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Introduction
Weighted distribution theory gives a unified approach to dealing with model specifica-
tion and data interpretation problems. Weighted distributions occur frequently in stud-
ies related to reliability, survival analysis, analysis of family data, biomedicine, ecology 
and several other areas, see Stene (1981) and Oluyede and George (2002). Many authors 
have presented important results on weighted distributions, Rao (1965) introduced 
a unified concept of weighted distribution and identified various sampling situations 
that can modeled by weighted distributions. These situations occur when the recorded 
observations can not be considered as a random sample from the original distribu-
tions. This mean that sometimes it is not possible to work with a truly random sample 
from population of interest. Zelen (1974) introduced weighted distribution to represent 
what broadly perceived as a length-biased sampling. Patil and Ord (1976) studied a size 
biased sampling and related invariant weighted distributions. Statistical applications of 
weighted distributions related to human population and ecology can be found in Patil 
and Rao (1978). Gupta and Tripathi (1996) studied the weighted version of the bivariate 
logarithmic series distribution, which has applications in many fields such as: ecology, 
social and behavioral sciences.

To present the concept of a weighted distribution, suppose that X is a nonnegative 
random variable with its probability density function (p.d.f.) f(x), then the p.d.f. of the 
weight random variable Xw is given by

(1)fw(x) =
w(x)f (x)

E(w(x))
, x ≥ 0
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where w(x) is a nonnegative weight function and E(w(x)) =
∫∞
0

w(x)f (x)dx,

0 < E(w(x)) < ∞. The random variable Xw is called the weight version of X and its dis-
tribution is related to X and is called the weighted distribution with weight function w(x).  
Note that, the weight function w(x) in Eq. (1) gave different practical examples: such as; 
when w(x) = xβ ,β > 0, then the resulting distribution is called a size biased version of X 
and the p.d.f. of a size random variable Xs is defined as

In Eq. (2) when β = 1, then the weight function w(x) = x and the resulting distribution 
is called a length-biased distribution and the p.d.f. of a length biased random variable XL 
is taken the following form:

where E(X) = µ is the mean of the original distribution [to know more details about 
different forms of a weight function, see Rao (1985) and Hewa (2011)]. When an inves-
tigator records an observation by nature according to certain stochastic model, the 
recorded observation will not have the original distribution unless every observation is 
given an equal chance of being recorded. For example, suppose that the original obser-
vation x0 comes from a distribution with p.d.f f0(x0; θ1), where θ1 is a parameter vec-
tor, and that observation x is recording according to re-weighted by weighted function 
w(x; θ2) > 0, θ2 is a new parameter vector, then x comes from a distribution with p.d.f.

where A is a normalized constant.
The main aim of this paper is to provide another extension of the Lomax distribution. 

So, the Weighted-Lomax (“WLx” for short) distribution is proposed to offer a more flex-
ible model for modelling data in several areas such as lifetime analysis, engineering and 
biomedical sciences. The objectives of the research are to study some structural proper-
ties of the proposed distribution. Lomax (1987) proposed Lomax distribution (Pareto 
Type-II distribution), and used it for the analysis of the business failure lifetime data. 
Lomax distribution often used in business, economics, and actuarial modeling. It is 
essentially a Pareto distribution that has been shifted so that its support begins at zero. 
A random variable X is said to be distributed as Lomax with two parameters α (shape 
parameter) and λ (scale parameter) if it has p.d.f.,

The corresponding cumulative distribution function (c.d.f.) given by

(2)fs(x) =
xβ f (x)

E
(

xβ
) , x ≥ 0, α > 0

fL(x) =
xf (x)

E(x)
, x ≥ 0, α > 0

f (x) = Aw(x; θ2)f0(x0; θ1)

(3)fL(x;α, �) =
α�α

(

y+ �
)α+1

, x ≥ 0, α, � > 0

(4)FL(x;α, �) = 1−
[

1+
(x

�

)]−α
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The trend of parameter(s) induction to the baseline distribution has received increased 
attention in recent years to explore properties and for efficient estimation of the param-
eters. In the literature, some extensions of Lomax distribution are available such as the 
exponentiated Lomax by Abdul-Moniem and Abdel-Hameed (2012), Marshall–Olkin 
extended-Lomax by Ghitany et al. (2007), Gupta et al. (2010), Beta-Lomax (BL), Kumar-
aswamy Lomax, McDonald-Lomax by Lemonte and Cordeiro (2013), Gamma-Lomax by 
Cordeiro et al. (2015), the generalized transmuted Lomax by Nofal et al. (2016) and the 
transmuted Weibull Lomax by Afify et al. (2015).

In this paper, the WLx distribution is proposed with p.d.f.

where A is a normalized constant and fL(x;α, �) is the p.d.f. of Lomax distribution. 
Using Eq. (3), the WLx considered in this paper has p.d.f.

where Ŵ(·) is the complete gamma function. Note that, when β = 1, the weighted Lomax 
distribution reduces to the Lomax distribution. The corresponding c.d.f. is

where 2F1(a, b, c; z) is the hypergeometric function.
This paper is organized as follows: In “Distributional properties” section the distribu-

tional properties of the proposed distribution are derived and studied. Section “Param-
eter estimation” discusses the estimation problem using the method of moment and the 
maximum likelihood estimates of the model parameters. The order statistics and the 
limiting distribution of the extreme values are derived in “Order statistics and extreme 
values” section. Section “Simulation study” includes the simulation study for WLx distri-
bution. Finally, a real life application is illustrated in “Conclusion” section.

Distributional properties
Shapes of probability density function

The behavior of p.d.f. of the WLx distribution f (x) at x = 0 and x = ∞, respectively, is 
given by

The following theorem describes the shape of p.d.f. of the WLx distribution.

Theorem 1  The p.d.f. f (x) of the WLx distribution is

(i) Decreasing if {0�β ≤ 1,α�0, � > 0}.
(ii) Unimodal if {1�β�α + 1,α�0, ��0}.

f (x) = Axβ−1fL(x;α, �)

(5)

f (x) = Ŵ(α + 1)�1+α−β

Γ (1+ α − β)Γ (β)

(

xβ−1

(x + �)α+1

)

, x ≥ 0, � > 0, α > 0, 0 < β < α+1

(6)F(x) =
Ŵ(α + 1)�−βxβ ×2 F1

(

α + 1,β ,β + 1;− x
�

)

βŴ(β)Ŵ(1+ α − β)

f (0) =







∞, if β < 1
α
�
, if β = 1, f (∞) = 0

0, if β > 1
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Proof  The first derivative of f (x) is given by

where

 (i) If β = 1, then g(x) = −(α + 1)x < 0. Hence f ′(x) < 0 which implies that f (x) is 
decreasing. If β < 1, then g(x) < 0 for all α + 1�β , ��0. Hence f (x) is decreasing.

(ii) If {1�β�α + 1,α�0, ��0}, f ′(x) = 0 iff g(x) = 0 which occurs at the point

 Since

Hence f (x) has a local maximum at x0. The behavior of WLx distribution density can 
be illustrated as in the Fig. 1.

Hazard rate function

From (5) and (6), the survival and the hazard (or failure) rate functions are obtained by

According to Glaser (1980), in order to study the behavior of h(x), the behavior of η(x) 
is examined where η(x) = − d

dx
ln f (x). The following theorem shows the shapes of the 

hazard rate function of the WLx distribution.

Theorem 2  Hazard rate function of the WLx distribution is

(i) Decreasing if {0�β ≤ 1,α�0, � > 0}.
(ii) Upside-down shape if {1�β�α + 1,α�0, ��0}.

Proof  Since

It follows that

 (i) For 0 < β ≤ 1, η′(x) < 0 for all α + 1�β , ��0, i.e. η(x) is decreasing. Hence, h(x) is 
also decreasing.

(ii)  For 1 < β < α + 1, η′(x) = 0 occurs at two points

f
′
(x) = g(x)

x(x + �)
f (x)

g(x) = (−2− α + β)x + (β − 1)�

x0 =
(β − 1)�

2+ α − β

f
′′
(x) = −(2+ α − β)

x0(x0 + �)
f (x0) < 0,

S(x) = 1− F(x) = 1−
Ŵ(α + 1)�−β

x
β × 2F1

(

α + 1,β ,β + 1;− x

�

)

βŴ(β)Ŵ(1+ α − β)

h(x) = f (x)

S(x)
= Ŵ(α + 1)β�α+1

x
β−1(x + �)−α−1

β�βŴ(1+ α − β)Ŵ(β)− xβŴ(1+ α)×2 F1

(

α + 1,β ,β + 1;− x

�

)

η(x) = − d

dx
ln f (x) = 1− β

x
+ α + 1

x + �

η′(x) = −1− β

x2
− α + 1

(x + �)2
, η′′(x) = 2(1− β)

x3
+ 2(α + 1)

(x + �)3
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Since,

Then η(x) has a local minimum at x2 and therefore the hazard function has a local 
minimum at x2 then upside-down shaped. Plots of the WLx hazard function at different 
parameter values are displayed in Fig. 2.

Mean residual life function and reversed failure rate

In life testing situations, the remaining lifetimes of a unit of age x ≥ 0 until the time 
of failure is known as the residual life. In other words, if X is the life of a unit, then the 
conditional random variable [(X − x)/X > x] is called the residual life (RL). Gupta and 
Gupta (1983) showed that the mean residual life function and also the ratio of any two 
consecutive moments of residual life characterize the distribution. The mean residual 
life (MRL) function of WLx distribution is given by:

x1 =
−�(β − 1)+ �

√
(β − 1)(α + 1)

−2− α + β
, x2 =

−�(β − 1)− �
√
(β − 1)(α + 1)

−2− α + β

η′′(x2) = −
2(α + 1)(2+ α − β)4(β − 1)

(√
β − 1−

√
α + 1

)2

�3
(√

(β − 1)(α + 1)
(√

β − 1+
√
α + 1

)2
)3

< 0,

=0.5, =1,0.2 < < 1 =5, =3,5 < < 20
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Fig. 1 Plots of the WLx p.d.f. for some parameter values
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where B(x; a, b) is the incomplete beta function. The following two Lemmas are useful to 
determining the shape of mean residual life function µ(x).

Lemma 2  (Bryson and Siddique 1969) Let X be a non-negative continuous random 
variable with hazard rate function h(x) and mean residual life function µ(x). If h(x) is 
increasing (decreasing), then µ(x) is increasing (decreasing).

Lemma 3  (Gupta and Akman 1995) Let X be a non-negative continuous random vari-
able with p.d.f. f(x), hazard rate function h(x) and mean residual life function µ(x). If h(x) 
has bathtub (upside-down bathtub) shaped and f(0)µ(0) > 1(= 1), then µ(x)has upside-
down bathtub (bathtub) shape.

Using Lemmas 2 and 3, the following theorem shows the shape of the mean residual 
life function µ(x) of the WLx distribution.

Theorem 3  The mean residual life function µ(x) of the WLx distribution is increasing 
(bathtub shaped) if 0 < β ≤ 1 (1 < β < α + 1) for all α > 0, � > 0.

Proof  Since h(x) is decreasing for 0 < β ≤ 1, then µ(x) is increasing. Moreover, since 
h(x) is upside-down shaped for 1 < β < α + 1 and f(0)µ(0) ≤ 0, µ(x) is bathtub shaped. 
Figure 3 illustrates the plot of mean residual life function of WLx distribution at differ-
ent parameter values.

The reversed residual life can be defined as the conditional random variable 
[x − X/X ≤ x] which denotes the time elapsed from the failure of a component given 
that its life is less than or equal to x, x ≥ 0. This random variable is called also the inac-
tivity time or time since failure.

MRL = µ1(x) = E(X − x/X > x) = 1

S(x)

∫ ∞

x
yf
(

y
)

dy− x

= −x +
β(−�)−α+β

�
α+1B

(

− �

x ;α − β ,−α

)

Ŵ(α + 1)

β�βŴ(1+ α − β)Ŵ(β)− xβŴ(α + 1)×2 F1
(

α + 1,β ,β + 1;− x
�

)

10 20 30 40 50

0.1

0.2

0.3

0.4

0.5
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0.1
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0.3

= 7, = 9, = 6

Fig. 2 Plots of the Hazard function of WLx distribution
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In addition, in reliability, it is well known that the mean reversed residual life and 
ratio of two consecutive moments of reversed residual life characterize the distribution 
uniquely; for more details see Kundu and Nanda (2010) and Nanda et  al. (2003). The 
reversed failure for WLx Distribution is derived as follows:

The rth moment of the reversed residual life is obtained by:

Thus the mean of the reversed residual life is:

The second moment of the reversed residual life is:

where, 2F̃1(a, b, c; z) = 2F1(a,b,c;z)
Γ (c)  is the regularized hypergeometric function.

Moments and associated measures

The first four moments about the origin of WLx distribution

Rh(x) = f (x)

F(x)
= β�1+α(x + �)−1−α

x ×2 F1
(

α + 1,β ,β + 1;− x
�

)

mr(x) = E
(

(x − X)r / X ≤ x
)

= 1

F(x)

∫ x

0
r(x − t)r−1F(t)dt

m1(x) =
x × 2F1

(

α + 1,β ,β + 1;− x
�

)

(β + 1)× 2F1
(

α + 1,β ,β + 1;− x
�

)

m2(x) =
�
2B

(

− x
�
; 2+ β ,−α

)

B
(

− x
�
;β ,−α

) + x2

(

−1+
2× 2F̃1

(

1+ α,β , 2+ β ,− x
�

)

2F̃1
(

1+ α,β , 1+ β ,− x
�

)

)

(7)µ′
1 =

β�

α − β

(8)µ′
2 =

β(β + 1)�2

(−1+ α − β)(α − β)

(9)
µ′
3 =

β(β + 1)(β + 2)�3

(−2+ α − β)(−1+ α − β)(α − β)

10 20 30 40 50
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= 5, = 15, = 7

Fig. 3 Plots of the mean residual life of WLx distribution
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The central moments about the mean are given by

Hence; the mean (µ) and variance (σ 2) of WLx distribution are µ = β�
α−β

 and 
σ 2 = αβ�2

(−1+α−β)(α−β)2
.

The coefficients of skewness (β1), kurtosis (β2) and variation (CV ) of WLx distribution 
are given by:

Moreover, the moment generating Mx(t) and characteristic functions φx(t) are

where Ŵ(a, z) is the incomplete gamma function, and Csc(z) is the cosecant of z.

µ′
4 = �

4Ŵ(−3+ α − β)Ŵ(β + 4)

Ŵ(1+ α − β)Ŵ(β)

µ2 =
αβ�2

(−1+ α − β)(α − β)2
,

µ3 =
2αβ(α + β)�3

(−2+ α − β)(−1+ α − β)(α − β)3
,

µ4 =
3αβ

(

−α(−2+ β)β + 2β2 + α2(2+ β)
)

�
4

(−3+ α − β)(−2+ α − β)(−1+ α − β)(α − β)4
.

β1 =
√

√

√

√

√

√

(

2Ŵ(α − β)3Ŵ(1+ β)3 − 3Ŵ(−1+ α − β)Ŵ(α − β)Ŵ(1+ α − β)Ŵ(β)Ŵ(1+ β)Ŵ(2+ β)+ Ŵ(−2+ α − β)Ŵ(1+ α − β)2Ŵ(β)2Ŵ(3+ β)

)2

(

−Ŵ(α − β)2Ŵ(1+ β)2 + Ŵ(−1+ α − β)Ŵ(1+ α − β)Ŵ(β)Ŵ(2+ β)

)3

β2 =
1

(

Ŵ(α − β)2Ŵ(1+ β)2 − Ŵ(−1+ α − β)Ŵ(1+ α − β)Ŵ(β)Ŵ(2+ β)
)2

×
(

Ŵ(α − β)Ŵ(1+ β)

[

−3Ŵ(α − β)3Ŵ(1+ β)3

+ 6Ŵ(−1+ α − β)Ŵ(α − β)Ŵ(1+ α − β)Ŵ(β)Ŵ(1+ β)Ŵ(2+ β)

− 4Ŵ(−2+ α − β)Ŵ(1+ α − β)2Ŵ(β)2Ŵ(3+ β)

]

+Ŵ(−3+ α − β)Ŵ(1+ α − β)3Ŵ(β)3Ŵ(4 + β)

)

CV =
(α − β)

√

�2
(

−Ŵ(1+β)2+ (α−β)Ŵ(β)Ŵ(2+β)
−1+α−β

)

(α−β)2

�Ŵ(1+ β)

Mx(t) =
1+�−t�

(−1+t�)2
+ e−t�(−t)αα�α�(1+ �)Ŵ(−α,−t�)

(1+ �)2
,

φx(t) =
πCsc(π(α − β))

(

(−it)1+α−β
�
1+α−βŴ(1+α)1F̃1(1+α,2+α−β ,−i�t)

Ŵ[β]
−1 F̃1(β ,−α + β;−i�t)

)

Ŵ(1+ α − β)(1+ θ)2(θ − it)2
,
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Lorenz and Bonferroni curves

The Bonferroni, Lorenz curves and Gini index have many applications in economics and 
ecology to describe inequality distribution of wealth or size like a reliability, medicine 
and insurance. For WLx distribution, Lorenz and Bonferroni curves are:

and                                                             

 .The scaled total time on test transform of a distribution function is given by

Hence, Gini index is obtained from the relationship G = 1− CF; where 
CF =

∫ 1
0 SF [F(t)]f (t)dt.

Entropies

An entropy is a measure of variation or uncertainty of a random variable X. The theory 
of entropy has been successfully used in a wide diversity of applications and has been 
used for the characterization of numerous standard probability distributions. Two popu-
lar entropy measures are the Shannon and Rényi entropies.

The Rényi entropy of a random variable with p.d.f. f (x) is defined as

For WLx distribution, Rényi entropy is derived as

The Shannon entropy of a random variable X is defined by

Using the WLx density,

LF [F(x)] =
x1+β

�
−1−βŴ(1+ α)2F̃1

(

1+ α, 1+ β , 2+ β;− x
�

)

Ŵ(α − β)

BF (F(x)) =
(−α + β)B

(

− x
�
; 1+ β ,−α

)

βB
(

− x
�
;β ,−α

)

SF [F(t)] =
x

(

α − β − xβ�−βŴ(1+α)2F̃1(1+α,β ,2+β ,− x
�
)

Ŵ(α−β)

)

β�

Iδ =
1

1− δ
log

∫ ∞

0
f δ(x)dx, δ > 0, δ �= 1

Iδ =
1

1− δ
log

(

Ŵ(α + 1)�α−β+1

Ŵ(α − β + 1)Ŵ(β)

)δ ∫ ∞

0

(

xβ−1

(x + �)α+1

)δ

dx

= log�+ δ(1− δ)−1log

(

Ŵ(α + 1)

Ŵ(α − β + 1)Ŵ(β)

)

+ (1− γ )−1log

(

Ŵ(−1+ (2− α − β)δ)Ŵ(1+ (β − 1)δ

Ŵ(δ + αδ)

)

SH = −
∫ ∞

0
f (x)logf (x)dx

SH = − Ŵ(α + 1)�α−β+1

Ŵ(α − β + 1)Ŵ(β)

∫ ∞

0

xβ−1

(x + �)α+1
log

Ŵ(α + 1)�1+α−β

Ŵ(1+ α − β)Ŵ(β)

(

xβ−1(x + �)−α−1

)

dx

= −log
Ŵ(α + 1)�α−β+1

Ŵ(α − β + 1)Ŵ(β)
− (β − 1)

(

log�− ψ(α − β + 1)+ ψ(β)
)

+ (α + 1)
(

Hα −Hα−β + log�
)

= log
�Ŵ(α − β + 1)Ŵ(β)

Ŵ(α + 1)
+ (α + 1)Hα + (β − α − 2)Hα−β − (β − 1)(γ + ψ(β))
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where Hn is the n-th harmonic number, γ is the Euler–Mascheroni constant and ψ(z) is 
the digamma function.

Reliability parameter

In the context of reliability, the stress–strength model describes the life of a component 
that has a random strength Y that is subjected to a random stress X. The component 
fails at the instant that the stress applied to it exceeds the strength, and the component 
will function satisfactorily whenever X < Y . Hence, R = Pr(X < Y ) is a measure of 
component reliability. It has many applications especially in the areas of engineering and 
stress–strength models. The reliability parameter for WLx distribution is given by

where pFq(
{

a1, a2, . . . , ap
}

,
{

b1, b2, . . . , b1
}

; z) is the generalized hypergeometric 
function.

Parameter estimation
In this section, we consider the method of moments and the maximum likelihood tech-
niques is considered to estimate the involved parameters of WLx distribution. In addi-
tion, the interval estimation is discussed via Fisher information matrix.

Method of moments estimates

The method of moment estimation (MME) consists of equating the first three moments 
of the population (7), (8) and (9) to the corresponding moments of the sample. The sys-
tem of equations that needed is:

R = Pr (X < Y )

= �
α1−β1+1
1 Ŵ(α1 + 1)

Ŵ(α1 − β1 + 1)Ŵ(β1)
× �

α2−β2+1
2 Ŵ(α2 + 1)

Ŵ(α2 − β2 + 1)Ŵ(β2)
×

∫ ∞

0

∫ y

0

(

xβ1−1

(x + �1)
α1+1

)

(

yβ2−1

(

y+ �2

)α2+1

)

dxdy

= �
−β1
1 Ŵ(α1 + 1)

Ŵ(α1 − β1 + 1)
× �

α2−β2+1
2 Ŵ(α2 + 1)

Ŵ(α2 − β2 + 1)Ŵ(β2)
×

∫ ∞

0

yβ1+β2−1

(

y+ �2

)α2+1

2

F̂1

(

α1 + 1,β1,β1 + 1;− y

�1

)

dy

=
{[

(�2/�1)
α2−β2+1Ŵ(α2 + 1)Ŵ(2+ α1 + α2 − β1 − β2)Ŵ(−1− α2 + β1 + β2)

(α2 − β2 + 1)Ŵ(β1)Ŵ(β2)(α1 − β1 + 1)Ŵ(α2 − β2 + 1)

× pFq

(

{1+ α2, 1+ α2 − β2, 2+ α1 + α2 − β1 − β2}, {2+ α2 − β2, 2+ α2 − β1 − β2};
�2

�1

)]

+
[

(�2/�1)
β1Ŵ(α1 + 1)Ŵ(1+ α2 − β1 − β2)Ŵ(β1 + β2)

(α2 − β2 + 1)Ŵ(β1)Ŵ(β2)(α1 − β1 + 1)Ŵ(α2 − β2 + 1)

× pFq

(

{1+ α1,β1,β1 + β2}, {1+ β1,−α2 + β1 + β2};
�2

�1

)]}

(10)
β�

α − β
= m1

(11)
β(β + 1)�2

(−1+ α − β)(α − β)
= m2

(12)
β(β + 1)(β + 2)�3

(−2+ α − β)(−1+ α − β)(α − β)
= m3
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By solving the Eqs. (10), (11) and (12), the parameter estimates are

Maximum likelihood estimates

Let x1, x2, . . . , xn be a random sample of size n from the WLx distribution, the maximum 
likelihood estimates (MLEs) of the parameters are obtained by direct maximization of 
the log-likelihood function which is given by:

It follows that the maximum likelihood estimators (MLEs); �̂, α̂ and β̂ are the simulta-
neous solutions of the equations:

For interval estimation of the parameter vector Θ = (�,α,β)T ; the expected fisher 
information matrix I =

[

Iij
]

, i, j = 1, 2, 3 is derived as follows:

where ψ ′(z) is the trigamma function.

�̂ = m1m
2
2 − 2m2

1m3 +m2m3
(

m2
1 − 2m2

)

m2 +m1m3

α̂ =
2
(

m2
1 −m2

)

(m1m2 −m3)
(

m2
2 −m1m3

)

((

m2
1 − 2m2

)

m2 +m1m3

)(

−m1m
2
2 +

(

2m2
1 −m2

)

m3

)

β̂ =
2m1

(

m2
2 −m1m3

)

−m1m
2
2 +

(

2m2
1 −m2

)

m3

.

ln (L(x; �,α,β)) = nln[Ŵ(α + 1)]+ n(α − β + 1)ln[�]− nln[Ŵ(α − β + 1)]

− nln[Ŵ(β)]+ (β − 1)

n
∑

i=1

ln [xi]− (α + 1)

n
∑

i=1

ln[xi + �]

n(1+ α − β)

�
− (1+ α)

n
∑

i=1

1

xi + �
= 0

nln[�]+ nψ(α + 1)− nψ(α − β + 1)−
n

∑

i=1

ln[�+ xi] = 0

−nln[�]+ nψ(α − β + 1)− nψ(β)+
n

∑

i=1

ln[xi] = 0

I11 = −E

[

∂2

∂�2
ln f (x)

]

=
πCsc(π(α − β))

(

(1+α−β)2(2+α−β)

(

1+α
β

)−α(−1−α+β
β

)α−β
Ŵ(1+α)

(1+α)Ŵ(β)
+

−2+2F1

[

1,β ,−1−α+β; −1−α+β
β

]

Ŵ(−2−α+β)

)

�Ŵ(3+ α − β)
;

I22 = −E

[

∂2

∂α2
ln f (x)

]

= −ψ ′(α + 1)+ ψ ′(α − β + 1);

I33 = −E

[

∂2

∂β2
ln f (x)

]

= ψ ′(α − β + 1)+ ψ ′(β);

I12 = −E

[

∂2

∂�∂α
ln f (x)

]

= − β

�(α + 1)
;

I13 = −E

[

∂2

∂�∂β
ln f (x)

]

= 1

�
;

I23 = −E

[

∂2

∂α∂β
ln f (x)

]

= −ψ ′(α − β + 1);
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Under regularity conditions, Bahadur (1964) showed that as n → ∞, 
√
n
(

Θ̂ −�

)

 is 
asymptotically normal 3-variate with (vector) mean zero and covariance matrix I−1. The 
asymptotic variances and covariance of the elements of Θ̂ are given by:

where � = det (I). The corresponding asymptotic 100(1− α)% confidence intervals are 
�̂± cI−1/2; where c is the appropriate z critical value.

Order statistics and extreme values
The distribution of extreme values plays an important role in statistical applications. In 
this section the probability and cumulative function of order statistics are introduced 
and the limiting distribution minimum and the maximum arising from the WLx model 
can be derived.

Probability and cumulative function of order statistics

Suppose X1, X2, …, Xn is a random sample from WLx distribution. Let X1:n < X2:n < · · ·  
<  Xn:n denote the corresponding order statistics. The probability density function and 
the cumulative distribution function of the jth order statistic, say Y = Xj:n, are given by

and

V
(

α̂
)

= I22I33 − I
2

23

n�
, V

(

β̂

)

= I11I33 − I
2

13

n�
,

V

(

θ̂

)

= I11I22 − I
2

12

n�
, Cov

(

α̂, β̂

)

= I13I23 − I12I33

n�
,

Cov

(

α̂, θ̂

)

= I12I23 − I13I22

n�
, Cov

(

β̂ , θ̂

)

= I13I12 − I11I23

n�
.

fY
(

y
)

= n!
(

j − 1
)

!
(

n− j
)

!
Fj−1

(

y
)

{1− F
(

y
)

}n−j f
(

y
)

=
�1+α

(

y+ �
)−1−α

n!
yŴ

(

j
)

Ŵ
(

1− j + n
)

Ŵ(β)2F̃1
(

1+ α,β , 1+ β;− y
�

)

×
[

yβ�−βŴ(1+ α)2F̃1
(

1+ α,β , 1+ β;− y
�

)

Ŵ(1+ α − β)

]j

×
[

1−
yβ�−βŴ(1+ α)2F̃1

(

1+ α,β , 1+ β;− y
�

)

Ŵ(1+ α − β)

]n−j

FY

�

y
�

=
n

�

m=j

�

n

m

�

Fm
�

y
�

×
�

1− F
�

y
��n−m

=

Ŵ(1+ n)2F̃1



1, j − n,+j; 1

1− y−β �βŴ(1+α−β)

Ŵ(1+α)2 F̃1(1+α,β ,1+β;− y

� )





Ŵ
�

1− j + n
�

×
�

y
β
�
−βŴ(1+ α)2F̃

�

1+ α,β , 1+ β;− y

�

�

Ŵ(1+ α − β)

�j

×
�

1−
y
β
�
−βŴ(1+ α)2F̃

�

1+ α,β , 1+ β ,− y

�

�

Ŵ(1+ α − β)

�n−j
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Limiting distributions of extreme values

Let mn = X1:n = min[X1, X2, . . . , Xn] and Mn = Xn:n = max[X1, X2, . . . , Xn] arising from 
WLx distribution. The limiting distributions of X1:n and Xn:n can be derived in the fol-
lowing theorem.

Theorem 3 Let mn and Mn be the minimum and the maximum of a random sample 
from the WLx distribution, respectively. Then

(i) limn→∞ p
(

mn−an
bn

≤ x
)

= 1− exp
(

−xβ
)

; x > 0

(ii)  limn→∞ p
(

Mn−cn
dn

≤ x
)

= exp
(

−x−(1+α−β)
)

; x > 0

  where an = 0, bn = 1

F−1
(

1
n

) , cn = 0 and dn = 1

F−1
(

1− 1
n

).

Proof (i) Using L’Hospital rule, we have 

Therefore by Theorem (8.3.6) of Arnold et al. (1992), the minimal domain of attraction 
of the WLx distribution is the Weibull distribution, proving part (i).

(ii) Using L’Hospital rule, we have 

Therefore, by Theorem (1.6.2) and Corollary (1.6.3) in Leadbetter et  al. (1987), the 
maximal domain of attraction of the WLx distribution is the Fréchet distribution, prov-
ing part (ii).

Simulation study
The equation F(x)− u = 0, where u is an observation from the uniform distribution (0,1)  
and F(x) is cumulative distribution function of WLx distribution, is used to carry out 
the simulation study by generating random samples follow WLx distribution. The sim-
ulation experiment was repeated 1000 times each with sample sizes; 20, 40, 70, 100 for 
(�,α,β) = (0.03, 2, 0.5) and (0.01, 2.5, 1). The following measures are computed:

(i) Average bias of �̂, α̂ and β̂ of the parameters �,α and β are respectively;

(ii) The Mean square error (MSE) of �̂, α̂ and β̂ of the parameters �,α and β are respec-
tively;

Table 1 presents the average bias and the MSE of the estimates. The values of the bias 
are seen to be small,positive and the values of the MSEs decreases while the sample size 
increases.

lim
ε→0+

F
(

F−1(0)+ εx
)

F
(

F−1(0)+ ε
) = lim

ε→0+

F(εx)

F(ε)
= lim

ε→0+

xf (εx)

f (ε)
= xβ .

lim
t→∞

1− F(tx)

1− F(t)
= lim

t→∞
xf (tx)

f (t)
= x−(1+α−β)

1

N

N
∑

i=1

(�̂− �),
1

N

N
∑

i=1

(α̂ − α) and
1

N

N
∑

i=1

(β̂ − β)

1

N

N
∑

i=1

(

�̂− �

)2
,

1

N

N
∑

i=1

(

α̂ − α
)2

and
1

N

N
∑

i=1

(

β̂ − β

)2
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Application
The considered a dataset corresponding to remission times (in months) of a random 
sample of 128 bladder cancer patients given in Lee and Wang (2003). The data are given 
as follows: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 
13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 
14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 
10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 
10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 
7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 
11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 
1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 
12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. We have fitted the WLx distribution to 
the dataset using MLE, and compared the proposed WLx distribution with, gamma-
Lomax (GL), Kumaraswamy-Lomax(KwL), transmuted exponentiated-Lomax (TrEL), 
Weibull-Lomax (WL), McDonald-Lomax (McL), Beta-Lomax(BL), extended Poisson-
Lomax (EPL), exponential-Lomax (ExL) and Lomax distributions.

The c.d.f.(s) of these models are given as follow:

  • The McLomax (McL) density function with five parameters α, �,β , a and b intro-
duced by Lemonte and Cordeiro (2013) is expressed as

(where x > 0;α, �,β , b, a,> 0).
Evidently, the McL density function does not involve any complicated function, and 
it includes several distributions as special sub-models not previously considered in 
the literature. In fact, the Lomax distribution (with parameters α and �) is clearly a 
basic exemplar for a = β = 1 and b = 0. Beta Lomax (BL) and Kumaraswamy Lomax 
(KwL) distributions are new models which arise for β = 1 and a = β, respectively. 
For b = 0 and β = 1, it leads to a new distribution referred to as the Exponentiated 
Lomax (EL) distribution. The McL distribution allows for greater flexibility of its tails 
and can be widely applied in many areas. The c.d.f. corresponding to McL density 
function is given by

fMcL(x) =
βα�α(�+ x)−(α+1)

B
(

aβ−1, b+ 1
)

(

1−
(

�

�+ x

)α)a−1
(

1−
(

1−
(

�

�+ x

)α)β
)b

,

FMcL(x) = I{1−�α(�+x)−α}β
(

aβ−1, b+ 1
)

Table 1 Bias and MSE for the parameters �,α, β

� α β n Bias (λ) MSE (λ) Bias (α) MSE (α) Bias (β) MSE (β)

0.03 2 0.5 20 −0.0285 0.00299 4.6345 35.5596 4.7126 36.5100

40 −0.0266 0.00071 3.8839 23.5742 4.0339 24.7811

70 −0.0261 0.00068 3.1262 15.2725 3.3071 16.3899

100 −0.0257 0.00066 2.7709 11.9247 2.9629 12.9699

0.01 2.5 1 20 −0.0083 0.000069 5.8120 60.4177 5.8464 61.0917

40 −0.0081 0.000066 5.1198 45.5128 5.2032 46.4064

70 −0.0078 0.000061 4.0102 28.6942 4.1131 29.5265

100 −0.0075 0.000058 3.4679 22.5719 3.5759 23.317
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  • The Exponential Lomax (ExL) distribution introduced by El-Bassiouny et al. (2015) 
with c.d.f.

  • The gamma-Lomax (GL) distribution introduced by Cordeiro et al. (2015) based on 
a versatile and flexible gamma generator proposed by Zagrafos and Balakrishnan 
(2009) using Stacy’s generalized gamma distribution and record value theory. The 
c.d.f. of GL distribution is given by

  • The transmuted Exponentiated-Lomax (TrEL) distribution introduced by Ashour 
and Eltehiwy (2013) with c.d.f.

(where > 0;α, �,β , γ > 0)
  • The Weibull–Lomax (WL) distribution introduced by Tahir et al. (2015) with c.d.f.

  • The extended Poisson-Lomax (EPL) distribution introduced by Al-Zahrani et  al. 
(2015) introduced with c.d.f.

The model selection is carried out using the Akaike information criterion (AIC), the 
Bayesian information criterion (BIC), the Hannan-Quinn information criterion (HQIC) 
and the consistent Akaike information criteria (CAIC) defined by:

where l
(

θ̂
)

 denotes the log-likelihood function evaluated at the maximum likelihood 
estimates for parameters θ, q is the number of parameters, and n is the sample size.

Table 2 provide the MLEs of the model parameters. The model with minimum AIC 
(or BIC, CAICand HQIC) value is chosen as the best model to fit the data. From Table 3, 

FEL(x) = 1− e
−β×

(

�

x+�

)−α

, x ≥ −�, α, �, β > 0

FGL(x) =
Ŵ
[

a, αLog
[

1+ x
�

]]

Ŵ[a]
, x > 0, α, �, a > 0

F(x) =
(

1− (1+ �x)−α
)β
(

(1+ γ )− γ
(

1− (1+ �x)−α
)β
)

,

FWL(x) = 1− e

(

−a((1+( x� ))
α−1)

b
)

, x > 0, a, b,α, � > 0

FEPL(x) = 1− (1+ �x)−αe−β(1−(1+�x)−α), x > 0;β ≥ 0,α, � > 0

AIC = −2l
(

θ̂
)

+ 2q

BIC = −2l
(

θ̂
)

+ qlog(n)

HQIC = −2l
(

θ̂
)

+ 2qlog
(

log(n)
)

CAIC = −2l
(

θ̂
)

+ 2qn

n− q − 1
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we note that the WLx model gives the lowest values for the AIC, BIC, HQIC and CAIC 
statistics among all fitted models. So, the WLx model could be chosen as the best model 
comparable GL, KwL, TrEL, WL, McL, BL, EPL, ExL and Lomax distributions.

Table 2 MLEs for bladder cancer data

Distribution MLEs

�̂ α̂ β̂ γ̂ â b̂

1. WLx 20.8789 5.1265 1.5857 – – –

2. GL 20.5807 4.7541 – – 1.5858 –

3. KwL 12.2973 0.3911 – – 1.5162 11.0323

4. TrEL 0.0546 3.3391 1.71418 0.2440 – –

5. WL 1.5794 0.2566 – – 2.4215 1.8639

6. McL 11.2929 0.8085 2.1046 – 1.5060 4.1886

7. BL 23.9281 3.9191 – – 1.5853 0.1572

8. Lomax 121.0225 13.9384 – – – –

9. EPL 0.00804 0.2387 59.8378 – – –

10. ExL 0.0800 1.0644 0.0060 – – –

Table 3 The Measures AIC, BIC, HQIC, CAIC for bladder cancer data

Distribution Measures

−Log L AIC BIC HQIC CAIC

1. WLx −410.07 826.14 834.70 829.62 826.33

2. GL −410.08 826.16 834.71 829.64 826.36

3. KwL −409.94 827.88 839.29 832.52 828.14

4. Tr EL −410.43 828.87 840.2 833.51 829.13

5. WL −410.81 829.62 841.03 834.26 829.88

6. McL −409.91 829.82 844.09 835.62 830.14

7. BL −411.74 831.47 842.89 836.12 831.74

8. Lomax −413.83 831.67 837.37 833.98 831.80

9. EPL −413.83 833.67 842.22 837.14 833.86

10. ExL −414.98 835.96 844.51 839.43 836.15

Table 4 Goodness-of-fit tests for bladder cancer data

Distribution Statistics

W
2
n A

2
n U

2
n

Ln

1. WLx 0.026524 0.18137 31.5282 0.47912

2. EL 0.026820 0.18341 31.5288 0.48320

3. GL 0.026190 0.18089 31.5298 0.47768

4. TrEL 0.031438 0.22753 31.5314 0.53413

5. WL 0.038295 0.26273 31.5434 0.57746

6. BL 0.025822 0.17872 31.5272 0.47508

7. Lomax 0.212589 1.37456 31.7017 1.05935

8. EPL 0.226761 1.45110 31.7139 1.07341

9. ExL 0.179676 1.0908 31.6934 1.08401
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Now, the formal goodness-of-fit tests are applied in order to verify which distribution 
fits better to these data. The Cramér–von Mises (W 2

n), Anderson–Darling (A2
n), Watson 

(U2
n) and Liao-Shimokawa (Ln) tests statistics are considered. For further details, the 

reader is refereed to Chen and Balakrishnan (1995). In general, the smaller the values of 
the W 2

n , A2
n, U2

n and Ln, the better the fit to the data. The values of the statistics W 2
n , A2

n, 
U2
n and Ln are given in Table 4. Based on these statistics, the WLx model fits the bladder 

cancer data better than TrEL, WL, EPL, EXL and Lomax models and gives values close 
to GL and BL it can be concluded.

Conclusion
In this paper, WLx distribution is proposed. A mathematical treatment of the pro-
posed distribution including explicit formulas for the density and hazard functions, 
moments, order statistics have been provided. The estimation of the parameters has 
been approached by maximum likelihood and method of moments and the observed 
information matrix is obtained. The usefulness of the new distribution is illustrated in an 
analysis of Bladder cancer data. The results indicate that the WLx distribution applicable 
and more flexible than other extensions of Lomax distribution.
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