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Abstract

Fibrosis, a disease that results in loss of organ function, contributes to a significant number of deaths worldwide
and sustained fibrotic activation has been suggested to increase the risk of developing cancer in a variety of tissues.
Fibrogenesis and tumor progression are regulated in part through the activation and activity of myofibroblasts.
Increasing evidence links myofibroblasts found within fibrotic lesions and the tumor microenvironment to a process
termed epithelial-mesenchymal transition (EMT), a phenotypic change in which epithelial cells acquire mesenchymal
characteristics. EMT can be stimulated by soluble signals, including transforming growth factor (TGF)-(3, and recent

Transforming growth factor; Cell shape; Matrix rigidity

studies have identified a role for mechanical cues in directing EMT. In this review, we describe the role that EMT
plays in fibrogenesis and in the progression of cancer, with particular emphasis placed on biophysical signaling
mechanisms that control the EMT program. We further describe specific TGF-induced intracellular signaling
cascades that are affected by cell- and tissue-level mechanics. Finally, we highlight the implications of mechanical
induction of EMT on the development of treatments and targeted intervention strategies for fibrosis and cancer.
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Introduction

Fibrotic diseases promote loss of function in a variety of
organs including the heart, liver, lung, and kidney resul-
ting in a significant number of deaths worldwide [1,2].
Fibrosis arises from deregulation of wound healing pro-
cesses and is characterized by a stiff and collagen-rich
extracellular matrix (ECM) that is resistant to degrad-
ation. Inappropriate activation and activity of myofibro-
blasts drives the development of fibrosis. An increased
risk of developing cancer in a variety of tissues has been
linked to high stromal collagen content and to the pres-
ence of fibrotic lesions [3-5]. Indeed, fibrosis has been
found in close proximity of tumors within the pancreas
[6], liver [7], and kidney [8] and myofibroblasts have
been identified as residents of the tumor microenviron-
ment [9,10]. The purpose of this article is to review the
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role of myofibroblasts in fibrosis and cancer and to discuss
how physical cues contribute to epithelial-mesenchymal
transition and to the development of myofibroblasts.

Review

Myofibroblasts in health and disease

Myofibroblasts are specialized cells within the body that
aid in wound healing. Upon activation by biochemical
and mechanical signals, myofibroblasts secrete and or-
ganize ECM, develop specialized matrix adhesions [11],
and exhibit cytoskeletal organization characterized by
contractile actin filaments [12]. Together, these features
allow for re-establishment of mechanical integrity and
stability to the damaged tissue and enable the myofibro-
blasts to exert large contractile forces on their micro-
environment thus assisting in both the closure of the
wound and remodeling of the tissue [13,14]. When wound
healing is complete, myofibroblasts undergo apoptosis
which decreases the cellularity of the granulation tissue
and promotes the formation of scar tissue [15]. Due
to their important role in wound healing, these cells
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have attracted much interest for regenerative medi-
cine applications.

Upon aberrant and chronic activation, myofibroblasts
can mediate the development of fibrosis [16-20]. The
sustained activation of myofibroblasts results in the en-
hanced production of ECM components, including col-
lagen types I, III, IV, V, and VI and fibronectin [21-23].
Through integrin engagement with ECM components
and cytoskeletal contractility, myofibroblasts exert large
forces on the ECM thus enabling matrix assembly and
alignment [24]. Together, these factors can lead to stiff-
ening of the tissue and disruption of tissue architecture
and function.

Studies suggest that myofibroblasts are key players in
the progression of a variety of cancer types including
lung [5], liver [3,25], breast [26], and gastric [27] cancer.
Myofibroblasts have been found at the invasive fronts of
tumors where they secrete pro-invasive cytokines, prote-
ases, and inflammatory mediators [28-36]. Fibrotic le-
sions and myofibroblasts have also been found in the
tumor microenvironment prior to cancer cell invasion
into the stroma suggesting that myofibroblasts may me-
diate an invasive phenotype [37]. Indeed, myofibroblasts
are found in higher proportions in the stroma of invasive
breast cancers than in in sifu carcinoma and their pres-
ence has been correlated with lymph node metastasis
and increased histological grade in invasive ductal car-
cinoma [38,39]. Contrary to these reports, a recent study
found that myofibroblasts may serve a protective role in
the context of pancreatic cancer as depletion of myofi-
broblasts and fibrosis in a mouse model of pancreatic
ductal adenocarcinoma leads to a more invasive cancer
cell phenotype and reduced survival [40]. Depletion of
myofibroblasts promoted remodeling of the pancreatic
tumor stroma as well as changes in immune cell infiltra-
tion to the tumor. Thus, the effect of myofibroblasts on
cancer progression appears to be complex and multifa-
ceted and may vary depending upon organ or stage of
cancer. Future investigation of the effect of in vivo
myofibroblast depletion in other cancer types will be
informative and will shed further light on the role of
myofibroblasts in tumor progression.

Differentiation of myofibroblasts from fibroblasts

Following the identification of myofibroblasts, studies
focused primarily on factors that regulate the differenti-
ation of myofibroblasts from stromal fibroblasts. Trans-
forming growth factor (TGF)-p is a potent inducer of
the myofibroblast phenotype and TGFp-induced differ-
entiation of fibroblasts to myofibroblasts was found to
depend on the ED-A domain of fibronectin [41]. Hall-
marks of differentiated myofibroblasts include de novo
expression of alpha smooth muscle actin (aSMA) and
the incorporation of aSMA into stress fibers which
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confers high contractile activity to myofibroblasts. In this
process, mechanical tension is crucial for the develop-
ment of contractile features and for the acquisition of a
myofibroblast phenotype [42-46]. Culture of fibroblasts
on two-dimensional compliant substrata or within three-
dimensional collagen gels has revealed that increased mi-
croenvironmental stiffness and tension results in increased
differentiation of fibroblasts to myofibroblasts [43,47]. In
vitro and in vivo experiments have also shown that chan-
ges in tensional loads to either collagen gels with embed-
ded fibroblasts or granulation tissue at wound sites results
in altered contractility of myofibroblasts [48,49]. Likewise,
myofibroblasts can actively remodel both the chem-
ical and physical properties of their microenvironment
through the secretion of ECM and exertion of contractile
forces [50]. Thus, mechanical signals are essential for the
development of myofibroblasts from fibroblasts and for
proper physiological function.

Epithelial cells mediate fibrogenesis
Epithelial-mesenchymal transition (EMT) is a form of
epithelial plasticity that is important in normal embry-
onic development and is co-opted in the progression of
pathological conditions including fibrosis and cancer
[51-54]. In EMT, epithelial cells, which form monolayers
that line many body structures and compartments, loo-
sen attachments to neighboring cells, acquire an elonga-
ted morphology, and display increased motility (Figure 1).
In addition to these phenotypic shifts, cells exhibit alter-
ations in gene expression including upregulation of a var-
iety of transcription factors including Snail, Slug, and
Twist, decreased expression of epithelial markers such as
E-cadherin and cytokeratins, and de novo expression of
mesenchymal markers such as N-cadherin and vimentin
[51,55]. Following early EMT marker changes, further pro-
gression through EMT can stimulate a myogenic program
characterized by the expression of «SMA and a myofibro-
blast phenotype [56]. EMT is believed to contribute to
fibrogenesis by serving as a source of myofibroblasts and
by promoting paracrine signaling between epithelial
cells and stromal cells. Several recent reviews highlight
the role of EMT in epithelial-mesenchymal interactions in
the context of fibrotic diseases [57-59].

Many studies have identified cells demonstrating fea-
tures of EMT in fibrotic disease models and in human
biopsy samples. In a model of liver fibrosis, hepatocytes
upregulate the expression of the EMT-associated tran-
scription factor Snail and hepatocyte-specific ablation of
Snail protects mice from fibrotic progression [60]. In
this study, it was found that hepatocyte expression of
Snail has a multifaceted effect on the progression of liver
fibrosis through regulation of growth factor expression
and ECM synthesis, which impacts hepatocytes them-
selves and other cell types. Furthermore, hyperplastic type



O'Connor and Gomez Clinical and Translational Medicine 2014, 3:23
http://www.clintransmed.com/content/3/1/23

Page 3 of 13

Epithelial cells

phenotypes are listed.

= - - -
EMT

b @ @ q
- - - L

AAR 0L AN

Proteome Phenotypic Markers

E-cadherin Cuboidal shape

QOccludins Presence of cell junctions

Cytokeratins Apicobasal polarity

Figure 1 Schematic representation of epithelial-mesenchymal transition. EMT is a process in which epithelial cells disaggregate and exhibit
dramatic shape changes. The transitioning epithelial cells lose polarity and intercellular contacts and gain mesenchymal properties such as
increased migratory capacity, contractility, and production of extracellular matrix proteins. Common protein markers of epithelial and mesenchymal
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IT alveolar epithelial cells from patients suffering from
idiopathic pulmonary fibrosis co-express epithelial and
mesenchymal markers including «SMA [61-63]. In ad-
dition, human renal biopsy samples from patients with a
variety of fibrotic kidney diseases display cells within the
tubular structures that exhibit both epithelial and mesen-
chymal features [64,65]. Together, these findings lend
strong support for an important role for the epithelium in
fibrogenesis either as a precursor of myofibroblasts or as a
mediator influencing the development of myofibroblasts
from other cell types.

Given the importance of myofibroblasts in health and
disease, much effort has been directed toward identifica-
tion of myofibroblast progenitor cell types through li-
neage tracing studies in in vivo disease models. Studies
have revealed a variety of candidates including resident
fibroblasts, mesenchymal stem cells, and endothelial cells,
with a number of reports finding that a portion of myofi-
broblasts within fibrotic lesions arise from epithelium
through EMT [27,61,66-71]. Fate tracking of alveolar epi-
thelial cells in genetically modified mice has demonstrated
that mesenchymal cells arising during the progression of
pulmonary fibrosis can originate from epithelial cells
[61,69,70]. Moreover, lineage tracing in animal models has
also identified epithelial cells as one of the cell types from
which myofibroblasts can originate in kidney, liver, and in-
testinal fibrosis with the proportion of myofibroblasts aris-
ing from epithelial cells being tissue specific [66,71,72].
However, a series of recent fate mapping studies using dif-
ferent epithelial and mesenchymal tags showed no evi-
dence of epithelial precursors to myofibroblasts in the
kidney and liver suggesting an alternate precursor cell type
or that the role of the epithelium in fibrogenesis may be
organ or disease specific [64,73-77]. Thus, whether epithe-
lial cells are indeed a source of myofibroblasts in vivo
is currently debated and yet to be resolved definitively.

Several recent reviews provide a summary of the different
viewpoints with regard to this debate [58,64,73].

Biochemical induction of EMT by TGF
EMT is triggered by a variety of soluble factors including
epidermal growth factor (EGF), hepatocyte growth fac-
tor (HGF), fibroblast growth factor (FGF), and TGEFp
[55,78-85]. Other stimuli, such as hypoxia [86,87] and
adhesion to ECM components can also induce EMT
[69,88,89]. TGEP, a ubiquitously expressed cytokine, is
a potent inducer of EMT and is regarded as a key me-
diator of wound healing [90,91], fibrosis [92,93], and
cancer [94,95]. Epithelial cells derived from a variety
of tissues including lung [69,96,97], kidney [98-101],
and breast [85,102-104] display myofibroblast features
following exposure to TGFP. TGFp is perhaps the best
characterized promoter of EMT and therefore we will
focus this review specifically on TGFp-mediated EMT.
In the canonical TGFp signaling pathway, active TGF(
ligands initiate signaling by binding to type I and type II
receptor serine/threonine kinases. Following receptor ac-
tivation, Smad2 and Smad3 associate with the TGFp re-
ceptor complex and are phosphorylated by the type I
TGEP receptor. Phosphorylated Smad2 and Smad3 then
form a complex with Smad4 and translocate to the nu-
cleus. Once in the nucleus, the Smads can regulate the
transcription of target genes in conjunction with other
nuclear co-factors [105-107]. Activation of several Smad-
independent pathways including phosphoinositide 3-
kinase (PI3K)-Akt [108], focal adhesion kinase (FAK)
[109], p38 mitogen-activated protein kinase (p38MAPK)
[110], and extracellular signal-regulated kinase (Erk) [111]
have been identified as crucial for EMT induction by
TGEFP and recent studies implicate hyaluronan synthase 2
(HAS2) [112], Krippel-like factor (KLF)-8 [113], and
microRNA miR-203 [114] as critical regulators of EMT.
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During the progression of TGFp-induced EMT, cells ex-
hibit dramatic cytoskeletal reorganization that is mediated
by signaling through the Rho GTPase pathway which
stimulates stress fiber formation, the acquisition of a mes-
enchymal morphology, and increased cytoskeletal con-
tractility. Evidence implicates the RhoA pathway as a
necessity for induction of EMT by TGFf [108,115]. These
changes in cell morphology and cytoskeletal architecture
suggest an important role for physical cues in regulating
EMT.

Mechanical activation of TGF8

TGEp is synthesized by cells and stored in a latent form
crosslinked to the ECM in the cellular microenviron-
ment. TGFP can be activated via a number of mecha-
nisms, one of which is through integrin binding. Integrin
a,Pe which is expressed at high levels predominantly on
injured epithelial cells or cancer cells [116], binds to and
locally activates TGFp in vivo and in vitro [117]. Treat-
ment of lung epithelial cells with cytochalasin D, an
inhibitor of actin polymerization, blocks activation of
TGEp by a,Bs demonstrating an important role for the
actin cytoskeleton in inducing TGEp bioactivity [117]. A
recent study suggests that cellular contractility is re-
quired for TGFp activation by o,fs as treatment of lung
epithelial cells with Y27632 or blebbistatin, which inhibit
Rho associated kinase (ROCK) and non-muscle myosin
IT respectively, abrogates TGFp activation [118]. Myofi-
broblasts can also activate TGEP through a combination
of a,fs and «,fP; integrin engagement and contractile
forces in vitro [119]. Thus, cytoskeletal tension and cel-
lular force generation are key mediators of the activation
of TGEP signaling.

EMT alters the mechanical properties of cells

Cellular mechanics are influenced in part by the combi-
nation of cell morphology and cytoskeletal organization
with the formation of stress fibers enabling increased
cellular contractility [120]. Atomic force microscopy
(AFM) is a useful tool to determine mechanical prop-
erties through gently applying a force to induce cell
deformation from which the modulus of the cell can
be determined. By employing AFM on kidney [121],
alveolar [122], and mammary [123] epithelial cells, re-
searchers have identified a significant increase in the
stiffness of cells following TGEp treatment. Tension
within the membrane, as determined by tether pulling
experiments, was also found to increase after EMT in-
duction [123]. In addition, the topography of cells changes
following treatment with TGFB with a rougher surface
profile [122] and nodular protrusions at intercellular junc-
tions accompanying the transition to a mesenchymal
phenotype [121]. These mechanical changes, in addition
to cytoskeletal rearrangements, demonstrate a correlation
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between cytoskeletal architecture and increased cell stiff-
ness as epithelial cells progress through EMT. Further-
more, EMT has been observed at the edges of epithelial
wounds [101,124] and AFM studies have found that cell
stiffness peaks approximately 10-20 um from the wound
edge with lower localized mechanical stiffness at the
wound edge and far from the wound edge within the in-
tact epithelial monolayer [125]. This peak in mechanical
stiffness was nullified with the expression of a dominant
negative form of RhoA. These data suggest that wound
sites may serve as focal points for mechanical signaling
events and that changes in cellular stiffness may provide
signals for cellular processes including cell spreading and
migration which are required for the early stages of epi-
thelial wound healing.

Increased cell spreading and elongation promote EMT
The shape of a cell is regulated by microenvironmental cues
and has been shown to play a pivotal role in tissue morpho-
genesis [126,127], proliferation [128,129], apoptosis [128],
and differentiation [130-133]. Cell shape is a consequence
of intrinsic cellular mechanical properties and of forces
exerted on the cell due to its adhesion to environmental
components including ECM proteins and neighboring cells
[134,135]. During EMT, cells experience drastic shape
changes as they transition from a cuboidal, cobblestone
morphology characteristic of epithelial cells to an elongated,
spindle-like shape typical of mesenchymal cells.

Through the use of micropatterned cell culture sub-
strata, which enable precise control over cell spreading,
studies have shown that cell shape regulates the expres-
sion levels of the epithelial marker cytokeratin and the
mesenchymal marker vimentin in matrix metalloprotein-
ase (MMP)-3-induced EMT but not in TGFf-induced
EMT [103]. More recently, we have demonstrated that
cell spreading and elongation are critical factors that re-
gulate TGFp-induced expression of the myofibroblast
marker «SMA during EMT [104]. Culturing epithelial
cells on microcontact printed islands of fibronectin of
varying sizes and shapes enabled control of cell mor-
phology. Adhesion to large square islands (2500 pm?)
which permitted cells to spread promoted an increase in
the percentage of cells expressing aSMA after 48 hours
of TGEP treatment in comparison to cells blocked from
spreading (400 um?) and to control cells not treated with
TGEP (Figure 2A). We found that cell shape regulates
aSMA expression in part by controlling the subcellular
localization of myocardin related transcription factor
(MRTEF)-A (Figure 2B). MRTFA is a co-factor of serum
response factor (SRF) and together these proteins re-
gulate the transcription of a variety of genes associated
with actin dynamics and cell contractile function in-
cluding aSMA [136,137]. Indeed, MRTFA plays a key
role in TGFB-induced EMT [138] and contributes to
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Figure 2 Cell shape regulates epithelial-myofibroblast transition. (A) Immunofluorescence staining and quantification of TGF3-induced
aSMA expression for mouse mammary epithelial cells cultured on 400 pm? and 2500 pm? fibronectin islands. The percentage of cells expressing
aSMA following a 48 hour treatment with TGF@ or control vehicle was determined by immunofluorescence staining and microscopy. Cells with
fluorescence intensities above background levels were scored as expressing aSMA. (B) Immunofluorescence staining for MRTFA in TGFf3-treated
NMUMG cells shows increased nuclear localization of MRTFA when cells are permitted to spread (2500 um?) in comparison to when cell spreading is
blocked (400 pm?). MRTFA localization was determined by comparing the mean nuclear and cytoplasmic fluorescence intensities within cells. Dashed

lines represent the perimeter of the cell. Scale bars, 20 um. Reported values are the mean of three independent experiments + standard error of the
mean. *p < 0.05. (C) Proposed model demonstrating how cell spreading affects MRTFA subcellular localization and myofibroblast development.

ri—nil
1600 2500

Cell spread area (um?)

Eplthellal cell

\-\‘ b
rO;."
iy

——— -Actin
aSMA

= MRTFA
= G-Actin

Myofibroblast
___:-:@'-:{-‘-._

experimental fibrosis [139] and metastasis [140]. The
activity of MRTFA is regulated in part by its association
with monomeric (G)-actin and polymerization of actin
monomers into filamentous (F)-actin disrupts the as-
sociation between MRTFA and G-actin thus enabling
nuclear accumulation of MRTFA [141]. Increased cell
spreading promotes an increase in F-actin levels which
then leads to MRTFA nuclear localization and tran-
scriptional activity (Figure 2C). These data suggest that
cell shape changes that accompany EMT are critical for
induction of the myofibroblast phenotype.

Matrix rigidity controls EMT

Microenvironmental physical properties, such as stiff-
ness and tension, are becoming increasingly acknowl-
edged as contributing to normal cellular processes and
to the development of diseases [142-145]. In wound
healing, fibrosis, and cancer, epithelial cells exist in a

heterogeneous microenvironment in which the chemical
and mechanical properties are dynamic. For example,
during wound healing the mechanical properties at the
wound site evolve with time, from compliant (with a
Young's modulus of approximately 1 kPa) after initial
wounding to a stiffness of 25 kPa or greater for contract-
ing wound granulation tissue [146]. In fibrotic tissues, the
elastic modulus can reach values as high as 15-100 kPa
[147-150]. Interestingly, a recent study found that in-
creased microenvironmental rigidity may precede liver fi-
brosis suggesting that the mechanical properties of the
matrix may promote activation of pro-fibrotic pathways
[143,151]. In vivo and in vitro studies have also linked in-
creased tissue stiffness and collagen content to the tumor
phenotype and metastasis [144,145,152]. For example, du-
ring the progression of breast cancer, the stiffness of the
mammary gland can range from approximately 200 Pa for
normal tissue to 5000 Pa or greater for the average breast
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tumor [145,149,153]. High mammographic density,
strong risk factor for breast cancer [154,155], is associated
with a significantly greater collagen content within the
mammary gland in comparison to breast tissue with less
mammographic density [4].

Recent studies have identified matrix rigidity as a cru-
cial regulator of TGEB-induced EMT through several
pathways [99,118,147,156]. Mammary and kidney epi-
thelial cells exhibit a switch between TGFf-induced
apoptosis and EMT when cultured on compliant or ri-
gid substrata, respectively [99]. In these studies, soft
substrata blocked and rigid substrata promoted EMT
regardless of whether the cells were cultured on fibro-
nectin, collagen I, or recombinant basement membrane.
The switch between apoptosis and EMT is controlled by
activation of the PI3K/Akt signaling pathway, with in-
creasing matrix rigidity promoting increased phospho-
rylation of Akt. Furthermore, cells cultured on rigid
matrices are able to generate contractile forces which
promote TGFp activation from its latent complex by a,
integrins while compliant matrices block this process
[118,119]. Activation of TGFp on rigid substrata is pro-
moted by Rho/ROCK signaling in lung epithelial cells
and this induces EMT (Figure 3) [118,147,156]. On
fibronectin-coated substrata, this response can be abro-
gated by culturing cells on rigid substrata coated with a
fibronectin mutant which contains a stabilized RGD and
PHSRN synergy site that supports o3 and a5 integrin en-
gagement [156]. These results highlight the complex
interplay between epithelial cells and both the chemical
and physical properties of their microenvironment dur-
ing induction of EMT. Moreover, these studies suggest
that activation of EMT may create a positive feedback
loop that enhances myofibroblast activation and ECM
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synthesis thereby further increasing the rigidity of the
matrix and disease progression.

Tissue geometry patterns EMT

During tissue development and wound healing, cellular
behaviors are spatially patterned thus conferring cells at
specific locations unique attributes and functions. In-
deed, patterning within developing embryos is ensured
in part by the temporal and spatial regulation of EMT
[52]. Moreover, myofibroblasts have been observed at
the edges of epithelial wounds [101,124] and patholo-
gical EMT and myofibroblasts are found along the inva-
sion front of metastatic tumors [95,157,158].

Spatial variations in the mechanical properties of tis-
sues are controlled by tissue composition and architec-
ture as well as by the interaction of individual cells with
the surrounding matrix and neighboring cells. Within
epithelial tissues, neighboring cells exhibit cell-cell adhe-
sions that are mediated by tight junctions and adherens
junctions. These cell-cell junctions are functionally and
dynamically connected to the actin cytoskeleton thus en-
abling transmission of forces between neighboring cells.
In culture, intercellular transmission of mechanical stress
through cell-cell adhesions can establish mechanical gra-
dients with regions of maximal stress defined by the
geometry of the tissue [102,159]. Spatial patterns in EMT
can arise in two-dimensional epithelial sheets with down-
regulation of cytokeratins and upregulation of mesen-
chymal markers vimentin and «SMA occurring in regions
of the tissue that experience the highest mechanical
stresses [102]. The observed spatial patterning of TGEp-
induced EMT correlates with the subcellular localiza-
tion of MRTFA, with EMT occurring in regions of the
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tissues with the highest frequencies of MRTFA nuclear
localization.

Cyclic stretch promotes EMT

Some cells within the body experience cyclic stretch dur-
ing normal function, such as alveolar epithelia during
respiration. Under conditions associated with fibrosis,
epithelial cells may experience pathologically high levels
of stretch arising from tissue distortion associated with
injury or scar tissue formation. The effects of patho-
logical levels of stretch on the induction of EMT have
recently been highlighted in several studies. In a model
system examining the pathological effects of renal tubu-
lar distension, kidney epithelial cells exposed to cyclic
mechanical stretch exhibited increased EMT [160]. This
effect was mediated by upregulation of TGFp by more
than two-fold in stretched cells in comparison to non-
stretched cells. Cyclic mechanical stretch also promotes
EMT in type II alveolar epithelial cells, not through up-
regulation of TGEP, but rather by inducing actin po-
lymerization and upregulation of low molecular weight
hyaluronan which facilitates signaling through Wnt/
B-catenin and MyD88 pathways [161]. Together, these
studies demonstrate yet another important way in which
mechanical cues can promote EMT and the fibrotic re-
sponse of tissues to injury.

Mechanosensitive signaling cascades in EMT

Mpyocardin related transcription factors

Acquisition of mesenchymal features during TGEp-
induced EMT is regulated in part by the SRE/MRTFA
signaling pathway and we have highlighted several studies
demonstrating the interplay between this pathway and
mechanics in EMT. Thus far, a majority of studies exam-
ining this pathway in the context of EMT have focused on
how MRTFA regulates the expression of cytoskeletal-
associated genes such as aSMA. MRTFA also regulates
the expression of EMT-associated transcription factors in-
cluding Snail, Slug, and Twist [105] and therefore may
have an impact on the expression of the epithelial gene
E-cadherin. Further studies are necessary to define the
role of MRTFA in the regulation of epithelial markers dur-
ing EMT and to determine the impact of mechanical cues
on the loss of epithelial features during EMT.

Hippo pathway

The Hippo pathway is critical for cell growth and cell
fate decisions and dysregulation of signaling through this
pathway or of its downstream effectors is implicated in
fibrosis and cancer [162-165]. Downstream effectors in
this pathway, Yes-associated protein (YAP) and trans-
criptional co-activator with PDZ-binding motif (TAZ),
interact with the canonical TGFp signaling cascade by
regulating the subcellular localization of phosphorylated
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Smads [166,167]. Activation of these factors is controlled
in part by cell-cell contact [167] and recent studies have
demonstrated that YAP and TAZ mediate how cells re-
spond to cell geometry and ECM elasticity to control cell
growth and stem cell differentiation [168-171]. Indeed,
cell shape and matrix rigidity modulate the subcellular
localization of YAP and TAZ and cytoskeletal destabiliza-
tion and inhibition of cell contractility inactivate YAP and
TAZ [168]. TAZ is a critical regulator of local EMT at
wound sites [172] and overexpression of TAZ can induce
EMT [173]. Downregulation of TAZ blocks aSMA expres-
sion along wound edges and it has been suggested that
TAZ may control aSMA expression either through associ-
ation with MRTFA or through interaction with the aSMA
promoter as a co-activator to the TEA domain (TEAD)
transcription factors [172]. Given that YAP and TAZ are
mechanosensitive and cytoskeletal architecture is linked
to Hippo pathway signaling [174], it is plausible that me-
chanical signals control YAP and TAZ activity to regulate
aspects of EMT. Future studies addressing the interplay of
mechanical cues and YAP and TAZ signal transduction
during TGEFB-induced EMT will be informative and may
shed light on mechanisms mediating fibrosis and cancer.

Targeting TGFB-induced EMT

The multipotent nature of TGEFp signaling in normal
and diseased tissues presents challenges for the develop-
ment of therapeutics targeting this pathway. Nevertheless,
much effort has been directed toward the development of
antagonists of TGFB [175-177]. Small molecule inhibitors
are in various stages of development [177] and clinical tri-
als are testing the efficacy of TGEFP monoclonal antibodies
for treatment of diabetic nephropathy and idiopathic pul-
monary fibrosis [58]. Furthermore, neutralizing antibodies
against TGF have been found to reduce metastatic can-
cer progression in mice [178-182]. In addition, a promis-
ing approach which has demonstrated efficacy as an
anti-fibrotic in lung, kidney, and liver disease models
is targeting the integrin- and contractility-induced ac-
tivation of TGEp from it latent complex through the use
of a monoclonal antibody to o, integrin [183-186]. This
method may also be an effective therapeutic approach for
blocking tumor progression, as anti-o,f¢ integrin mono-
clonal antibody prevents xenograft tumor growth in vivo
[187]. Inhibiting TGEP activation may present lower risk
to the disruption of beneficial effects of TGEp than tar-
geting TGEP itself since a,fs is expressed primarily
within epithelial cells and is highly upregulated in dis-
eased tissues [184].

Targeting intracellular signaling cascades downstream
of TGFp rather than TGE itself may also be a viable ap-
proach for blocking fibrogenesis and cancer progression.
Indeed, a recent study demonstrated that troglitazone,
a peroxisome proliferator activated receptor (PPAR)-y
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agonist that suppresses TGFp-mediated fibrogenesis
[188-190], attenuates TGFfB-induced phosphorylation of
Akt and upregulation of Snail [97]. This is one of the
major pathways activated within epithelial cells by the
combination of TGEP and matrix rigidity [99]. In addition,
small molecule inhibitors including CCG-1423 and its an-
alogs block SRF/MRTFA signaling [191,192]. Namely,
CCG-1423 blocks the interaction of MRTFA with impor-
tin alpha/beta 1 thus preventing the nuclear import of
MRTFA [193]. Furthermore, CCG-1423 has been shown
to successfully inhibit TGFB-induced expression of aSMA
[102,104,194]. Interestingly, a recent study reported that
the small molecule isoxazole can induce a myofibroblast
phenotype by regulating the stability and activity of MRTFA
[195]. Isoxazole enhanced cutaneous wound closure in
mice suggesting that therapeutics aimed at promoting
MRTFA signaling and the myofibroblast phenotype may
also be promising methods for improving wound healing.

Given the link between TGFp-induced EMT, fibrosis,
and cancer, therapeutics directly targeting EMT may
prove to be fruitful approaches for treating these dis-
eases. Bone morphogenetic protein (BMP)-7 exhibits
anti-fibrotic effects in animal models of renal fibrosis
and reverses EMT in renal tubular cells iz vitro [100,196].
Furthermore, a recent study found that a variety of anti-
proliferative agents also inhibit EMT suggesting that
the most effective compounds for cancer treatment may
be those that target multiple aspects of cancer progression
[197].

Conclusions

The ability of epithelial cells to transition to a mesenchy-
mal phenotype is regulated by cytokines, ECM com-
ponents, cell-cell contacts, and mechanical cues and a
combination of these factors is likely required for EMT
induction. The studies highlighted within this review
have identified an important role for mechanics in TGFp-
induced EMT and suggest that mechanical signaling
pathways, including those involved in mechanotrans-
duction, cell contractility, and regulation of matrix ri-
gidity, could serve as potential targets for new therapies
directed toward fibrosis and cancer. To achieve this
though, a better understanding of the mechanistic un-
derpinnings of how cell and tissue level physical pro-
perties contribute to EMT in pathological settings is
needed.

Abbreviations

AFM: Atomic force microscopy; BMP: Bone morphogenetic protein;

ECM: Extracellular matrix; EGF: Epidermal growth factor; EMT: Epithelial-
mesenchymal transition; FAK: Focal adhesion kinase; FGF: Fibroblast growth
factor; Fn: Fibronectin; FSP-1: Fibroblast-specific protein-1; HAS2: Hyaluronan
synthase 2; HGF: Hepatocyte growth factor; KLF8: Krtippel-like factor &;

Ln: Laminin; MAPK: Mitogen-activated protein kinase; MMP: Matrix
metalloproteinase; MRTF: Myocardin related transcription factor;

NMuMG: Normal murine mammary gland; PI3K: Phosphoinositide-3-kinase;

Page 8 of 13

PPAR: Peroxisome proliferator activated receptor; ROCK: Rho associated
kinase; SRF: Serum response factor; TAZ: Transcriptional co-activator with
PDZ-binding motif; TEAD: TEA domain; TGF: Transforming growth factor;
YAP: Yes-associated protein; aSMA: Alpha smooth muscle actin.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JWO and EWG reviewed the literature, wrote, and revised the manuscript.
Both authors read and approved the final manuscript.

Acknowledgements
This work was supported by start-up funds from the Pennsylvania State
University.

Received: 23 April 2014 Accepted: 2 July 2014
Published: 15 July 2014

References

1. Zeisberg M, Kalluri R: Cellular mechanisms of tissue fibrosis. 1: common
and organ-specific mechanisms associated with tissue fibrosis. Am J
Physiol Cell Physiol 2013, 304:C216-C225.

2. Wynn TA: Cellular and molecular mechanisms of fibrosis. J Pathol 2008,
214:199-210.

3. Bissell DM: Chronic liver injury, TGF-beta, and cancer. Exp Mol Med 2001,
33:179-190.

4. Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ, Paterson AD:
Mammographic breast density as an intermediate phenotype for breast
cancer. Lancet Oncol 2005, 6:798-808.

5. Daniels CE, Jett JR: Does interstitial lung disease predispose to lung
cancer? Curr Opin Pulm Med 2005, 11:431-437.

6. Shields MA, Dangi-Garimella S, Redig AJ, Munshi HG: Biochemical role of
the collagen-rich tumour microenvironment in pancreatic cancer
progression. Biochem J 2012, 441:541-552.

7. Zhang DY, Friedman SL: Fibrosis-dependent mechanisms of
hepatocarcinogenesis. Hepatology 2012, 56:769-775.

8. Lopez-Novoa JM, Nieto MA: Inflammation and EMT: an alliance towards
organ fibrosis and cancer progression. EMBO Mol Med 2009, 1:303-314.

9. Bhowmick NA, Neilson EG, Moses HL: Stromal fibroblasts in cancer
initiation and progression. Nature 2004, 432:332-337.

10. Elenbaas B, Weinberg RA: Heterotypic signaling between epithelial
tumor cells and fibroblasts in carcinoma formation. £xp Cell Res 2001,
264:169-184.

11. Hinz B, Dugina V, Ballestrem C, Wehrle-Haller B, Chaponnier C: Alpha-smooth
muscle actin is crucial for focal adhesion maturation in myofibroblasts.
Mol Biol Cell 2003, 14:2508-2519.

12. Gabbiani G, Ryan GB, Majne G: Presence of modified fibroblasts in
granulation tissue and their possible role in wound contraction.
Experientia 1971, 27:549-550.

13. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA: Myofibroblasts
and mechano-regulation of connective tissue remodelling. Nat Rev Mol
Cell Biol 2002, 3:349-363.

14.  Hinz B: Formation and function of the myofibroblast during tissue repair.
J Invest Dermatol 2007, 127:526-537.

15. Desmouliere A, Redard M, Darby |, Gabbiani G: Apoptosis mediates the
decrease in cellularity during the transition between granulation tissue
and scar. Am J Path 1995, 146:56-66.

16. Brown RD, Ambler SK, Mitchell MD, Long CS: The cardiac fibroblast:
therapeutic target in myocardial remodeling and failure. Annu Rev
Pharmacol Toxicol 2005, 45:657-687.

17. Gressner AM, Weiskirchen R: Modern pathogenetic concepts of liver
fibrosis suggest stellate cells and TGF-beta as major players and
therapeutic targets. J Cell Mol Med 2006, 10:76-99.

18. Liu Y: Renal fibrosis: new insights into the pathogenesis and
therapeutics. Kidney Int 2006, 69:213-217.

19. Phan SH: The myofibroblast in pulmonary fibrosis. Chest 2002,
122:2865-289S.

20. Thannickal VJ, Toews GB, White ES, Lynch JP Il, Martinez FJ: Mechanisms of
pulmonary fibrosis. Annu Rev Med 2004, 55:395-417.



O'Connor and Gomez Clinical and Translational Medicine 2014, 3:23
http://www.clintransmed.com/content/3/1/23

21. Klingberg F, Hinz B, White ES: The myofibroblast matrix: implications for
tissue repair and fibrosis. J Pathol 2013, 229:298-309.

22. Zhang K, Rekhter MD, Gordon D, Phan SH: Myofibroblasts and their role in
lung collagen gene expression during pulmonary fibrosis: a combined
immunohistochemical and in situ hybridization study. Am J Path 1994,
145:114-125.

23. Balza E, Borsi L, Allemanni G, Zardi L: Transforming growth factor beta
regulates the levels of different fibronectin isoforms in normal human
cultured fibroblasts. FEBS Lett 1988, 228:42-44.

24. Zhong C, Chrzanowska-Wodnicka M, Brown J, Shaub A, Belkin AM,
Burridge K: Rho-mediated contractility exposes a cryptic site in
fibronectin and induces fibronectin matrix assembly. J Cell Biol 1998,
141:539-551.

25. Neaud V, Faouzi S, Guirouilh J, Le Bail B, Balabaud C, Bioulac-Sage P,
Rosenbaum J: Human hepatic myofibroblasts increase invasiveness of
hepatocellular carcinoma cells: evidence for a role of hepatocyte growth
factor. Hepatology 1997, 26:1458-1466.

26.  Radisky DC, Kenny PA, Bissell MJ: Fibrosis and cancer: do myofibroblasts
come also from epithelial cells via EMT? J Cell Biochem 2007, 101:830-839.

27. Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata
W, Diprete B, Betz KS, Friedman R, Varro A, Tycko B, Wang TC: Bone
marrow-derived myofibroblasts contribute to the mesenchymal stem cell
niche and promote tumor growth. Cancer Cell 2011, 19:257-272.

28. Nielsen BS, Sehested M, Timshel S, Pyke C, Dano K: Messenger RNA for
urokinase plasminogen activator is expressed in myofibroblasts
adjacent to cancer cells in human breast cancer. Lab Invest 1996,
74:168-177.

29. Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ: The origin of the
myofibroblasts in breast cancer: recapitulation of tumor environment in
culture unravels diversity and implicates converted fibroblasts and
recruited smooth muscle cells. J Clin Invest 1995, 95:859-873.

30. Bisson C, Blacher S, Polette M, Blanc JF, Kebers F, Desreux J, Tetu B,
Rosenbaum J, Foidart JM, Birembaut P, Noel A: Restricted expression of
membrane type 1-matrix metalloproteinase by myofibroblasts adjacent
to human breast cancer cells. Int J Cancer 2003, 105:7-13.

31. Offersen BV, Nielsen BS, Hoyer-Hansen G, Rank F, Hamilton-Dutoit S,
Overgaard J, Andreasen PA: The myofibroblast is the predominant
plasminogen activator inhibitor-1-expressing cell type in human breast
carcinomas. Am J Path 2003, 163:1887-1899.

32. Nielsen BS, Rank F, Lopez JM, Balbin M, Vizoso F, Lund LR, Dano K, Lopez-
Otin C: Collagenase-3 expression in breast myofibroblasts as a molecular
marker of transition of ductal carcinoma in situ lesions to invasive ductal
carcinomas. Cancer Res 2001, 61:7091-7100.

33. Sivridis E, Giatromanolaki A, Koukourakis MI: Proliferating fibroblasts at the
invading tumour edge of colorectal adenocarcinomas are associated
with endogenous markers of hypoxia, acidity, and oxidative stress. J Clin
Pathol 2005, 58:1033-1038.

34.  Ohtani H, Motohashi H, Sato H, Seiki M, Nagura H: Dual over-expression
pattern of membrane-type metalloproteinase-1 in cancer and stromal
cells in human gastrointestinal carcinoma revealed by in situ hybridization
and immunoelectron microscopy. Int J Cancer 1996, 68:565-570.

35, Gress TM, Muller-Pillasch F, Lerch MM, Friess H, Buchler M, Adler G:
Expression and in-situ localization of genes coding for extracellular
matrix proteins and extracellular matrix degrading proteases in
pancreatic cancer. Int J Cancer 1995, 62:407-413.

36. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH,
Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H, Sprick MR,
Kemper K, Richel DJ, Stassi G, Medema JP: Wnt activity defines colon
cancer stem cells and is regulated by the microenvironment. Nat Cell Biol
2010, 12:468-476.

37. De Wever O, Mareel M: Role of tissue stroma in cancer cell invasion.

J Pathol 2003, 200:429-447.

38. Yazhou C, Wenlv S, Weidong Z, Licun W: Clinicopathological significance
of stromal myofibroblasts in invasive ductal carcinoma of the breast.
Tumour Biol 2004, 25:290-295.

39. De Wever O, Mareel M: Role of myofibroblasts at the invasion front.

Biol Chem 2002, 383:55-67.

40.  Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR,
Laklai H, Sugimoto H, Kahlert C, Novitskiy SV, De Jesus-Acosta A, Sharma P,
Heidari P, Mahmood U, Chin L, Moses HL, Weaver VM, Maitra A, Allison JP,
LeBleu VS, Kalluri R: Depletion of carcinoma-associated fibroblasts and

41.

42.

43.

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Page 9 of 13

fibrosis induces immunosuppression and accelerates pancreas cancer
with reduced survival. Cancer Cell 2014, 25:719-734.

Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L,
Gabbiani G: The fibronectin domain ED-A is crucial for myofibroblastic
phenotype induction by transforming growth factor-beta1. J Cell Biol 1998,
142:873-881.

Arora PD, Narani N, McCulloch CA: The compliance of collagen gels
regulates transforming growth factor-beta induction of alpha-smooth
muscle actin in fibroblasts. Am J Pathol 1999, 154:871-882.

Grinnell F, Ho CH, Lin YC, Skuta G: Differences in the regulation of
fibroblast contraction of floating versus stressed collagen matrices. J Biol
Chem 1999, 274:918-923.

Grinnell F, Zhu M, Carlson MA, Abrams JM: Release of mechanical tension
triggers apoptosis of human fibroblasts in a model of regressing
granulation tissue. Exp Cell Res 1999, 248:608-619.

Squier CA: The effect of stretching on formation of myofibroblasts in
mouse skin. Cell Tissue Res 1981, 220:325-335.

Tomasek JJ, Haaksma CJ, Eddy RJ, Vaughan MB: Fibroblast contraction
occurs on release of tension in attached collagen lattices: dependency
on an organized actin cytoskeleton and serum. Anat Rec 1992,
232:359-368.

Li Z, Dranoff JA, Chan EP, Uemura M, Sevigny J, Wells RG: Transforming
growth factor-beta and substrate stiffness regulate portal fibroblast
activation in culture. Hepatology 2007, 46:1246-1256.

Brown RA, Prajapati R, McGrouther DA, Yannas IV, Eastwood M: Tensional
homeostasis in dermal fibroblasts: mechanical responses to mechanical
loading in three-dimensional substrates. J Cell Physiol 1998,

175:323-332.

Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G: Mechanical
tension controls granulation tissue contractile activity and myofibroblast
differentiation. Am J Pathol 2001, 159:1009-1020.

Leung LY, Tian D, Brangwynne CP, Weitz DA, Tschumperlin DJ: A new
microrheometric approach reveals individual and cooperative roles for
TGF-betal and IL-1beta in fibroblast-mediated stiffening of collagen
gels. FASEB J 2007, 21:2064-2073.

Kalluri R, Weinberg RA: The basics of epithelial-mesenchymal transition.
J Clin Invest 2009, 119:1420-1428.

Shook D, Keller R: Mechanisms, mechanics and function of epithelial-
mesenchymal transitions in early development. Mech Dev 2003,
120:1351-1383.

Thiery JP, Acloque H, Huang RY, Nieto MA: Epithelial-mesenchymal
transitions in development and disease. Cell 2009, 139:371-890.

Xu J, Lamouille S, Derynck R: TGF-beta-induced epithelial to mesenchymal
transition. Cell Res 2009, 19:156-172.

Lamouille S, Xu J, Derynck R: Molecular mechanisms of epithelial-
mesenchymal transition. Nat Rev Mol Cell Biol 2014, 15:178-196.

Masszi A, Speight P, Charbonney E, Lodyga M, Nakano H, Szaszi K, Kapus A:
Fate-determining mechanisms in epithelial-myofibroblast transition:
major inhibitory role for Smad3. J Cell Biol 2010, 188:383-399.

Chapman HA: Epithelial-mesenchymal interactions in pulmonary fibrosis.
Annu Rev Physiol 2011, 73:413-435.

Duffield JS, Lupher M, Thannickal VJ, Wynn TA: Host responses in tissue
repair and fibrosis. Annu Rev Pathol 2013, 8:241-276.

Friedman SL, Sheppard D, Duffield JS, Violette S: Therapy for fibrotic
diseases: nearing the starting line. Sci Trans/ Med 2013, 5:167sr161.

Rowe RG, Lin Y, Shimizu-Hirota R, Hanada S, Neilson EG, Greenson JK,
Weiss SJ: Hepatocyte-derived Snail1 propagates liver fibrosis progression.
Mol Cell Biol 2011, 31:2392-2403.

Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN,
Sheppard D, Chapman HA: Alveolar epithelial cell mesenchymal transition
develops in vivo during pulmonary fibrosis and is regulated by the
extracellular matrix. Proc Natl Acad Sci U S A 2006, 103:13180-13185.
Willis BC, Borok Z: TGF-beta-induced EMT: mechanisms and
implications for fibrotic lung disease. Am J Physiol Lung Cell Mol
Physiol 2007, 293:L525-1.534.

Marmai C, Sutherland RE, Kim KK, Dolganov GM, Fang X, Kim SS, Jiang S,
Golden JA, Hoopes CW, Matthay MA, Chapman HA, Wolters PJ: Alveolar
epithelial cells express mesenchymal proteins in patients with idiopathic
pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2011, 301:L71-L78.
Quaggin SE, Kapus A: Scar wars: mapping the fate of epithelial-
mesenchymal-myofibroblast transition. Kidney Int 2011, 80:41-50.



O'Connor and Gomez Clinical and Translational Medicine 2014, 3:23
http://www.clintransmed.com/content/3/1/23

65. Rastaldi MP, Ferrario F, Giardino L, Dell'Antonio G, Grillo C, Grillo P, Strutz F,
Muller GA, Colasanti G, D'Amico G: Epithelial-mesenchymal transition
of tubular epithelial cells in human renal biopsies. Kidney Int 2002,
62:137-146.

66. Flier SN, Tanjore H, Kokkotou EG, Sugimoto H, Zeisberg M, Kalluri R:
Identification of epithelial to mesenchymal transition as a novel source
of fibroblasts in intestinal fibrosis. J Bio/ Chem 2010, 285:20202-20212.

67. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G:
The myofibroblast: one function, multiple origins. Am J Pathol 2007,
170:1807-1816.

68. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG: Evidence that
fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest
2002, 110:341-350.

69. Kim KK, Wei Y, Szekeres C, Kugler MC, Wolters PJ, Hill ML, Frank JA,
Brumwell AN, Wheeler SE, Kreidberg JA, Chapman HA: Epithelial cell
alpha3betal integrin links beta-catenin and Smad signaling to promote
myofibroblast formation and pulmonary fibrosis. J Clin Invest 2009,
119:213-224.

70. Tanjore H, Xu XC, Polosukhin W, Degryse AL, Li B, Han W, Sherrill TP, Plieth
D, Neilson EG, Blackwell TS, Lawson WE: Contribution of epithelial-derived
fibroblasts to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med
2009, 180:657-665.

71. Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H, Kalluri R:
Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to
mesenchymal transition. J Bio/ Chem 2007, 282:23337-23347.

72. LeBleu VS, Taduri G, O'Connell J, Teng Y, Cooke VG, Woda C, Sugimoto H,
Kalluri R: Origin and function of myofibroblasts in kidney fibrosis.

Nat Med 2013, 19:1047-1053.

73. Zeisberg M, Duffield JS: Resolved: EMT produces fibroblasts in the kidney.
J Am Soc Nephrol 2010, 21:1247-1253.

74. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV,
Valerius MT, McMahon AP, Duffield JS: Fate tracing reveals the pericyte
and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Path
2010, 176:85-97.

75.  Koesters R, Kaissling B, Lehir M, Picard N, Theilig F, Gebhardt R, Glick AB,
Hahnel B, Hosser H, Grone HJ, Kriz W: Tubular overexpression of
transforming growth factor-betal induces autophagy and fibrosis but
not mesenchymal transition of renal epithelial cells. Am J Path 2010,
177:632-643.

76. Taura K, Miura K, Iwaisako K, Osterreicher CH, Kodama Y, Penz-Osterreicher
M, Brenner DA: Hepatocytes do not undergo epithelial-mesenchymal
transition in liver fibrosis in mice. Hepatology 2010, 51:1027-1036.

77. Scholten D, Osterreicher CH, Scholten A, lwaisako K, Gu G, Brenner DA,
Kisseleva T: Genetic labeling does not detect epithelial-to-mesenchymal
transition of cholangiocytes in liver fibrosis in mice. Gastroenterology
2010, 139:987-998.

78. Lo H-W, Hsu S-C, Xia W, Cao X, Shih J-Y, Wei Y, Abbruzzese JL, Hortobagyi
GN, Hung M-C: Epidermal growth factor receptor cooperates with signal
transducer and activator of transcription 3 to induce epithelial-
mesenchymal transition in cancer cells via up-regulation of TWIST gene
expression. Cancer Res 2007, 67:9066-9076.

79.  Lu ZM, Ghosh S, Wang ZY, Hunter T: Downregulation of caveolin-1
function by EGF leads to the loss of E-cadherin, increased transcriptional
activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell
2003, 4:499-515.

80. Elliott BE, Hung WL, Boag AH, Tuck AB: The role of hepatocyte growth
factor (scatter factor) in epithelial-mesenchymal transition and breast
cancer. Can J Physiol Pharm 2002, 80:91-102.

81. Grotegut S, von Schweinitz D, Christofori G, Lehembre F: Hepatocyte
growth factor induces cell scattering through MAPK/Egr-1-mediated
upregulation of Snail. EMBO J 2006, 25:3534-3545.

82. Valles AM, Boyer B, Badet J, Tucker GC, Barritault D, Thiery JP: Acidic
Fibroblast growth-factor is a modulator of epithelial plasticity in a rat
bladder-carcinoma cell-line. Proc Natl Acad Sci U S A 1990,

87:1124-1128.

83. Ciruna B, Rossant J: FGF signaling regulates mesoderm cell fate
specification and morphogenetic movement at the primitive streak.
Dev Cell 2001, 1:37-49.

84. Miettinen PJ, Ebner R, Lopez AR, Derynck R: TGF-beta induced
transdifferentiation of mammary epithelial cells to mesenchymal cells -
involvement of type-| receptors. J Cell Biol 1994, 127:2021-2036.

85.

86.

87.

88.

89.

90.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

Page 10 of 13

Xie L, Law BK, Aakre ME, Edgerton M, Shyr Y, Bhowmick NA, Moses HL:
Transforming growth factor beta-regulated gene expression in a
mouse mammary gland epithelial cell line. Breast Cancer Res 2003,
5:R187-R198.

Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U: Notch signaling
mediates hypoxia-induced tumor cell migration and invasion. Proc Nat/
Acad Sci U S A 2008, 105:6392-6397.

Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B,
Saito Y, Johnson RS, Kretzler M, Cohen CD, Eckardt K-U, Iwano M, Haase VH:
Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of
epithelial-to-mesenchymal transition. J Clin Invest 2007, 117:3810-3820.
Espinosa Neira R, Perez Salazar E: Native type IV collagen induces an
epithelial to mesenchymal transition-like process in mammary epithelial
cells MCF10A. Int J Biochem Cell B 2012, 44:2194-2203.

Zeisberg M, Bonner G, Maeshima Y, Colorado P, Muller GA, Strutz F,

Kalluri R: Renal fibrosis: collagen composition and assembly regulates
epithelial-mesenchymal transdifferentiation. Am J Path 2001,
159:1313-1321.

Klass BR, Grobbelaar AO, Rolfe KJ: Transforming growth factor beta 1
signalling, wound healing and repair: a multifunctional cytokine with
clinical implications for wound repair, a delicate balance. Postgrad Med J
2009, 85:9-14.

Levine JH, Moses HL, Gold LI, Nanney LB: Spatial and temporal patterns of
immunoreactive transforming growth factor-beta-1, beta-2, beta-3
during excisional wound repair. Am J Path 1993, 143:368-380.

Ask K, Bonniaud P, Maass K, Eickelberg O, Margetts PJ, Warburton D,
Groffen J, Gauldie J, Kolb M: Progressive pulmonary fibrosis is
mediated by TGF-beta isoform 1 but not TGF-beta 3. Int J Biochem
Cell B 2008, 40:484-495.

Bottinger EP: TGF-beta in renal injury and disease. Semin Nephrol 2007,
27:309-320.

Gorsch SM, Memoli VA, Stukel TA, Gold LI, Arrick BA: Immunohistochemical
staining for transforming growth factor-beta-1 associates with disease
progression in human breast cancer. Cancer Res 1992, 52:6949-6952.

Oft M, Heider KH, Beug H: TGFbeta signaling is necessary for carcinoma
cell invasiveness and metastasis. Curr Biol 1998, 8:1243-1252.

Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM,
Borok Z: Induction of epithelial-mesenchymal transition in alveolar
epithelial cells by transforming growth factor-betal: potential role in
idiopathic pulmonary fibrosis. Am J Pathol 2005, 166:1321-1332.

Zhou B, Buckley ST, Patel V, Liu Y, Luo J, Krishnaveni MS, lvan M, DeMaio L,
Kim KJ, Ehrhardt C, Crandall ED, Borok Z: Troglitazone attenuates TGF-
betal-induced EMT in alveolar epithelial cells via a PPARgamma-
independent mechanism. PLoS One 2012, 7:e38827.

Elberg G, Chen L, Elberg D, Chan MD, Logan CJ, Turman MA: MKL1
mediates TGF-betal-induced alpha-smooth muscle actin expression
in human renal epithelial cells. Am J Physiol Renal Physiol 2008,
294:F1116-F1128.

Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS: Matrix rigidity
regulates a switch between TGF-beta 1-induced apoptosis and
epithelial-mesenchymal transition. Mol Biol Cell 2012, 23:781-791.
Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R:
BMP-7 counteracts TGF-betal-induced epithelial-to-mesenchymal transition
and reverses chronic renal injury. Nat Med 2003, 9:964-968.

Masszi A, Fan L, Rosivall L, McCulloch CA, Rotstein OD, Mucsi |, Kapus A:
Integrity of cell-cell contacts is a critical regulator of TGF-beta 1-induced
epithelial-to-myofibroblast transition: role for beta-catenin. Am J Path
2004, 165:1955-1967.

Gomez EW, Chen QK, Gjorevski N, Nelson CM: Tissue geometry patterns
epithelial-mesenchymal transition via intercellular mechanotransduction.
J Cell Biochem 2010, 110:44-51.

Nelson CM, Khauv D, Bissell MJ, Radisky DC: Change in cell shape is
required for matrix metalloproteinase-induced epithelial-mesenchymal
transition of mammary epithelial cells. J Cell Biochem 2008,

105:25-33.

O'Connor JW, Gomez EW: Cell adhesion and shape regulate TGF-betal-
induced epithelial-myofibroblast transition via MRTF-A signalling.

PLoS One 2013, 8:83188.

Morita T, Mayanagi T, Sobue K: Dual roles of myocardin-related transcription
factors in epithelial mesenchymal transition via slug induction and actin
remodeling. J Cell Biol 2007, 179:1027-1042.



O'Connor and Gomez Clinical and Translational Medicine 2014, 3:23
http://www.clintransmed.com/content/3/1/23

106. Shi YG, Massague J: Mechanisms of TGF-beta signaling from cell
membrane to the nucleus. Cell 2003, 113:685-700.

107. Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E, Bottinger EP:
Genetic programs of epithelial cell plasticity directed by transforming
growth factor-beta. Proc Nat/ Acad Sci U S A 2001, 98:6686-6691.

108. Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL:
Phosphatidylinositol 3-kinase function is required for transforming
growth factor beta-mediated epithelial to mesenchymal transition and
cell migration. J Biol Chem 2000, 275:36803-36810.

109. Cicchini C, Laudadio |, Citarella F, Corazzari M, Steindler C, Conigliaro A,
Fantoni A, Amicone L, Tripodi M: TGFbeta-induced EMT requires focal
adhesion kinase (FAK) signaling. Exp Cell Res 2008, 314:143-152.

110. Bhowmick NA, Zent R, Ghiassi M, McDonnell M, Moses HL: Integrin beta 1
signaling is necessary for transforming growth factor-beta activation of
p38MAPK and epithelial plasticity. J Bio/ Chem 2001,

276:46707-46713.

111, Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL: Activation of the
Erk pathway is required for TGF-betal-induced EMT in vitro. Neoplasia
2004, 6:603-610.

112. Porsch H, Bernert B, Mehic M, Theocharis AD, Heldin CH, Heldin P: Efficient
TGFbeta-induced epithelial-mesenchymal transition depends on
hyaluronan synthase HAS2. Oncogene 2013, 32:4355-4365.

113. Zhang H, Liu L, Wang Y, Zhao G, Xie R, Liu C, Xiao X, Wu K, Nie Y, Fan D:
KLF8 involves in TGF-beta-induced EMT and promotes invasion
and migration in gastric cancer cells. J Cancer Res Clin Oncol 2013,
139:1033-1042.

114. Ding X, Park SI, McCauley LK, Wang CY: Signaling between transforming
growth factor beta (TGF-beta) and transcription factor SNAI2 represses
expression of microRNA miR-203 to promote epithelial-mesenchymal
transition and tumor metastasis. J Biol Chem 2013, 288:10241-10253.

115. Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME,
Arteaga CL, Moses HL: Transforming growth factor-betal mediates
epithelial to mesenchymal transdifferentiation through a RhoA-
dependent mechanism. Mol Biol Cell 2001, 12:27-36.

116. Bandyopadhyay A, Raghavan S: Defining the role of integrin alphavbeta6
in cancer. Curr Drug Targets 2009, 10:645-652.

117. Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF,
Kaminski N, Garat C, Matthay MA, Rifkin DB, Sheppard D: The integrin alpha
v beta 6 binds and activates latent TGF beta 1: a mechanism for
regulating pulmonary inflammation and fibrosis. Cell 1999,

96:319-328.

118. Giacomini MM, Travis MA, Kudo M, Sheppard D: Epithelial cells utilize
cortical actin/myosin to activate latent TGF-beta through integrin alpha
(v)beta(6)-dependent physical force. Exp Cell Res 2012, 318:716-722.

119. Wipff PJ, Rifkin DB, Meister JJ, Hinz B: Myofibroblast contraction
activates latent TGF-betal from the extracellular matrix. J Cell Biol
2007, 179:1311-1323.

120. Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS: Cells lying on a
bed of microneedles: an approach to isolate mechanical force. Proc Natl
Acad Sci U S A 2003, 100:1484-1489.

121. Thoelking G, Reiss B, Wegener J, Oberleithner H, Pavenstaedt H, Riethmuller C:
Nanotopography follows force in TGF-betal stimulated epithelium.
Nanotechnology 2010, 21:265102.

122. Buckley ST, Medina C, Davies AM, Ehrhardt C: Cytoskeletal re-arrangement
in TGF-beta1-induced alveolar epithelial-mesenchymal transition studied
by atomic force microscopy and high-content analysis. Nanomedicine
2012, 8:355-364.

123. Schneider D, Baronsky T, Pietuch A, Rother J, Oelkers M, Fichtner D,
Wedlich D, Janshoff A: Tension monitoring during epithelial-to-
mesenchymal transition links the switch of phenotype to expression of
moesin and cadherins in NMuMG cells. PLoS One 2013, 8:280068.

124. Arnoux V, Come C, Kusewitt D, Hudson L, Savagner P: Cutaneous wound
reepithelialization: A partial and reversible EMT. In Rise and fall of
epithelial phenotype: Concepts of epithelial-mesenchymal transition. Edited by
Savagner P. Berlin: Springer; 2005:111-134.

125. Wagh AA, Roan E, Chapman KE, Desai LP, Rendon DA, Eckstein EC, Waters CM:
Localized elasticity measured in epithelial cells migrating at a wound edge
using atomic force microscopy. Am J Physiol Lung Cell Mol Physiol 2008,
295:154-160.

126. Watanabe T, Takahashi Y: Tissue morphogenesis coupled with cell shape
changes. Curr Opin Genet Devel 2010, 20:443-447.

127

129.

130.

132.

134.

135.

137.

139.

140.

141.

142.

143.

148.

Page 11 of 13

. Locascio A, Nieto MA: Cell movements during vertebrate development:
integrated tissue behaviour versus individual cell migration. Curr Opin
Genet Devel 2001, 11:464-469.

. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE: Geometric

control of cell life and death. Science 1997, 276:1425-1428.

Folkman J, Moscona A: Role of cell shape in growth control. Nature 1978,

273:345-349.

Watt FM, Jordan PW, Oneill CH: Cell-shape controls terminal differentiation

of human epidermal-keratinocytes. Proc Natl Acad Sci U S A 1988,

85:5576-5580.

. Roskelley CD, Desprez PY, Bissell MJ: Extracellular matrix-dependent tissue-

specific gene expression in mammary epithelial cells requires both

physical and biochemical signal transduction. Proc Natl Acad Sci U S A

1994, 91:12378-12382.

McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS: Cell shape,

cytoskeletal tension, and RhoA regulate stem cell lineage commitment.

Dev Cell 2004, 6:483-495.

. Connelly JT, Gautrot JE, Trappmann B, Tan DW, Donati G, Huck WT, Watt FM:

Actin and serum response factor transduce physical cues from the

microenvironment to regulate epidermal stem cell fate decisions.

Nat Cell Biol 2010, 12:711-718.

Paluch E, Heisenberg C-P: Biology and physics of cell shape changes in

development. Curr Biol 2009, 19:R790-R799.

Lecuit T, Lenne PF: Cell surface mechanics and the control of cell

shape, tissue patterns and morphogenesis. Nat Rev Mol Cell Biol 2007,

8:633-644.

. Hautmann MB, Adam PJ, Owens GK: Similarities and differences in

smooth muscle alpha-actin induction by TGF-beta in smooth muscle

versus non-smooth muscle cells. Arterioscler Thromb Vasc Biol 1999,

19:2049-2058.

Selvaraj A, Prywes R: Expression profiling of serum inducible genes

identifies a subset of SRF target genes that are MKL dependent. BMC

Mol Biol 2004, 5:13.

. Fan L, Sebe A, Peterfi Z, Masszi A, Thirone AC, Rotstein OD, Nakano H,

McCulloch CA, Szaszi K, Mucsi |, Kapus A: Cell contact-dependent

regulation of epithelial-myofibroblast transition via the rho-rho kinase-

phospho-myosin pathway. Mol Biol Cell 2007, 18:1083-1097.

Small EM, Thatcher JE, Sutherland LB, Kinoshita H, Gerard RD, Richardson JA,

Dimaio JM, Sadek H, Kuwahara K, Olson EN: Myocardin-related

transcription factor-a controls myofibroblast activation and fibrosis in

response to myocardial infarction. Circ Res 2010, 107:294-304.

Medjkane S, Perez-Sanchez C, Gaggioli C, Sahai E, Treisman R: Myocardin-

related transcription factors and SRF are required for cytoskeletal

dynamics and experimental metastasis. Nat Cell Biol 2009,

11:257-268.

Miralles F, Posern G, Zaromytidou Al, Treisman R: Actin dynamics control

SRF activity by regulation of its coactivator MAL. Cell 2003,

113:329-342.

Engler AJ, Sen S, Sweeney HL, Discher DE: Matrix elasticity directs stem

cell lineage specification. Cell 2006, 126:677-689.

Georges PC, Hui JJ, Gombos Z, McCormick ME, Wang AY, Uemura M, Mick

R, Janmey PA, Furth EE, Wells RG: Increased stiffness of the rat liver

precedes matrix deposition: implications for fibrosis. Am J Physiol

Gastrointest Liver Physiol 2007, 293:G1147-G1154.

. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K,
Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM: Matrix
crosslinking forces tumor progression by enhancing integrin signaling.
Cell 2009, 139:891-906.

. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg Gl, Gefen A, Reinhart-
King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM:
Tensional homeostasis and the malignant phenotype. Cancer Cell 2005,
8:241-254.

. Hinz B: The myofibroblast: paradigm for a mechanically active cell.

J Biomech 2010, 43:146-155.

. Brown AC, Fiore VF, Sulchek TA, Barker TH: Physical and chemical

microenvironmental cues orthogonally control the degree and duration

of fibrosis-associated epithelial-to-mesenchymal transitions. J Pathol

2013, 229:25-35.

Hinz B: Tissue stiffness, latent TGF-B1 activation, and mechanical signal

transduction: implications for the pathogenesis and treatment of fibrosis.

Curr Rheumatol Rep 2009, 11:120-126.



O'Connor and Gomez Clinical and Translational Medicine 2014, 3:23
http://www.clintransmed.com/content/3/1/23

149. Levental |, Levental KR, Klein EA, Assoian R, Miller RT, Wells RG, Janmey PA:
A simple indentation device for measuring micrometer-scale tissue
stiffness. J Phys Condens Matter 2010, 22:194120.

150. Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, Tschumperlin DJ:
Feedback amplification of fibrosis through matrix stiffening and COX-2
suppression. J Cell Biol 2010, 190:693-706.

151. Wells RG: Tissue mechanics and fibrosis. Biochimica et Biophysica Acta
2013, 1832:884-890.

152. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White
JG, Keely PJ: Collagen density promotes mammary tumor initiation and
progression. BMC Med 2008, 6:11.

153. Lopez JI, Kang |, You WK, McDonald DM, Weaver VM: In situ force mapping
of mammary gland transformation. Integr Biol (Camb) 2011, 3:910-921.

154. Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ: Mammographic
densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev 1998,
7:1133-1144.

155. Yaffe MJ, Boyd NF, Byng JW, Jong RA, Fishell E, Lockwood GA, Little LE,
Tritchler DL: Breast cancer risk and measured mammographic density.
Eur J Cancer Prev 1998, 7(Suppl 1):547-S55.

156. Markowski MC, Brown AC, Barker TH: Directing epithelial to mesenchymal
transition through engineered microenvironments displaying orthogonal
adhesive and mechanical cues. J Biomed Mater Res A 2012,
100:2119-2127.

157. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel
R, Kirchner T: Variable beta-catenin expression in colorectal cancers
indicates tumor progression driven by the tumor environment. Proc Nat/
Acad Sci U S A 2001, 98:10356-10361.

158. Jung A, Schrauder M, Oswald U, Knoll C, Sellberg P, Palmqvist R, Niedobitek
G, Brabletz T, Kirchner T: The invasion front of human colorectal
adenocarcinomas shows co-localization of nuclear beta-catenin, cyclin
D1, and p16INK4A and is a region of low proliferation. Am J Path 2001,
159:1613-1617.

159. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS:
Emergent patterns of growth controlled by multicellular form and
mechanics. Proc Natl Acad Sci U S A 2005, 102:11594-11599.

160. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A: Targeted disruption of
TGF-beta1/Smad3 signaling protects against renal tubulointerstitial
fibrosis induced by unilateral ureteral obstruction. J Clin Invest 2003,
112:1486-1494.

161. Heise RL, Stober V, Cheluvaraju C, Hollingsworth JW, Garantziotis S:
Mechanical stretch induces epithelial-mesenchymal transition in alveolar
epithelia via hyaluronan activation of innate immunity. J Biol Chem 2011,
286:17435-17444.

162. Chan SW, Lim CJ, Guo K, Ng CP, Lee |, Hunziker W, Zeng Q, Hong W: A role
for TAZ in migration, invasion, and tumorigenesis of breast cancer cells.
Cancer Res 2008, 68:2592-2598.

163. Mitani A, Nagase T, Fukuchi K, Aburatani H, Makita R, Kurihara H:
Transcriptional coactivator with PDZ-binding motif is essential for normal
alveolarization in mice. Am J Respir Crit Care Med 2009, 180:326-338.

164. Harvey KF, Zhang X, Thomas DM: The Hippo pathway and human cancer.
Nat Rev Cancer 2013, 13:246-257.

165. Johnson R, Halder G: The two faces of Hippo: targeting the Hippo
pathway for regenerative medicine and cancer treatment. Nat Rev Drug
Discov 2014, 13:63-79.

166. Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J,
Yaffe MB, Zandstra PW, Wrana JL: TAZ controls Smad nucleocytoplasmic
shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell
Biol 2008, 10:837-848.

167. Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen
BG, Rossant J, Wrana JL: The Crumbs complex couples cell density sensing
to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell
2010, 19:831-844.

168. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato
F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S: Role of YAP/
TAZ in mechanotransduction. Nature 2011, 474:179-183.

169. Halder G, Dupont S, Piccolo S: Transduction of mechanical and
cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 2012, 13:591-600.

170. Sun Y, Yong KM, Villa-Diaz LG, Zhang X, Chen W, Philson R, Weng S, Xu H,
Krebsbach PH, Fu J: Hippo/YAP-mediated rigidity-dependent motor
neuron differentiation of human pluripotent stem cells. Nat Mater 2014,
13:599-604.

171.

172.

173.

175.

176.

178.

179.

180.

187.

188.

189.

Page 12 of 13

Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, Dupont
S, Piccolo S: A mechanical checkpoint controls multicellular growth
through YAP/TAZ regulation by actin-processing factors. Cell 2013,
154:1047-1059.

Speight P, Nakano H, Kelley TJ, Hinz B, Kapus A: Differential topical
susceptibility to TGFbeta in intact and injured regions of the epithelium:
key role in myofibroblast transition. Mo/ Biol Cell 2013, 24:3326-3336.

Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, Zhao S, Xiong Y, Guan KL:
TAZ promotes cell proliferation and epithelial-mesenchymal transition
and is inhibited by the hippo pathway. Mol Cell Biol 2008,

28:2426-2436.

. Mana-Capelli S, Paramasivam M, Dutta S, McCollum D: Angiomotins link

F-actin architecture to Hippo pathway signaling. Mol Biol Cell 2014,
25:1676-1685.

Chua KN, Ma J, Thiery JP: Targeted therapies in control of EMT in
carcinoma and fibrosis. Drug Discov Today 2008, 4:261-267.

Connolly EC, Freimuth J, Akhurst RJ: Complexities of TGF-beta targeted
cancer therapy. Int J Biol Sci 2012, 8:964-978.

. Akhurst RJ, Hata A: Targeting the TGFbeta signalling pathway in disease.

Nat Rev Drug Discov 2012, 11:790-811.

Biswas S, Guix M, Rinehart C, Dugger TC, Chytil A, Moses HL, Freeman ML,
Arteaga CL: Inhibition of TGF-beta with neutralizing antibodies prevents
radiation-induced acceleration of metastatic cancer progression. J Clin
Invest 2007, 117:1305-1313.

Biswas S, Nyman JS, Alvarez J, Chakrabarti A, Ayres A, Sterling J, Edwards J,
Rana T, Johnson R, Perrien DS, Lonning S, Shyr Y, Matrisian LM, Mundy GR:
Anti-transforming growth factor § antibody treatment rescues bone loss
and prevents breast cancer metastasis to bone. PLoS One 2011,

6:227090.

Nam JS, Terabe M, Mamura M, Kang MJ, Chae H, Stuelten C, Kohn E, Tang B,
Sabzevari H, Anver MR, Lawrence S, Danielpour D, Lonning S, Berzofsky JA,
Wakefield LM: An anti-transforming growth factor beta antibody
suppresses metastasis via cooperative effects on multiple cell
compartments. Cancer Res 2008, 68:3835-3843.

. Ganapathy V, Ge R, Grazioli A, Xie W, Banach-Petrosky W, Kang Y, Lonning S,

McPherson J, Yingling JM, Biswas S, Mundy GR, Reiss M: Targeting the
transforming growth factor-beta pathway inhibits human basal-like
breast cancer metastasis. Mol Cancer 2010, 9:122.

. Bouquet F, Pal A, Pilones KA, Demaria S, Hann B, Akhurst RJ, Babb JS,

Lonning SM, DeWyngaert JK, Formenti SC, Barcellos-Hoff MH: TGFbeta1l
inhibition increases the radiosensitivity of breast cancer cells in vitro and
promotes tumor control by radiation in vivo. Clin Cancer Res 2011,
17:6754-6765.

. Crunkhorn S: Deal watch: Biogen acquires Stromedix to pursue novel

fibrosis therapy. Nat Rev Drug Discov 2012, 11:260.

. Katsumoto TR, Violette SM, Sheppard D: Blocking TGFbeta via inhibition of

the alphavbeta6 integrin: a possible therapy for systemic sclerosis
interstitial lung disease. Int J Rheumatol 2011, 2011:208219.

. Horan GS, Wood S, Ona V, Li DJ, Lukashev ME, Weinreb PH, Simon KJ, Hahm

K, Allaire NE, Rinaldi NJ, Goyal J, Feghali-Bostwick CA, Matteson EL, O'Hara C,
Lafyatis R, Davis GS, Huang X, Sheppard D, Violette SM: Partial inhibition of
integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating
inflammation. Am J Respir Crit Care Med 2008, 177:56-65.

. Puthawala K, Hadjiangelis N, Jacoby SC, Bayongan E, Zhao Z, Yang Z, Devitt

ML, Horan GS, Weinreb PH, Lukashev ME, Violette SM, Grant KS, Colarossi C,
Formenti SC, Munger JS: Inhibition of integrin alpha(v)beta6, an activator
of latent transforming growth factor-beta, prevents radiation-induced
lung fibrosis. Am J Respir Crit Care Med 2008, 177:82-90.

Van Aarsen LA, Leone DR, Ho S, Dolinski BM, McCoon PE, LePage DJ, Kelly R,
Heaney G, Rayhorn P, Reid C, Simon KJ, Horan GS, Tao N, Gardner HA, Skelly
MM, Gown AM, Thomas GJ, Weinreb PH, Fawell SE, Violette SM: Antibody-
mediated blockade of integrin alpha v beta 6 inhibits tumor progression
in vivo by a transforming growth factor-beta-regulated mechanism.
Cancer Res 2008, 68:561-570.

Cheng HC, Ho TC, Chen SL, Lai HY, Hong KF, Tsao YP: Troglitazone
suppresses transforming growth factor beta-mediated fibrogenesis in
retinal pigment epithelial cells. Mol Vis 2008, 14:95-104.

Kawai T, Masaki T, Doi S, Arakawa T, Yokoyama Y, Doi T, Kohno N,
Yorioka N: PPAR-gamma agonist attenuates renal interstitial fibrosis
and inflammation through reduction of TGF-beta. Lab Invest 2009,
89:47-58.



O'Connor and Gomez Clinical and Translational Medicine 2014, 3:23
http://www.clintransmed.com/content/3/1/23

190. Jeon K, Kulkarni A, Woeller CF, Phipps RP, Sime PJ, Hindman HB, Huxlin KR:
Inhibitory effects of PPARgamma ligands on TGF-betal-induced corneal
myofibroblast transformation. Am J Path 2014, 184:1429-1445.

191. Evelyn CR, Wade SM, Wang Q, Wu M, Iniguez-Lluhi JA, Merajver SD,
Neubig RR: CCG-1423: a small-molecule inhibitor of RhoA transcriptional
signaling. Mol Cancer Ther 2007, 6:2249-2260.

192. Evelyn CR, Bell JL, Ryu JG, Wade SM, Kocab A, Harzdorf NL, Showalter HD,
Neubig RR, Larsen SD: Design, synthesis and prostate cancer cell-based
studies of analogs of the Rho/MKL1 transcriptional pathway inhibitor,
CCG-1423. Bioorg Med Chem Lett 2010, 20:665-672.

193. Hayashi K, Watanabe B, Nakagawa Y, Minami S, Morita T: RPEL proteins are
the molecular targets for CCG-1423, an inhibitor of Rho signaling. PLoS
One 2014, 9:289016.

194. Johnson LA, Rodansky ES, Haak AJ, Larsen SD, Neubig RR, Higgins PDR:
Novel Rho/MRTF/SRF inhibitors block matrix-stiffness and TGF-beta-
induced fibrogenesis in human colonic myofibroblasts. Inflamm Bowel Dis
2014, 20:154-165.

195. Velasquez LS, Sutherland LB, Liu Z, Grinnell F, Kamm KE, Schneider JW,
Olson EN, Small EM: Activation of MRTF-A-dependent gene expression
with a small molecule promotes myofibroblast differentiation and
wound healing. Proc Natl Acad Sci U S A 2013, 110:16850-16855.

196. Zeisberg M, Bottiglio C, Kumar N, Maeshima Y, Strutz F, Muller GA, Kalluri R:
Bone morphogenic protein-7 inhibits progression of chronic renal
fibrosis associated with two genetic mouse models. Am J Physiol Renal
Physiol 2003, 285:F1060-F1067.

197. Chua KN, Sim WJ, Racine V, Lee SY, Goh BC, Thiery JP: A cell-based small
molecule screening method for identifying inhibitors of epithelial-
mesenchymal transition in carcinoma. PLoS One 2012, 7:€33183.

doi:10.1186/2001-1326-3-23

Cite this article as: O'Connor and Gomez: Biomechanics of TGFf3-
induced epithelial-mesenchymal transition: implications for fibrosis and
cancer. Clinical and Translational Medicine 2014 3:23.

Page 13 of 13

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Abstract
	Introduction
	Review
	Myofibroblasts in health and disease
	Differentiation of myofibroblasts from fibroblasts
	Epithelial cells mediate fibrogenesis
	Biochemical induction of EMT by TGFβ
	Mechanical activation of TGFβ
	EMT alters the mechanical properties of cells
	Increased cell spreading and elongation promote EMT
	Matrix rigidity controls EMT
	Tissue geometry patterns EMT
	Cyclic stretch promotes EMT
	Mechanosensitive signaling cascades in EMT
	Myocardin related transcription factors
	Hippo pathway

	Targeting TGFβ-induced EMT

	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

