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Abstract The present study concentrates on the inter-

pretation of Vertical Electrical Soundings (VES) and well

logs to understand the geometry and the functioning of the

Ghardimaou multilayered aquifer, a potential target for

water supply in the Mejerda basin (Tunisia). The analysis

of isobath and isopach maps established in this study,

shows a tectonic influence on the reservoirs structure; the

Villafranchian folding and the NE–SW, and E–W normal

faulting in the recent Quaternary created an aquifer system

compartmentalized by raised and tilted blocks. Geoelec-

trical cross sections reveal that this structure influences the

thickness of permeable formations and the groundwater

circulation. These results will be useful for rationalizing

the future hydrogeological research that will be undertaken

in the Mejerda basin.

Keywords Vertical electrical sounding � Well logging �
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Introduction

The determination of the aquifer geometry is a major step

for the understanding of the hydrogeological systems

(Zouhri 2001; Cudennec et al. 2007; Rapti-Caputo et al.

2009; Guellala et al. 2011a, b, c). The defined structures

may control the relationship between the hydrogeological

units and the groundwater flow.

In Tunisia, the Mejerda basin is one of the most

important agricultural sectors (Fig. 1). It has strong need

for irrigation water. During rainy periods, Oued Mejerda

River and its tributaries are the main sources to irrigate the

vegetation. However, the periodical occurrence of several

years of drought renders necessary the exploitation of the

underground water reserves to fulfil the water need.

The Ghardimaou area (Fig. 1) occupies the Western part

of the Mejerda basin. Its surface is about 300 km2 and its

population is estimated at 90,000 inhabitants.

The Ghardimaou area is characterized by moderate

temperatures which oscillate between 8 and 17 �C in

winter and between 25 and 30 �C in summer. The annual

rainfall is on average 400 mm/year and the evaporation is

about 1,300 mm/year.

The Ghardimaou aquifer system appears as a potential

resource able to provide interesting flows. However, former

geological and hydrogeological studies in this region were

not sufficient to propose zones and strategies for the

exploitation of this resource. Tectonic and sedimentary

phenomena and their impact on the aquifer functioning had

not been elucidated. The aim of this study is, therefore, to

determine the deposit structures to improve the under-

standing of the aquifer system.

The electrical resistivity method, usually applied in the

aquifers’ prospection (Keller and Frischknecht 1982;

Meyer de Stadelhofen 1991; Majumdar et al. 2000;
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Shaaban 2001; Koussoubé et al. 2003; Zouhri et al. 2004;

Asfahani 2006; Gouasmia et al. 2006; Guellala et al.

2009a, b, 2010, 2011c; Tizro et al. 2010; Pertu et al. 2011)

appears as an appropriate method able to guarantee a good

knowledge of the Ghardimaou aquifer system.

Geolgical setting

The Ghardimaou plain corresponds to the western part of

the Mejerda molassic basin. Its margins are represented by

the Kroumirie Mountains with thrust nappes in the north

(Rouvier 1977; Ould Begga et al. 2006; Riahi et al. 2010)

and the Mellegue Mountains in the south (Fig. 1).

The Mejerda basin is filled with sedimentary rocks with

ages ranging from Mio-Pliocene to Quaternary. The Qua-

ternary sediments are made of clays, gravels and sands.

The Miocene–Pliocene sediments consist of clays con-

glomerates, sandstones and marls (Gottis and Sainfeld

1955; Biely 1972).

In the Ghardimaou plain, the Quaternary deposits show

a remarkable thickening from the borders to the centre and

from the east to the west. Variable substratum underlies

these deposits: The Hairech series dated Triassic (Bolze

1954; Rouvier 1977; Perthuisot 1978) or even Permian–

Triassic (Burollet 1973; Alouani and Tlig 1988; Alouani

et al. 1991), the Jurassic and the Miocene–Pliocene

(Fig. 2).

Chouichia fault, Sdara fault and Brahim El Arbi fault,

which are the dominant tectonic features in the plain

(Fig. 1) affect this substratum and controlled the Quater-

nary sedimentation (Gottis and Sainfeld 1955; Parsons

Company 1967; Rouvier 1977; Ould Begga 2003; Guellala

et al. 2008).

Seismological studies show the continuous activity of

these faults (Hfaiedh et al. 1985; Ben Ayed 1986; Gued-

diche et al. 1992; Dlala 1995; Krima 2001).

Hydrogeological setting

The Ghardimaou plain contains a multilayered aquifer

system made up of Quaternary permeable deposits, which

is recharged by the Oued Mejerda River and its tributaries.

Former hydrogeological studies (Parsons Company

1967; Andrieux and Talbot 1972; Guellala et al. 2005a, b)

distinguished three major aquifers separated by clayey

layers:

• Shallow aquifer: essentially constituted of sands, grav-

els and cobbles. This aquifer, which is found at about

10–20 m depth, over all the plain. Its thickness varies

Fig. 1 Study area setting
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between 3 and 45 m showing the higher values in the

western and central zones of the aquifer.

• Main aquifer: it is located at 55 m depth on average and

is made up of gravels, sands, cobbles, clayey gravels

and thin clayey beds. The thickness of this aquifer

decreases toward the plain’s borders. It reaches 100 m

thick between Oued Mejerda and Oued Rarai rivers.

• Deep aquifer: this aquifer is composed of sands and

gravels cemented by clays which makes them have a

lower permeability. It is considered as a lenticular and

discontinuous aquifer. It disappears toward the northern

and the eastern parts of the plain. In the center part of

the plain, its upper surface is between 210 and 280 m

depth.

In addition to these, another aquifer was identified in the

western part of the plain (Guellala et al. 2005a). It is found

at about 150 m depth, between the main and the deep

aquifer, and its thickness exceeds 50 m.

The piezometric maps elaborated for the shallow and

main aquifers (Guellala 2004) show that the water level

decreases from the west to the east indicating a ground-

water flow in this direction (Fig. 3). Data are insufficient to

establish piezometric maps for the other aquifers.

Data and methods

The present study is based on Vertical Electrical Sounding

(VES) associated to water boreholes (lithological columns

and corresponding wells logs). These data were provided

by the Tunisian ‘‘General Directorate of Water Resources’’

in Tunisia.

Vertical Electrical Sounding data acquisition was per-

formed at 42 locations (Fig. 4). The Schlumberger con-

figuration was used with a maximum electrode spacing of

2,000 m.

An electrical field is imposed on the inland area by a

pair of electrodes (A and B) at varying spacing, expanding

symmetrically from a central point, while measuring the

surface expression of the resulting potential field with an

additional pair of electrodes (M and N) at appropriate much

smaller spacing. Apparent resistivity ‘‘qa’’ is subsequently

computed according to the following equation (Dobrin

1976):

qa ¼
2p

ð1=AMÞ � ð1=BMÞ � ð1=ANÞ þ ð1=BNÞ X
DV

I

Where, I is the current introduced into the earth by A

and B electrodes, DV is the potential difference between M

and N electrodes and AM, BM, AN and BN are distances

between the electrodes.

Apparent resistivity values obtained at each vertical

electrical sounding are represented in the form of curves

qa = f (AB) with logarithmic coordinates.

The determination of initial thicknesses and resistivities

is manually obtained by matching the VES field curves to

the theoretical master curves and auxiliary point charts.

These parameters are subsequently refined using an inverse

technique implemented in WINSEV program (Jenny and

Borreguerro 1993). The result is achieved when a good fit

between the field data and the theoretically computed curve

is obtained.

Interpretation problems, such as equivalence or sup-

pression, show that the same electrical sounding curve

Fig. 2 Geological cross section
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qa = f (AB/2) may be interpreted as fitting different geo-

electrical models. Geological data were needed to constrain

the results and to solve the observed ambiguities, so that

interpretation provides a realistic geological model.

The existing drilled boreholes (Fig. 4) allowed the cal-

ibration of the proximal VES. However, the available

lithological columns are reconstituted from drill cuttings,

which do not guarantee exact information concerning the

position and the composition of the reservoirs’ layers.

Therefore, precise restitution of lithology requires the use

of well logs (Kleh et al. 2002; Hsie et al. 2005).

Well log invented in France by Conrad Schlumberger

and Henri Doll, is a continuous recording of geophysical

parameters along a borehole (Desbrandes 1968). The most

appropriate name of this recording is a wireline geophys-

ical well log, conveniently shortened to well log or log.

Fig. 3 Main aquifer piezometric map

Fig. 4 Location of water wells

and electrical soundings
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Fig. 5 Lithological columns

restitution using well logs. Case

of borehole E
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In this work, the studied physical parameters are the

natural radioactivity and the resistivity, measured by short

(1600) and long (6400) normal sondes. The Short Normal

sonde also called 16-inch Normal, measures the resistivity

of a sphere about 3 ft in diameter. This shallow reading

curve is influenced by the drilling fluid. The long Normal

sonde which is also called 64-inch Normal, measures the

resistivity of a sphere about 10 ft in diameter, making this

device suitable for deep resistivity reading (Desbrandes

1968; Serra 1984; Hearst and Nelson 1985; Rider 1986;

Chapellier 1992; Ellis and Singer 2007).

Contrary to gravels and sands, clays show high natural

radioactivity values: 100–200 API (American Petroleum

Institute units). They are characterized by low resistivity

responses (2–20 Xm). The resistivity of gravels and sands

can vary over several orders of magnitude depending on

their pore-water salinity. Fresh waters tend to be resistive

while saline brines are very conductive (Telford et al.

1976).

The comparison between the restored lithological col-

umn of borehole E (Fig. 5) and the curve of VES 18

(Fig. 6) permitted us to link resistivity and facies. The

shallow and main aquifers which are constituted of coarse

deposits and are characterized by a low-water salinity

(0.93 g/l for the shallow aquifer and 1.28 g/l for the main

aquifer) show high resistivity (q) values, 112 and 84 Xm,

respectively .

The interpretation of the rest of VES according to the

relationship between resitivity and facies obtained from

borehole E and VES 18, provides the necessary data to

elaborate the isobaths and isopachs maps of these aqui-

fers. These maps show the tectonic structures affecting the

shallow and main aquifers of Ghardimaow and their

analysis can provide information about the aquifers

geometry.

The geoelectrical cross sections, integrating both

restored lithological columns and VES interpretation,

clarify the relationship between the different hydrogeo-

logical compartments and help to improve the under-

standing of the aquifer functioning.

Results and discussions

Isobath and isopach maps

The isobath maps of the botton of the shallow aquifer

(Fig. 7a) and the main aquifer (Fig. 7b) reflect the major

deformations, which affect the Quaternary deposits in the

Ghardimaou area.

Fig. 6 Calibration of VES 18

with the borehole E (q is the

layer resistivity in Xm)
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These maps show a succession of east–west structures: a

large basin in the Centre ‘‘D1’’ borded by a raised zone

‘‘R1’’ in the east. Similar features were described at the

Mejerda molassic borders and attributed to the Villafran-

chian compression (Rouvier 1977; Ben Ayed 1986;

Gueddiche1992; Gueddiche et al. 1992; Ould Begga 2003).

This suggests that the structures characterizing the Ghar-

dimaou aquifer system are east–west folds formed during

this phase.

Towards the western extremity of the plain, the basin

‘‘D1’’ evolves to a deep depression ‘‘D2’’ where the

shallow and main aquifers’ bottom reach their maximum

depths, respectively, 51 and 200 m depth. Reactivated in

normal fault, the Sdara fault is responsible for the sedi-

mentation downwarping in the structure ‘‘D2’’. The reac-

tivation as—normal faulting—of Chouichia and Brahim-El

Arbi faults generated, respectively, the horsts ‘‘R2’’ and

‘‘R3’’ limiting the collapsed basin ‘‘D1’’ in the northeast

and in the south. These deformations can be related to the

late Quaternary extension, highlighted at the Mejerda

molassic borders (Rouvier 1977; Ben Ayed 1986; Gued-

diche 1992; Gueddiche et al. 1992; Ould Begga 2003).

Fig. 7 Isobath maps of the shallow (a) and main (b) aquifers
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Therefore, the resulting structural maps of the Ghardi-

maou area (Fig. 7) reveal that in addition to the tectonic

features described on the geological map more important

structures exist in subsurface, which must be taken into

consideration to characterize the hydrogeological system.

The obtained results highlighted the tectonic influence

on the shallow and main aquifer geometry; the Villafran-

chian folding and normal faulting during the late Quater-

nary extension phase compartmentalized the aquifer in the

form of tilted blocks.

The isopach maps of the shallow (Fig. 8a) and main

aquifers (Fig. 8b), compared to the isobath maps show the

same traits. The aquifer thicknesses are higher in the

depressions ‘‘D1’’and ‘‘D2’’ than in the raised zones ‘‘R1’’,

‘‘R2’’ and ‘‘R3’’; the maximum values (45 m thick for the

shallow aquifer and 140 m thick for the main aquifer)

characterize the basin ‘‘D2’’, the deepest structure in the

Ghardimaou plain.

Therefore, the tectonic deformations affecting the Qua-

ternary series control the aquifer depth and thickness.

Fig. 8 Isopach maps of the shallow (a) and main (b) aquifers
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Fig. 9 Geoelectrical cross sections: a oriented E–W and b oriented N–S
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Fig. 10 Gamma ray logs

comparison between the

western, central and eastern

parts of the Ghardimaou plain
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Geoelectrical cross sections

The geoelectrical cross sections represented in Fig. 9a and

b oriented, respectively, E–W and N–S show the influence

of the derived reservoirs geometry on the connection

between the different aquifer blocks.

The geoelectrical cross section (a) shows gradual

decrease in the resistivity values toward the east in both

the shallow and main aquifers. Sedimentary and chemical

phenomena explain this evolution. The water salinity of

shallow and main aquifers increases from the west (Well

A: 0.5 and 0.59 g/l, respectively, for the shallow and the

main aquifers) to the east (Well L: 2.5 and 2.4 g/l,

respectively, for the shallow and the main aquifers) which

agrees with the groundwater flow direction. It is inter-

esting to note that the shallow and main aquifers have

similar water salinity values suggesting a common

recharge source and may be a vertical exchange between

the aquifers.

In addition, the shallow and main aquifers are progres-

sively enriched in clayey sediments toward the east. The

comparison of the Gamma Ray logs corresponding to both

aquifers (Fig. 10) reflects this lateral lithological change. In

well A, only a few intervals show high radioactivity values.

These intervals are more developed in well E, whereas in

well L they are thicker and more frequent.

This evolution is especially clear in the main aquifer.

Besides, the well log comparison shows a notable thick-

ening of the clayey aquicludes which separate the two

aquifer formations.

The reduction of coarse sediments in favor of clayey

sediments toward the east is also observed on the surface.

This evolution is perfectly coherent with the mechanisms

of sedimentation in the plains of flood flow (Claude et al.

1973; Naoui 1995; Ballais et al. 1998; Degoutte 2006).

Therefore, at each Oued Mejerda flood a granulometric

sorting is carried out where the coarse elements are initially

deposed.

The geoelectrical cross section in Fig. 9a reveals that the

Sdara fault affects both the shallow and main aquifers

without influencing the communication between the res-

ervoirs in the depressions ‘‘D1’’ and ‘‘D2’’.

The northern part of the geoelectrical cross section in

Fig. 9b shows a blocked exchange between the reservoir

formations. The Chouichia normal fault has isolated the

aquifers in the horst ‘‘R2’’ which are in direct contact with

clayey layers deposed in the depression ‘‘D1’’.

The difference between the resistivity of the aquifers at

neighboring points VES 38 (64 Xm for the shallow aquifer

and 58 Xm for the main aquifer) and VES 37 (48 Xm for

the shallow aquifer and 39 Xm for the main aquifer) may

be related to the limited or nonexistent connection between

the folded structures ‘‘R2’’ and ‘‘D1’’.

The relatively low aquifer resistivity at VES 37 is

related to the high water salinity (3 g/l) of Oued Melah

river, the main recharge source of the permeable forma-

tions in the horst ‘‘R2’’.

In the southern part of the geoelectrical cross section (b),

the reservoirs situated in the raised zone ‘‘R3’’ are in

contact with their equivalents deposed in the depression

‘‘D1’’. Therefore, the Brahim-el Arbi fault only controls

the aquifer depth and thickness.

Conclusion

This study is based on Vertical Electrical Soundings as

well as on wells data and displays the tectonic deforma-

tions which affect the multilayered Quaternary aquifer in

the Ghardimaou area.

The Villafranchian folding and the normal faulting

during the late Quaternary extension phase compartmen-

talized the aquifer in raised and subsided blocks. The iso-

bath and isopach maps, and the geoelectrical cross sections

show that this structure has variable implications, for

instance influencing the permeable formations’ depth and

thickness all over the area. The structure is also responsible

for a limited or nonexistent hydrogeological connection

between the compartments ‘‘R2’’ and ‘‘D1’’ in the north-

eastern part of the plain where the Chouichia fault obstructs

the reservoir communication.

These results will be useful for choosing the best sites

for the exploitation of the Quaternary aquifers in the

Ghardimaou area.

In addition, the present study shows the applicability of

the electrical resistivity method for the understanding of

hydrogeological systems when the well data are limited for

a precise characterization. Such prospection was suitable in

this study in view of the importance of the tectonic struc-

tures which are not easily detectable by simple well

correlations.
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Ghardimaou (Sheet memoir of Ghardimaou geological map).

Geol Serv, Tunisia

Gouasmia M, Gasmi M, Mhamdi A, Bouri S, Ben Dhia H (2006)

Prospection géoéléctrique pour l’étude de l’aquifère thermal des
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diagraphiques dans l’étude du Plio-Quaternaire continental

(Identification of potential aquifers in Mejerda high valley.

Electrical and well logs data contribution to the continental

Pliocene-Quaternary deposits study). Master memory, Tunis II

University, Tunisia

Guellala R, Inoubli MH, Alouani R, Manaa M, Amri F (2005a)
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