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Abstract. Deformation quantization on varieties with singularities offers perspectives
that are not found on manifolds. The Harrison component of Hochschild cohomology,
vanishing on smooth manifolds, reflects information about singularities. The Harrison
2-cochains are symmetric and are interpreted in terms of abelian ∗-products. This paper
begins a study of abelian quantization on plane curves over C, being algebraic varieties of
the form C

2/R, where R is a polynomial in two variables; that is, abelian deformations
of the coordinate algebra C[x, y]/(R). To understand the connection between the singulari-
ties of a variety and cohomology we determine the algebraic Hochschild (co)homology and
its Barr–Gerstenhaber–Schack decomposition. Homology is the same for all plane curves
C[x, y]/R, but the cohomology depends on the local algebra of the singularity of R at the
origin. The Appendix, by Maxim Kontsevich, explains in modern mathematical language
a way to calculate Hochschild and Harrison cohomology groups for algebras of functions
on singular planar curves etc. based on Koszul resolutions.
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1. Introduction

Deformation quantization is a term coined by Moshe Flato, who suggested that
any nontrivial associative deformation of an algebra of functions should be inter-
preted as a kind of “quantization”. Deformation quantization is [3] the study of
associative ∗-products of the form f ∗ g= f g+∑

n>0 �
nCn( f, g), where � is a for-

mal parameter [11]. This concept has gained wide currency and has been inten-
sively developed in recent years, but almost exclusively in the context of smooth
Poisson manifolds ([4], [5, earlier papers] and [16,17]). In that case it is natural to
consider deformations “in the direction of the Poisson bracket” (Drinfel’d); that
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is, taking C1( f, g)={ f, g}, which is of course antisymmetric. But even if more gen-
eral deformations were to be considered, independent of the symplectic structure,
antisymmetry of C1 entails no essential loss of generality for quantization on a
smooth (finite-dimensional) manifold. A famous result of Hochschild, Kostant and
Rosenberg [15] implies that any ∗-product on a regular, commutative algebra is
equivalent to one with antisymmetric C1. For a related “smooth” result, see [20].

It would seem, therefore, that the time has come to study deformation quantiza-
tion on varieties with singularities. The cohomological implication of singularities
should be interesting.

The Hochschild complex of any commutative algebra decomposes into smaller
complexes; in the case of an algebra A generated by N generators, into N subcom-
plexes [1,2,6,13]. The topology of a smooth manifold is related to the restriction
of the Hochschild complex to alternating maps A∧→ A, dual to simplicial homol-
ogy, and the only component with non-vanishing cohomology. But on varieties
with singularities other components of the Hochschild complex come into play,
which suggests the use of cohomological methods for the study of singularities.

Examples of quantization on singular varieties had been known in connection
with geometric quantization (and ∗-quantization) on coadjoint orbits of Lie alge-
bras, but the cohomological implications had not been recognized; see [3,7–9]. The
connection between singularities and cohomology was studied by Harrison [14],
who was the first to describe the component of Hochschild cohomology that has
become known, if not widely known, as Harrison cohomology. The 2-cochains of
this complex are symmetric. On a commutative algebra every exact Hochschild
2-cochain is symmetric, so that triviality is not an issue if C1 is antisymmetric. But
it is an important consideration in the case of abelian ∗-products.

1.1. THE BGS IDEMPOTENTS

The p-chains of the Hochschild homology complex of a commutative algebra A
are the p-tuples a=∑

a1⊗· · ·⊗ap ∈ A⊗p, and the differential is defined by

da=a1a2⊗a3⊗· · ·⊗ap−a1⊗a2a3⊗a4 · · ·⊗ap+· · ·+ (−)pa1⊗· · ·ap−2⊗ap−1ap.

The p-cochains are maps A⊗p→ A, and the differential is

δC(a1, . . . ,ap+1)=a1C(a2, . . . ,ap−1)−C(da)− (−)pC(a1, . . . ,ap)ap+1.

After the pioneering work of Harrison [14] and Barr [1,2], the complete decom-
position of the Hochschild cohomology of a commutative algebra was found by
Gerstenhaber and Schack [12,13]. The Hochschild cochain complex splits into an
infinite sum of direct summands. (If the algebra is generated by N generators then
there are only N nonzero summands.) The decomposition is based on the action
of Sn on n-cochains, and on the existence of n idempotents en(k), k=1, . . . ,n, in
CSn ,

∑
k en(k)= 1, with the property that δ ◦ en(k)= en+1(k) ◦ δ. Thus we have

Hochn=∑n
k=1 Hn,k , Hochn=∑n

k=1 Hn,k with Hn,1=Harrn and Hn,1= Harrn .
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A generating function was found by Garsia [10],

n∑

k=1

xken(k)= 1
n!

∑

σ∈Sn

(x−dσ )(x−dσ +1) · · · (x−dσ +n−1)sgn(σ )σ,

where dσ is the number of descents, σ(i)>σ(i+1), in σ(1 . . .n).1 The simplest
idempotents are

e2(1)12= 1
2
(12+21),

e3(1)123= 1
6

(
2(123−321)+132−231+213−312

)
,

e3(2)123= 1
2
(123+321)

en(n)= 1
n!

∑

σ∈Sn

sgn(σ )σ.

The Hochschild chains decompose in the same way, with d ◦ en(k)= en−1(k)◦d.

1.2. SUMMARY OF SECTIONS 2 TO 5

Section 2 is concerned with abelian ∗-products on an arbitrary plane curve. The
space of equivalence classes of first-order abelian deformations of the algebra of
polynomials on C[x, y]/(R) is isomorphic to the local algebra of the singularity of
R at x = y= 0. The Harrison component Harr3= H3,1 of Hoch3 vanishes, which
implies that there are no obstructions to continuing a first-order abelian ∗-product
to higher orders. In this paper the strategy that leads to the calculation of Hoch-
schild cohomology calls for a preparatory investigation of a homological complex
that is not strictly Hochschild, but rather its restriction A→ A+ to the non-unital
subalgebra A+ of positive degree; this has no effect on the cohomology.

In Section 3 the Hochschild homology is calculated for the case of a plane
curve, with its BGS decomposition. In Section 4 the Hochschild cohomology is
investigated; the result in Theorem 4.9. Section 5 contains a detailed calculation
of the BGS decomposition for the singularity of xn=0 at x=0.

2. Associative ∗-Products and Cohomology

2.1. FORMAL ∗-PRODUCTS

A formal, abelian ∗-product on a commutative algebra A is a commutative, asso-
ciative product on the space of formal power series in a formal parameter � with

1Example: σ(1234)=3142 has one descent, from 2 to 3.
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coefficients in A, given by a formal series

f ∗ g= f g+
∑

n>0

�
nCn( f, g). (2.1)

Associativity is the condition that f ∗ (g ∗h)= ( f ∗ g)∗h, or

k∑

m,n=0

�
m+n

(

Cm( f,Cn(g,h))−Cm(Cn( f, g),h))

)

=0, (2.2)

where C0( f, g)= f g. This must be interpreted as an identity in �; thus

k∑

m,n=0

δm+n,k

(

Cm( f,Cn(g,h))−Cm(Cn( f, g),h))

)

=0, k=1,2, . . . (2.3)

The formal ∗-product (2.1) is associative to order p if Equation (2.3) holds for
k=1, . . . , p.

A first-order abelian ∗-product is a product

f ∗ g= f g+�C1( f, g), C1( f, g)=C1(g, f ), (2.4)

associative to first order in �, which is the requirement that C1 be closed,

δC1( f, g,h) := f C1(g,h)−C1( f g,h)+C1( f, gh)−C1( f, g)h=0.

Suppose that a formal ∗-product is associative to order p�1; this statement
involves C1, . . . ,C p only, and we suppose these cochains fixed. Then the condition
that must be satisfied by C p+1, in order that the ∗-product be associative to order
p+1, is

p∑

m,n=1
m+n=p+1

(

Cm( f,Cn(g,h))−Cm(Cn( f, g),h))

)

=−δC p+1( f, g,h). (2.5)

The left-hand side is closed, and thus it is seen that the obstructions to promote
associativity from order p to order p+1 are in Hoch3.

There is an important difference between the two cases of symmetric and anti-
symmetric C1. If C1, . . . ,C p are symmetric, then the left-hand side of (2.5) has the
symmetry of the idempotent e3(1) (a Harrison cochain) and it is the symmetric
part of C p+1 that is relevant, while the antisymmetric part of C p+1 must simply
be closed. Symmetry of the ∗-product can therefore be maintained to all orders.
If C1 is antisymmetric, and p = 1, then the left-hand side has the symmetry of
e3(1)+ e3(3). The first part must be balanced on the right-hand side by means of
the symmetric part of C2; the second part must vanish, and this condition is the
Jacobi identity for C1.

The obstructions against continuing a formal, first order, abelian ∗-product to
higher orders are in Hoch3; more precisely, they are in H3,1= Harr3(A, A).
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A formal ∗-product is trivial if there is an invertible map E : A→ A, in the form
of a formal series E( f )= f +∑

n>0 �
n En( f ) such that E( f ∗g)= E( f )E(g). A first

order, abelian ∗-product is trivial if there is a 1-cochain E1 such that

C1( f, g)= δE1( f, g)= f E1(g)− E1( f g)+ E1( f )g.

2.2. DEFORMATIONS ON A CURVE

In view of the theorem of Hochschild, Kostant and Rosenberg [15] cited earlier,
there can be no nontrivial, abelian ∗-products on a smooth manifold. It is natu-
ral to turn to varieties with singularities, and especially algebraic varieties. It is the
aim of this paper to explore the phenomena, with elementary methods of calcula-
tion, in the case of plane curves over C, M =C

2/R, where R is a C-polynomial.
The algebras of interest are the coordinate algebra

A=C[x, y]/(R), (2.6)

with generators x, y and a single polynomial relation R. The polynomial R can
be transformed, by a linear change of variables, to either of the forms R= xm −
P(x, y) or R = yn − Q(x, y), where the polynomial P is of order less than m in
x and the polynomial Q is of order less than n in y. Either form gives rise to a
Poincaré–Witt basis for A, for example, xi y j , i =0,1, . . . ,∞, j =0,1, . . . ,n−1.

The deformed algebra has a Poincaré–Witt basis of the same form. Let W be
the map that takes a ∗-monomial of this basis to the same ordinary monomial
of the original basis. Let R� :=W (R∗) and let M� :=C

2/R�. Then, morally, the
∗-product is trivial if there is a bijection E :M�→M such that R� 	→ R. However,
since � is a formal parameter, the following definition is preferred.

DEFINITION 2.3. A ∗-product, as defined in this section, is trivial if there is a
mapping by a formal power series in �, E= Id+∑

n>1 �
n En , such that R� 	→ R.

2.4. FIRST-ORDER ∗-PRODUCT ON A CURVE

Consider a first-order, associative and abelian ∗-product on the algebra (2.6), with
the polynomial R in the form R= yn−Q(x, y). A change of variables ensures that
(xi y j )∗ (xk yl)= xi+k y j+l for j + l<n and

yi ∗ yn−i =Q(x, y)+�Q1(x, y), 1� i �n−1, (2.7)

The first-order deformation (2.7) is trivial if there is a derivation E such that
Q1= E(R). See Subsection 4.6.

Example 2.5. Let A=R[x, y]/(R), R= y2− x2−r2, r2∈C, decompose f ∈ A as f=
f++y f−, f±∈R[x], and define a ∗-product on A by setting f ∗ g= f g+ � f−g−.
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Then Q1=1 and we seek E such that E(x2+r2− y2)=1. The general solution to
this equation is 2E= −1

r2 (x∂x + y∂y)+α(y∂x + x∂y), with α∈ A.

Of course, this breaks down if r2 = 0, and the simple reason why there is no
solution in this case is that there is no differential operator E such that the poly-
nomial E(x2− y2) contains a constant term.

PROPOSITION 2.6. Let X be the space of polynomials in x and y, of degree less
than n in y, and let DR be the gradient ideal of R. As vector spaces, X coincides
with A and DR consists of all differentials of R. The space of equivalence classes of
essential, first-order ∗-products on A is the space X/DR, Harr2(A, A)= X/DR.

Example 2.7. Let M =C
2, R = y2 − x3. A full set of representatives of X/DR is

a+ bx, a,b∈C. The deformed algebras are A�=C[x, y]/R� with R�= y2− x3−
�(ax + b). Expand f (x, y)= f+(x)+ y f−(x). Then f ∗ g = f g + �C1( f, g), where
C1( f, g)= (ax+b) f−g−.

3. Homology

This section deals with the homology of a modified Hochschild complex. The
strategy that is used in this paper, to calculate the Hochschild cohomology of
A, begins by a determination of the homology of the algebra A+, the subalge-
bra with positive degree of A. The n-chains of this homology of A+ are n-tuples
a=a1⊗a2⊗· · ·an,ai ∈ A+, i =1, . . . , N .

3.1. 2-CHAINS

Every “Hochschild” 2-chain is homologous to a 2-chain of the form x⊗a+ y⊗b.
It will be convenient to relabel the generators, x, y 	→ x1, x2, then a ≈∑

xi ⊗ ai ,
ai ∈ A+, i=1,2. It is closed if

∑
xi ai =0. We shall suppose that R has no constant

term and no linear terms, then a has the representation

a≈
∑

xi ⊗ x jε
i j b+

2∑

i=1

xi ⊗ Ri c,

where εi j =−ε j i , ε12= 1,
∑

xi Ri = R and where b, c are in the unital augmenta-
tion A of A+. The first term is exact if b ∈ A+, the second term is exact if c ∈
A+ and (a section of) H2= Z2/B2 is spanned (over C) by the chains x1∧ x2 and
∑

xi ⊗ Ri . The second one is homologous to a symmetric chain that is a basis for
Harr2=H2,1.

Example 3.2. If R = y2 − xn , then Harr2 has dimension 1 and every symmetric,
closed 2-chain is homologous to a C-multiple of x⊗ xn−1+ xn−1⊗ x−2y⊗ y.
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3.3. 3-CHAINS

Every 3-chain is homologous to one of the form a =∑
xi ⊗ b j ⊗ ci j . If a is

closed it takes the form a ≈∑
xi ⊗ x jε

i j b⊗ b′ + xi ⊗ Ri c⊗ c′, b, c ∈ A which is
homologous to a ≈∑

xi ⊗ x jε
i j ⊗ bb′ + xi ⊗ Ri ⊗ cc′, with x2bb′ + R1cc′ = 0 and

−x1bb′ + R2cc′ =0. A simple case-by-case study shows that we then have:

bb′ =αR1+βR2, cc′ =−αx2+βx1,

with α,β in A. Thus any closed 3-chain is homologous to one of the form
(

(x1∧ x2)⊗ R1c1−
∑

xi ⊗ Ri ⊗ x2c1

)

−
(

(x1∧ x2)⊗ R2c2+
∑

xi ⊗ Ri ⊗ x1c2

)

.

(3.1)

The first (second) term is exact unless c1(c2) is in C. Adding an exact, alternating
3-cycle we get an alternative section of Z3/B3 with a basis that consists of the two
chains (the GS idempotents were defined in Section 1)

α1 = e3(2)
(
x1⊗ x2⊗ R1− x2⊗ R1⊗ x1− x2⊗ x1⊗ R1− x2⊗ R2⊗ x2

)
,

α2 = e3(2)
(
x2⊗ x1⊗ R2− x1⊗ R2⊗ x2− x1⊗ x2⊗ R2− x1⊗ R1⊗ x1

)
.

(3.2)

Thus Hoch3=H3,2 has dimension 2 and Harr3=0.
Another way to reach this conclusion is to differentiate (3.1). The result is

(c1x2+ c2x1)∧ R, which is in Z2,2 and which implies that (3.1) ∈ Z3,2.

Example 3.4. If R = y2 − x2, set u = x + y, v = x − y. The basis (3.2) is then
{u⊗v}⊗u, v⊗{u⊗v} and the dimension of Hoch3 is 2. More precisely, dim H3,k

is 0,2,0 for k=1,2,3.

Example 3.5. If R= y2− x3, then the chains (3.2) become

y⊗ x⊗ y− x⊗ y⊗ y− y⊗ y⊗ x+ x⊗ x2⊗ x

and

e3(2)
(
x⊗ y⊗ x2− y⊗ x2⊗ x− x2⊗ x⊗ y+ y⊗ y⊗ y

)
.

It is straightforward to prove the following.

PROPOSITION 3.6. Let P1={x1, x2}, Pn+1= Pn⊗Mn , and

M2k+1=
(

R1 −x2

R2 x1

)

, M2k =
(

x1 x2

−R2 R1

)

.

Then for n> 1 every closed n-chain is homologous to an n-chain in the linear span
of the two linearly independent polynomials in Pn .
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Example 3.7. If R= y2− x2, set u= x + y, v= x − y. The dimension of Hochn is
2; the basis is {u⊗v⊗u · · · , v⊗u⊗v⊗u · · · }.

THEOREM 3.8. Hoch2k=H2k,k+H2k,k+1, each component one-dimensional over C,
and Hoch2k−1=H2k−1,k , two-dimensional over C, k=1,2, . . .

Proof. For k=1, . . . , p−1, P p+1= Pk⊗Mk⊗Mk+1⊗· · ·⊗Mp and thus

dP p+1= P1 M1⊗M2⊗· · ·⊗Mp+
p−1∑

k=1

(−)k Pk⊗Mk Mk+1⊗· · ·⊗Mp.

We have Mk Mk+1 = R times the unit matrix and P1 M1 ⊗ M2 = R ⊗ P1; conse-
quently dP1=0, dP2={R,0} and dP p+1= R©sh P p−1, p�2. If a∈C p,k , then da∈
C p−1,k , and R©sh a is homologous to some b∈C p+1,k+1. Hence if P p−1 ∈C p−1,k ,
then P p+1 is homologous to a C p+1,k+1 chain. The action of these maps between
spaces with cohomology is shown in the diagram.

C2,1

↙ ↘
C1,1 C3,2

↘ ↙
C2,2

· · ·

C2k,k

↙ ↘
C2k−1,k C2k+1,k+1

↘ ↙
C2k,k+1

(3.3)

A southeast arrow represents the map a 	→ R©sh a; a southwest arrow is the action
of the differential. The projections of {P2k+1

i }i=1,2 form a basis for H2k+1,k+1 and
the projections of P2k

1 (respectively P2k
2 ) are bases for H2k,k (respectively H2k,k+1).

4. Cohomology

4.1. THE REDUCTION PROCESS

The chains considered in this section are restricted to positive degree. The cochains
are valued in A. A p-cochain is closed if

δC(a1, . . . ,ap+1)=a1C(a2, . . . ,ap+1)−C(da)−(−)pC(a1, . . . ,ap)ap+1=0. (4.1)

One may attempt to interpret this relation as fixing the value C(da), recursively in
the degree of the argument. The obstruction to this is da=0, but if a is exact then
(4.1) is satisfied automatically by virtue of its being true for arguments of lower
degree. (One can show that, in this context, if a is exact then there is b of the
same degree such that a=db.) It is enough, therefore, to verify closure for a basis
of representatives of Hochp+1.

A closed p-cochain C is a coboundary if there is a (p−1)-cochain E such that

C(a)=a1 E(a2, . . . ,ap)− E(da)+ (−)p E(a1, . . . ,ap−1)ap. (4.2)
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This relation can be solved for E(da), recursively by increasing degree, except for
the obstruction presented by da = 0. But if a = db then C(a) is determined by
δC(b)= 0. So it is enough to examine (4.2) for a complete set of representatives
of Hochp.

The most useful interpretation is this. Given any closed p-cochain a “gauge
transformation” is the addition of an exact p-cochain, C→C+�C , with

�C(a1 . . .ap)=a1 E(a−)+ (−)pap E(a+)− E(da). (4.3)

The space Hochp is the spac of closed, gauge-invariant p-cochains.
If any BGS component Hp,k of Hochp vanishes then the corresponding component

H p,k of Hochp is zero. There are no obstructions to continuing a first-order, abelian
∗-product to higher orders.

4.2. CLOSURE FOR p=1

The 2-homology is spanned by x1∧ x2 and xi ⊗ Ri . We shall replace the latter by
R̂=∑

Ai j xi
1⊗ x j

2 , R=∑
Ai j xi

1x j
2 . The relation δC(x1∧ x2)=0 is trivial. The for-

mula δC(xi
1⊗ x j

2 )= xi
1C(x j

2 )+ x j
2 C(xi

1)−C(xi
1x j

2 ) tells us that, if C is closed, then
for any polynomial f , C( f )=C(xi )∂i f . Hence (this is the result 2.6)

δC(P2
1 )=C(xi )∂i R, δC(P2

2 )=0. (4.4)

For the algebra C[x, y], Z1 is the space of vector fields with coefficients in the
unital augmentation of the same algebra, but for A=C[x, y]/R, Z1 is the alge-
bra of vector fields that annihilate R (the algebra of vector fields tangential to the
curve).

4.3. CLOSURE FOR p=2

For homology we use the basis (3.3); it is enough to examine one of the two,

P3
1 = R̂⊗ x1+ x1∧ x2⊗ R2,

δC(P3
1 )= x1C(R1∧ x1)+ x2C(R2∧ x1)− R2C(x1∧ x2).

The first two arguments are exact; a certain amount of calculation is needed to
verify that these terms are of the same form as the third one. We need the follow-
ing simple formula, satisfied by closed 2-cochains: C(x2∧ f )=C(x2∧ x1)∂1 f , f ∈
A. Now it follows easily that δC(P3

1 )=−C(x1 ∧ x2)∂2 R, δC(P3
2 )=C(x1 ∧ x2)∂1 R.

Therefore, we can interpret the condition δC(a)=0 as fixing the value C(da), pro-
vided only that C(P2

2 )∂i R=0, i=1,2. (That is satisfied if R= x2 y3, C(x ∧ y)= xy.)

THEOREM 4.4. Closure of a p-cochain C implies that its values for exact argu-
ments are given recursively in the polynomial degree as in (4.1). Conversely, (4.1) can
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be solved recursively for all C(da), if and only if the following conditions hold

C ∈ Z2k,k+1 : C(P2k
2 )∂i R=0, i =1,2;

C ∈ Z2k+1,k+1 :
∑

C(P2k+1
i )∂i R=0;

C ∈ Z2k,k : always.

4.5. GAUGE INVARIANCE FOR p=1

Trivial, all 1-cochains are gauge invariant, H1= Z1.

4.6. GAUGE INVARIANCE FOR p=2

We must examine evaluations on the homology basis. To begin with, �C(x1 ∧
x2)=0, so that the evaluation C(x1∧ x2) is gauge invariant. To examine the sup-
plementary homology space, set R=∑

Ai j xi
1x j

2 , R̂=∑
Ai j xi

1⊗ x j
2 . Then we have

∑ 1

2
Ai j

⎛

⎝�C
(

xi
1⊗ x j

2

)
+ xi

1

j−2∑

k=2

xk
2�C

(
x2⊗ x j−1−k

2

)
+

+x j
2

i−2∑

k=0

�C
(

x1⊗ xi−k−1
1

)
)

= E(xi )∂i R.

Hence, in a gauge where C vanishes on arguments of lower degrees, �C(R̂)∈
DR and we have recovered Proposition 2.6.

4.7. GAUGE INVARIANCE FOR p=3

We have

δC(P3
1 )=�C(R̂⊗ x1+ x1∧ x2⊗ R2)=
= x1 E(R1∧ x1)+ x2 E(R2∧ x1))− R2 E(x1∧ x2)=
=

∑ 1

2
Ai j

{
x1 E(xi−1

1 x j
2 ∧ x1)+ x2 E(xi

1x j−1
2 ∧ x1)

}− R2 E(x1∧ x2). (4.5)

With the help of the identity

i−1∑

k=1

xk
1�C

(
x1⊗ xi−k−1

1 x j
2 ⊗ x1

)
= xi

1 E(x j
2 ∧ x1)− x1 E

(
xi−1

1 x j
2 ∧ x1

)
, j�1,
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and another one, similar, we can reduce (4.5) to

�C
(

P3
1

)
+

i−1∑

k=1

Ai j xk
1�C

(
x1⊗ xi−k−1

1 x j
2 ⊗ x1

)
+

+
i∑

k=1

Ai j x2xk−1
1 �C

(
x1⊗ xi−k

1 x j−1
2 ⊗ x1

)
=

=
∑

Ai j

{
xi

1 E(x j
2 ∧ x1)+ xi

1 E(x j−1
2 ∧ x1)

}
− R2 E(x1∧ x2).

A similar, further reduction leads to the result that, if δC vanishes on arguments
of lower orders, �C(P3

1 )+· · ·=−(∂2 R)E(x1∧ x2), �C(P3
2 )+· · ·= (∂1 R)E(x1∧ x2).

We recall that �C(a)= δE(a1) and remember from Subsection 4.3 that δE = 0
implies that ∂i RE(x1∧ x2)=0. The above result is thus natural; the calculation is
needed only to fix the numerical coefficients.

PROPOSITION 4.8. If the gauge is fixed by the condition that C(a)= 0 for argu-
ments a of lower degree, then the remaining gauge transformations take the following
form,

�C(P1)=0, �C(P2k
1 )=

∑
Ei∂i R,

�C(P2k
2 )=0, �C(P2k+1)= Ed R∗, k>0.

Proof. (outline). (a) The statement reflects the structure of (3.4). The dimension
of H p,k , over the local algebra, more or less, coincides with the dimension of Hp,k .
“More or less” comes from the existence of homologies of lower orders, as the
complete calculation in Subsection 4.7 shows.

(b) We have

�C(P2k
1 )=

∑
Ri E(P2k−1

i )+
∑

xi E(Qi )+· · · ,
�C(P2k+1

i )=
∑

εi j R j E(P2k−1
2 )+

∑
x j E(Si j ),

�C(P2k
2 )=

∑
xi E(Ti ).

The chains Qi , Si j ,Ti are closed and, unless R1 or R2 is linear, exact. The reduc-
tion exemplified in (4.4) and in (4.5) is then available. The result is

�C(P2k
1 )+· · ·= E(P2k−1

i )∂i R, �C(P2k+1
i )+· · ·= E(P2k−1

2 )εi j∂ j R, �C(P2k
2 )=0.

(c) The last case (P2k
2 ∈ C2k,k+1) is simpler than the others and we give the

details in that case only. Let τ ∈ Sp be the reversing permutation. Garsia’s formula
tells us that the chains C p,k correspond to the character τ 	→ (−)k , so the projec-
tion e2k(k+1)P2k

2 has τ 	→ (−)k+1. Now �C(P2k
2 )=∑2

i=1 xi E(ai ), with ai ∈C2k−1

closed and with the same symmetry: τ 	→ (−)k+1. The symmetry of C2k−1,k (where
the homology is) is (−)k ; therefore a1 and a2 are exact. The reduction process
encounters no homology and leads to zero.
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Putting it all together we get the following result (for notations, see Propositions
2.6 and 4.8).

THEOREM 4.9. Let VR be the space of vector fields, with values in A, that annihi-
late R. Then as vector spaces,

H1=VR,

H2k,k = A/DR,

H2k,k+1={a∈ A+,a∂1 R=a∂2 R=0},
H2k+1,k+1=VR/{AdR∗}, k>0.

5. Deformation of xn =0

Here, we complete the calculation of Hochschild cohomology of the algebra A=
C[x]/xn, n�2. This purely algebraic problem, though not associated with a curve,
is nevertheless very similar to that posed by curves. In the context of singularity
theory it is one of the standard forms. The chains are restricted to positive degree.
This subalgebra of A is denoted A+.

5.1. HOMOLOGY

For convenience, xxx2 . . . shall stand for either x ⊗ x ⊗ x2 . . . or x, x, x2, . . . . The
spaces Hp are one-dimensional for p�1 and representative elements of Z p are x ,
xxn−1, xxn−1x ,. . . , or (xxn−1)k for p=2k and (xxn−1)k x for p=2k+1.

5.2. CLOSED COCHAINS

A p-cochain C is closed if

δC(a1 . . .ap+1) :=a1C(a−)+ (−)p+1ap+1C(a+)−C(da)=0, (5.1)

with a−=a2 . . . ap+1, a+=a1 . . . ap. We interpret this relation, in the first place,
as a recursion relation that determines the cochain C on exact arguments, in
terms of its values on arguments of lower degree. For example, if the 1-cochain
C is closed, then C(xk)= kxk−1C(x), k= 2, . . . ,n. Hence C(xk) is determined for
k=2, . . . ,n−1 by C(x), and C(x)∈ A+ (thus restricted to positive degree).

The obstruction to this interpretation of (5.1) is da = 0; in this case closure
requires the relation

δC(a)=a1C(a−)+ (−)p+1ap+1C(a+)=0. (5.2)
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But if a=db, then this last relation is automatic, since

δC(db)=b1b2C(b3 . . .)−b1C(db−)+
+(−)p+1bp+2C(db+)−bp+1bp+2C(b1 . . .bp)

=b1b2C(b3 . . .)−b1

(

b2C(b3 . . .)+ (−)p+1 bp+2C(b2 . . .bp+1)

)

−bp+1bp+2C(b1 . . .bp)

+bp+2

(

(−)p+1b1C(b2 . . .bp+1)+ bp+1C(b1 . . .bp)

)

=0.

The real obstruction is thus the presence of homology. When a = xxn−1x . . .,
then (5.2) reduces to

p=2k : xC(xn−1 . . . x− x . . . xn−1)=0, (5.3)

p=2k−1 : xC(xn−1 . . . xn−1)+ xn−1C(x . . . x)=0. (5.4)

PROPOSITION 5.3. The obstructions to interpreting the closure condition (5.1) as
recursively fixing the value of C(da) in terms of values of C on arguments of lower
degrees are:2

p=2k: none, p=2k−1: xn−1C(x, . . . , x). (5.5)

Homology selects the argument here also. The truth of the Proposition is obvi-
ous except for the possibility of accidental cancellations. Here, nevertheless, is a
direct proof.

Proof of Proposition 5.3. (case p = 2k). For p = 2k and m = 1,2, . . . , α, α =
k(n−2)+1, let

φm :=
∑

1�p1, . . . , pk�m
p1+· · ·+ pk = k+m−1

xx p1 xx p2 . . . xx pk x . (5.6)

It may be shown by induction that

dφα−1= xn−1 . . . x− x . . . xn−1, dφm=φm+1− −φm+1+ , m<α−1.

Posing δC(φm)= 0 for m < α, we find that the left-hand side of (5.3) vanishes
identically:

xC(xn−1 . . . x− x . . . xn−1)= xC(φα−−φα+)= xC(dφα−1)

= x2C(φα−1− −φα−1+ )=· · ·
Iteration ends with xnC(aα+1−n− −aα+1−n+ )=0.

2From now on dots indicate a sequence in which x and xn−1 alternate.



122 CHRISTIAN FRØNSDAL AND MAXIM KONTSEVICH

Proof of Proposition 5.3. (case p=2k−1). For m=1,2, . . . , α= k(n−2)+1, set

ψm :=
∑

1�p1, . . . , pk�m
p1+· · ·+ pk = k+m−1

xx p1 xx p2 . . . xx pk . (5.7)

Then dψα−1= xn−1 . . . xn−1=ψα− and for m<α−1, dψm=ψm+1− −φm+1, and

(xlψα−l
p+1)⊗ψα−l+ = xn−1⊗φα+2−n, l=0,1, ...n−2. (5.8)

If δC(ψm)=0, m<α, then the left-hand side of (5.4) is

xC(xn−1 . . . xn−1)+ xn−1C(x . . . x)

= xC(dψα−1+ xn−1C(φα+2−n)

= x2C(ψα−1− )+2xn−1C(φα+2−n)=· · ·
= xn−1C(ψα+2−n− )+ (n−1)xn−1C(φα+2−n)

= xn−1C(dψα+1−n+φα+2n)+ (n−1)xn−1C(φα+2−n)

=nxn−1C(x . . . x).

The proof of Proposition 5.3 is complete. The implication is that, if a (2k − 1)-
cochain C is closed, then C(x . . . x)∈ A+.

5.4. EXACT COCHAINS

Exact p-cochains have the form

C(a1 . . .ap)=a1 E(a−)+ (−)pap E(a+)− E(da). (5.9)

The obstruction to interpreting this relation as a recursion relation to determine
the E(da) is da=0. Here too, the real obstruction, when C is closed, is the exis-
tence of homology. The most useful interpretation is this. Given any closed p-
cochain a “gauge transformation” is the addition of an exact p-cochain, C→C+
�C , with

�C(a1 . . .ap)=a1 E(a−)+ (−)pap E(a+)− E(da). (5.10)

The space H p is the space of gauge invariant evaluations of closed p-cochains.
To illustrate, here is the situation for 2-cochains, when n=3. Closure,

δC(xxx)=C(xx2)−C(x2x)=0, δC(xx2x)= xC(x2x− xx2)=0.

Gauge transformation

�C(xx)=2x E(x)− E(x2), �C(xx2)= x E(x2)+ x2 E(x)=�C(x2x),
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By means of gauge transformations we can, for example, reduce C(xx) to zero.
Cohomology is the existence of the gauge invariant object C(xx2) + xC(xx)
Mod x2.

THEOREM 5.5. The space of the gauge-equivalent evaluations, and the associated
cohomology spaces on Z p(A, A) are as follows:

p=0 : A
H0(A, A)= span{1, x, . . . , xn−1}, dimension=1;

p=1 :C(x)
H1(A, A)= span{x, . . . , xn−1}, dimension=n−1;

p=2k−1 :
n−2∑

l=0

xlC(φα−l) (k>1)

H2k−1(A, A)= span{x, . . . , xn−1}, dimension=n−1;

p=2k :
n−2∑

l=0

xlC(ψα−l) Mod Cxn−1

H2k(A, A)= span{1, x, . . . , xn−2}, dimension=n−1.

Proof. By a direct and straightforward calculation we obtain, for p = 2k,
∑n−2

l=0 xl�C(ψα−l)=nxn−1 E(x . . . x), and for p=2k−1,
∑2

l=0 xl�C(φα−1)=0.

PROPOSITION 5.6. The BGS “decomposition” for k�1 is

H2k =H2k,k, H2k+1=H2k+1,k+1.

Proof. The element x . . . xn−1 ∈ Z2k lifted to Z2k(C[x],C[x]), is

d(xxn−1)k = xn©sh (xxn−1)k−1.

If (xxn−1)k−1 is of type H2k−2,k−1, then the right-hand side is of type H2k−1,k , and
(xxn−1)k is of type H2k,k . Since xxn−1 is indeed of type H2,1 the result follows
by induction. Similarly, d(xxn−1)k x = xn©sh (xxn−1)k−1x, and the same argument
applies mutatis mutandi.

Appendix: Hochschild and Harrison Cohomology of Complete Intersections
(by Maxim Kontsevich)

I will explain here a way to calculate Hochschild and Harrison cohomology
groups for algebras of functions on singular planar curves, etc., based on Koszul
resolutions. This calculation is standard and definitely known to specialists.
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A1. REMINDER ON COMPLETE INTERSECTIONS AND KOSZUL RESOLUTION

Results of this section can be found e.g. in the classical textbook [19].
Suppose that we are given a system of polynomial equations (say, over the field

of complex numbers C, one can replace it by an arbitrary field):

f1(z1, . . . , zn)=0, . . . , fm(z1, . . . , zn)=0

Denote by A the quotient algebra P/( f1, . . . , fm) where P denotes the ring of
polynomials C[z1, . . . , zn].

We say that we have a complete intersection if the dimension of the set of solu-
tions of the system above is n−m. A sufficient condition for this is that f1, . . . , fm

form a regular sequence in P , i.e. for any k≤n element fk is not a divisor of zero
in the quotient of P by the ideal generated by f1, . . . , fk−1.

THEOREM 1. Assume (in the previous notations) the condition of the complete
intersection. Let us consider Z≤0-graded supercommutative superalgebra

Ã := P⊗∧({α j } j=1,...,m)

where subalgebra P is in degree 0 and generators α j are in degree −1, endowed with
differential

d Ã :=
∑

j

f j
∂

∂α j
.

Then cohomology of this differential is zero in negative degrees and isomorphic to
P/( f1, . . . , fm) in degree 0.

In the above theorem one can replace P=C[z1, . . . , zn] by the algebra of func-
tions on arbitrary smooth n-dimensonal affine algebraic variety. Complex ( Ã,dÃ)

is called the Koszul resolution of A. Slightly abusing notations we will write Ã=
C[z1, . . . , zn;α1, . . . , αm] meaning that (αi ) are fermionic (odd) variables. Here and
later, variables denoted by Latin (respectively Greek) letters are even (respectively
odd).

A2. GENERALITIES ON HOCHSCHILD AND HARRISON COHOMOLOGICAL COMPLEXES

FOR DIFFERENTIAL GRADED ALGEBRAS

In what follows all complexes will be Z-graded with the differential of degree +1.
A morphism of complexes is called a quasi-isomorphism iff it induces an isomor-
phism of cohomology groups. A vector space can be considered as a complex con-
centrated in degree 0 and endowed with zero differential.

Definitions of homological and cohomological Hochschild complexes extend
immediately to the case of differential graded algebras (dga), the same for
Harrison (co)homological complexes in the graded commutative case. The under-
lying Z-graded space for the cohomological Hochschild complex for a dga F with
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coeffcients in a differential graded bimodule M is defined as the infinite product
(in the category of Z-graded spaces)

C•(F,M) :=
∏

n�0

Hom(F[1]⊗n,M)

where Hom is inner Hom-space in tensor category of Z-graded spaces,

(
Hom(U,V )

)k :=
∏

n∈Z

Hom(U n,V n+k)

and F[1] denotes the complex obtained from F by the shift of the grading,
F[1]k := Fk+1. The formula for the differential in C•(F,M) is the sum of a super-
version of the formula for the differential in an ordinary algebra (in degree 0), and
a term arising from the differential in F itself (see e.g. Section 5.3 from [18] for a
similar case of the homological Hochschild complex).

LEMMA 1. If φ : F̃→F is a quasi-isomorphism between two dga’s, then the cor-
responding cohomological Hochschild complexes C•(F, F) and C•(F̃, F̃) are quasi-
isomorphic.

Proof. An algebra F can be considered as a differential graded bimodule over
F̃ via the homomorphism φ : F̃→F . Let us consider three complexes and natural
homomorphisms between them:

C•(F̃, F̃)→C•(F̃, F)←C•(F, F)

All three complexes carry complete decreasing filtrations with the associated quo-
tients (and maps between them)

Hom(F̃[1]⊗k, F̃)→Hom(F̃[1]⊗k, F)←Hom(F[1]⊗k, F)

We see that associated quotients are quasi-isomorphic, and applying spectral
sequences we conclude that C•(F̃, F̃) and C•(F, F) are quasi-isomorphic.

For a graded supercommutative F one can define the Hodge decomposition for
Hochschild cochains, and Harrison cohomology in the same way as in the usual
non-graded case. In the above lemma the quasi-isomorphism between Hochschild
cohomology of the resolution and of algebra itself is manifestly compatible with
the Hodge decomposition.

A3. CALCULATION OF HOCHSCHILD AND HARRISON COHOMOLOGY FOR COMPLETE

INTERSECTIONS

The cohomological Hochschild–Kostant–Rosenberg theorem says that the Hochschild
cohomology of the algebra OX of functions on an algebraic affine manifold X is
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the algebra T poly
X of polyvector fields on X . Moreover, there is a canonical quasi-

isomorphism T poly
X →C•(OX ,OX ) mapping polyvector field f v0 ∧ · · · ∧ vn where

f ∈OX , (vi )i=1,n are derivations of OX , to the polylinear operator

a1⊗· · ·⊗an 	→ f
∑

σ∈�n

sign(σ )
∏

i

vσ(i)(ai )

The super-version of this theorem is also true, e.g. for supermanifold Y =Cn|m ,
we have OY =C[z1, . . . , zn;α1, . . . , αm] and its Hochschild cohomology is the alge-
bra T poly

Y :

T poly
Y =C[z1, . . . , zn;η1, . . . , ηn;α1, . . . , αm;b1, . . . ,bm],

deg(zi )=0 deg(ηi )=+1, deg(α j )=−1, deg(b j )=+2

Here, the new variables ηi , b j have the meaning of derivations ∂/∂zi , ∂/∂α j .
Strictly speaking, here we should consider not polynomials but formal power
series with respect to variables ηi ,b j , but it gives the same result in the category of
Z-graded spaces because there are only finitely many monomials in ηi ,b j in any
given degree.

The dga Ã is obtained from OY by “switching on” the differential d Ã. Here, we
describe the corresponding HKR description of the Hochschild cohomology of Ã,
and therefore of H•(A, A) by Lemma 1.

PROPOSITION 1. Complex C•( Ã, Ã) is quasi-isomorphic to T := T poly
Y endowed

with the differential

dT :=
∑

i, j

∂ f j

∂zi
b j

∂

∂ηi
+

∑

j

f j
∂

∂α j

The Hodge grading is given by counting variables ηi ,b j .

Proof. The formula for dT is just the formula for the Lie derivative of a poly-
vector field on Y =Cn|m with respect to the odd vector field d Ã=

∑
j f j

∂
∂α j

. It is
easy to see that the formulas from above give a homomorphism of complexes

χ : (T,dT )→C•( Ã, Ã)

We have to prove that it is a quasi-isomorphism. Let us introduce Z�0-grading
degα on OY by the total number of variables α j (incidentally, it coincides with
minus the standard Z-grading on OY ). A Hochschild cochain O⊗n

Y →OY is called
homogeneous of degα degree N ∈ Z if it is homogenous with respect to grad-
ing degα of degree N . The whole Hochschild complex C•(OY ,OY ) is the product
over all N ∈Z of subcomplexes consisting of degα degree N cochains. The Hochs-
child differential of algebra OY preserves the degα grading. The correction to the
differential coming from d Ã decreases this grading by 1. Finally, it is obvious that
for a non-zero cochain its degα is bounded from below (by −m). Therefore we
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have a convergent spectral sequence proving that χ is a quasi-isomorphism. The
statement about the Hodge grading is obvious.

Now we introduce a smaller complex

T̃ := A[η1, . . . , ηn;b1, . . . ,bm], dT̃ :=
∑

i, j

∂ f j

∂xi
b j

∂

∂ηi

where the variables have the same grading as before, deg(ηi )=+1, deg(b j )=+2.

THEOREM 2. Under the previous assumptions the Hochschild cohomology of A is
isomorphic to the cohomology of complex (T̃ ,dT̃ ). The Hodge grading is given by
counting variables ηi ,b j .

Proof. The obvious map (TF ,dT )→(T̃ ,dT̃ ) induces a quasi-isomorphism on
graded quotients for the filtration by the total number of variables ηi .

The conclusion for the only non-trivial Harrison cohomology are in degrees 1
and 2 and are given by kernel and cokernel of the map

An
(
∂ f j /∂zi

)

−→ Am

In particular, there is no obstruction for commutative deformations as Harr3

(A)=0. It is easy to see that a miniversal commutative deformation of A is given
by any deformation f̃1(z, t), . . . , f̃m(z, t) of polynomials f1(z), . . . , fm(z) depending
on formal parameters t1, . . . , tN where N = rk Harr2(A), such that vectors

vk :=
(

∂ f̃1

∂tk |t=0
, . . . ,

∂ f̃m

∂tk |t=0

)

, k=1, . . . , N

form a basis in Harr2(A)= Am/
(

∂ f j
∂zi

)
An . The deformed algebra is

C[[t1, . . . , tN ]][z1, . . . , zn]/I

where I is the completion with respect to the topology on C[[t1, . . . , tN ]] associ-
ated with the maximal ideal, of the ideal generated by f̃1(z, t), . . . , f̃m(z, t).

In particular, if we have only one equation f (z)= f1(z)=0 then Harr2(A) is the
quotient C[z1, . . . , zn]/ ( f,∂ f/∂z1, . . . ,∂ f/∂zn).

In the case n = 2 and m = 1, Hochschild cohomology groups consists of an
unstable part in lower degrees and 2-periodically repeated block

A
(∂z1 f1,∂z2 f1)−→ A⊕ A

(∂z2 f1,−∂z1 f1)−→ A

Finally, for n=m=1, A=C[z]/(zk) we have

H0(A, A)= A�Ck, Hl(A, A)�Ck−1 for l=1,2, . . .
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A4. CALCULATION OF HOCHSCHILD A HOMOLOGY WITH COEFFICIENTS WITH THE

DIAGONAL BIMODULE, FOR COMPLETE INTERSECTIONS

Similarly, one can calculate Hochschild homology H∗(A, A) for complete intersec-
tions. Here is the final result:

THEOREM 3. In previous notations and under the assumption of complete inter-
section the Hochschild homology H∗(A, A) of A is isomorphic to the cohomology
of complex �̃ := A[ξ1, . . . , ξn;a1, . . . ,am] where degrees of variables are deg(ξi )=
−1, deg(a j ) = −2 endowed with the differential d�̃ :=

∑
i, j

∂ f j
∂zi
ξi

∂
∂a j

. The Hodge
grading is given by counting variables ξi ,a j .

The proof is parallel to one for the cohomological complex. An example of this
calculation for the case of truncated polynomial ring can be found in [18, exercise
E.4.1.8, Proposition 5.4.15].
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20. Vey, J.: Déformation du crochet de Poisson sur une variété symplectique. Comment.
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