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Abstract

Background: Blindness due to diabetic retinopathy (DR) is the major disability in diabetic patients. Although early
management has shown to prevent vision loss, diabetic patients have a low rate of routine ophthalmologic
examination. Hence, we developed and validated sparse learning models with the aim of identifying the risk of DR
in diabetic patients.

Methods: Health records from the Korea National Health and Nutrition Examination Surveys (KNHANES) V-1 were
used. The prediction models for DR were constructed using data from 327 diabetic patients, and were validated
internally on 163 patients in the KNHANES V-1. External validation was performed using 562 diabetic patients in the
KNHANES V-2. The learning models, including ridge, elastic net, and LASSO, were compared to the traditional
indicators of DR.

Results: Considering the Bayesian information criterion, LASSO predicted DR most efficiently. In the internal and
external validation, LASSO was significantly superior to the traditional indicators by calculating the area under the
curve (AUC) of the receiver operating characteristic. LASSO showed an AUC of 0.81 and an accuracy of 73.6% in the
internal validation, and an AUC of 0.82 and an accuracy of 75.2% in the external validation.

Conclusion: The sparse learning model using LASSO was effective in analyzing the epidemiological underlying
patterns of DR. This is the first study to develop a machine learning model to predict DR risk using health records.
LASSO can be an excellent choice when both discriminative power and variable selection are important in the
analysis of high-dimensional electronic health records.
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Background
A major goal of diabetic medicine is to accurately pre-
dict diabetic complications and to prevent their progres-
sion [1]. Diabetic retinopathy (DR) is the most common
ocular complication of diabetes. Blindness due to retin-
opathy is the major disability in patients with diabetes
[2]. DR is common in diabetic patients but is asymptom-
atic until a significant visual impairment occurs. Late
diagnosis of DR results in the socio-economic burden of
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illness associated with diabetes [3]. Several studies have
shown that early ophthalmologic examination is import-
ant in screening, diagnosing, and monitoring DR [2-4].
Early appropriate management methods such as diabetic
drugs, blood pressure control, and laser photocoagula-
tion have proven to prevent vision loss and blindness
[5]. However, only a third of diabetic patients in Korea
have received routine ophthalmologic examination in re-
cent years [6]. In the U.S., approximately a half of dia-
betic patients do not receive any kind of examination for
detecting DR although the American Diabetes Associ-
ation has recommended an annual fundus examination
by an ophthalmologist [7]. Therefore, clinicians face a
significant challenge in identifying patients who are at a
high risk of DR in a timely and appropriate manner.
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DR results from diabetes-induced damage to micro-
vascular cells. The incidence of DR is closely related to the
control of serum glucose level, while other metabolic dis-
orders also contribute to the progression of DR [2]. Recent
findings suggest that an early detection of DR can be
assisted by the knowledge of several biomarkers. The trad-
itional indicators of DR included serum glucose, HbA1c
(glycated hemoglobin), duration of diabetes, blood pres-
sure, and lipid levels [8,9]. The optimal cut-off points of
the traditional indicators for DR prediction have been cal-
culated on the basis of several population-based studies
[8,10]. These studies have shown that HbA1c is a more re-
liable predictor of DR than other traditional indicators.
Other methods have been based on a combination of risk
factors of DR using classical statistical methods [11,12].
However, these risk prediction methods for DR were inef-
ficient owing to their poor prediction performance. More-
over, although these studies considered classical risk
factors, they did not select important informative variables
that could really contribute to DR.
Since a number of studies have shown that the patho-

genesis of DR is complex and multi-factorial, un-
derstanding the whole biomarker patterns of diabetic
patients will facilitate the identification of the risk of DR.
However, ordinary regression shows over-fitting and
instability of coefficients when a number of inter-
correlated biomarkers are used [13]. Stepwise variable
selection, including forward and backward stepwise se-
lection, do not show suitability to predict disease with
good discriminative ability in high-dimensional data
[14]. Recently, in the field of bioinformatics, sparse
learning has emerged as a tool for analyzing large-scale
biomarker patterns [15,16]. Sparse learning is an area of
machine learning research which can be used to find a
small number of important predictors to achieve optimal
prediction accuracy. Sparse learning techniques, such as
least absolute shrinkage and selection operator (LASSO)
and elastic net, have been widely applied to the analysis
of genetic, genomic, and proteomic data [16]. When the
number of variables is large or when variables are highly
correlated, these techniques can offer a better regression
solution than classical regression methods and other
machine learning methods such as support vector
machine (SVM) [15]. Due to its abilities to select
important features and to detect relationships be-
tween biomarkers and diseases, sparse learning has
been successfully used in medical decision support
systems [16-18].
In this study, we developed and validated sparse

learning models with the aim of identifying the risk of
DR in diabetic patients. The objective of this study was
to select diabetic patients who should receive fundus
examination by an ophthalmologist in order to increase
the effectiveness of screening for DR. The sparse
learning techniques identified the important bio-
markers to have a real effect on prediction models of
DR. We compared the performance of sparse learning
techniques and traditional clinical biomarkers, includ-
ing HbA1c, fasting plasma glucose (FPG), and duration
of diabetes.
Methods
Data sources
This cross-sectional study investigated prediction models
for the incidence of DR. All analyses were based on the
Korean National Health and Nutrition Examination
Survey (KNHANES, online at http://knhanes.cdc.go.kr/).
The study protocol was approved by the institutional re-
view board at the Korea Centers for Disease Control and
Prevention (IRB No: 2010-02CON-21-C, 2011-02CON-
06-C). We collected health records from Korean diabetic
patients based on the KNHANES V conducted in 2010 and
2011. The KNHANES V is a nationwide and population-
based cross-sectional survey that was conducted by the
Division of Chronic Disease Surveillance, Korea Centers
for Disease Control and Prevention [19]. KNHANES con-
sists of health records based on a health interview, a
health examination, and a nutrition survey. Each partici-
pant was interviewed and asked to complete a question-
naire on his or her alcohol consumption, smoking status,
diabetes mellitus, hypertension, and physical activity level.
The level of physical activity was calculated using the
metabolic equivalent of task values based on self-reported
frequency and duration of activities during the week [20].
Height, weight, and waist circumference were measured,
and the body mass index (BMI) was calculated. Measure-
ments of HbA1c, FPG, liver enzymes, serum lipid and
lipoprotein, blood urea nitrogen (BUN), and serum cre-
atinine level were taken in local community health centers.
Blood pressure (BP) was also measured by health profes-
sionals. Urinary protein, glucose, ketone, bilirubin, blood,
and urobilinogen were measured by dipstick test, and
urinary creatinine and sodium were measured with a
chemistry analyzer. In order to assess the retinopathy sta-
tus, fundus examination was done by two trained ophthal-
mologists according to the Early Treatment for Diabetic
Retinopathy Study [21,22].
The input variables of the prediction models were col-

lected from demographic data, medical history, blood
pressure, blood test, and urine test. The primary outcome
variable was the presence of DR diagnosed by fundus
examination. Data from the KNHANES V-1, conducted
in 2010, was used to develop risk prediction models
(Figure 1). Among 8958 participants who participated
in the KNHANES V-1, 556 were diabetic patients who
satisfied the diagnostic criteria of glucose level and
HbA1c defined by the American Diabetes Association

http://knhanes.cdc.go.kr/


Figure 1 Dataset used in the development and validation of diabetic retinopathy risk prediction. This flowchart shows the process of
training, internal validation, external validation, and validation in the newly-diagnosed diabetic patients. KNHANES, Korean National Health and
Nutrition Examination Survey; LASSO, least absolute shrinkage and selection operator; LR-BS, logistic regression with backward stepwise selection;
OLR, ordinary logistic regression; ROC, receiver operating characteristic.
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[23]. Diabetes was diagnosed in participants with
FPG ≥ 126 mg/dL, non-fasting glucose ≥ 200 mg/dL or
HbA1c ≥ 6.5%. We excluded participants who did not
receive eye examination. Finally, 490 participants were
included in this study, and the data from them were
used as a development dataset. The development
dataset was separated randomly into training and in-
ternal validation sets. The training set, comprised of
two thirds (327 patients) of the entire dataset, was used
to construct prediction models. The internal validation
set, comprised of one third (164 patients) of the
dataset, was used to assess the ability to predict DR in
diabetic patients.
In order to obtain an unbiased prediction perform-

ance, the prediction models should be validated in exter-
nal data. Therefore, performance of the prediction
model was evaluated in independent data collected from
the KNHANES V-2, conducted in 2011. Since the partic-
ipants were re-selected using random sampling, the
KNHANES V-2 was comprised of different participants
from the KNANES V-1. Data from the KNHANES V-2
also followed the same inclusion and exclusion criteria,
and 562 participants were included in the external valid-
ation dataset.
It is important to identify the patients with diabetic

complications among the first-visit patients with un-
diagnosed diabetes, especially for clinicians [24]. There-
fore, we also evaluated the discriminative ability to
predict DR in newly-diagnosed diabetic patients (partic-
ipants with undiagnosed diabetes). The prediction
models were also validated among 144 participants (32
participants from the internal validation dataset and
112 from the external validation dataset) with undiag-
nosed diabetes.
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Sparse learning techniques
The form of logistic regression was used for all predic-
tion models due to dichotomous clinical outcome. It is
given as,

Logit ¼ ln
p

1−p

� �
¼ β0 þ β1X1 þ⋯þ βiXi

Where ‘p’ is the probability of the disease, β0 is the
constant and βi is the coefficient of a specific predictor
Xi. This calculation of logit operator is equivalently:

p ¼ 1
1þ exp−Logit

and the likelihood L is

L ¼
Yn

pY 1−pð Þ1−Y

where ‘Y’ is the presence of the disease encoded as a
binary categorical variable. In ordinary logistic regression
(OLR), maximum likelihood estimation is used to solve
for the best fitting model.
In this setting, we consider the use of penalized logis-

tic regression methods to select predictors and to predict
DR in high-dimensional clinical information data. Penal-
ized regression methods including ridge, elastic net, and
LASSO have been widely used as sparse learning tools
in bioinformatics [13]. Ridge is a continuous process that
shrinks coefficients and improves the prediction per-
formance of ordinary regression [25]. However, ridge
solves a fitting problem with non-zero coefficients and
does not offer an easily interpretable regression model.
Recently, LASSO has emerged as the most well-known
sparse learning technique [26]. LASSO leads to a sparse
solution of coefficients corresponding to the most im-
portant predictors, and has been known to show better
performance for the prediction model selection and bet-
ter identification of predictors than classical regression
methods [18]. Elastic net is a generalized extension of
ridge and LASSO with a mixture of ridge and LASSO
penalties in likelihood function [27]. These penalized re-
gression methods provide the stability and uniqueness of
regression coefficients. In the penalized logistic regres-
sion, the general objective function for maximum likeli-
hood estimation can be written as

Lpenalized ¼ L−λf βð Þ

where the penalty component f(β) is a function of the re-
gression coefficients and λ is the sparseness control par-
ameter. In this study, we used the Glmnet software
[27,28]. In this software, the objective function of the
penalized logistic regression is

Lpenalized ¼ L−λ
� 1−α

2

�� βj j 2
2 þ α
�� �� βj j��1

�

Where βj j 2
2 ¼ ∑β2i
���� and βj j 1 ¼ ∑ βi

�� ������ are the penalty
functions of ridge and LASSO, respectively. The mixing
parameter α determines the strength of the penalty
components of ridge and LASSO. When α = 0, this prob-
lem is equivalent to ridge regression. If 0 < α < 1, this for-
mulation is used to solve the regression problem inelastic
net. We implemented elastic net with α = 0.4 according to
a previous study which included the penalized logistic re-
gression [28]. When α = 1, this problem is equivalent to
LASSO. We obtained the optimized solutions of each pe-
nalized logistic regression using Glmnet.
In all penalized regression methods, it is necessary to

determine the sparseness control parameter λ. In the
training dataset, we designed the 5-fold cross validation
not only to assess performance, but also to optimize λ.
The area under the curve (AUC) of the receiver operat-
ing characteristic (ROC) is known as a strong predictor
of performance, especially with regard to imbalanced
problems. Due to the imbalanced data in this study,
prediction accuracy might not be a good criterion for
assessing performance since the minor class has less in-
fluence on accuracy than the major class. Therefore, we
investigated the AUC during the 5-fold cross validation
as λ increased. The λ that indicated the highest AUC
was chosen for the final training condition.
The relative importance of predictors was estimated

by standardized regression coefficients of sparse learn-
ing. Standardized regression coefficients were calculated
using standardized input variables, and facilitated the in-
terpretation and comparison of the relative importance of
predictors [29]. A predictor is more important to predict
DR if it has a larger standardized regression coefficients.
In order to compare the performance of the sparse

learning techniques, classical regression method includ-
ing OLR and logistic regression with backward stepwise
selection (LR-BS) were also constructed using the same
training dataset.

Model selection and validation
We constructed five prediction models including OLR,
LR-BS (with a significance of 0.1 to remove the non-
significant variables), ridge, elastic net, and LASSO.
After training process with the whole training dataset, in
order to select the best prediction model, we evaluated
diagnostic abilities based on the Bayesian information
criterion (BIC) in the internal validation dataset. BIC is
widely used in model selection and an effective indicator
to compare the prediction performance when different
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numbers of covariates or predictors are included in the
prediction models [30]. BIC penalizes the number of
variables to avoid an unstable or over-fitting model [31].
In our study, BIC can be written as:

BIC ¼ −2log Lð Þ þ k log nð Þ

where ‘L’ is likelihood of the prediction model in internal
validation dataset, ‘k’ is the number of predictors, and ‘n’
is the number of samples of internal validation dataset.
The best model is the one that gives the lowest BIC value,
which means the largest marginal likelihood of data. We
finally tested the selected prediction models on the in-
ternal and external validation groups using ROC analysis.
Three different clinical scenarios were developed in this

study. Scenario 1 was based on the clinical variables, ex-
cept the laboratory measurements. The variables obtained
from the anthropometric measurements, medical history,
and blood pressures were entered in the scenario. In this
scenario, invasive procedure for blood sampling is not re-
quired. Therefore, the prediction models were designed
for use in simple setting to predict an individual's risk
using clinical variables that can be self-assessed or easily
identified by the public health center. Scenario 2 was de-
veloped by adding the result of blood test to scenario 1.
Since diabetes mellitus is generally diagnosed by plasma
glucose level or HbA1c from blood test, this scenario was
done to evaluate the effect of general clinical information
obtained from clinicians’ practice. Scenario 3 was devel-
oped by adding the result of urine test to scenario 2.
When the patient visits to the clinic for diabetes, urine test
is routinely performed to detect diabetic nephropathy. We
evaluated the additional effect of clinical information from
the urine test in this scenario.
The final prediction models were validated in two

populations: the KNHANES V-1 (internal validation
group) and the KNHANES V-2 (external validation
group). The AUC, accuracy, sensitivity, and specificity
of the sparse learning models and the traditional clinical
biomarkers were calculated in ROC analysis. We gener-
ated the ROC curves and selected cut-off points that
maximized Youden's index [32]. Participants above the
cut-off points were classified as being at high risk in
each prediction model. We used SPSS 18.0 (SPSS Inc.,
Chicago, IL) for statistical analysis and MedCalc 12.3
(MedCalc, Mariakerke, Belgium) for ROC analysis.

Results
The background characteristics of the development
dataset (KNHANES V-1) are presented in Table 1. Eighty-
four (17.1%) of 490 diabetic patients had DR. By compa-
rison with the patients in the control group, diabetic
patients in the development dataset were of significantly
higher duration of diabetes, HbA1c, and FPG, and were of
significantly lower BMI, diastolic BP, hemoglobin, and
urine sodium level. Diabetic patients were more likely to
have proteinuria, glycosuria, and diabetic histories includ-
ing diagnosed diabetes, insulin therapy, anti-diabetic drug,
and nondrug anti-diabetic therapy.
Figure 2 shows the AUC of the penalized logistic regres-

sion models using the 5-fold cross validation as λ is varied.
We found that the optimal values of λ were different in
the different clinical scenarios. When the optimal values of
λ were applied for training the penalized logistic regression
including ridge, elastic net, and LASSO, the resulting coef-
ficients models that we obtained are given in Additional
file 1. The coefficients of OLR and LR-BS were also calcu-
lated. While OLR and ridge utilized all variables, LR-BS
showed the smallest number of predictors among the five
prediction methods–10, 12, and 16 predictors in scenarios
1, 2, and 3, respectively. The most popular sparse learning
technique, that is, LASSO, selected 12, 14, and 19 variables
as important predictors in scenarios 1, 2, and 3, respect-
ively. Table 2 shows the standardized coefficients of the
final LASSO prediction model. In scenario 1, duration of
diabetes was the most important predictor. In scenarios 2
and 3, which included the results of blood test, FPG was
the most important predictor.
To assess the ability of the models for predicting DR, we

applied our methods to a testing set composed of the in-
dependent data from the training set. Figure 3 describes
the performance comparison of the prediction models in
the internal validation group. We found that the penalized
logistic regression methods showed better discriminative
ability than OLR and LR-BS. Ridge had the smallest root
mean square error and the highest Spearman's correlation
value. When we investigated BIC to consider the effective-
ness of the prediction models, LASSO showed a lower
value of BIC than other methods. In other words, the
LASSO model predicted DR most efficiently. Application
of the BIC criteria to DR prediction resulted in a final
LASSO model of fewer independent predictors with only
a small loss in discrimination than ridge and elastic net.
Additionally, we analyzed ROC curves of our methods

in the internal and external validation datasets. Because
LASSO and LR-BS had the lowest BIC among the penal-
ized regression methods and classical methods, respect-
ively, we compared their ROC curves. The traditional
clinical biomarkers, including HbA1c, FPG, and duration
of diabetes, were also included for comparison with
LASSO and LR-BS developed in scenario 3. As a result,
the LASSO model was the best discriminator between
the control diabetic patients and the patients with DR
(Figure 4). In the internal validation dataset, the LASSO
model yielded an AUC of 0.81, accuracy of 73.6%, sensi-
tivity of 77.4%, and specificity of 72.7%. Consistent re-
sults were observed in the external validation dataset.
The LASSO predicted DR with an AUC of 0.82,



Table 1 Characteristics of the patients with diabetes mellitus in the development dataset (KNHANES V-1)
Total diabetic patients

(N = 490)
Without diabetic retinopathy

(N = 406)
With diabetic retinopathy

(N = 84)
p-value

Demographics

Sex (male : female) 253 : 237 211 : 195 42 : 42 0.742†

Age (years) 60.8 ± 11.7 60.7 ± 11.7 61.4 ± 11.6 0.463¶

Current smoke 107 (21.8) 84 (20.7) 23 (27.4) 0.177†

Alcohol (>1 serving/week) 196 (40.0) 166 (40.9) 30 (35.7) 0.378†

Physical activity (MET h/week) 14.6 ± 13.0 14.2 ± 12.01 16.4 ± 16.6 0.673¶

Waist circumference (cm) 87.1 ± 9.7 87.4 ± 9.9 85.5 ± 8.3 0.112‡

BMI (kg/m2) 25.0 ± 3.3 25.2 ± 3.3 23.8 ± 3.3 0.001‡

Medical history

Duration of diabetes (years) 6.2 ± 7.4 5.2 ± 6.7 10.6 ± 8.7 <0.001¶

Diagnosed diabetes 331 (67.6) 252 (62.1) 79 (94.1) <0.001†

Insulin therapy 30 (6.1) 15 (3.7) 15 (17.9) <0.001†

Anti-diabetic drug 297 (60.6) 233 (57.4) 64 (76.2) <0.001†

Nondrug anti-diabetic therapy 331 (67.6) 252 (62.1) 79 (94.1) <0.001†

Diagnosed hypertension 267 (54.5) 228 (56.2) 39 (46.4) 0.103†

Drug for hypertension 254 (51.8) 216 (53.2) 38 (45.2) 0.184†

Diagnosed hyperlipidemia 145 (29.6) 118 (29.1) 27 (18.6) 0.574†

Drug for hyperlipidemia 101 (20.6) 84 (20.7) 17 (20.2) 0.926†

Blood pressure

Systolic BP (mmHg) 126.2 ± 16.4 126.5 ± 16.1 124.9 ± 17.8 0.413‡

Diastolic BP (mmHg) 75.3 ± 9.8 76.0 ± 9.7 72.1 ± 9.9 0.001¶

Blood test

HbA1c (%) 7.3 ± 1.5 7.1 ± 1.5 7.9 ± 1.5 <0.001¶

FPG (mg/dL) 139.3 ± 42.5 136.8 ± 40.5 151.2 ± 49.5 0.008¶

AST (IU/L) 25.4 ± 12.8 25.3 ± 12.5 25.8 ± 14.4 0.408¶

ALT (IU/L) 26.3 ± 16.4 26.3 ± 16.1 25.9 ± 17.6 0.297¶

Hemoglobin (g/dL) 14.1 ± 1.5 14.2 ± 1.5 13.6 ± 1.7 0.003¶

Cholesterol (mg/dL) 186.3 ± 40.8 185.9 ± 39.3 187.9 ± 47.5 0.836¶

HDL (mg/dL) 47.8 ± 12.1 48.0 ± 12.1 46.9 ± 12.1 0.370¶

LDL (mg/dL) 109.6 ± 34.3 109.6 ± 33.8 109.7 ± 36.8 0.827¶

TG (mg/dL) 180.5 ± 172.7 172.9 ± 124.8 217.4 ± 313.0 0.218¶

BUN (mg/dL) 15.8 ± 5.0 15.7 ± 4.9 16.2 ± 5.3 0.543¶

Serum creatinine (mg/dL) 0.87 ± 0.27 0.86 ± 0.26 0.89 ± 0.30 0.709¶

Urine test

Protein* (+) 64 (13.1) 44 (10.8) 20 (23.8) 0.001†

Glucose* (+) 123 (25.1) 90 (22.2) 33 (39.3) 0.001†

Ketone* (+) 59 (12.0) 48 (11.8) 11 (13.1) 0.744†

Bilirubin* (+) 58 (11.8) 45 (11.1) 13 (15.5) 0.257†

Blood* (+) 169 (34.5) 133 (32.8) 36 (42.9) 0.076†

Urobilinogen* (+) 6 (1.2) 4 (1.0) 2 (0.4) 0.274§

Urine creatinine (mg/L) 123.3 ± 69.9 125.9 ± 70.8 110.8 ± 64.2 0.051¶

Urine sodium (mmol/day) 124.5 ± 47.2 126.6 ± 48.1 114.3 ± 41.5 0.037¶

*by Dipstick (0, negative; 1, positive).
p-value were obtained by †Chi-squared test, §Fisher’s exact test, ¶Mann–Whitney test, and ‡Student t-test.
Table values are given as mean ± standard deviation or number (%) unless otherwise indicated.
ALT Alanine aminotransferase AST Aspartate aminotransferase, BMI Body mass index, BP Blood pressure, BUN Blood urea nitrogen, FPG Fasting plasma glucose,
HbA1c Glycated hemoglobin, HDL High-density lipoprotein, LDL Low-density lipoprotein, TG Triglyceride.
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Figure 2 Performance (AUC) of the penalized logistic regression models using the 5-fold cross validation. The penalized logistic
regression models included ridge (A), elastic net (B), and LASSO (C). In order to optimize λ, we investigated the AUC during the 5-fold cross
validation as λ increased. The λ that indicated the highest AUC was chosen for the final training condition.
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Table 2 Diabetic retinopathy risk predictors identified by LASSO

Scenario 1
(DE + MH + BP)

Scenario 2
(DE + MH + BP + BT)

Scenario 3
(DE + MH + BP + BT + UT)

Reference
No.

β* Std β† β* Std β† β* Std β†

Demographics

Sex (female) 0.199 0.099 [50]

Age (years) −0.022 −0.260 −0.007 −0.077 −0.012 −0.146 [42,43]

Current smoke 0.216 0.088 0.532 0.218 0.469 0.192 [2,41]

Alcohol (>1 serving/week) −0.039 −0.019 −0.159 −0.077 −0.137 −0.066 [48]

Physical activity (MET h/week) 0.005 0.058 [41]

BMI (kg/m2) −0.058 −0.197 −0.059 −0.202 −0.082 −0.281 [44]

Medical history

Duration of diabetes (years) 0.054 0.376 0.027 0.186 0.027 0.187 [2,50]

Diagnosed diabetes 0.242 0.100 0.592 0.244 0.427 0.176 [2]

Insulin therapy 1.012 0.237 1.117 0.261 0.956 0.224 [45]

Diagnosed hypertension −0.228 −0.227 [2]

Drug for hyperlipidemia −0.036 −0.014 −0.028 −0.011 [2,41]

Blood pressure

Diastolic BP (mmHg) −0.007 −0.067 −0.007 −0.066 −0.004 −0.041 [9]

Blood test

HbA1c (%) 0.103 0.155 0.054 0.081 [2,8]

FPG (mg/dL) 0.009 0.402 0.008 0.339 [2]

Hemoglobin (g/dL) −0.230 −0.036 −0.256 −0.040 [41]

TG (mg/dL) 0.002 0.298 0.002 0.322 [47,50]

HDL (mg/dL) −0.003 −0.030 [47]

BUN (mg/dL) 0.037 0.177 0.037 0.181 [46]

Urine test

Protein (+) 0.141 0.148 [24,43]

Glucose (+) 0.442 0.191 [24]

Ketone (+) −0.111 −0.036

Bilirubin (+) 0.118 0.041

Blood (+) 0.096 0.046

*Regression coefficient of logit operator.
†Standardized regression coefficient of logit operator.
BMI Body mass index, BP Blood pressure, BT Blood test, BUN Blood urea nitrogen, DE Demographics, FPG Fasting plasma glucose, HbA1c Glycated hemoglobin,
HDL High-density lipoprotein, MH Medical history, TG Triglyceride, UT Urine test.
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accuracy of 75.2%, sensitivity of 72.1%, and specificity of
76.0% in the external validation. Considering AUC as a
performance metric, the LASSO was significantly super-
ior to the HbA1c, FPG, and duration of diabetes in both
the internal and external validation (Table 3). The ROC
analysis results of the LASSO models in scenarios 1 and
2 are shown in Additional file 2.
The LASSO and LR-BS prediction models were also

validated among 144 participants who had undiagnosed
diabetes (Table 4). Although the newly-diagnosed dia-
betic patients had the same value of zero-duration of
diabetes, the prediction models showed a similar per-
formance to the results in Table 3. The LASSO
predicted DR with an AUC of 0.90, accuracy of 89.2%,
sensitivity of 75.0%, and specificity of 89.6% in the
newly-diagnosed diabetic patients. Based on these find-
ings, if we assume that 1,000 first-visit participants with
undiagnosed diabetes will be examined by the LASSO
model, then, 196 cases of diabetic patients would be
accurately identified as having retinopathy or non-
retinopathy when compared to HbA1c that is the most
reliable traditional marker.
To show the effectiveness of the proposed method in

predicting DR, we also implemented several commonly
used algorithms from the literature [33,34]. Five algo-
rithms, including SVM, artificial neural network (ANN),



Figure 3 Performance comparison of the prediction models in the internal validation group. BP, blood pressure; BT, blood test; DE,
demographics; LASSO, least absolute shrinkage and selection operator; LR-BS, logistic regression with backward stepwise selection; MH, medical
history; OLR, ordinary logistic regression; RMS, root mean square; UT, urine test.
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Random forest, Naïve Bayes classifier, and k-Nearest
Neighbors, were tested on the same validation dataset
(Table 5). Among these algorithms, the best prediction
was provided by SVM in both the internal and external
validation dataset. LASSO showed a similar but slightly
lower AUC value than SVM in the internal validation
dataset. In the external validation dataset, LASSO
outperformed the other algorithms. We found no statis-
tically significant difference in the AUC between LASSO
and SVM (p = 0.304 and 0.684 in the internal and exter-
nal validation dataset, respectively).
Discussion
In this study, we introduced a bioinformatics-inspired
method using sparse learning techniques in order to pre-
dict DR risk among diabetic patients. Our proposed
LASSO model was designed for use in the self-
assessment setting (scenario 1) and in the clinical setting
with better prediction of DR (scenarios 2 and 3). Con-
sistent results were observed when we applied the pre-
diction model to the newly-diagnosed diabetic patients.
We expect that the clinical information recorded in the
electronic health records can be easily used by our



Figure 4 ROC curves for diabetic retinopathy prediction. The prediction models were tested in the internal (A) and external (B) validation
groups. The LASSO and LR-BS models were trained in scenario 3. FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; LASSO, least
absolute shrinkage and selection operator; LR- BS, logistic regression with backward stepwise selection.
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Table 3 Diagnostic performance of prediction models in the internal and external validation groups

AUC (95% CI) Accuracy (%) (95% CI) Sensitivity (%) (95% CI) Specificity (%) (95% CI) PPV (%) NPV (%)

(A) Internal validation group (N = 163)

LASSO† 0.81 (0.74-0.86) 73.6 (66.0-80.1) 77.4 (70.1-83.5) 72.7 (65.1-79.3) 40.0 93.2

LR-BS† 0.79 (0.72-0.85) 64.4* (56.5-71.7) 83.9 (77.1-89.1) 59.8 (51.9-67.4) 32.9 94.0

HbA1c 0.69* (0.62-0.76) 66.3* (58.4-73.4) 77.4 (70.1-83.5) 63.6 (55.7-70.9) 33.3 92.3

FPG 0.54* (0.46-0.62) 57.7* (49.7-65.3) 61.3 (53.3-68.7) 56.8 (48.8-64.5) 25.0 86.2

Duration of diabetes 0.72* (0.66-0.79) 57.1* (49.1-64.7) 87.1 (80.7-91.7) 50.0 (42.1-57.9) 29.0 94.3

(B) External validation group (N = 562)

LASSO† 0.82 (0.78-0.85) 75.2 (71.3-78.7) 72.1 (68.0-75.8) 76.0 (72.1-79.5) 43.7 91.3

LR-BS† 0.79 (0.75-0.83) 68.7* (64.6-72.6) 82.0 (78.4-85.1) 65.3 (61.1-69.3) 37.9 93.3

HbA1c 0.69* (0.65-0.73) 63.7* (59.5-67.7) 70.3 (66.2-74.1) 62.0 (57.7-66.1) 32.4 89.0

FPG 0.65* (0.60-0.69) 68.3* (64.1-72.0) 57.7 (53.4-61.8) 73.4 (69.4-77.1) 36.0 87.0

Duration of diabetes 0.73* (0.69-0.77) 69.6* (66.5-74.3) 64.9 (60.7-68.9) 72.0 (68.0-75.7) 37.5 88.8

*AUC or accuracy is significantly different from the LASSO at the level of p < 0.05.
†The LASSO and LR-BS models were trained in scenario 3.
AUC Area under the receiver operating characteristic curve, CI Confidence interval, FPG Fasting plasma glucose, HbA1c Glycated hemoglobin, LASSO Least absolute
shrinkage and selection operator, LR-BS Logistic regression with backward stepwise selection, NPV Negative predictive value, PPV Positive predictive value.
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proposed method for identifying diabetic populations
who are at a high risk of DR. To our knowledge, this is
the first study to develop a sparse learning model for DR
risk prediction using population-based health records.
No prior report has investigated the ability of machine
learning to predict DR risk in a clinical manner.
The LASSO, the most well-known sparse learning

technique, predicted DR most efficiently. ROC analysis
supported that the LASSO model had a statistically sig-
nificant improvement in predicting DR. This finding is
consistent with previous studies on the comparison of
sparse learning and conventional methods in various
complex discriminating problems for predicting disease
with genetic data [17,35]. The strengths of our proposed
sparse learning method are feature selection, good pre-
diction performance, and easily interpretable results.
Several studies have earlier pointed out that SVM and
ANN can be considered an incomprehensible black-box
due to its complexity [36,37]. Whereas, the LASSO
model is composed of easily interpretable regression co-
efficients that can provide an insight into risk factors of
DR. In our study, LASSO offered a prediction model
Table 4 Diagnostic performance of prediction models in the n
group

AUC (95% CI) Accuracy (%) (95% CI) Sensitivity (

LASSO* 0.90 (0.84-0.95) 89.2 (82.8-93.6) 75.0 (67

LR-BS* 0.85 (0.79-0.91) 72.3 (64.2-79.2) 100.0 (96

HbA1c 0.64 (0.55-0.72) 69.6 (61.4-76.8) 62.5 (54

FPG 0.73 (0.65-0.80) 65.5 (57.2-73.1) 75.0 (67

*The LASSO and LR-BS models were trained in scenario 3.
AUC Area under the receiver operating characteristic curve, CI Confidence interval,
shrinkage and selection operator, LR-BS Logistic regression with backward stepwise
with important predictor selection as well as a similar
performance to SVM, which has shown to perform well
in multiple research areas lately [15]. Therefore, LASSO
can be an excellent choice when both discriminative
power and variable selection are important in a high-
dimensional clinical problem [38].
The need for fundus examination at the time of diag-

nosis of diabetes has been confirmed [2,39]. However,
several reports have revealed that many patients neglect
ophthalmologic examination due to asymptomatic eye
status in the early stage and poor access to ophthalmo-
logic care, and that the rate of referrals from primary
care physicians to ophthalmologists is low [6,40]. We ex-
pect that our method will be especially useful in the
population with poor access to ophthalmologic care.
Most experts predicted DR risk using level of HbA1c or
FPG [8]. However, our study has shown the poor per-
formance of HbA1c and FPG in predicting DR. Our pro-
posed sparse learning method has shown significantly
better performance than HbA1c and FPG. If the LASSO
prediction model retains good performance after valid-
ation in a larger population, it will be possible to use this
ewly-diagnosed diabetic patients in the total validation

%) (95% CI) Specificity (%) (95% CI) PPV (%) NPV (%)

.1-81.6) 89.6 (83.2-93.9) 16.7 99.2

.8-100.0) 71.5 (63.4-78.5) 8.9 100.0

.2-70.8) 70.1 (62.0-77.3) 4.4 98.1

.1-81.6) 65.3 (57.0-72.8) 5.7 98.9

FPG Fasting plasma glucose, HbA1c Glycated hemoglobin, LASSO Least absolute
selection, NPV Negative predictive value, PPV Positive predictive value.



Table 5 Diagnostic performance of the commonly used algorithms in the literatures

Methods* AUC (95% CI) Accuracy (%) (95% CI) Sensitivity (%) (95% CI) Specificity (%) (95% CI) PPV (%) NPV (%)

(A) Internal validation group (N = 163)

SVM (RBF kernel) 0.83 (0.76-0.88) 74.8 (67.3-81.2) 71.0 (63.3-77.7) 75.8 (68.3-82.0) 40.7 91.7

ANN 0.79 (0.72-0.85) 71.2 (63.5-77.9) 80.6 (73.6-86.3) 68.9 (61.2-75.9) 37.9 93.8

Random Forest 0.80 (0.73-0.85) 72.4 (64.8-79.0) 87.1 (80.7-91.7) 68.9 (61.2-75.9) 39.7 95.8

Naïve Bayes 0.76 (0.69-0.82) 74.2 (66.7-80.7) 74.2 (66.6-80.6) 74.2 (66.7-80.7) 40.4 92.5

k-Nearest Neighbors 0.52 (0.45-0.59) 71.2 (63.5-77.9) 16.1 (11.0-22.8) 84.1 (77.4-89.3) 19.2 81.0

(B) External validation group (N = 562)

SVM 0.81 (0.78-0.84) 74.1 (70.1-77.7) 75.7 (71.8-79.2) 73.7 (69.7-77.3) 42.6 92.1

ANN 0.79 (0.76-0.83) 71.9 (67.8-75.6) 81.1 (77.5-84.3) 69.5 (65.4-73.3) 40.7 93.4

Random Forest 0.76 (0.72-0.79) 71.1 (67.1-74.9) 69.4 (65.3-73.2) 71.6 (67.5-75.3) 38.7 90.0

Naïve Bayes 0.73 (0.69-0.77) 70.6 (66.5-74.3) 69.4 (65.3-73.2) 70.9 (66.8-74.6) 38.1 89.9

k-Nearest Neighbors 0.52 (0.48-0.57) 73.7 (69.7-77.3) 16.2 (13.3-19.6) 88.6 (85.5-91.1) 26.9 80.3

*The models were trained and validated in scenario 3 without feature selection. The optimal conditions of each method were obtained in the 5-fold
cross validation.
ANN Artificial neural network, AUC Area under the receiver operating characteristic curve, CI Confidence interval, NPV Negative predictive value, PPV Positive
predictive value, RBF Radial basis function, SVM Support vector machine.
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technique to determine candidates for evaluation with
fundus examination and also to prevent visual impair-
ment due to progression of DR.
In this study, when all clinical data were available, in the

LASSO model, the presence of DR was associated with
the 19 predictors. LASSO algorithm identified FPG, trigly-
ceride (TG), low BMI, and insulin therapy as strong pre-
dictors (absolute standardized regression coefficient > 0.2).
In general, smoking, anemia (low level of hemoglobin),
high level of HbA1c, FPG, and TG were shown as the
common modifiable risk factors of DR in previous
studies [8,41]. The young age of the diabetic patients
was also an important predictor. Several studies have
shown that diagnosis of diabetes at a young age is
closely related to long duration of diabetes and DR
[42,43]. Long duration of diabetes may affect the sever-
ity of diabetes that is associated with weight loss (low
BMI) and history of insulin therapy [44,45]. Since dia-
betic nephropathy is also caused by microvascular
damage, the biomarkers of kidney dysfunction, includ-
ing elevated BUN and urine dipstick test positive, are
closely related to DR [24,46,47]. We found that low
diastolic blood pressure was a better predictor of DR in
contrast with several previous studies [2]. There is a
theoretical basis for assuming that pulse pressure (sys-
tolic pressure-diastolic pressure) has stronger effect on
microvascular cell damage than simple hypertension
[9]. Therefore, it is possible that diabetic complications
could be affected by low diastolic pressure. Alcohol
consumption was also an unexpected factor. Recent
studies have proposed that moderate alcohol consump-
tion may prevent cardiovascular complications in dia-
betic patients [48]. However, more research is needed
to reveal the relationship between alcohol consump-
tion and DR.
There are several limitations to this study. First, the

study was based on a cross-sectional survey that had sev-
eral defects due to medical views. For example, BMI, phys-
ical activity status, FPG, and blood pressure could differ
according to the time of measurement. Secondly, we
did not distinguish between type 1 and type 2 diabetes
mellitus. According to an epidemiologic study, in Korea,
the incidence of type 1 diabetes mellitus is 0.6 per 100,000
which is very small number, while the incidence of type 2
is 8,290 per 100,000 [6,49]. Therefore, we assumed that all
patients had type 2 diabetes mellitus. However, we cannot
exclude the possibility that our findings were influenced
by type 1 diabetic patients. Third, this is an Asian-specific
study performed at the level of a single country. Generally,
the incidence and progression of diabetes are influenced
by ethnic differences and genetic backgrounds [43,50].
Thus, it is uncertain whether the results will be equally
applicable to the general clinical practice.

Conclusion
In summary, this study leads to the conclusion that
sparse learning techniques using LASSO can contribute
to the advancement of clinical decision-making tools
with a good discriminative ability and to our under-
standing of risk factors for DR. This study supports that
LASSO can be an effective prediction model not only in
a bioinformatics problem, but also in the analysis of
high-dimensional electronic health records. We hope
that this study helps diabetic patients to reduce the risk
of DR, which is the major cause of blindness in such
patients.



Oh et al. BMC Medical Informatics and Decision Making 2013, 13:106 Page 13 of 14
http://www.biomedcentral.com/1472-6947/13/106
Additional files

Additional file 1: Regression coefficients of the classical logistic
regression models and the sparse learning models trained with the
training dataset.

Additional file 2: Diagnostic performance of the LASSO models in
the different scenarios, the support vector machine model, and the
artificial neural network model.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
EO collected the data, analyzed the experimental results, provided feedback
on the paper, and revised the manuscript. TKY designed and conducted the
experiments, analyzed the results, and drafted the research article. ECP
collected the data, and provided feedback on the paper. All authors read
and approved the final paper. EO and TKY contributed equally to this work.

Acknowledgements
The authors have no support or funding to report. Particular thanks go to
Prof. S.M. Hong from the Institute of Vision Research, Department of
Ophthalmology, Yonsei University College of Medicine for her support in the
design of this study.

Author details
1Department of Medicine, Yonsei University College of Medicine, Seoul,
South Korea. 2Department of Medical Engineering, Yonsei University College
of Medicine, Seoul, South Korea. 3Department of Preventive Medicine &
Institute of Health Services Research, Yonsei University, Seoul, South Korea.

Received: 15 June 2013 Accepted: 2 September 2013
Published: 13 September 2013

References
1. Golubnitschaja O: Advanced diabetes care: three levels of prediction,

prevention personalized treatment. Curr Diabetes Rev 2010, 6:42–51.
2. Cheung N, Mitchell P, Wong TY: Diabetic retinopathy. Lancet 2010,

376:124–136.
3. Zhang X, Saaddine JB, Chou C-F, Cotch MF, Cheng YJ, Geiss LS, Gregg EW,

Albright AL, Klein BEK, Klein R: Prevalence of diabetic retinopathy in the
United States, 2005–2008. JAMA 2010, 304:649–656.

4. Askew DA, Crossland L, Ware RS, Begg S, Cranstoun P, Mitchell P, Jackson
CL: Diabetic retinopathy screening and monitoring of early stage disease
in general practice: design and methods. Contemp Clin Trials 2012,
33:969–975.

5. Mohamed Q, Gillies MC, Wong TY: Management of diabetic retinopathy: a
systematic review. JAMA 2007, 298:902–916.

6. Shin KH, Chi MJ: Fundus examination rate in diabetics and the public
health factors associated with fundus examination rate. J Korean
Ophthalmol Soc 2009, 50:1319.

7. Abràmoff MD, Niemeijer M, Suttorp-Schulten MSA, Viergever MA, Russell SR,
van Ginneken B: Evaluation of a system for automatic detection of
diabetic retinopathy from color fundus photographs in a large
population of patients with diabetes. Diabetes Care 2008, 31:193–198.

8. Cho NH, Kim TH, Woo SJ, Park KH, Lim S, Cho YM, Park KS, Jang HC, Choi SH:
Optimal HbA1c cutoff for detecting diabetic retinopathy. Acta Diabetol 2013.
doi:10.1007/s00592-013-0452-3.

9. Knudsen ST, Poulsen PL, Hansen KW, Ebbehøj E, Bek T, Mogensen CE: Pulse
pressure and diurnal blood pressure variation: association with
micro- and macrovascular complications in type 2 diabetes. Am J
Hypertens 2002, 15:244–250.

10. Colagiuri S, Lee CMY, Wong TY, Balkau B, Shaw JE, Borch-Johnsen K:
Glycemic thresholds for diabetes-specific retinopathy: implications for
diagnostic criteria for diabetes. Diabetes Care 2011, 34:145–150.

11. Hosseini SM, Maracy MR, Amini M, Baradaran HR: A risk score development
for diabetic retinopathy screening in Isfahan-Iran. J Res Med Sci Off J
Isfahan Univ Med Sci 2009, 14:105–110.

12. Aspelund T, Thornórisdóttir O, Olafsdottir E, Gudmundsdottir A, Einarsdóttir AB,
Mehlsen J, Einarsson S, Pálsson O, Einarsson G, Bek T, Stefánsson E: Individual
risk assessment and information technology to optimise screening
frequency for diabetic retinopathy. Diabetologia 2011, 54:2525–2532.

13. Waldron L, Pintilie M, Tsao M-S, Shepherd FA, Huttenhower C, Jurisica I:
Optimized application of penalized regression methods to diverse
genomic data. Bioinforma Oxf Engl 2011, 27:3399–3406.

14. Yuan M, Lin Y: Model selection and estimation in regression with
grouped variables. J R Stat Soc Ser B Stat Methodol 2005, 68:49–67.

15. Roth V: The generalized LASSO. IEEE Trans Neural Networks Publ IEEE Neural
Networks Counc 2004, 15:16–28.

16. Cheng Q: A sparse learning machine for high-dimensional data with
application to microarray gene analysis. IEEEACM Trans Comput Biol
Bioinforma IEEE ACM 2010, 7:636–646.

17. Wang H, Nie F, Huang H, Kim S, Nho K, Risacher SL, Saykin AJ, Shen L:
Identifying quantitative trait loci via group-sparse multitask regression
and feature selection: an imaging genetics study of the ADNI cohort.
Bioinforma Oxf Engl 2012, 28:229–237.

18. Lee H, Lee DS, Kang H, Kim B-N, Chung MK: Sparse brain network recovery
under compressed sensing. IEEE Trans Med Imaging 2011, 30:1154–1165.

19. Oh K, Lee J, Lee B, Kweon S, Lee Y, Kim Y: Plan and operation of the 4th
Korea national health and nutrition examination survey (KNHANES IV).
Korean J Epidemiol 2007, 29:139–145.

20. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O’Brien WL,
Bassett DR Jr, Schmitz KH, Emplaincourt PO, Jacobs DR Jr, Leon AS:
Compendium of physical activities: an update of activity codes and MET
intensities. Med Sci Sports Exerc 2000, 32(9 Suppl):S498–S504.

21. Early Treatment Diabetic Retinopathy Study Research Group: Grading
diabetic retinopathy from stereoscopic color fundus photographs-an
extension of the modified Airlie house classification. Ophthalmology 1991,
98(5 Suppl):786–806.

22. Yoon K-C, Mun G-H, Kim S-D, Kim S-H, Kim CY, Park KH, Park YJ, Baek S-H,
Song SJ, Shin JP, Yang S-W, Yu S-Y, Lee JS, Lim KH, Park H-J, Pyo E-Y, Yang J-E,
Kim Y-T, Oh K-W, Kang SW: Prevalence of eye diseases in South Korea: data
from the Korea national health and nutrition examination survey 2008–
2009. Korean J Ophthalmol KJO 2011, 25:421–433.

23. American Diabetes Association: Diagnosis and classification of diabetes
mellitus. Diabetes Care 2012, 35(Suppl 1):S64–S71.

24. Esmatjes E, Castell C, Gonzalez T, Tresserras R, Lloveras G: Epidemiology of
renal involvement in type II diabetics (NIDDM) in Catalonia. The Catalan
diabetic nephropathy study group. Diabetes Res Clin Pract 1996, 32:157–163.

25. Hoerl AE, Kennard RW: Ridge regression: biased estimation for
Nonorthogonal problems. Technometrics 1970, 12:55–67.

26. Tibshirani R: Regression shrinkage and selection via the lasso. J R Stat Soc
Ser B Methodol 1996, 58:267–288.

27. Zou H, Hastie T: Regularization and variable selection via the elastic net.
J R Stat Soc Ser B Stat Methodol 2005, 67:301–320.

28. Ayers KL, Cordell HJ: SNP selection in genome-wide and candidate gene
studies via penalized logistic regression. Genet Epidemiol 2010, 34:879–891.

29. Schielzeth H: Simple means to improve the interpretability of regression
coefficients. Methods Ecol Evol 2010, 1:103–113.

30. Kass RE, Raftery AE: Bayes factors. J Am Stat Assoc 1995, 90:773–795.
31. Vrieze SI: Model selection and psychological theory: a discussion of the

differences between the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC). Psychol Methods 2012, 17:228–243.

32. Fluss R, Faraggi D, Reiser B: Estimation of the Youden Index and its
associated cutoff point. Biom J 2005, 47:458–472.

33. Hsieh C-H, Lu R-H, Lee N-H, Chiu W-T, Hsu M-H, Li Y-CJ: Novel solutions for
an old disease: diagnosis of acute appendicitis with random forest,
support vector machines, and artificial neural networks. Surgery 2011,
149:87–93.

34. Jamal S, Periwal V, Scaria V: Predictive modeling of anti-malarial molecules
inhibiting apicoplast formation. BMC Bioinforma 2013, 14:1–8.

35. Cai Z, Ducatez MF, Yang J, Zhang T, Long L-P, Boon AC, Webby RJ, Wan X-F:
Identifying antigenicity-associated sites in highly pathogenic H5N1
influenza virus hemagglutinin by using sparse learning. J Mol Biol 2012,
422:145–155.

36. Martens D, Baesens B, Gestel TV: Decompositional rule extraction from
support vector machines by active learning. IEEE Trans Knowl Data Eng
2009, 21:178–191.

37. Heiat A: Comparison of artificial neural network and regression models
for estimating software development effort. Inf Softw Technol 2002,
44:911–922.

http://www.biomedcentral.com/content/supplementary/1472-6947-13-106-S1.docx
http://www.biomedcentral.com/content/supplementary/1472-6947-13-106-S2.docx


Oh et al. BMC Medical Informatics and Decision Making 2013, 13:106 Page 14 of 14
http://www.biomedcentral.com/1472-6947/13/106
38. Xu C, Ladouceur M, Dastani Z, Richards JB, Ciampi A, Greenwood CMT:
Multiple regression methods show great potential for rare variant
association tests. PLoS One 2012, 7:e41694.

39. Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD,
Ferris FL, Klein R: Retinopathy in diabetes. Dia Care 2004, 27(suppl 1):s84–s87.

40. Chew EY: Screening options for diabetic retinopathy. Curr Opin
Ophthalmol 2006, 17:519–522.

41. Aiello LP, Cahill MT, Wong JS: Systemic considerations in the management
of diabetic retinopathy. Am J Ophthalmol 2001, 132:760–776.

42. Hamman RF, Mayer EJ, Moo-Young GA, Hildebrandt W, Marshall JA, Baxter J:
Prevalence and risk factors of diabetic retinopathy in non-hispanic
whites and hispanics with NIDDM: San Luis valley diabetes study.
Diabetes 1989, 38:1231–1237.

43. Chen H, Zheng Z, Huang Y, Guo K, Lu J, Zhang L, Yu H, Bao Y, Jia W: A
microalbuminuria threshold to predict the risk for the development of
diabetic retinopathy in type 2 diabetes mellitus patients. PLoS One 2012,
7:e36718.

44. Looker HC, Knowler WC, Hanson RL: Changes in BMI and weight before and
after the development of type 2 diabetes. Dia Care 2001, 24:1917–1922.

45. Turner RCCC: Glycemic control with diet, sulfonylurea, metformin, or
insulin in patients with type 2 diabetes mellitus: progressive requirement
for multiple therapies (ukpds 49). JAMA 1999, 281:2005–2012.

46. Ishihara M, Yukimura Y, Yamada T, Ohto K, Yoshizawa K: Diabetic
complications and their relationships to risk factors in a Japanese
population. Dia Care 1984, 7:533–538.

47. Lyons TJ, Jenkins AJ, Zheng D, Lackland DT, McGee D, Garvey WT, Klein RL:
Diabetic retinopathy and serum Lipoprotein Subclasses in the DCCT/
EDIC cohort. Invest Ophthalmol Vis Sci 2004, 45:910–918.

48. Kalter-Leibovici O, Wainstein J, Ziv A, Harman-Bohem I, Murad H, Raz I:
Clinical, socioeconomic, and lifestyle parameters associated with erectile
dysfunction among diabetic men. Dia Care 2005, 28:1739–1744.

49. Karvonen M, Tuomilehto J, Libman I, LaPorte R: A review of the recent
epidemiological data on the worldwide incidence of type 1
(insulin-dependent) diabetes mellitus. Diabetologia 1993, 36:883–892.

50. Davis MD, Fisher MR, Gangnon RE, Barton F, Aiello LM, Chew EY, Ferris FL,
Knatterud GL: Risk factors for high-risk proliferative diabetic retinopathy
and severe visual loss: early treatment diabetic retinopathy study report
#18. Invest Ophthalmol Vis Sci 1998, 39:233–252.

doi:10.1186/1472-6947-13-106
Cite this article as: Oh et al.: Diabetic retinopathy risk prediction for
fundus examination using sparse learning: a cross-sectional study. BMC
Medical Informatics and Decision Making 2013 13:106.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Data sources
	Sparse learning techniques
	Model selection and validation

	Results
	Discussion
	Conclusion
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

