑
i<j

λiλj

)2
︸ ︷︷ ︸

w3

·T (3)
− =

=


0

√
3 0 0√

3w1 0 2 0

2
√

3w2 2w1 0
√

3

6w3 2
√

3w2

√
3w1 0

 =

=


60 . . . 60

20
√

3λ1 20
√

3λ4
√

3
2

(
20λ2

1 − 3(λ2
1 + λ2

2 + λ2
3 + λ2

4)
) √

3
2

(
20λ2

4 − 3(λ2
1 + λ2

2 + λ2
3 + λ2

4)
)

4λ3
1 − λ1(λ2

2 + λ2
3 + λ2

4)− 5λ2λ3λ4 . . . 4λ3
4 − λ4(λ2

1 + λ2
2 + λ2

3)− 5λ1λ2λ3


︸ ︷︷ ︸

V


λ1

λ2

λ3

λ4

V −1

(4.48)

and
V1iV

−1
iN ·

∏
j 6=i

(λi − λj) = 3!

1

2!

{(
V1i1V2i2−V2i1V1i2

)
V −1
i1N

V −1
i2,N−1+(i1↔ i2)

}
·
∏
j 6=i1

(λi1−λj)
∏
j 6=i2

(λi2−λj) =
3! · 2!

2!
· (λi1−λi2)2

1

3!

{(
det

a,b=1,2,3
Vaib

)
V −1
i1N

V −1
i2,N−1V

−1
i3,N−2+5 perms(i1, i2, i3

}
·

3∏
a=1

∏
j 6=ia

(λiq−λj) =
3! · 2!

2! · 3!

3∏
a<b

(λia−λib)2

1

4!

{(
det

a,b=1,2,3,4
Vaib

)
V −1
i1N

V −1
i2,N−1V

−1
i3,N−2V

−1
i4,N−3+23 perms(i1, i2, i3, i4

}
·

4∏
a=1

∏
j 6=ia

(λiq − λj) =
3! · 2!

2! · 3! · 4!

4∏
a<b

(λia−λib)2

. . . (4.49)

and so on.

In the 5× 5 (r = 4) case

T+−
1

20

(
5∑
i<j

λiλj

)
︸ ︷︷ ︸

w1

·T− +
1

84

 5∑
i<j<k

λiλjλk


︸ ︷︷ ︸

w2

·T (2)
− −

1

288

 5∑
i<j<k<l

λiλjλkλl − 64w4
1


︸ ︷︷ ︸

w3

· T (3)
− +

1

576

(
5∏
i=1

λi + 192w2
1w

2
2

)
︸ ︷︷ ︸

w4

·T (4) (4.50)

In general, the coefficients of the characteristic polynomial detN×N (zI + Λ) are:

r w1 w2 w3 − w2
1 w4 − w2w1 w5 − w3w1 − w2

2 + w3
1 w6 − w4w1 − w3w2 + w2w

2
1 . . .

1 1

2 4 4

3 10 24 36− 9

4 20 84 288− 64 576− 192

5 35 224 1296− 259 5760− 1760 1440− 3600− 1600 + 225

6 56 504 4320− 784 31680− 8928 172800− 40320− 18000 + 2304 518400 − 103680− 86400 + 13824

7 84 1008 11880− 1974 126720− 33120 1123200− 245520− 110016 + 12916 7257600 − 1370880− 1149120 + 170352 . . .

8 120 1848 28512− 4368 411840− 100320 5241600 − 1077120− 48176 + 52480 54432000 − 9734400− 8201088 + 1132032 . . .

9 165 3168 61776− 8778

10 220 5148 123552 − 16368

11 286 8008 231660 − 28743

. . .

r N(N2−1)
6

N(N2−1)(N2−22)
5·6 . . .
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The coefficient in front of ws is just

(s!)2

(2s+ 1)!
·

s∏
i=−s

(N + i) (4.51)

This means that (4.3) will be

Λ = T++
r=N−1∑
s=1

(−)s
(2s+ 1)!

(s!)2 ·
∏s
i=−s(N+i)

N∑
i1<...<is+1

λi1 . . . λis+1︸ ︷︷ ︸
ws

+O(w4)

 · T (s)
− (4.52)

The coefficients in front of w2
1, w2w1, w3w1, . . . are

r(r2 − 1)(r2 − 22)(5r + 12)

360
,

r(r2 − 1)(r2 − 22)(r2 − 32)(7r + 20)

1260
,

r(r2 − 1)(r2 − 22)(r2 − 32)(r2 − 42)(9r + 30)

7560
, . . .

i.e. ws−2w1 (subtracted from ws) with k ≥ 2 (s ≥ 4) comes with the coefficient

(s− 2)!(s− 1)!

3 · (2s− 1)!
·
(

(2s− 1)r + s(s+ 1)
) s−1∏
i=1−s

(r + i) (4.53)

and for w2
1 (subtracted from w3) there is an extra factor of 1

2 .

More systematically, these seemingly complicated formulas can be obtained from

log det
N×N

(I + z−1Λ) = −
∞∑
k=1

(−)k

kzk
Tr Λk = −

∞∑
k=1

pk
kzk

(4.54)

with the time-variables pk =
∑N

i=1 λ
k
i . Equation (4.54) expresses these variables through

ws with coefficients, made from

Ξk(N) =

r+1−k∑
i=1

σ2
i σ

2
i+1 . . . σ

2
i+k−1 =

r+1−k∑
i=1

(i+ k − 1)! (r + 1− i)!
(i− 1)! (r + 1− i− k)!

=
(k!)2

(2k + 1)!

k∏
i=−k

(N + i)

(4.55)

and similar (more complicated) sums.

Now the question is: what is so special about these two families (4.25) and (4.3)?

The answer is provided by the general idea in integrability theory: the one of equivalent

hierarchies [80].

4.8 Low-triangular rotation

In application to our situation, this idea implies a simple inverse procedure to construct all

the matrices which can be expressed through their eigenvalues, with the skew τ -functions

(upper-right corner minors) described by a counterpart of (4.18).
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Consider the first fundamental representation. We begin with the simple matrix Λ̃

in (4.25) which is diagonalized by the Vandermonde rotation and, hence, the matrix ele-

ments of eΛ̃ are explicitly expressed through its eigenvalues. Moreover, these elements are

given by simple formulas like (4.27).

Now consider an additional rotation of Λ̃ by another matrix U . For a given U , the new

matrix ΛU = U Λ̃U−1 is still explicitly expressed through its eigenvalues. Moreover, when

U is lower triangular, the corner matrix element is just multiplied by U11U
−1
NN :(

eΛU
)

1N
=
(
U11U

−1
NN

)
·
∞∑
k

S[k](λ)

(k + r)!
(4.56)

preserving its simple structure.

In fact this is a characteristic property of the skew τ -functions, i.e. the minors of size

k at the upper right corner: they transform in a simple way under conjugation by lower

triangular matrices U . Indeed, such minors are multiplied from the left and from the right

by the sub-matrices Uab and U−1
N+1−a,N+1−b with a, n ≤ k, which are also low triangular,

thus, the determinant is just multiplied by a product of diagonal elements:

τ
(k)
− (UeΛU−1) =

(
k∏
a=1

UaaU
−1
N+1−a,N+1−a

)
· τ (k)
− (eΛ) for low-triangular U (4.57)

Likewise, the minor at the lower left corner, which we name “double-skew” τ -functions τ=

and consider in the next section 5, are transformed in a simple way under conjugation with

the upper-triangular matrices.

Thus, it is clear that the skew τ -functions for connections Λ, which differ from the

Vandermonde-diagonalizable (4.25) by a lower-triangular conjugation, will all possess the

eigenvalue representation (4.18) modulo simple factors made from the diagonal elements

Uaa. Therefore, this is not a big surprise that the seemingly complicated matrices U

in (4.45)–(4.48) differ from the Vandermonde matrices just by low-triangular factors.

For example, in the case of matrices (4.46) and (4.48) with N = 3 and N = 4 the

relevant rotations are
4 4 4

2
√

2λ1 2
√

2λ2 2
√

2λ3

λ2
1 + λ2λ3 λ

2
2 + λ1λ3 λ

2
3 + λ1λ2


︸ ︷︷ ︸

V

=


4 0 0

0 2
√

2 0

−S[2](λ) 0 2


︸ ︷︷ ︸

U


1 1 1

λ1 λ2 λ3

λ2
1 λ

2
2 λ

2
3


︸ ︷︷ ︸

Vandermonde

and

60 . . .

20
√

3λ1
√
3
2

(
20λ21 − 3(λ21 + λ22 + λ23 + λ24)

)
4λ31 − λ1(λ22 + λ23 + λ24)− 5λ2λ3λ4


︸ ︷︷ ︸

V

=


60 0 0 0

0 20
√

3 0 0

−3
√

3S[2](λ) 0 10
√

3 0

−5S[3](λ) −7S[2](λ) 0 10


︸ ︷︷ ︸

U


1 . . .

λ1

λ21

λ31


︸ ︷︷ ︸
Vandermonde

Note that S[1] =
∑N

i=1 λi = 0, therefore S[2] = 1
2

∑N
i=1 λ

2
i and S[3] = 1

3

∑N
i=1 λ

3
i . Clearly, the

ratios of diagonal elements of U reproduce the needed boxed factors in (4.47) and (4.49).
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5 Double skew τ -functions and Toda recursion

Now we will look at the opposite corner of the exponentiated matrix, this is what we

call double-skew τ -function τ=. Since our connections are not symmetric, this is quite a

different quantity with different properties.

5.1 Low-triangular connection

In fact, τ= is non-trivial already when there is no T+ in the constant connection Λ in (4.3),

we emphasize this by adding a subscript 0 to Λ. Despite all the remaining generators

commute and exponential is nicely factorized,

eΛ0 =
r∏
s=1

ewsT
(s)
− (5.1)

the matrix element

τ (k)
= = < −hwk| eΛ

0 |hwk > =
∑
i1,...,is

〈
−hwk

∣∣∣∣∣∣∣
r∏
s=1

wiss

(
T

(s)
−

)is
is!

∣∣∣∣∣∣∣ hwk

〉
(5.2)

is somewhat complicated. The sum is restricted by the obvious condition

r∑
s=1

s · is = δk = k(N − k) (5.3)

thus, it is just a finite degree polynomial in {ws}, actually, a Schur polynomial. Indeed, in

the first fundamental representation, the matrix element is independent of {is}:〈
−hw1

∣∣∣∣∣
r∏
s=1

(
T

(s)
−

)is∣∣∣∣∣ hw1

〉
=

(
r∏
i=1

σi = r!

)
δ

(
r∑
s=1

s · is − r

)
(5.4)

thus,

τ (1)
= (eΛ0) = r!

∑
i1,...,is

(
r∏
s=1

wiss
is!

)
δ

(∑
s

s · is − r

)
= (5.5)

= r!

∮
dz

zr+1
exp

(
r∑
s=1

wsz
s

)
= r!

∮
dz

zr+1

(
r∑
s=1

zsS[s]{wk}

)
= r! · S[r]{wk}

where the Schur polynomial is now expressed through the time variables pk = kwk rather

than through Miwa variables λi as in the previous section 4, where the counterpart of

the time variables pk in Schur polynomials was given by (4.54). In fact this follows di-

rectly from (5.1), if one remembers that T
(s)
− act in the first fundamental representation as

powers of T−.

Dependence on representation is now described in a usual simple way: the double-skew

τ -functions in the next fundamental representations are iteratively provided by the Toda

recursion:

τ (k+1)
= (eΛ0) =

σ2
k−1

σ2
k · τ

(k−1)
=

·

τ (k)
=

∂τ
(k)
=

∂w2
1

−

(
∂τ

(k)
=

∂w1

)2
 (5.6)
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where the extra σ-factors σ2
k = k(r + 1 − k) account for the deviation of matrix elements

between non-highest/lowest states from (5.4):〈
r−b

∣∣∣∣∣
r∏
s=1

(
T

(s)
−

)is∣∣∣∣∣ a
〉

=

(
r−b∏
i=a+1

σi =
r!∏a

i=1 σi
∏b
j=1 σj

)
δ

(
r∑
s=1

s · is−(r−a−b)

)
(5.7)

where we also used the symmetry σr+1−j = σj . Note that all derivatives are with respect to

w1: this is the Toda chain, not Toda lattice recursion. From this recursion one immediately

obtains

τ (1)
= = r! · S[r], τ

(2)
= =r!(r−1)! · S[r−1,r−1], τ

(3)
= =r!(r−1)!(r−2)! · S[r−2,r−2,r−2], . . .

τ (k)
=

(
eΛ0
)

=
S[(N−k)k]

d[(N−k)k]

=
k∏
i=1

(N − i)! · S[N − k, . . . , N − k︸ ︷︷ ︸
k times

]{ws} (5.8)

which follows from (5.6) and

∂p1S[i1,i2,...] =
∑

s: is>is+1

S[i1,i2,...,is−1,is−1,is+1,...] (5.9)

where contributing are only terms with is 6= is−1.

Other elements of the triangular matrix eΛ0 are also expressed through the Schur

functions:

e
∑

s wsT
(s)
− =



1 0 0 0 . . . 0 0

σ1S[1] 1 0 0 0 0

σ1σ2S[2] σ2S[1] 1 0 0 0

σ1σ2σ3S[3] σ2σ3S[2] σ3S[1] 1 0 0

. . .

σ1 . . . σr−1S[r−1] σ2 . . . σr−1S[r−2] σ3 . . . σr−1S[r−3] σ4 . . . σr−1S[r−4] 1 0

σ1 . . . σrS[r] σ2 . . . σrS[r−1] σ3 . . . σrS[r−2] σ4 . . . σrS[r−3] . . . σrS[1] 1


(5.10)

Then, the minors at the low left corner are

τ (1)
= = σ1 . . . σr · S[r] = r! · S[r],

τ (2)
= = σ1

(
σ2 . . . σr−1

)2
σr ·

(
S2

[r−1] − S[r]S[r−2]

)
= r!(r − 1)!

{(
∂S[r]

∂p1

)2

− S[r]

∂2S[r]

∂p2
1

}
= r!(r − 1)! · S[r−1,r−1],

. . . (5.11)

5.2 Back to (4.3)

If one wants to return from the simplified pure triangular connection Λ0 to more general

ones, it is needed to convert expressions like

exp

 r∑
i=1

tiT
(i)
+ +

r∑
j=1

t̄jT
(j)
−

 (5.12)
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into the “normal ordered” form

exp

(
r∑
i=1

tiT
(i)
+

)
G exp

 r∑
j=1

t̄jT
(j)
−

 = eH G̃ eH̄ (5.13)

In general, for this one needs to apply the Campbell-Hausdorff formula [91]

eAeB=exp

{∫ 1

0

dt

∞∑
n=1

(−)n

n

(
et·adAet·adB − 1

)n−1

et·adA
(
A+B

)}
= (5.14)

=exp

{
A+B+

1

2!
[A,B]+

1

2·3!

(
[A, [A,B]]+[[A,B], B]

)
+

1

2·4!

(
[[A, [A,B]], B]+[A, [[A,B], B]]

)
+ . . .

}
where adA = [A, . . .]. However, if one switches on a single T+ with coefficient u to get (4.3),

the expansion in powers of u is relatively simple:

euT++Λ0 = eΛ0 + u

∫ 1

0
etΛ0T+e

(1−t)Λ0dt+ . . .+ (5.15)

+ um
∫

0≤t1≤...≤tm<1
et1Λ0T+e

(t2−t1)Λ0T+ . . . T+e
(tm−tm−1)Λ0T+e

(1−tm)Λ0dt1 . . . dtm + . . .

and the u-linear correction to τ
(1)
= is

u · r!
∫ 1

0
dt

r∑
i=1

σ2
1S[N−i]{tws}S[i]

{
(1− t)ws

}
(5.16)

and so on. When all wk≥2 =0, the only non-vanishing time is p1, and, since SR{p1}=dRp
|R|
1

we return to the familiar result from section 4.1:

τ (k)
=

(
euT++w1T−

)
=

(√
w1

u
· sinh(

√
uw1)

)k(N−k)

(5.17)

Now the question is what happens to Toda structure at all non-zero wk, when u 6= 0?

When u = 0 we had a differential operator, which acted inside (5.10):

. . .

∂1 ↑ ∂1 ↑

S[r−2]
∂1−→ S[r−3]

∂1−→ . . .

∂1 ↑ ∂1 ↑

S[r−1]
∂1−→ S[r−2]

∂1−→ . . .

∂1 ↑ ∂1 ↑

S[r]
∂1−→ S[r−1]

∂1−→ . . .

(5.18)

Remarkably, something survives of this structure when u 6= 0. We will denote the

corresponding matrix elements (u-deformed Schur polynomials) S
(N)
a,b , and, for the sake of

brevity, the first column will be denoted as S
(N)
[i] , while the second one S̃

(N)
[i] .
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As the simplest example, there is an N -independent differential operator,

D1 = ∂1+
u

6

(
p1∂1+2p2∂2+3p3∂3+. . .

)
− u2

180

(
7p2

1∂1+30p2p1∂2+(48p3p1+24p2
2)∂3+. . .

)
+

+
u3

7560

(
71p3

1∂1+(−336p2
2+436p2p

2
1)∂2+(−2142p3p2+663p3p

2
1+675p2

2p1)∂3+ . . .
)

+ . . .

(5.19)

which connects u-deformed Schur polynomials S
(N)
[r] at the low-left corner with the next

ones, and S̃
(N)
[r−1] = S

(N)
[r−1]:

. . .

S
(N)
[r−2]{u|p}

? ↑

S
(N)
[r−1]{u|p}

?−→ S̃
(N)
[r−2]

D1 ↑ ? ↑

S
(N)
[r] {u|p}

D1−→ S
(N)
[r−1]{u|p} . . .

(5.20)

It is easy to understand that such an operator, if exists at all, should contain rather

strange coefficients: in the case of N = 2 it should connect the two explicitly known

functions,

D1

(√
p1

u
sinh(

√
up1)

)
= cosh(

√
up1) (5.21)

It follows that the underlined terms are actually

D1 =
2

1 +
tanh(

√
up1)√

up1︸ ︷︷ ︸
1+

up1
6
− 7(up1)2

180
+

71(up1)3

7560
− 517(up1)4

226800
+

307(up1)5

554400
−...

·∂1 +O(∂2, ∂3, . . .) (5.22)

The same example is sufficient to understand that this operator can not act deeper inside

the table, because

D1 cosh(
√
up1) 6=

√
u

p1
sinh(

√
up1) (5.23)

Occasionally, in this particular case all the three matrix elements are related by a simple

dilatation:

D =
1

p1

(
p1∂1 + u∂u

)
:

√
p1

u
sinh(

√
up1)

D−→ cosh(
√
up1)

D−→
√
u

p1
sinh(

√
up1) (5.24)

but this does not immediately generalize to N > 2.
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5.3 Evaluation of S
(N)
[0]

For reference, we list in the appendix the first u-deformed Schur functions, i.e. the first few

matrix elements

S
(N)
N−a,b =

N−a∏
j=b

σj

−1{
exp

(
uT+ +

r∑
s=1

ps
s
T

(s)
−

)}
N−a,b

(5.25)

This matrix has the symmetry a ↔ b, but for u 6= 0 its elements change along the subdi-

agonals. Also, u-corrections in S
(N)
[k] = S[k] +O(u) depend on N .

Here we discuss in detail only S
(N)
[0] , which is the element at the upper left or lower

right corner of eΛ, i.e. it is the conventional τ -function τ1. p1-derivatives convert it into

elements in the first row and the last column, while u-derivatives produce those in the first

row and the first column, i.e. S
(N)
[1] etc.

The evaluation goes through the Gauss decomposition, only this time one needs

eΛ = eLDeU , then S[0] =
(
eΛ
)

11
= D11. The triangular matrices L and U are made

from all the N2−N roots (not only from the highest weights T±s ), while the diagonal one,

D = exp

(
r∑
s=1

αs · adsT+(T−s )

)
(5.26)

can be thought to involve nothing else. Moreover, dependence of the element D11 on the

matrix size is very simple:

S[0] = D
(N)
11 = exp


r∑
s=1

αs

s∏
j=1

σ2
j︸ ︷︷ ︸

(N−1)!s!
(N−s−1)!

 (5.27)

As to αs, it first appears for N = s + 1, i.e. it can be evaluated from the value of
(
eΛ
)

11
at N = s+ 1, provided all the lower αj<s are already known.

To get some impression of what αs looks like, we evaluate it in the case when only ps
is non-vanishing. Then the relevant element of the (s+ 1)× (s+ 1) matrix is

(
eΛ
)

11
= e(s!)2·αs =

∞∑
i=0

(
s!(s− 1)!usps

)i(
(s+ 1)i

)
!

(5.28)

and for the matrices of size N ×N this should be raised to the power (N−1)!
s!(N−1−s)! .

In particular, when only p1 6= 0 the only non-vanishing coefficient is α1, and

S
(N)
[0] (p1) =

( ∞∑
i=0

(up1)i

(2i)!

)N−1

= coshr(
√
up1) (5.29)
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familiar from section 4.1. Similarly,

S
(N)
[0] (p2) =

( ∞∑
i=0

(2u2p2)i

(3i)!

) (N−1)(N−2)
2!

·

·
(

1− (u2p2)2

4
+

3 · 49(u2p2)3

6!
− 4·27·163·269(u2p2)4

11!
+ . . .

) (N−1)(N−2)(N−3)
3!

·

·
(

1 +
12 · 17(u2p2)3

7!
− 64 · 81 · 7279(u2p2)4

11!
+ . . .

) (N−1)(N−2)(N−3)(N−4)
4!

·

·
(

1− 3 · 47 · 7279(u2p2)4

16 · 7
+ . . .

) (N−1)(N−2)(N−3)(N−4)(N−5)
5!

. . .

S
(N)
[0] (p3) =

( ∞∑
i=0

(12u3p3)i

(4i)!

) (N−1)(N−2)(N−3)
3!

· . . .

. . . (5.30)

For N = 3 and p1 = 0 the entire matrix is



∑∞
i=0

(2u2p2)i

(3i)!

p
2/3
2 ∂2p

1/3
2←−
√

2u
∑∞

i=0
(2u2p2)i

(3i+1)!

p
1/3
2 ∂2p

2/3
2←− 2u2

∑∞
i=0

(2u2p2)i

(3i+2)!

↓ p2∂2 ↓ p2/3
2 ∂2p

1/3
2 ↓ p1/3

2 ∂2p
2/3
2

1√
2u

∑∞
i=1

(2u2p2)i

(3i−1)!

p2∂2←−
∑∞

i=0
(2u2p2)i

(3i)!

p
2/3
2 ∂2p

1/3
2←−
√

2u
∑∞

i=0
(2u2p2)i

(3i+1)!

↓ p4/3
2 ∂2p

−1/3
2 ↓ p2∂2 ↓ p−1/3

2 ∂2p
1/3
2

1
2u2

∑∞
i=1

(2u2p2)i

(3i−2)!

p
4/3
2 ∂2p

−1/3
2←− 1√

2u

∑∞
i=1

(2u2p2)i

(3i−1)!

p2∂2←−
∑∞

i=0
(2u2p2)i

(3i)!


(5.31)

6 Discussion and conclusion

Summary. In this paper, we considered peculiar matrices eΛ, which represent P -expo-

nentials of flat connections in the case when the connections are constant. Moreover,

following [47, 53–55, 92], we concentrated on r-parametric matrices of peculiar form (4.3),

which are fully defined through their eigenvalues, though the explicit expression is some-

what sophisticated, see (4.50)–(4.52). These matrices are highly asymmetric, still the

minors at their corners all possess interesting properties related to Toda integrable sys-

tems. While the minors at the upper-left and lower-right corners are just the usual Toda

lattice τ -functions considered in [69], which are equally well expressed in term of time and

Miwa variables, those at the upper-right and lower-left corners, which we call respectively

“skew” and “double-skew” τ -functions did not attract enough attention in the literature.
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eΛ = euT++
∑
s wsT

(s)
−

τ (k)

τ
(k)
= {w}

τ
(k)
− (λ)

τ̄ (k)

We demonstrated that the skew τ -functions are best studied in Miwa-like (eigenvalue) λ-

variables, while the double skew ones in terms of the ordinary time variables tk = wk.

In all the four cases, relations between the minors of different sizes are provided by very

similar Toda-like equations reflecting existence of the Plücker relations, but in a somewhat

different way. However, explicit expressions for ws through λ, needed in the case of τ− and

for matrix elements trough ws and u in the case of τ= remain to be found and understood.

Speculations. In fact, until recently, most attention in this field was concentrated around

the classical approximation, where the AdS/CFT correspondence is straightforward and

the non-Abelian nature of Chern-Simons theory plays almost no role. In result, the observ-

ables were the limits of large spin representations, which factorize and reduce to quantum

dimensions for the closed Wilson lines.

However, in fact, the relevant observables in 3d higher spin theory have to be the full-

fledged knot invariants, which are far less trivial quantities, made from quantum Racah

and mixing matrices [45]. Fortunately, in the simplest cases, which are in fact physically

relevant they are already known, and one can start extracting physical information from

this knowledge.

For example, the Hopf link is described in the case of two symmetric representations

[r] and [s], by a wonderful hypergeometric series [93]:

Hr,s(q,N) = DrDs

1 +

min(r,s)∑
k=1

(
q − q−1

)k
(−)kqk(k+3)/2−k(r+s+N)

k−1∏
j=0

[r − j]![s− j]!
[j +N ]!


(6.1)

where n = qn−q−n
q−q−1 is the quantum number and Dr = [N+r−1]!

[r]! is the quantum dimension of

representation [r]. In AdS3 studies, one picks up only the leading factor DrDs and inter-

prets its logarithm as the entanglement and thermal entropy, depending on the choice and

interpretation of parameters r and s. One option is to relate r to the mass of the “back-

ground” black hole, while s to that of the probe one. Another option is to relate r to the
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length of a segment in calculation of the entanglement entropy. What still remains obscure

is a proper interpretation of the fixed-gauge open Wilson lines in terms of knot theory.

The real question is, however, to clarify the role of q and interpret the whole sum

in (6.1) in terms of the higher spin theory. This subject is closely related to the role of

quantum hypergeometric functions and operator-valued τ -functions in conformal theory.

We hope to elaborate on these issues in future publications.

Analytic continuation in N . As we established in s.3.6, the skew τ -functions are

associated with the Toda molecule hierarchy, which is determined by conditions (4.42). In

fact, one can go even further to check that

τ
(0)
− = 1, τ

(N)
− = 1 (6.2)

due to constraint (4.21). One can immediately consider the limit of N →∞ just by lifting

the second part of these conditions (6.2) and remaining with a generic Toda chain forced

hierarchy [90]. However, an analytic continuation to arbitrary (non-integer) N is hard,

because of the first constraint τ
(0)
− = 1 and of the Toda chain recursion which connects

three τ
(k)
− at neighbour values. This is, however, not necessary for higher spin theory: one

only needs an (infinite) algebra4 hs[µ] parameterized by a continuous parameter µ that at

a generic value of µ contains the only finite subalgebra sl(2), but at µ = N it factorizes

into sl(N) and an (infinite) ideal [3–9]. In terms of the Toda forced hierarchy, this means

that, at generic µ, one considers solutions to the complete forced hierarchy parameterized

by µ: τ
(k)
− (µ). One can define µ as follows: consider τ

(k)
− (µ) as a function of parameter

k analytically continued to arbitrary values of k. Then, define µ as the location of a

zero of log τ
(k)
− , i.e. τ

(k)
− (µ)|k=µ = 1. The presence of the sl(2) subgroup is related to the

condition of the forced hierarchy τ
(0)
− = 1, while at integer values of µ = N there emerges

an additional condition τ
(N)
− = 1. We are planning to return to the manifest description of

this generic solution τ
(k)
− (µ) elsewhere.

Conclusion. This paper is largely motivated by the recent results in [47, 53–55, 92].

As we tried to argue, they almost embed the studies of open Wilson lines in 3d higher

spin theory into the general context of integrability theory. Of crucial importance is the

very interest to open Wilson lines [54, 55], which are not normally studied within the

Chern-Simons context, but which reveal a lot of structures not seen (remaining hidden) in

conventional theory of knot polynomials. On the other hand, knot theory needs quantiza-

tion to become really interesting, and combination of these two ingredients, integrability

and quantization, can finally bring to light the old attempts [69, 77, 78, 94, 95] to build

the operator-valued τ -functions for quantum groups. This can become a meeting point of

the three popular subjects of the last decade:

• 2d conformal + 3d knot theory,

• quasiclassics/Stokes theory + wall crossing + cluster varieties,

• quantum gravity and higher spin theory + AdS/CFT correspondence.

4This algebra emerges as the universal enveloping algebra U(sl(2,R)) at the fixed value of the second

Casimir equal to (µ2 − 1)/4.
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A lot of links are already found between these subjects, and all actually involve ideas

from integrability theory, where the notion of τ -function or, better, a “matrix model τ -

function” [82–88] with additional requirements to the choice of the group element plays

a central role. As we tried to demonstrate in this paper, these are exactly the features

that are getting revealed and attract attention in [47] and its precursors, and from this

point of view the most important next step should be quantization providing connection

to representation theory of quantum groups, where a considerable progress was recently

made to serve the needs of the CFT and knot polynomial research.

Especially important for the future research is understanding of integrability properties

of semiclassical conformal blocks: a new and fast developing branch of CFT [57–64, 96].

At the same time, some older subjects like finite W-algebras (see a review in [97]) seem to

be directly connected to our story. We hope to return to these issues elsewhere.

Acknowledgments

We are grateful to V.P. Nair and F. Novaes for useful conversations.

A.Mor. acknowledges the hospitality of IIP at Natal during the work on this project.

D.Mel. is thankful to S. Klevtsov and the Institute for Theoretical Physics at the University

of Cologne for hospitality at its final stage.

Our work is partly supported by RFBR grants 14-02-00627 (D.Mel.), 16-01-00291

(A.Mir.), 16-02-01021 (A.Mor.), by grant 15-31-20832-Mol-a-ved (A.Mor.), by joint grants

16-51-53034-GFEN, 15-51-50034-YaF, 15-51-52031-NSC-a (A.Mir. and A.Mor.) and the

Science without Borders project 400635/2012-7 supported by the Brazilian National Coun-

sel for Scientific and Technological Development (CNPq).

A The first u-deformed Schur functions S

We list here the first few matrix elements

S
(N)
N−a,b =

N−a∏
j=b

σj

−1{
exp

(
uT+ +

r∑
s=1

ps
s
T

(s)
−

)}
N−a,b

(A.1)

This matrix has a symmetry a↔ b, but for u 6= 0 its elements change along the subdiago-

nals. Also, u-corrections in S
(N)
[k] = S[k] +O(u) depend on N .

• N = 2:

S̃
(2)
[−1] = S

(2)
1,2 =

√
u
p1

sinh(
√
up1) = u+ u2p1

6 +
u3p2

1
120 + . . .

? ↑ D

S
(2)
[0] = cosh(

√
up1) = 1 + up1

2 +
u2p2

1
24 +

u3p3
1

720 + . . .

D1 ↑ D

τ
(1)
= = S

(2)
[1] =

√
p1

u sinh(
√
up1) = p1 +

up2
1

6 +
u2p3

1
120 +

u3p4
1

5040 + . . .

τ
(2)
= = S

(2)
[0] −S

(2)
[1] S̃

(2)
[−1] = 1

(A.2)
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• N = 3:

S̃
(3)
2,2︸︷︷︸

6=S
(3)
[0]

1︸︷︷︸
S[0]

+2up1 +u2p2

3 +
2u2p2

1
3 +2u3p2p1

15 +
4u3p3

1
45 + . . .

S
(3)
[0] = 1︸︷︷︸

S[0]

+up1 +u2p2

3 +
u2p2

1
3 +u3p2p1

10 +
2u3p3

1
45 + . . .

? ↑

S
(3)
[1] = p1︸︷︷︸

S[1]

+up2

2 +
2up2

1
3 +u2p2

4 +
2u2p2

1
15 +

u3p2
2

60 +
2u3p2p2

1
45 +

4u3p4
1

315 + . . .

D1 ↑

τ
(1)
= = S

(3)
[2] =

p2

2
+
p2

1

2︸ ︷︷ ︸
S[2]

+up2p1

3 +
up3

1
6 +

u2p2
2

24 +
u2p2p2

1
12 +

u2p4
1

45 +
u3p2

2p1

90 +
u3p2p3

1
105 +

u3p5
1

630 + . . .

τ
(2)
= = S

(3)
[1] −S

(3)
[2] S̃

(2)
2,2︸ ︷︷ ︸

=S
(3)
[1,1]

= −p2

2
+
p2

1

2︸ ︷︷ ︸
S[11]

−up2

3 +
up3

1
6 +

u2p2
2

24 −
u2p2p2

1
12 +

u2p4
1

45 +
u3p2

2p1

90 − u3p2p2
1

105 +
u3p5

1
630 + . . .

(A.3)

• N = 4:

S̃
(4)
3,2︸︷︷︸

6=S
(4)
[1]

p1︸︷︷︸
S[1]

+3up2

2 +
5up2

1
3 +u2p3

2 + 7u2p2p1

4 +
91u2p3

1
120 +

+7u3p3p1

20 +
3u3p2

2
10 +

57u3p2p2
1

80 +
41u3p4

1
252 + . . .

S
(4)
[1] = p1︸︷︷︸

S[1]

+up2 +
7up2

1
6 +2u2p3

3 + 4u2p2p1

3 +
61u2p3

1
120 +

+13u3p3p1

30 +
u3p2

2
5 +

193u3p2p2
1

360 +
547u3p4

1
5040 + . . .

? ↑

S
(4)
[2] =

p2

2
+
p2

1

2︸ ︷︷ ︸
S[2]

+up3

2 + 13up2p1

12 +
5up3

1
12 +5u2p3p1

12 +
u2p2

2
4 +

29p2p2
1

48 +
91u2p4

1
720 +

+3u3p3p2

20 − 103u3p3p2
1

720 +
23u3p2

2p1

120 +
1573u3p2p3

1
10080 +

41u3p5
1

2016 + . . .

D1 ↑

τ
(1)
= = S

(4)
[3] =

p3

3
+
p2p1

2
+
p3

1

6︸ ︷︷ ︸
S[3]

+up3p1

3 +
up2

2
6 +

5p2p2
1

12 +
up4

1
12 +u2p3p2

6 +
17u2p3p2

1
120 +

11u2p2
2p1

60 +
13u2p5

1
720 +

+
u3p2

3
30 −

19u3p3p2p1

180 +
41u3p3p3

1
1260 +

u3p3
2

60 +
331u3p2

2p
2
1

5040 +
53u3p2p4

1
2016 +

41u3p6
1

18144 + . . .

τ
(2)
= = S

(4)
[2] −S

(4)
[3] S̃

(4)
3,2︸ ︷︷ ︸

=S
(4)
[2,2]

= −p3p1

3
+
p2

2

4
+
p4

1

12︸ ︷︷ ︸
S[22]

−7up3p2
1

18 +
up2

2p1

6 +
up5

1
18 +

u2p2
3

12 −
u2p3p3

1
5 +

u2p2
2p

2
1

15 +
u2p6

1
60 +

+
u3p2

3p1

10 − u3p3p2
2

30 − 223u3p3p4
1

3780 +
11u3p2

2p
3
1

630 +
17u3p7

1
5670 + . . .
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