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Abstract A simple wet chemical method has been suc-

cessfully deployed to fabricate hexagonal zinc oxide nano-

rods. The structural characteristics were investigated

through X-ray diffraction. The crystal unit cell of the

nanorods was found to be hexagonal. The morphology of the

nanostructures was studied using field emission scanning

electron microscopy and transmission electron microscopy.

The nanorods are hexagonal in shape. The Zn–O bond for-

mation was confirmed through Fourier transformed infrared

spectroscopic analysis. Raman shift measurements revealed

various vibrational modes present in the ZnO crystal. The

photoluminescence spectrum shows shallow deep level

visible emission due to various defect states. Thus, our

investigation will be very helpful in the development of ZnO

based light emitting/optoelectronic device applications.

Keywords Zinc oxide � Nanorods � Zn–O bond � Raman-

shift � Photoluminescence � Visible-emission � Defect-states

Introduction

Zinc oxide (ZnO) is a very well known II–IV semiconductor

having interesting unique properties that lead to its appli-

cations in sensors, optoelectronic, and nanoelectronic

devices (Wang et al. 2006; Song et al. 2010; Umar et al.

2009a, b; Rout et al. 2009). Due to its wide band gap of

3.37 eV and large exciton binding energy of 60 meV

(Wang et al. 2009a), it exhibits stable UV emission (Duan

et al. 2006). Researchers reported that visible emission from

the ZnO nanostructures originates because of the existence

of various defects (Zn interstitial, Zn vacancy, and oxygen

vacancy) in the ZnO nanocrystal (Nian et al. 2010; Wang

et al. 2009b; Patra et al. 2009). These emissions make ZnO,

a very interesting material for various optoelectronic

applications. ZnO is now being used as UV absorbing

material in sunscreens (Schilling et al. 2010), transparent

conductors in solar cells (Lloyd et al. 2009), and nano-lasers

(Zhang et al. 2009). Recently Wang (2008) has successfully

demonstrated energy generation from arrayed ZnO nano-

rods using the piezo-electric property exhibited by this

material. In addition to these optoelectronic and nanoelec-

tronic device applications, ZnO is also being used in spin-

tronic applications. Existence of ferromagnetism in ZnO

was already shown by Iqbal et al. (2009). The idea of this

ferromagnetism is now being used in magnetic non-volatile

data storage for longer periods of time. Thus, ZnO offers us

a possibility to combine the optical and magnetic property

in various advanced devices like spin light-emitting-diodes,

spin-polarized solar cells, and magneto-optical switching.

In this paper, we report the fabrication of hexagonal

ZnO nanorods by a simple and cost-effective wet chemical

method. Moreover, it offers us repeated fabrication of pure

ZnO. The fabrication is followed by few typical charac-

terization results that are very interesting and useful in ZnO

base optoelectronic and nanoelectronic device applications.

Experimental

Material preparation

The chemicals used in the fabrication of ZnO nanorods,

were of analytical grade and was used as supplied

P. K. Samanta (&) � A. K. Bandyopadhyay

Department of Physics, Ghatal Rabindra Satabarsiki

Mahavidyalaya, Ghatal, Paschim Medinipur,

Ghatal 721212, West Bengal, India

e-mail: pijush.samanta@gmail.com

123

Appl Nanosci (2012) 2:111–117

DOI 10.1007/s13204-011-0038-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81531987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(MERCK) without further purification. 14.87 g of zinc

nitrate hexahydrate (Zn(NO3)2�6H2O) was dissolved in

deionized water to prepare 100 ml solution of concentration

0.5 M. 4 g of sodium hydroxide (NaOH) was dissolved in

deionized water to prepare 100 ml NaOH solution of con-

centration 1 M. This NaOH solution was then put under

vigorous stirring at room temperature (34�C) in a conical

flask using a magnetic stirrer (SPINOT make). The previ-

ously prepared zinc nitrate solution of 0.5 M was added

drop-wise to the NaOH solution for 15 min. The mechani-

cal stirring was continued for 2 h. The pH of the solution

was 11. A white precipitate was deposited at the bottom of

the flask. The precipitate was then filtered and washed 2–3

times with distilled water. Then the powdered sample was

dried and annealed at different temperatures (200, 400, and

800�C) in a furnace for further characterizations.

Material characterization

The X-ray diffraction (XRD) data were collected in a

RIGAKU diffractometer using Cu Ka-radiation over an

angular range 30�\ 2h\ 60� by an ionization chamber.

The morphology of the samples were observed using

ZEISS SUPRA-40 field emission scanning electron

microscope (FESEM) operating at 5 kV accelerating volt-

age and the working distance between the samples and the

detector was *1.5 cm. Transmission electron microscopy

(TEM) was carried out in a JEOL JEM-2100F microscope

with the accelerating voltage of 200 kV. For TEM study, a

very small amount of the powder sample was first dis-

persed in acetone by ultrasonication. A drop of that solu-

tion was taken on a carbon coated grid and dried in vacuum

for TEM imaging. Fourier transformed infra-red spectros-

copy (FTIR) was carried out in NEXUS-870 FT-IR spec-

trometer. Reinshaw Raman system: RM-1000B (coupled

with LEICA microscope DMLM) was deployed to carry

out the Raman shift measurement of the ZnO nanorods. As

the excitation source, a 20 mW Argon ion laser was used

which was operated at 514 nm wavelength using an edge

filter of 200 cm-1 as cut-off. The optical emission char-

acteristic of the ZnO nanorods was analysed by recording

the photoluminescence (PL) spectrum at room temperature

using PERKIN ELMER LS-55 luminescence spectrometer

with a xenon lamp at the excitation of 325 nm.

Results and discussions

X-ray diffraction (XRD)

A typical XRD pattern of the ZnO nanorods annealed at

400�C is shown in Fig. 1. The unit cell of the crystal was

found to be hexagonal with the presence of the peaks (100),

(002), (101), (102), and (110). It is well agreed with the

standard JCPDS card no. 36-1451. Furthermore, the intensi-

ties of different diffraction peaks are different, which indi-

cates that the growth of various planes (direction) is different

and that the growth is anisotropic. The crystallite size was

calculated using the well known Scherer formula (Samanta

and Chaudhuri 2011): Rhkl ¼ 0:89k
b cos h : In this calculation, the

highest intensity (101) peak was analysed and considered it to

be Gaussian. The crystallite size was found to be 43 nm.

Besides, no impurity peaks were detected which indicates

that the fabricated ZnO nanomaterials is highly pure.

Growth and morphology of the nanostructures

Typical FESEM image of the as prepared ZnO nanorods is

shown in Fig. 2a. Rod-like nanostructures were clearly

observed. The nanorods are randomly distributed in the

powdered sample. The length of the nanorods is *400 nm

and diameter is *100 nm. Growth of various ZnO nano-

structures from aqueous solution (containing Zn(OH)4
2-)

has been reported by many researchers. However, the

growth process and mechanism of the formation of ZnO

from Zn(OH)4
2- is not yet well understood. The reported

mechanism of formation of ZnO by researchers (Li et al.

2007; Kale et al. 2007; Hu et al. 2007; Quang et al. 2005;

Shan et al. 2004; Zhang et al. 2002; Wu et al. 2006;

Samanta et al. 2009a) is as follows:

Zn2þ þ 2OH� ! Zn OHð Þ2# ð1Þ

Zn OHð Þ2þ2OH� ! ZnðOHÞ2�
4 ð2Þ

ZnðOHÞ2�
4 ! ZnO þ 2H2O þ 2OH� ð3Þ

We depict the formation mechanism of ZnO nanorods in

two steps: nucleation and growth. At the initial step of the
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Fig. 1 XRD pattern of ZnO nanorods annealed at 400�C
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reaction between Zn(OH3)2 and NaOH, Zn(OH)2 precipi-

tates. Now as more NaOH is added to the solution, the

precipitated Zn(OH)2 dissolves and forms a homogeneous

aqueous solution that contains enough Zn(OH)4
2- ions. At

the onset of supersaturation and dehydration of Zn(OH)4
2-

ZnO nuclei are formed. It is also supposed that during this

process, Zn(OH)4
2- ions act as the growth unit of ZnO and

directly incorporated into ZnO crystallites. These nuclei

grow further to produce rod-like ZnO. However, there are

also some other equilibrium processes (ZnO-H2O) for the

formation of ZnO as reported by Quang et al. (2005). But

these needs further investigations.

Zn2þ þ H2O $ ZnO þ 2Hþ ð4Þ

ZnOHþ $ ZnO þ Hþ ð5Þ
ZnðOHÞ2 $ ZnO þ H2O ð6Þ

ZnðOHÞ�3 þ Hþ $ ZnO þ 2H2O ð7Þ

ZnðOHÞ2�
4 þ 2Hþ $ ZnO þ 3H2O ð8Þ

The wurtzite structure of ZnO can be described as a

stack of a number of alternating planes that are fourfold

co-ordinated O2- and Zn2? ions arranged along c-axis.

Several crystal planes exist: the basal plane (0001), one end

of this plane is terminated to Zn lattice points and 000�1ð Þ
plane terminates to negative oxygen lattice points

(Sugunan et al. 2006). The other six low index non-polar

facets �1010ð Þ are parallel to c-axis. The non-polar facets

are energetically most stable and the polar facets are

metastable (Pan et al. 2001). The growth rate of various

planes follows the growth rule: Vð0001Þ[ Vð01�1�1Þ[
Vð01�10Þ[ Vð01�11Þ[ Vð000�1Þ(Li et al. 1999). Now the

growth rate of (0001) plane is very high. As a result it will

be disappeared quickly. Thus, this plane disappears in the

experimentally synthesized ZnO leading to the rod-like

structure (Li et al. 1999). A more detailed understanding of

the growth rate dependence of various morphologies of ZnO

nanostructures is reported by Li et al. (1999). Schematic of

the growth of the nanorods is shown in Fig. 3. On annealing

the nanorods at higher temperatures, the small crystal-

lites coalesce together to form large crystallites and the

crystallinity of the material improves, and hence defect

states are reduced. Hence shape evolution occurs. There

are possibilities of hydroxide shell surrounding the

as-synthesized nanorods. But high temperature annealing

will remove these hydroxide shell layers. As a result well-

grown hexagonal nanorods with narrow tips were observed

as shown in Fig. 2b–d).

Transmission electron microscopy (TEM) study

Typical TEM image of the nanorods annealed at 400�C is

shown in Fig. 4a, b. We observed rod-like structures with

diameter *50–100 nm and length *400 nm as measured

Fig. 2 FESEM images of the a as synthesized ZnO nanorods, and ZnO nanorods annealed at b 200�C, c 400�C, and d 800�C, respectively
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from TEM image. The crystallite size (43 nm) is less than

the diameter of the nanorods, which indicates the nanorods

are composed of several crystallites. The selected area

electron diffraction (SAED) pattern is also shown in the

inset of Fig. 4b. The linear diffraction points indicate that

the diffraction occurs from a single crystallite within the

nanorods.

Fourier transformed infra-red spectroscopy

Figure 5 shows the FTIR spectrum of the ZnO nanorods. A

very strong band is observed at *500 cm-1. This is

assigned to the Zn–O stretching bonds (Faal Hamedani and

Farzaneh 2006). Another peak at 1,625 cm-1 arises due to

the O–H bending mode of water. The vibration mode of

OH group was also observed at 3,429 cm-1. It revealed

that some water was absorbed by the sample from the

atmosphere. The peak at 1,378 cm-1 appeared due to

symmetric stretching mode of N = O coming from some

unreacted zinc nitrate.

Raman shift measurement

Chemical growth of nanostructured materials usually

involves the formation of large amount of surface defects

in the nanocrystals. Thus, the Raman spectra of these

chemically grown nanomaterials are red shifted and

broadened due to the relaxation of the selection rule for the

q-vector (conservation of crystal momentum) within the

finite size of the nanocrystals. Also the phonon scattering in

Fig. 4 a, b TEM images of the nanorods annealed at 400�C. Inset shows the SAED pattern
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Fig. 5 FTIR spectrum of the ZnO nanorods showing the absorption

for various bonds

Fig. 3 Schematic of the growth of the nanorods [reproduced with

permission from 27]
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this case are no longer limited to the Brillouin zone center

but dispersed around the centre of the Brillouin zone. This

result in the appearance of symmetry forbidden modes

along with the shifting and broadening of the first-order

optical phonon scattering modes. ZnO has hexagonal

crystal structure with space group C6v
4 . The Raman-active

modes for hexagonal ZnO are A1 ? 2E2 ?E1. The polar

modes A1 and E1 can split into transverse optical (TO) and

longitudinal optical (LO) modes. The nonpolar E2 mode is

composed of two modes with a low and high frequency.

Figure 6 shows the Raman spectra of the ZnO nanorods.

Prominent vibration peaks at 327, 380, 435, and 578 cm-1

were observed. The 578 cm-1 peak, positioned between A1

(LO) and E1 (LO) optical phonon mode, arises due to the

oxygen deficiency. It is in good agreement with the theo-

retical calculations of Fonoberov and Balandin (2004). As

a result existence of oxygen deficiency, we also observe PL

emission peak at *527 nm. The nonpolar E2 mode is

observed at 435 cm-1 (Alim et al. 2005; Samanta et al.

2010). The peak at 381 cm-1 is attributed to A1 transverse

mode and arises due to the anisotropy in the force constant.

It has a different frequency from E1 transverse phonon

mode. The 327 cm-1 peak is due to the second order

Raman process and is assigned to the 2E2 mode (Fonobe-

rov and Balandin 2004; Alim et al. 2005).

Photoluminescence spectroscopy

Typical PL spectra of the ZnO nanorods annealed at dif-

ferent temperatures are shown in Fig. 7. UV emission is the

characteristic emission of ZnO arising due to direct band

transition. However, visible emission is also reported from

ZnO nanostructures owing to various defects (Samanta and

Chaudhuri 2011; Samanta et al. 2009a, b, c; Vanheusden

et al. 1996; Jeong et al. 2003; Jin et al. 2000; Fu et al. 1998)

such as oxygen vacancies, Zn interstitials, etc. Oxygen, in

general, exhibits three types of charge states of oxygen

vacancies such as Vo0, Vo?, and Vo2?. The oxygen

vacancies are located below the bottom of the conduction

band (CB) in the sequence of Vo0, Vo?, and Vo2?, from

top to bottom. Shallow acceptor levels are created at 0.3

and 0.4 eV above the top of the valence band (VB) due to

zinc vacancy (VZn) and oxygen interstitial (Oi), respec-

tively. Again, zinc interstitial (Zni) produces a shallow

donor level at 0.5 eV below the bottom of CB (Samanta

and Chaudhuri 2011; Samanta et al. 2009a, b, c; Vanh-

eusden et al. 1996; Jeong et al. 2003; Jin et al. 2000; Fu

et al. 1998). In our cases, we observed PL emission (see

Fig. 7) in the visible region which indicates that the PL

emission from the nanorods in this case is dominated by the

defect related deep level emission over the band edge UV

emission. Various defect energy levels as calculated from

full potential linear Muffin-Tin orbital method (Vanheus-

den et al. 1996; Jeong et al. 2003; Jin et al. 2000; Fu et al.

1998; Samanta et al. 2009b, c; Lin et al. 2011; Xu et al.

2003) are shown in Fig. 8. The peak at 405 nm (3.06 eV)

corresponds to the transition between conduction band and

vacancy zinc level while the peak at 425 nm (2.92 eV)

corresponds to the recombination between electron at zinc

interstitials and hole in the valence band (Vanheusden et al.

1996; Jeong et al. 2003; Jin et al. 2000; Fu et al. 1998;

Samanta et al. 2009b, c; Lin et al. 2011; Xu et al. 2003).

The peak at 485 nm (2.55 eV) arises due to transition

between zinc interstitial and zinc vacancy level. The peak

around 527 nm can be related to singly ionized oxygen

vacancy (Vanheusden et al. 1996). This green emission at
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Fig. 7 Room temperature PL spectrum from ZnO nanorods annealed

at different temperatures
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527 nm (2.35 eV) is the result of the recombination of a

photo-generated hole with a singly ionized charged state of

the specific defect. For better understanding of the corre-

lation between PL emission and interstitial Zn, we

observed the PL spectra of the samples annealed at 200,

400 and 800�C, respectively. At high temperature anneal-

ing, the small crystallites coalesce together to form large

crystallites and the crystallinity of the material improves.

This leads to decrease in interstitial zinc states in the

nanocrystals resulting less transitions. Hence at higher

annealing temperature the intensity of the visible emission

peak at 425 nm from ZnO nanorods is reduced.

For better understanding of the PL emission mechanism,

we studied the low temperature PL spectra of the fabricated

ZnO nanorods over the temperature range of 10–300 K as

shown in Fig. 9. Very sharp peak around 3.36 eV appeared

and is assigned to donor-bound excitons (D0X) (Mandal

et al. 2008; Vaithianathan et al. 2005; Reynolds et al. 2001;

Meyer et al. 2004). Another PL peak of very high intensity

appeared at *3.22 eV owing to zero-phonon transition

(Mandal et al. 2008; Vaithianathan et al. 2005; Reynolds

et al. 2001). However, Meyer et al. (2004) reported that this

PL peak is due to donor–acceptor pair transition. It is also

reported that the defect-related PL emission dominates for

the nanorods of high-aspect ratio as compared to that of

bulk because of more number of surface states and incor-

poration of impurities. However, there are some reports of

strong bound excitonic peak at a temperature below 20 K

for ZnO bulk single crystal (Park et al. 2003). In our case,

the room temperature PL is dominated by the defect state

emission.

Conclusions

Hexagonal ZnO nanorods have been fabricated by a wet

chemical process. The fabricated nanorods are well crys-

tallined as revealed from the XRD data. FTIR and Raman

shift measurements confirmed various vibrational bonds of

the ZnO. A strong violet emission at 425 nm was observed

from the nanorods. This violet emission is very rare finding

in ZnO nanostructures. This violet emission occurs due to

the recombination of electrons at zinc interstitials and holes

in the valence band. Thus, the fabricated ZnO nanomaterial

can be used as a violet light emitting material and may find

its applications in optoelectronic devices.
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