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1 Introduction

There has been increasing interest in the holographic duality between fluid dynamics and

gravity in the past few years, while the suggestion of such a connection can be dated

back to the 1970s suggested by Damour [1–3]. Later, the approach was developed into

the membrane paradigm [4], which relates the evolution and diffusion of a black hole

to those in hydrodynamics [5–9]. In recent years, along with the progress in the anti-

de Sitter/Conformal Field Theory (AdS/CFT) correspondence [10–13], the dual fluid has

been generalized to the conformal fluid living on the boundary of AdS spacetime, which

describes the long wavelength and low frequency limit of conformal field theory [14–16].

In particular, a systematic method to study the duality was proposed in the fluid/gravity

correspondence [17], which translates problems in fluid dynamics into problems in general

relativity. It was then further expanded to the case in an arbitrary dimension in [18–20]

and to the non-relativistic hydrodynamics case in [21].

To build up a connection between the fluid/gravity correspondence and membrane

paradigm, a timelike hypersurface outside a horizon of spacetime is introduced to study

the universality of the hydrodynamic limit in the AdS/CFT correspondence and membrane

– 1 –



J
H
E
P
1
2
(
2
0
1
4
)
1
4
7

paradigm [22–24]. Significantly, the authors in [24] consider the fluid living on the finite

cutoff hypersurface outside the horizon from the viewpoint of Wilsonian renormalization,

and impose the Dirichlet boundary condition on the hypersurface and the regularity on the

horizon. Then the fluid/gravity correspondence on the cutoff hypersurface can be general-

ized to the asymptotically flat [25, 26] or de Sitter spacetime [27], and it has been further

studied in [28–36]. More general discussions in the fluid/gravity correspondence can also

be found in [37–41], as well as in the frame of the AdS/Ricci-flat correspondence [42, 43].

Recently, one of the most important developments in the gravity/fluid duality is the

so-called Rindler hydrodynamics [25, 44–49], where the dual fluid lives on a constant accel-

eration hypersurface with a flat induced metric. While Bredberg et al. showed in [25] that

for the four-dimensional case the geometry for the vacuum Einstein gravity is, at least at

leading nontrivial order for the non-relativisic hydrodynamic expansion, of an algebraically

special variety known as restricted Petrov type I , it was found in [50] that in the near-

horizon limit, instead of the regularity condition on the horizon, imposing the Petrov type I

condition on the hypersurface can reduce the vacuum Einstein constraint equations on the

hypersurface to the incompressible Navier-Stokes equations in one lower dimensional flat

spacetime. It is mathematically much simpler than solving gravitational field equations.

Further study based on this framework can be found in [51–56]. From the point of view of

degrees of freedom, the Petrov type I condition gives (p + 2)(p − 1)/2 constraints on the

extrinsic curvature of a p+1 dimensional timelike hypersurface, or equivalently on the dual

Brown-York stress tensor. Then the degrees of freedom of the stress tensor are reduced to

be p + 2, which can be interpreted as energy density, pressure and velocity field of dual

fluid [50]. Furthermore the momentum constraint of Einstein gravity turns out to be the

equation of motion of the dual fluid, while the Hamiltonian constraint of the gravity can

be interpreted as the equation of state for the dual fluid.

Very recently, it has been shown in [57, 58] that, the Petrov type I condition can be

used to recover the stress tensor of the dual fluid on the hypersurface order by order under

appropriate gauge choice. Without solving the gravitational field equations, the Rindler

fluid dual to vacuum Einstein gravity can be recovered at least up to the second order in

the relativistic hydrodynamic expansion [58]. Note that the stress tensor of Rindler fluid

in vacuum Einstein-Gauss-Bonnet gravity is found to be modified by the Gauss-Bonnet

term with coupling coefficient α in [45, 48]. It is then quite interesting to ask whether

the Petrov type I condition holds or not in vacuum Einstein-Gauss-Bonnet gravity and

whether it can be used to recover the dual stress tensor. In this paper, we find that the

Petrov type I condition for the solution of vacuum Einstein-Gauss-Bonnet equations still

holds up to the second order in the relativistic hydrodynamic expansion, and that turn the

logic around, imposing the Petrov type I condition and Hamiltonian constraint, the stress

tensor of the relativistic Rindler fluid can be recovered with correct first order and second

order transport coefficients including the Gauss-Bonnet term corrections.

This paper is organized as follows. In section 2, we first review the Rindler fluid in

vacuum Einstein-Gauss-Bonnet gravity, and show that the spacetime is at least Petrov

type I up to the second order in the relativistic hydrodynamic expansion. In section 3, we

give a detailed derivation of the Petrov type I condition on a cutoff hypersurface in the
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vacuum Einstein-Gauss-Bonnet gravity. In section 4, we turn the logic around and obtain

the stress tensor of the dual fluid without using the details of the solution, but assuming

the Hamiltonian constraint and Petrov type I conditiont on a finite cutoff hypersurface.

We further study the Petrov type I condition in non-relativistic hydrodynamic expansion

in section 5, and make the conclusion in section 6.

2 Rindler fluid in vacuum Einstein-Gauss-Bonnet gravity

To study the fluid dual to the vacuum Einstein-Gauss-Bonnet gravity, we begin with the

Einstein-Hilbert action on a (p + 2) dimensional Lorentz manifold M, with the Gauss-

Bonnet term LGB = R2 − 4RµνR
µν +RµνσλR

µνσλ and appropriate surface term [59]

S =
1

16πGp+2

∫

dp+2x
√−g(R− 2Λ + αLGB) + S∂M. (2.1)

where α is the Gauss-Bonnet coefficient. Varying this action with respect to the metric

gµν yields the vacuum Einstein-Gauss-Bonnet field equations,

Gµν + 2αHµν = 0, Gµν ≡ Rµν −
1

2
Rgµν , µ, ν = 0, 1, . . . , p+ 1, (2.2)

Hµν ≡ RRµν − 2RµλR
λ
ν − 2RσλRµσνλ +R σλρ

µ Rνσλρ −
1

4
gµνLGB. (2.3)

The p+ 2 dimensional Rindler metric

ds2p+2 = −rdτ2 + 2dτdr + δijdx
idxj , i, j = 1, . . . , p , (2.4)

is an exact solution of the field equations (2.2). On a timelike hypersurface Σc with r = rc,

the induced metric is intrinsic flat,

ds2p+1 = γabdx
adxb = −rcdτ

2 + dxidx
i , a, b = 0, 1, . . . , p . (2.5)

And after setting 16πGp+2 = 1, the Brown-York stress tensor of Einstein-Gauss-Bonnet

gravity on the cutoff surface Σc can be written as [28, 60],

T (GB)

ab = −2 (Kab −Kγab)− 4α (3Jab − Jγab) , J ≡ γabJab, (2.6)

Jab ≡
1

3

(

2KKacK
c
b +KcdK

cdKab − 2KacK
cdKdb −K2Kab

)

. (2.7)

Here Kab is the extrinsic curvature of the hypersurface Σc.

2.1 Rindler fluid in relativistic hydrodynamic expansion

In order to study the dual fluid on the hypersurface Σc, one introduces the (p+1) indepen-

dent parameters ua = γv(1, v
i) and p, which are slowly varying functions of xa = (τ, xi).

Here γv is fixed through γabu
aub = −1. Keep the induced metric on a timelike hypersurface

Σc flat and impose the regularity on the future horizon, the solution of vacuum Einstein-

Gauss-Bonnet field equations (2.2) up to the second order in the derivative expansion is

given by [48],

ds2p+2 = gµνdx
µdxν = −2puadx

adr + gabdx
adxb, (2.8)

gab = g
(0)
ab + g

(1)
ab + g

(2)
ab +O(∂3). (2.9)

– 3 –
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The superscript indices (0), (1), (2), . . . on the metric components gab denote the order of

the derivative of the velocity ua and pressure p with respect to the transverse space-time

coordinates xa: ∂ ∼ ε, where we have introduced the small parameter ε ≪ 1. The leading

order term of gab in the derivative expansion is given by

g
(0)
ab = [1− p

2(r − rc)]uaub + hab, (2.10)

where the projection tensor hab ≡ γab+uaub. We can read off the horizon position through

rh = rc − 1/p2 with g
(0)
ab in the case of equilibrium state. The first order term in gab in the

derivative expansion is

g
(1)
ab = 2p(r − rc)

[

(D lnp)uaub + 2a(aub)
]

, (2.11)

where D ≡ uc∂c and the acceleration aa ≡ ub∂bu
a. At the second order in the derivative

expansion, the Gauss-Bonnet corrections appear in the metric,

ucudg
(2)
cd = +2(r − rc)KcdKcd +

1

2
p

2(r − rc)
2
(

KcdKcd + 2aca
c
)

+
1

2
p

4(r − rc)
3ΩcdΩ

cd

+ 2αp2(r − rc)

(

KcdKcd − 6

p
ΩcdΩ

cd

)

+ 3αp4(r − rc)
2 p− 2

p
ΩcdΩ

cd, (2.12)

hcau
dg

(2)
cd = −2(r − rc)h

c
a∂dKd

c + p

2(r − rc)
2
[

hba∂cKc
b − (Kad +Ωad)a

d
]

, (2.13)

hcah
d
bg

(2)
cd = +2(r − rc)

(

−K c
a Kcb + 2Kc(aΩ

c
b) − 2hcah

d
bDKcd

)

− p

2(r − rc)
2ΩacΩ

c
b

+ 12αp2(r − rc)

[

ΩacΩ
c
b +

1

p

(

ΩcdΩ
cd
)

hab

]

. (2.14)

Here the fluid shear and vorticity are defined as

Kab ≡ hcah
d
b∂(cud), Ωab ≡ hcah

d
b∂[cud]. (2.15)

The components of inverse metric up to the second order in the derivative expansion are

grr = p

−2
[

1 + p

2(r − rc)−
(

g
(1)
cd + g

(2)
cd − habg(1)ac g

(1)
bd

)

ucud
]

,

gra = p

−1
(

ua + habg
(1)
bc uc + habg

(2)
bc uc

)

,

gab = hab − hachbdg
(2)
cd . (2.16)

One also needs to consider the following constraints

∂au
a = 2p−1KabKab +O(∂3),

aa +D⊥
a lnp = 2p−1hca∂bKb

c +O(∂3), (2.17)

with D⊥
a ≡ hca∂c, so that the metric (2.8) solves the vacuum Einstein-Gauss-Bonnet field

equations (2.2) up to the second order in the derivative expansion.

With the metric (2.8) and the gauge choice where the fluid velocity ua is defined such

that the momentum density vanishes in the local rest frame of the fluid, and the pressure p

is defined by imposing the isotropy gauge so that there do not contain terms proportional

– 4 –
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to hab at higher derivative orders [46], the dual stress tensor T
(GB)

ab for the vacuum Einstein-

Gauss-Bonnet gravity on the finite cutoff surface Σc in (2.6) has been obtained in [48],

T (GB)

ab = +phab − 2Kab − 2p−1
(

KcdKcd
)

uaub

+ p

−1
[

−2
(

1 + 2αp2
)

KacKc
b − 4Kc(aΩ

c
b) − 4

(

1 + 3αp2
)

ΩacΩ
c
b

−4hcah
d
b∂c∂d lnp− 4KabD lnp+ 4(D⊥

a lnp)(D⊥
b lnp)

]

. (2.18)

On the other hand, a general stress tensor T (R)

ab for (p + 1)-dimensional relativistic fluid

with vanishing equilibrium energy density is constructed in [46] as

T (R)

ab = +phab − 2ηKab + ζ ′(D lnp)uaub

+ p

−1
[

d1KcdKcd + d2ΩcdΩ
cd + d3(D lnp)2 + d4DD lnp+ d5(D⊥ lnp)2

]

uaub

+ p

−1
[

c1KacKc
b + c2Kc(aΩ

c
b) + c3ΩacΩ

c
b + c4h

c
ah

d
b∂c∂d lnp+ c5KabD lnp

+ c6D
⊥
a lnpD⊥

b lnp
]

. (2.19)

Compare T (GB)

ab in (2.18) with T (R)

ab in (2.19), one can read off the holographic transport

coefficients of Rindler fluid dual to the vacuum Einstein-Gauss-Bonnet gravity as

ζ ′ = 0, η = 1, d1 = −2, d2 = d3 = d4 = d5 = 0,

c1 = −2(1 + 2αp2), c3 = −4(1 + 3αp2), c2 = c4 = c5 = −c6 = −4 . (2.20)

It turns out that there are no Gauss-Bonne corrections to the shear viscosity η and the

parameter ζ ′, the latter measures variations of the energy density. The Gauss-Bonnet

corrections appear in the second order transport coefficients c1 and c3. Considering the

equilibrium entropy density s = 4π, one obtains the universal ratio of shear viscosity

over entropy density as η/s = 1/4π [45]. There is no Gauss-Bonnet term correction to

the ratio or to the shear viscosity itself here, which is different from the result in the

context of the AdS/CFT correspondence [61–63]. To understand the difference, as pointed

out in [28], one can start with the (p + 2) dimensional Einstein-Gauss-Bonnet gravity

in AdS spacetime with AdS radius L and a negative cosmological constant Λ = −p(p +

1)/2L2. Then the ratio of shear viscosity over entropy density in the dual hydrodynamics

is η/s =
[

1− 2(p− 2)(p+ 1)α/L2
]

/4π. Taking the large AdS radius limit L → ∞ or

the zero cosmological constant limit Λ → 0, the asymptotically AdS spacetime becomes

an asymptotically flat one, meanwhile, the Gauss-Bonnet term correction in the ratio

−2(p− 2)(p+1)α/L2 disappears. This implies that the shear viscosity in the Rindler fluid

is protected against quantum corrections or other deformations [45].

2.2 The solution is Petrov type I

The Petrov type classification of Weyl tensor in higher dimensions is summarized in ap-

pendix A. Choose (p+2) Newman-Penrose-like vector fields, which include two null vectors

ℓ
2 = k

2 = 0, and p orthonormal spacelike vectors mi. The null vectors obey ℓµk
µ = 1 and

– 5 –



J
H
E
P
1
2
(
2
0
1
4
)
1
4
7

all other products with mi(i = 1, . . . p) vanish, such that the metric can be decomposed as

gµν = 2ℓ(µkν) + δijm
i
µm

j
ν . Define

P
(r)
ij ≡ 2C(ℓ)i(ℓ)j ≡ 2ℓµm ν

i ℓ
α
m

β
j Cµναβ . (2.21)

Then the Weyl tensor Cµναβ is at least Petrov type I if there exists a frame ℓ,k,mi such

that P
(r)
ij = 0. In this subsection, we will show that the Weyl tensors Cµναβ of the metric

gµν in (2.8) is at least Petrov type I .

A special kind of frame has been chosen in [58]. If we denote n = n
µ∂µ as the spacelike

unit normal vector of a constant r hypersurface, u = u
µ∂µ is the normalized (p+2) velocity

along with the hypersurface, and mi = mi
µ∂µ being the remaining orthonormal spatial

vectors, then the inverse of the metric (2.8) can be decomposed as

gµν = n
µ
n
ν − u

µ
u
ν + δijm µ

i m
ν
j , (2.22)

where n
µ and u

µ associated with a constant r hypersurface have been taken as

n
r = (grr)1/2 , n

a = (grr)−1/2 gra,

u
r = 0, u

a = n
a. (2.23)

Considering the fact that m a
i m

i
b = hab = δab + uaub, where

m a
i = δ a

i + r−1/2
c uiδ

a
τ + (1 + r1/2c γv)

−1uiu
jδaj ,

mi
a = δia − r+1/2

c uiδτa + (1 + r1/2c γv)
−1uiujδ

j
a, (2.24)

we can fix the freedom of mi
µ through choosing them as

m
r
i = 0, m

a
i = m a

i − 1

2
m b

i g
(2)
bc hca, (2.25)

which satisfy gµνm
µ
i m

ν
j = δij up to the order ∂2.

Further one can construct the two null vector fields as the combinations of n and u as

√
2ℓ = −n+ u,

√
2k = −n− u. (2.26)

Then the metric (2.8) as well as its inverse (2.16) can be decomposed as

gµν = 2ℓ(µkν) + δijm
i
µm

j
ν , gµν = 2ℓ(µkν) + δijm µ

i m
ν
j . (2.27)

Concretely, the components of the frame with superscript index are given as follows.

√
2ℓµ = −n

rδµr − (na − u
a)δµa = −(grr)1/2δµr ,√

2kµ = −n
rδµr − (na + u

a)δµa = −(grr)1/2δµr − 2(grr)−1/2graδµa ,

m
µ
i = m

a
i δµa =

(

m a
i − 1

2
m b

i g
(2)
bc hca

)

δµa . (2.28)

And the components with subscript index are given by

√
2ℓµ = −(nr − ur)δ

r
µ + uaδ

a
µ = (grr)1/2puaδ

a
µ,

– 6 –
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√
2kµ = −(nr + ur)δ

r
µ − uaδ

a
µ = −2(grr)−1/2δrµ − (grr)1/2puaδ

a
µ,

m
i
µ =

[

m i
a + uau

b(g
(1)
bc + g

(2)
bc )hcdm i

d − 1

2
hbag

(2)
bc hcdm i

d

]

δaµ. (2.29)

To check the Petrov type I condition P
(r)
ij = 0 of the Weyl tensor of the solution we

introduce another covariant formula P
(r)
ab , which is defined as

P
(r)
ab ≡ 2hcah

d
bC(ℓ)c(ℓ)d = n

rhcan
rhdbCrcrd, P

(r)
ij = m

a
i m

b
j P

(r)
ab . (2.30)

Then after a straightforward calculation of the Weyl tensors with metric (2.8), we find

P
(r)
ab = −grr

(

1

2
hcah

d
b∂

2
rg

(2)
cd + p

2ΩacΩ
c
b

)

+O(∂3). (2.31)

Considering g
(2)
cd with Gauss-Bonnet corrections in (2.14), we can conclude that P

(r)
ab =

O(∂3) at arbitrary r, which also indicates P
(r)
ij = O(∂3) at every spacetime point in (2.8).

As a result, we have shown that the Weyl tensor or the spacetime with metric (2.8) is at

least Petrov type I up to ∂2, even when the Gauss-Bonnet term is included.

3 Petrov type I condition on the hypersurface Σc

The Petrov type I condition is introduced to reduce the degrees of freedom in the extrinsic

curvature of the hypersurface Σc to the degrees of freedom in the dual fluid on Σc in [50].

On a hypersurface with intrinsic metric γab, the covariant Petrov type I condition is defined

as [58],

Pab ≡ P
(rc)
ab = 2hcah

d
bC(ℓ)c(ℓ)d|Σc = 0, (3.1)

where hab ≡ γab + uaub and ua ≡ u
a|r=rc . With (2.26), we have

2C(ℓ)c(ℓ)d = C(u)c(u)d − C(u)c(n)d − C(u)d(n)c + C(n)c(n)d, (3.2)

where the subscript indexes (u) and (n) denote contractions with the vectors u
µ and n

µ

introduced in (2.23), respectively. We need to rewrite the Weyl tensor in terms of the

extrinsic curvature Kab, through using the Gauss-Codazzi equations on the intrinsic flat

hypersurface Σc. Thus, we firstly define the following hypersurface quantities

Mabcd ≡ γαa γ
β
b γ

γ
c γ

δ
dRαβγδ = KadKbc −KacKbd,

Nabc ≡ γαa γ
β
b γ

γ
c n

δRαβγδ = ∂aKbc − ∂bKac,

Yab ≡ γαa n
βγγb n

δRαβγδ = KKab −KacK
c
b + γαa γ

β
b Rαβ , (3.3)

where α, β, . . . are the bulk indexes and a, b, . . . are hypersurface indexes. Associated with

the hypersurface Σc, nα ≡ n
α|r=rc is the unit normal vector, and γαa are the remain-

ing projection vectors. In our coordinate system, γαa ≡ ∂xα

∂xa = δαa are identical to the

a−components of the projection tensor γαβ ≡ δαβ − nαnβ . The flat induced metric γab is

related to the bulk metric through γab ≡ gαβγ
α
a γ

β
b |r=rc . Thus we can obtain

Mac ≡ γbdMabcd = KabK
b
c −KKac, Nb ≡ γacNabc = ∂a (K

a
b −Kδab) ,

M ≡ γacMac = KabK
ab −K2, Y ≡ γacYac = −M + γαβRαβ . (3.4)

– 7 –
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Then using the equations of motion (2.2) which lead to

Rµν = −2

p
αHgµν − 2αHµν , R =

4

p
αH, H ≡ Hµνg

µν , (3.5)

we can obtain the projections of the Weyl tensor on the hypersurface Σc,

γαa γ
β
b γ

γ
c γ

δ
dCαβγδ = Mabcd −

8αH

p(p+ 1)
γa[cγd]b + α

4

p
γαa γ

β
b γ

γ
c γ

δ
d(gα[γHδ]β − gβ[γHδ]α),

γαa γ
β
b γ

γ
c n

δCαβγδ = Nabc + α
4

p
γαa γ

β
b γ

γ
c n

δ(gα[γHδ]β − gβ[γHδ]α),

γαa n
βγγc n

δCαβγδ = Yac −
4αH

p(p+ 1)
γac + α

4

p
γαa n

βγγc n
δ
(

gα[γHδ]β − gβ[γHδ]α

)

. (3.6)

This is similar to the derivation in [53] for the case of Einstein gravity with matter. Then

put (3.6) into (3.1) and consider (3.2), we obtain Pab = P
(α)
ab + δP(H)

ab , where

P
(α)
ab ≡ M⊥

(u)a(u)b + 2N⊥
(u)(ab) −M⊥

ab, (3.7)

δP(H)

ab ≡ −2αH⊥
ab + 2αp−1

[

H(n)(n) − 2H(n)(u) +H(u)(u) +H
]

hab. (3.8)

For convenience, we here have defined

M⊥
(u)a(u)b = hma hnbMcmdnu

cud, N⊥
(u)(ab) = hm(ah

n
b)Ncmnu

c, M⊥
ab = hma hnbMmn, (3.9)

as well as

H⊥
ab ≡ Hµνγ

µ
c γ

ν
dh

c
ah

d
b , H(n)(n) ≡ Hµνn

µnν ,

H(u)(u) ≡ Hµνγ
µ
a γ

ν
b u

aub, H(n)(u) ≡ Hµνn
µγνb u

b. (3.10)

On the other hand, the Hamiltonian constraint for vacuum Einstein-Gauss-Bonnet

field equations (2.2) is

H ≡ −2(Gµν + 2αHµν)n
µnν = 0. (3.11)

With the decomposition of the Riemann tensor in appendix B, we obtain H = H
(α)+δH(H) ,

where [64]

H
(α) ≡ M, δH(H) ≡ α

(

M2 − 4MabM
ab +MabcdM

abcd
)

, (3.12)

while the momentum constraint for the equations of motion (2.2) turns out to be

∂aT (GB)

ab ≡ −2(Eµν + 2αHµν)n
µγνb = 0, (3.13)

where T (GB)

ab is the one given in (2.6).

Notice that P
(α)
ab in (3.7) is a hypersurface function of extrinsic curvature Kab, but it

is not true for δP(H)

ab in (3.8). For example, we can see from [64] that the term

Yab = −Mab + γµa γ
ν
bRµν = −LnKab +KacK

c
b (3.14)

appears in 2αH⊥
ab, thus Yab can not be obtained only from the extrinsic curvature Kab and

other intrinsic quantities, because additional information for the bulk such as Rµν , or the
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analytic continuation of Kab out of the hypersurface along n is needed. Thus unlike the

case in the Einstein gravity, the goal that Petrov type I condition gives constraints to the

extrinsic curvature can not be realized in the case with the Gauss-Bonnet term. However,

if we consider the linear approximation of Gauss-Bonnet parameter α, and take the Petrov

type I condition up to the linear order of α, the above difficulty can be solved.

To see this, we first define all the quantities with bars have the same expressions as those

without bars when α = 0. Then put (3.5) into (3.14) and (2.3), we obtain Ȳab = −M̄ab, as

well as

Hµν = H̄µν +O(α), H̄µν ≡ R̄ σλρ
µ R̄νσλρ −

1

4

(

R̄κσλρR̄κσλρ

)

ḡµν . (3.15)

With the calculations in appendix B, the equation (3.8) becomes δP(H)

ab = δP̄(H)

ab + O(α2),

where δP̄(H)

ab is the linear order term of α as

δP̄(H)

ab ≡ −2αH̄⊥
ab + 2αp−1hab

[

H̄(n)(n) − 2H̄(n)(u) + H̄(u)(u) + H̄
]

(3.16)

= −2αhma hnb

(

M̄ cde
m M̄ncde + 2N̄ cd

m N̄ncd + N̄ cd
mN̄cdn + 2M̄ d

m M̄nd

)

+ αp−1hab

[

2
(

M̄ cde
(u) M̄(u)cde + 2N̄ cd

(u) N̄(u)cd + N̄ cd
(u)N̄cd(u) + 2M̄ d

(u) M̄(u)d

)

+ 4(M̄(u)cdeN̄
dec−2M̄ cdN̄(u)cd)+

(

M̄ cdefM̄cdef+6N̄ cdeN̄cde+8M̄ cdM̄cd

) ]

. (3.17)

Now we can say that δP̄(H)

ab is a function of Kab, γab as well as ua. On the other hand,

notice that the extrinsic curvature Kab can be decomposed as

Kab = K̄ab + δK
(α)
ab +O(α2), (3.18)

where K̄ab is the contribution from vacuum Einstein gravity, and δK
(α)
ab includes the linear

order terms from the Gauss-Bonnet parameter α. Then from (3.7) we have P
(α)
ab = P̄ab +

δP
(α)
ab +O(α2), where

P̄ab ≡ M̄⊥
(u)a(u)b + 2N̄⊥

(u)(ab) − M̄⊥
ab, (3.19)

δP
(α)
ab = δM

⊥(α)
(u)a(u)b + 2δN

⊥(α)
(u)(ab) − δM

⊥(α)
ab . (3.20)

Finally, the covariant Petrov type I condition (3.1) up to the linear order terms of α becomes

Pab ≡ P̄ab + δP
(α)
ab + δP̄(H)

ab = 0. (3.21)

Similarly, the Hamiltonian constraint (3.11) up to the linear order terms of α becomes,

H = H̄+ δH(α) + δH̄(H) = 0, (3.22)

where

H̄ ≡ M̄, δH(α) ≡ δM (α), (3.23)

δH̄(H)≡ α
(

M̄2 − 4M̄abM̄
ab + M̄abcdM̄

abcd
)

. (3.24)
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With the expansion of Kab in (3.18), the Brown-York stress tensor (2.6) can also be

expanded as

T (GB)

ab ≡ T̄ab + δTab +O(α2), (3.25)

T̄ab ≡ −2(K̄ab − K̄γab), δTab = δT
(α)
ab + δT̄ (J)

ab , (3.26)

where T̄ab is just the Brown-York stress tensor of Einstein gravity, and δTab comes from

the linear order Gauss-Bonnet terms,

δT
(α)
ab ≡ −2

(

δK
(α)
ab − δK(α)γab

)

, δT̄ (J)

ab ≡ −4α(3J̄ab − J̄γab). (3.27)

In the following section, with the Petrov type I condition (3.21) and Hamiltonian con-

straint (3.22), as well as the stress tensor (3.25), we will directly recover the stress ten-

sor (2.18) of Rindler fluid in the vacuum Einstein-Gauss-Bonnet gravity.

Notice that in the Einstein gravity, K̄ab can be expressed in terms of its Brown-York

stress tensor through T̄ab = 2(K̄γab−K̄ab). But if we consider the Gauss-Bonnet corrections

in (2.6), as the cube terms of Kab appear in Jab, one cannot obtain the extrinsic curvature

Kab in terms of the stress tensor T (GB)

ab in (3.25) at finite α. But, up to the linear order

terms of α, we can have from (3.25) that

2K̄ab = −T̄ab + p−1T̄ γab, (3.28)

2δK
(α)
ab = −δTab + p−1δTγab − 4α

(

3J̄ab − 2p−1J̄γab
)

, (3.29)

such that the Petrov type I condition on the hypersurface can also be expressed in terms

of the Brown-York stress tensor in Einstein-Gauss-Bonnet gravity T (GB)

ab = T̄ab + δTab.

The spirit for the formulas (3.28) and (3.29) in terms of the stress tensor is in accord

with the original goal of the Petrov type I condition introduced in [50]. We will also use

this strategy to study the Petrov type I condition in the non-relativistic hydrodynamic

expansion in section 5.

Let us stress here that in this section, so far we have considered the expansion of

extrinsic curvature and other geometric quantities in terms of the Gauss-Bonnet coefficient

up to its linear order, and have not introduced any hydrodynamic expansion parameters

yet. In the following sections, we will meet the parameter ∂ ∼ ε (v ∼ ǫ) for the relativistic

(non-relativistic) hydrodynamic expansions. The hydrodynamic expansion is independent

with the α expansion. Namely, in what follows, we will study the hydrodynamic expansion

based on the α expansion.

4 From Petrov type I condition to Rindler fluid

In this section, we will show how to obtain the stress tensor (2.18) by use of the Petrov

type I condition and intrinsic flatness on a timelike accelerated hypersurface in the vacuum

Einstein-Gauss-Bonnet gravity without using the solution given in (2.8). We also derive the

momentum constraint for the equations of motion (2.2). To be clear, we first consider the

case with α = 0 and obtain the stress tensor for the Rindler fluid in the vacuum Einstein
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gravity from Petrov type I condition and Hamiltonian constraint, and then obtain the linear

order Gauss-Bonnet corrections to the stress tensor in the vacuum Einstein-Gauss-Bonnet

gravity case.

4.1 Recover the Rindler fluid in vacuum Einstein gravity

Firstly, setting α = 0 in (3.21), we have the Petrov type I condition P̄ab = 0 on the finite

cutoff hypersurface Σc in the vacuum Einstein gravity, where

P̄ab = M̄⊥
(u)a(u)b + 2N̄⊥

(u)(ab) − M̄⊥
ab. (4.1)

Similar to (3.9), we have defined

M̄⊥
(u)a(u)b = hma hnb

(

K̄cmK̄dn − K̄cdK̄mn

)

ucud,

N̄⊥
(u)(ab) = hm(ah

n
b)

(

uc∂cK̄mn − uc∂mK̄nc

)

,

M̄⊥
ab = −hma hnb

(

K̄K̄mn − K̄mcK̄
c
n

)

. (4.2)

On the other hand, from (3.28), we have

2K̄ab = −T̄ab + p−1T̄ γab, 2K̄ = p−1T̄ . (4.3)

Then P̄ab in (4.1) can be expressed as [58]

4P̄ab = hma hnb
[ (

T̄mcT̄nd − T̄mnT̄cd

)

ucud − T̄mcT̄
c
n − 4uc∂cT̄mn + 4uc∂(mT̄n)c

]

+ p−2
[

T̄ (T̄ + p T̄cdu
cud) + 4p uc∂cT̄

]

hab. (4.4)

Now we decompose an arbitrary stress tensor T̄ab associated with a (p+ 1)-velocity ua as

T̄ab = euaub + 2j(aub) +Πab, T̄ = −e+Π, (4.5)

where we have defined

e ≡ T̄abu
aub, ja ≡ −hcaT̄cdu

d, Πab ≡ hcah
d
b T̄cd, Π ≡ Πabh

ab. (4.6)

Substituting (4.5) into (4.4), the Petrov type I condition P̄ab = 0 reads

4P̄ab ≡ −eΠ ab + 2jajb −Π acΠ
c
b − 8a(ajb) − 4hcah

d
bDΠ cd − 4eKab − 4D⊥

(ajb) − 4Π c
(a D⊥

b)uc

+ p−2
[

Π2 + (p− 2)eΠ− (p− 1)e2 + 4pD(Π− e)
]

h ab. (4.7)

In the case with α = 0, the Hamiltonian constraint H̄ = 0 in (3.22) becomes

4H̄ ≡ pT̄abT̄
ab − T̄ 2 = 2eΠ+ (p− 1)e2 − 2pjajbh

ab + pΠabΠ
ab −Π2. (4.8)

Expanding the undetermined stress tensor T̄ab in (4.5) in terms of the derivative ex-

pansion ∂ ∼ ε as

e = e

(0) + e

(1) + e

(2) +O(∂3),

ja = j

(0)
a + j

(1)
a + j

(2)
a +O(∂3),
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Πab = Π
(0)
ab +Π

(1)
ab +Π

(2)
ab +O(∂3),

Π = Π(0) +Π(1) +Π(2) +O(∂3), (4.9)

and assuming that the stress tensor at the zeroth order has the same form as that in the

Rindler fluid (2.19) with

e

(0) = 0, j

(0)
a = 0, Π

(0)
ab = phab, Π(0) = pp, (4.10)

which gives the stress tensor for the Rindler fluid dual to the Rindler solution (2.4), one can

recover the first and second order terms of total stress tensor (2.18) with α = 0, by imposing

the Hamiltonian constraint (4.8) and Petrov type I condition (4.7). We fix the fluid frame

by defining the relativistic fluid velocity ua such that ja = ucT̄cdh
d
a ≡ 0 at arbitrary orders,

and choose the isotropy gauge where there are no higher order corrections to the term

proportional to hab, that is, only phab appears in the stress tensor [46]. Concretely, we go

as follows step by step.

i) First order.

We put (4.9) and (4.10) into the Hamiltonian constraint (4.8) and Petrov type I

condition (4.7), and then expand them in terms of the derivative expansion. Assuming

j

(1)
a = 0, at the first order, we have

H̄
(1) = 0 ⇒ e

(1) = 0, (4.11)

P̄
(1)
ab = 0 ⇒ Π

(1)
ab = −2Kab + p−1

(

Π(1) − e

(1)
)

hab. (4.12)

Choosing the isotropy gauge such that Π(1) = e

(1) = 0, we reach Π
(1)
ab = −2Kab.

ii) Second order.

With the results in the first order, assuming j

(2)
a = 0, we can obtain the second order

terms through

H̄
(2)=0⇒e

(2) = −2p−1KabKab, (4.13)

P̄
(2)
ab =0⇒Π

(2)
ab =p

−1
[

2KacKc
b−4Kc(aΩ

c
b)+4hcah

d
bDKcd

]

+p−1
(

Π(2)−e

(2)
)

hab. (4.14)

Choosing the isotropy gauge such that Π(2) = e

(2) = −2p−1KabKab, and employing

the derivatives of momentum constraint equation (2.17) which leads to the identities,

hcah
d
bDKcd=−hcah

d
b∂c∂d lnp−KabD lnp+D⊥

a lnpD⊥
b lnp−K c

aKcb−Ω c
a Ωcb+O(∂3),

hcdDKcd=DK = O(∂3), (4.15)

we finally reach the stress tensor up to the second order in the derivative expansion,

T̄ab = +phab +
(

e

(1) + e

(2)
)

uaub +Π
(1)
ab +Π

(2)
ab (4.16)

= +phab − 2Kab − 2p−1
(

KcdKcd
)

uaub + p

−1
[

−2KacKc
b − 4Kc(aΩ

c
b)

−4ΩacΩ
c
b − 4hcah

d
b∂c∂d lnp− 4KabD lnp+ 4(D⊥

a lnp)(D⊥
b lnp)

]

. (4.17)
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Comparing the above stress tensor T̄ab with the general stress tensor T (R)

ab in (2.19),

one can read off exactly the same coefficients in (2.20) when α = 0. Thus, taking

the Hamiltonian constraint and Petrov type I condition, we recover the Brown-York

stress tensor (2.18) dual to the bulk metric in (2.8) in the case of Einstein gravity.

4.2 Recover the Rindler fluid in Einstein-Gauss-Bonnet gravity

In this subsection, we will recover the stress tensor of the Rindler fluid dual to the vac-

uum Einstein-Gauss-Bonnet gravity. Because H̄ ≡ 0, we can write the Hamiltonian con-

straint (3.22) as

H = H
(α) + δH̄(H) = δH(α) + δH̄(H) = 0, (4.18)

where H
(α) and δH̄(H) can be found in (3.12) and (3.24), respectively. Since P̄ab ≡ 0, the

Petrov type I condition in (3.21) becomes

Pab = P
(α)
ab + δP̄(H)

ab = δP
(α)
ab + δP̄(H)

ab = 0, (4.19)

where P
(α)
ab and δP̄(H)

ab can be found in (3.7) and (3.17), respectively. On the other hand,

with the results in (4.16), one has from (3.28) that

2K̄ab = −(p+ e

(2))uaub −Π
(1)
ab −Π

(2)
ab +O(∂3). (4.20)

We then assume the following decomposition of the extrinsic curvature

Kab = ̺ uaub + πab, ̺ ≡ Kabu
aub, πab ≡ hcah

d
bKcd, (4.21)

δK
(α)
ab = δ̺(α)uaub + δπ

(α)
ab , δ̺(α) ≡ δK

(α)
ab uaub, δπ

(α)
ab ≡ hcah

d
bδK

(α)
cd . (4.22)

From (3.18), we conclude

2̺ = −p− e

(2) + 2δ̺(α) +O(∂3), (4.23)

2πab = −Π
(1)
ab −Π

(2)
ab + 2δπ

(α)
ab +O(∂3). (4.24)

Putting (4.20) into (3.24) and (3.7), one has

δH̄(H) = O(∂3), δP̄(H)

ab = −6αp2
[

ΩacΩ
c
b + p−1habΩcdΩ

cd
]

+O(∂3). (4.25)

As the Gauss-Bonnet corrections to Hamiltonian constraint and Petrov type I condition ap-

pear at the second order in the derivative expansion, we only need to consider the second or-

der corrections with δ̺(α) ∼ δπ
(α)
ab ∼ O(∂2). Then put (4.21) into (3.12) and (3.7), we have

H
(α) = (2̺− π)π + πabπ

ab, (4.26)

P
(α)
ab = (π − 2̺)πab − πacπ

c
b + 2̺Kab + 2K c

(aπb)c + 2Ω c
(aπb)c + 2hcah

d
bDπcd. (4.27)

Taking into account of (4.23) and (4.24) , up to the linear order terms of α, we obtain

δH(α) = H
(α) = −pδπ(α), δP

(α)
ab = P

(α)
ab = pδπ

(α)
ab . (4.28)
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With (4.25) and (4.28), at the second order in the derivative expansion, the Hamiltonian

constraint leads to

H
(2) = δH(α) + δH̄(H) = 0 ⇒ δπ(α) = 0. (4.29)

And the Petrov type I condition leads to

P
(2)
ab = δP

(α)
ab + δP̄(H)

ab = 0 ⇒ δπ
(α)
ab = 6αp

[

ΩacΩ
c
b + p−1habΩcdΩ

cd
]

. (4.30)

We can see that there is no constraint on ̺(α) at this order, and it will be determined by

the gauge choice of the stress tensor. Then from (3.27), we obtain

δT
(α)
ab = −2δπ(α)uaub + 2(δπ(α) − δ̺(α))hab − 2δπ

(α)
ab . (4.31)

On the other hand, a straightforward calculation from (3.27) and (4.20) gives

δT̄ (J)

ab = αp

[

−Π(1)
ac Π

c(1)
b +

1

2

(

Π
(1)
cd Π

cd
(1)

)

hab

]

, (4.32)

where Π
(1)
ab has been obtained in (4.12). Put them together, we obtain

δTab = δT
(α)
ab + δT̄ (J)

ab = −4αp
(

KacKc
b + 3p−1ΩacΩ

c
b

)

+
[

−2δ̺(2) + 2αp
(

KcdKcd − 6p−1ΩcdΩ
cd
)]

hab. (4.33)

The isotropic gauge of the pressure leads to δ̺(2) = αp
(

KcdKcd − 6p−1ΩcdΩ
cd
)

. Then

the stress tensor from Petrov type I condition turns out to be T̄ab + δTab with (4.17)

and (4.33), which matches exactly with T (GB)

ab in (2.18) from the fluid/gravity duality

calculation. Meanwhile, we can see from (3.13) that the conservation of the stress tensor

∂aT (GB)

ab results in the momentum constraint of the vacuum Einstein-Gauss-Bonnet gravity.

5 The non-relativistic hydrodynamic expansion

The Rindler fluid in the vacuum Einstein-Gauss-Bonnet gravity has been studied in [44, 45]

with the following non-relativistic hydrodynamic expansion

vi ∼ ǫ, P ∼ ǫ2, ∂i ∼ ǫ, ∂τ ∼ ǫ2. (5.1)

The dual stress tensor turns out to be T (GB)

ab = T̄ab+δTab, where T̄ab come from the Einstein

sector, which are given by [44],

T̄ τ
i = +r−3/2

c vi + r−5/2
c

[

vi(v
2 + P )− 2rcσijv

j
]

+O(ǫ5),

T̄ τ
τ = −r−3/2

c v2 − r−5/2
c

[

v2(v2 + P )− 2rcσijv
ivj − 2r2cσijσ

ij
]

+O(ǫ6),

T̄ ij = +r−1/2
c δij + r−3/2

c [Pδij + vivj − 2rcσij ]

+ r−5/2
c

[

vivj(v
2 + P )− rcσijv

2 + 2rcv(i∂j)P − rcv(i∂j)v
2 − 2r2cv(i∂

2vj)

− 2r2cσikσ
k
j − 4r2cσk(iω

k
j) − 4r2cωikω

k
j − 4r2c∂i∂jP + 3r3c∂

2σij ] +O(ǫ6),

T̄ = T̄ τ
τ + T̄ i

i = pr−1/2
c + pr−3/2

c P +O(ǫ6). (5.2)
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Here the fluid shear σij = ∂(ivj) and vorticity ωij = ∂[ivj]. And δTab come from the

Gauss-Bonnet term, with the non-vanishing components [45, 48],

δTij = −4αr−3/2
c

(

σikσ
k
j + 3ωikω

k
j

)

+O(ǫ6), (5.3)

δT = δijδTij = −4αr−3/2
c

(

σijσ
ij − 3ωijω

ij
)

+O(ǫ6). (5.4)

We can see that the contributions from the Gauss-Bonnet term only appear at order ǫ4.

This comes from the fact that the first non-zero components of the Riemann tensor appear

at order ǫ2 [45]. And notice that the situation for the case of Einstein gravity has been

studied in [57]. Thus here we only focus on the linear order Gauss-Bonnet corrections to

the Petrov type I condition and Hamiltonian constraint at ǫ4. Since the nontrivial terms on

the expansion of α only appear at the highest order ǫ4 terms which we are interested in, it

is enough to consider the linear order of α in the non-relativistic hydrodynamic expansion,

once again.

5.1 Petrov type I condition in non-relativistic hydrodynamic expansion

Introduce the new coordinate x0 =
√
rcτ , the flat induced metric γab in (2.5) becomes

ds2p+1 = ηabdxadx
b = −(dx0)2 + δijdx

idxj . (5.5)

The (p + 2) Newman-Penrose-like vector fields are given with respect to the ingoing and

outgoing pair of null vectors as [50]

√
2ℓ = ∂0 − n,

√
2k = −∂0 − n, mi = ∂i. (5.6)

Here n is the unit normal vector of the hypersurface Σc, ∂0 and ∂i are the tangent vectors

to Σc. The spacetime is at least Petrov type I if

Pij ≡ 2C(ℓ)i(ℓ)j = 0, C(ℓ)i(ℓ)j ≡ ℓµmν
i ℓ

αmβ
jCµναβ . (5.7)

With the Guass-Codazzi equations given in (3.6), we have the Petrov type I condition up

to linear order in the Gauss-Bonnet parameter α as

Pij = P̄ij + δP
(α)
ij + δP̄

(H)

ij = 0, (5.8)

P̄ij ≡ −M̄⊥
ij + 2N̄⊥

0ij + M̄⊥
0i0j , δP

(α)
ij ≡ −δM⊥

ij + 2δN⊥
0ij + δM⊥

0i0j , (5.9)

with

δP̄(H)

ij = −2αH̄⊥
ij + 2αp−1δij

[

H̄µνn
µnν − 2H̄0µn

µ + H̄00 + H̄
]

(5.10)

= −2α
(

M̄ cde
i M̄jcde + 2N̄ cd

i N̄jcd + N̄ cd
iN̄cd j + 2M̄ d

i M̄jd

)

+ αp−1δij

[

2
(

M̄ cde
0 M̄0cde + 2N̄ cd

0 N̄0cd + N̄ cd
0N̄cd0 + 2M̄ d

0 M̄0d

)

+ 4(M̄0cdeN̄
dec − 2M̄ cdN̄0cd) +

(

M̄ cdefM̄cdef + 6N̄ cdeN̄cde + 8M̄ cdM̄cd

) ]

. (5.11)
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The Hamiltonian constraint becomes

H = H̄ + δH(α) + δH̄(H) = 0, (5.12)

H̄ ≡ M̄, δH(α) ≡ δM, (5.13)

with

δH̄(H) ≡ −4αH̄µνn
µnν = α

(

−4M̄abM̄
ab + M̄abcdM̄

abcd
)

. (5.14)

Notice that the frame choice in (5.6) singles out a preferred time coordinate ∂0 and

thus breaks Lorentz invariance. It has been shown in [57] that with the frame (5.6), the

Petrov type I condition for vacuum Einstein gravity P̄ij = 0 is violated at order ǫ4:

P̄(E)

ij = P̄ij =
1

2
r−3
c

[

6rcvkv(iω
k
j) − 2r2cv(i∂

2vj) − 4r2cv
k∂(iω

k
j) + r3c∂

2σij

]

+O(ǫ6). (5.15)

However, after straightforward calculations with the stress tensor (5.2) and (5.3), we find

δH̄(H) = δH(α) = O(ǫ6), (5.16)

δP̄(H)

ij = −δP
(α)
ij = −6αr−2

c

(

ωikω
k
j + p−1δijωklω

kl
)

+O(ǫ5). (5.17)

Thus, we see that there are no Gauss-Bonnet corrections to the Hamiltonian con-

straint (5.12) and Petrov type I condition (5.8) up to the order ǫ4 and up to the linear

order in α. This implies that adding the Gauss-Bonnet term does not become worse for

the violation of the Petrov type I condition up to the order ǫ4. In the following subsection,

we will show that either demand P̄ij = 0 or (5.15) which lead to the stress tensor (5.2) of

Rindler fluid in vacuum Einstein gravity, and impose

δH = δH(α) + δH̄(H) = 0, δPij = δP
(α)
ij + δP̄(H)

ij = 0, (5.18)

we can get exactly the contribution (5.3) of the Gauss-Bonnet term to the stress tensor of

the dual fluid, without solving the Einstein-Gauss-Bonnet field equations.

5.2 Recover the Gauss-Bonnet corrections

If we pretend the Petrov type I condition P̄ij = 0 holds in vacuum Einstein gravity, it

has been shown in [57] that the stress tensor in (5.2) can be recovered up to an additional

term at ǫ4:

δT̄ (E)

ij = r−5/2
c

[

6rcvkv(iω
k
j) − 2r2cv(i∂

2vj) − 4r2cv
k∂(iω

k
j) + r3c∂

2σij

]

+O(ǫ6). (5.19)

Then using T̄ab + δT̄ (E)

ab instead of T̄ab in (5.2), we can obtain the extrinsic curvature K̄ab

from (3.28), and put them into (5.14) and (5.11), which lead to the same results in (5.16)

and (5.17). This implies that

δH̄(H) = O(ǫ6), (5.20)

δP̄(H)

ij = −6αr−2
c

(

ωikω
k
j + p−1δijωklω

kl
)

+O(ǫ5), (5.21)

– 16 –



J
H
E
P
1
2
(
2
0
1
4
)
1
4
7

are not affected by the additional term δT̄ (E)

ab . To cancel the non-vanishing δP̄(H)

ij at

order ǫ4 in (5.21), we assume δTab ∼ O(ǫ4) such that δH(α) in (5.13) and δP
(α)
ij in (5.9)

also appear at order ǫ4. As T̄ τ
i in (5.2) has been fixed through the frame choice of the

velocity [57], we only need to set the Gauss-Bonnet correction δT τ
i = O(ǫ5). Then put

the relation (3.29) into (5.13) and (5.9), we obtain

δH(α) =
1

2
r−1/2
c

[

−δT τ
τ + 4α

(

J̄ − 3J̄τ
τ

)]

, (5.22)

δP
(α)
ij =

1

2
r−1/2
c

[

−δT ij − 4α
(

3J̄ij − 2p−1J̄δij
)

+ p−1δTδij
]

. (5.23)

With (2.7), (3.28) and (5.2), we have the non-zero components of J̄ab as

J̄τ
τ =

1

6
r−3/2
c (σijσ

ij) +O(ǫ6), J̄ij =
1

3
r−3/2
c σikσ

k
j +O(ǫ6), J̄ = J̄τ

τ + J̄ i
i . (5.24)

Substituting them into (5.18), we finally obtain

δT τ
τ = O(ǫ6), (5.25)

δT ij = −4αr−3/2
c

(

σikσ
k
j + 3ωikω

k
j

)

+ p−1
[

δT + 4αr−3/2
c

(

σklσ
kl − 3ωklω

kl
)]

δij +O(ǫ6). (5.26)

After choosing the isotropic gauge such that there are no corrections to the δij part of

the stress tensor at this order as in [44, 45], we have δT = −4αr
−3/2
c

(

σijσ
ij − 3ωijω

ij
)

.

These results exactly match with the Gauss-Bonnet corrections in the stress tensor of

Rindler fluid dual to the vacuum Einstein-Gauss-Bonnet gravity, which are given in (5.3)

and (5.4) from the fluid/gravity calculation.

Here we stress that even for the vacuum Einstein gravity, namely for the case with

α = 0, the deduced stress tensor T̄ab + δT̄ (E)

ab for the fluid by imposing Petrov type I

condition and Hamiltonian constraint are different from those from the fluid/gravity duality

calculation. The former is named as “Petrov type I fluid” in [57]. The main reason for this is

that as checked in [57], the Petrov type I condition is violated at order ǫ4 for the geometry of

the vacuum Einstein gravity in the non-relativistic hydrodynamic expansion. In section 5.1,

we have shown that adding the Gauss-Bonnet term, the violation for the condition does not

become worse up to the order ǫ4. Thus, if turn the logic around, imposing the Petrov type

I condition which requires (5.15) and (5.18), as well as the Hamiltonian constraint (5.12),

we can recover the stress tensor of the fluid dual to the vacuum Einstein-Gauss-Bonnet

gravity up to the order ǫ4 in the non-relativistic hydrodynamic expansion.

6 Conclusion

To summarize, we have checked the Petrov type I condition for the vacuum solutions of

Einstein-Gauss-Bonnet gravity in both relativistic and non-relativistic hydrodynamic ex-

pansions. With the solution constructed in [48], we have shown that the spacetime is at least

Petrov type I up to the second order in the relativistic hydrodynamic expansion. Turn the
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logic around, assuming the Hamiltonian constraint and Petrov type I condition on a finite

cutoff hypersurface, we have shown that the dual stress tensor can be recovered with correct

first and second order transport coefficients, up to the linear order of the Gauss-Bonnet

coefficient. While in the non-relativistic hydrodynamic expansion [45], although the Petrov

type I condition is violated at the order ǫ4 in the vacuum Einstein gravity [57], we have

found that the Gauss-Bonnet term does not contribute to the violation terms in the Petrov

type I condition up to ǫ4. Thus, given the stress tensor of the Rindler fluid in the vacuum

Einstein gravity, we have shown that demanding the additional Gauss-Bonnet corrections

to the Petrov type I condition and Hamiltonian constraint vanish at the linear order of α,

the Gauss-Bonnet corrections to the stress tensor of dual fluid can also be recovered.

Note that one key step in [50, 57, 58] is to substitute the extrinsic curvature Kab

in terms of the stress tensor Tab of the dual fluid into the Petrov type I condition. The

Hamiltonian constraint gives the equation of state, and the Petrov type I condition leads

to the constraints on the stress tensor. When the Gauss-Bonnet corrections or some

counter terms appear in the Brown-York stress tensor T (BY )

ab [41], this step will increase the

complexity. However, we have shown that this step is in fact not necessary in section 4.2.

Even for the vacuum Einstein gravity case in section 4.1, once the initial zeroth order

expressions have been fixed, we can expand Kab first and obtain its higher order terms

through imposing Hamiltonian constraint and Petrov type I condition in the derivative

expansion. Then put the resulted Kab into the definition of Tab, we can also reach the final

stress tensor directly. In addition, let us stress that writing the Petrov type I condition

in terms of Kab would be quite useful and it might be a promising way to build up a

connection with the membrane paradigm [41].

In section 5.2, we still express Kab in terms of Tab in order to match the spirit in [50],

and to obtain the relation (3.29), we only consider the linear order terms of α. The

motivation for the linear approximation of α is to express the Petrov type I condition as

a function of extrinsic curvature and other intrinsic quantities on the hypersurface. Only

with this approximation we can recover the stress tensor of dual fluid from the Petrov type

I condition in both relativistic and non-relativistic hydrodynamic expansions. However,

note the fact that the Einstein-Gauss-Bonnet field equations are quasi-linear in terms of

α [64, 65], and the dual stress tensor with Gauss-Bonnet corrections in (2.18) only contain

linear order terms of α. It is not surprised that we can still recover the stress tensor (2.18)

even when we only take into account of the linear order terms of α in the calculation.

So far most of studies on the Petrov type I condition has been focused on the case with

asymptotically flat spacetimes. It is quite important to investigate corresponding ones for

finite cutoff fluid in asymptotically AdS spacetimes [28, 30]. However, it has been pointed

out in [58] that except in the near horizon region, the Petrov type I condition on a finite

cutoff surface in asymptotically AdS spacetimes is violated at the first order in derivative

expansion. This can also be seen from the result in [56] that the Einstein constraint

equations can not be recovered correctly by imposing Petrov type I condition. While in

the AdS/CFT correspondence, the regularity condition is necessary for the perturbations,

and imposing the Petrov type I condition is mathematically much simpler than directly

solving the gravitational field equations in order to find the stress tensor of dual fluid.
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Thus, the Petrov type I condition is expected to be equivalent to the regularity condition

on the future horizon of the spacetime [50, 58]. It is quite interesting to further study the

role of Perov type I condition in the asymptotically AdS case.

On the other hand, the KSS bound [5] states that the universal value of the ratio of

shear viscosity over entropy density from the AdS/CFT calculation is always above η/s =

1/4π, while in the AdS gravity with curvature squared corrections, the bound is found to be

violated by the Gauss-Bonnet term [61–63]. With the static black brane solution in [66],

it has been shown that the universal value η(rc)/s(rc) =
[

1− 2(p+ 1)(p− 2)α/L2
]

/4π

does not run with the finite cutoff surface [28]. In a forthcoming work, we will show that

this ratio at the horizon η(rh)/s(rh) can also be recovered through imposing Petrov type I

condition on the dual fluid on a finite cutoff hypersurface in the near horizon limit.

What’s more, it would be much more interesting if one could find a system where the

Petrov type I condition and all the gravitational field equations are compatible to arbitrary

order away from the cutoff surface.
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A Classification of the Weyl tensor

In a four dimensional spacetime, tensor classification plays an important role in studying

the exact solutions of Einstein field equations [67]. And in particular, the Petrov type

classification of Weyl tensor has interesting physical applications. It has been general-

ized to the arbitrarily higher dimensional spacetimes in [68]. In this appendix, we briefly

summarize these results based on [69, 70], which can also be reduced to the Petrov type

classification in four dimensions.

Consider a p+2 dimensional Lorentz manifold (p ≥ 2) with signature (−+ . . .+) and

choose a null frame ℓ, k, mi, which satisfies the following orthogonal and normalization

conditions

ℓ
2 = k

2 = 0, (k, ℓ) = 1, (mi,k) = (mi, ℓ) = 0, (mi,mj) = δij , (A.1)

so that in this frame the metric of the manifold can be decomposed as

gµν = 2ℓ(µkν) + δijm
i
µm

j
ν , gµν = 2ℓ(µkν) + δijm µ

i m
ν
j . (A.2)

The null frame is covariant under the following boost transformation,

ℓ → λ ℓ, k → λ−1
k, mi → mi, λ 6= 0. (A.3)
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For a rank q tensor T on the manifold, its components Tµ1...µq with fixed list of indices are

null frame scalars, and they transform under the boost transformation as

Tµ1...µq → λb{µ}Tµ1...µq , b{µ} = bµ1 + . . .+ bµq , b(ℓ) = 1, bi = 0, b(k) = −1. (A.4)

b is named as the boost-weight of the null-frame scalar Tµ1...µq . The boost order (along

ℓ) of the tensor T is defined to be the largest value of b{µ} among all the non-vanishing

components Tµ1...µq . It is only a function of the null direction ℓ and is denoted as B(ℓ).
The Weyl tensor can be decomposed and sorted by the boost weight of its components,

Cαβγδ = C
[2]
αβγδ + C

[1]
αβγδ + C

[0]
αβγδ + C

[−1]
αβγδ + C

[−2]
αβγδ, (A.5)

where the superscript index indicates the boost weight and

C
[2]
αβγδ = 4C(ℓ)i(ℓ)jk{αm

i
βkγm

j
δ},

C
[1]
αβγδ = 8C(ℓ)(k)(ℓ)ik{αℓβkγm

i
δ} + 4C(ℓ)ijkk{αm

i
βm

j
γm

k
δ},

C
[0]
αβγδ = 4C(ℓ)(k)(ℓ)(k)k{αℓβkγℓδ} + 4C(ℓ)(k)ijk{αℓβm

i
γm

j
δ}

+ 8C(ℓ)i(k)jk{αm
i
βℓγm

j
δ} + Cijklm

i
{αm

j
βm

k
γm

l
δ},

C
[−1]
αβγδ = 8C(k)(ℓ)(k)iℓ{αkβℓγm

i
δ} + 4C(k)ijkℓ{αm

i
βm

j
γm

k
δ},

C
[−2]
αβγδ = 4C(k)i(k)jℓ{αm

i
βℓγm

j
δ}. (A.6)

The notations T{αβγδ} ≡ (T[αβ][γδ] + T[γδ][αβ])/2, as well as C(ℓ)i(k)j ≡ Cµανβℓ
µ
mj

α
k
ν
mj

β

and so on, have been introduced. The Weyl tensor is generically of boost order B(ℓ) = 2,

and a null vector ℓ is defined to be aligned with the Weyl tensor whenever B(ℓ) ≤ 1. In this

case, ℓ is a Weyl aligned null direction, and 1−B(ℓ) ∈ {0, 1, 2, 3} is the order of alignment.

It usually depends on the rank and symmetry properties of the tensors.

According to [68], the principal type of the Weyl tensor in a Lorentzian manifold is

I, II, III, N according to whether there exists an aligned ℓ of alignment order 0, 1, 2, 3,

respectively. If no aligned ℓ exists, the manifold is of (general) type G, if the Weyl tensor

vanishes the manifold is of type O. The algebraically special types with necessary condition

are summarized as follows:

Type I : C(ℓ)i(ℓ)j = 0,

Type II : C(ℓ)i(ℓ)j = C(ℓ)ijk = 0,

Type III : C(ℓ)i(ℓ)j = C(ℓ)ijk = Cijkl = C(ℓ)(k)ij = 0,

Type N : C(ℓ)i(ℓ)j = C(ℓ)ijk = Cijkl = C(ℓ)(k)ij = C(k)ijk = 0. (A.7)

Following the curvature tensor symmetries and the trace-free condition [69], one can reach

some familiar Petrov types with the following properties,

Type I : C
[2]
αβγδ = 0,

Type II : C
[2]
αβγδ = C

[1]
αβγδ = 0,

Type D : C
[2]
αβγδ = C

[1]
αβγδ = C

[−1]
αβγδ = C

[−2]
αβγδ = 0,

– 20 –



J
H
E
P
1
2
(
2
0
1
4
)
1
4
7

Type III : C
[2]
αβγδ = C

[1]
αβγδ = C

[0]
αβγδ = 0,

Type N : C
[2]
αβγδ = C

[1]
αβγδ = C

[0]
αβγδ = C

[−1]
αβγδ = 0,

Type O : C
[2]
αβγδ = C

[1]
αβγδ = C

[0]
αβγδ = C

[−1]
αβγδ = C

[−2]
αβγδ = 0. (A.8)

Further classifications in more detail can be found in [69, 70].

B Decomposition of the Riemann tensor

The Riemann tensor and its contractions can be decomposed along and perpendicular to

a spacelike unit normal vector n,

gαµg
β
ν g

γ
σg

δ
λRαβγδ = Mµνσλ − nµNσλν + nνNσλµ − nσNµνλ + nλNµνσ

+ nµnσYνλ − nµnλYνσ + nνnλYµσ − nνnσYµλ,

gαµg
β
νRαβ = Mµν + nµNν + nνNµ + Yµν + nµnνY,

R = M + 2Y = −M + 2γβδRβδ, (B.1)

where we have defined the following notations with transverse tensor γµν = gµν − nµnν ,

Mµνσλ ≡ γαµγ
β
ν γ

γ
σγ

δ
λRαβγδ, Nµνσ ≡ γαµγ

β
ν γ

γ
σn

δRαβγδ, Yµν ≡ γαµn
βγγνn

δRαβγδ,

Mµν ≡ γαβMµανβ , M ≡ γαβMαβ , Nµ ≡ γαβNαµβ , Y ≡ γαβYαβ . (B.2)

One can also obtain the decomposition of their combinations, such as,

R σλρ
µ Rνσλρn

µnν = N cdeNcde + 2Y cdYcd,

R σλρ
µ Rνσλρn

µhνb = −MbcdeN
dec − 2Y cdNbcd,

R σλρ
µ Rνσλρh

µ
ah

ν
b = M cde

a Mbcde + 2N cd
a Nbcd +N cd

aNcdb + 2Y c
a Ycb,

R σλρ
µ Rνσλρg

µν = M cdefMcdef + 4N cdeNcde + 4Y cdYcd. (B.3)

Then H̄µν ≡ R̄ σλρ
µ R̄νσλρ − 1

4

(

R̄κσλρR̄κσλρ

)

ḡµν in (3.15) can be decomposed as

H̄(n)(n) ≡ H̄µνn
µnν = Ȳ cdȲcd −

1

4
M̄ cdefM̄cdef ,

H̄(n)(u) ≡ H̄µνn
µγνb u

b = −M̄(u)cdeN̄
dec − 2Ȳ cdN̄(u)cd,

H̄(u)(u) ≡ H̄µνγ
µ
a γ

ν
b u

aub = M̄ cde
(u) M̄(u)cde + 2N̄ cd

(u) N̄(u)cd + N̄ cd
(u)N̄cd(u) + 2Ȳ d

(u) Ȳ(u)d

+
1

4

(

M̄ cdefM̄cdef + 4N̄ cdeN̄cde + 4Ȳ cdȲcd

)

,

H̄⊥
ab ≡ H̄µνγ

µ
c γ

ν
dh

c
ah

d
b = hma hnb

(

M̄ cde
m M̄ncde + 2N̄ cd

m N̄ncd + N̄ cd
mN̄cdn + 2Ȳ d

m Ȳnd

)

− 1

4

(

M̄ cdefM̄cdef + 4N̄ cdeN̄cde + 4Ȳ cdȲcd

)

hab,

H̄ ≡ H̄µνg
µν = −p− 2

4

(

M̄ cdefM̄cdef + 4N̄ cdeN̄cde + 4Ȳ cdȲcd

)

. (B.4)
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