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Abstract: Type II string compactifications to 4d generically contain massless Ramond-

Ramond U(1) gauge symmetries. However there is no massless matter charged under

these U(1)’s, which makes a priori difficult to measure any physical consequences of their

existence. There is however a window of opportunity if these RR U(1)’s mix with the

hypercharge U(1)Y (hence with the photon). In this paper we study in detail different av-

enues by which U(1)RR bosons may mix with D-brane U(1)’s. We concentrate on Type IIA

orientifolds and their M-theory lift, and provide geometric criteria for the existence of such

mixing, which may occur either via standard kinetic mixing or via the mass terms induced

by Stückelberg couplings. The latter case is particularly interesting, and appears whenever

D-branes wrap torsional p-cycles in the compactification manifold. We also show that in

the presence of torsional cycles discrete gauge symmetries and Aharanov-Bohm strings and

particles appear in the 4d effective action, and that type IIA Stückelberg couplings can be

understood in terms of torsional (co)homology in M-theory. We provide examples of Type

IIA Calabi-Yau orientifolds in which the required torsional cycles exist and kinetic mixing

induced by mass mixing is present. We discuss some phenomenological consequences of

our findings. In particular, we find that mass mixing may induce corrections relevant for

hypercharge gauge coupling unification in F-theory SU(5) GUT’s.
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1 Introduction

String theory compactifications with a semi-realistic spectrum generically lead to a number

of U(1) gauge symmetries beyond the standard model hypercharge. Some of these U(1)

symmetries acquire masses of the order of the string scale via the Stückelberg mechanism

and would be difficult to detect unless Ms ∼ 1 TeV. They remain as global symmetries of

the low energy effective Lagrangian, only broken by non-perturbative effects. The canoni-

cal example is the U(1)B−L symmetry which arises in many D-brane models. Some other
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U(1)’s, however, may appear in the massless spectrum or acquire very light masses (gen-

erated for instance by quantum corrections). Those can pass all the current experimental

bounds (from EW precision data, searches for γ−γ′ oscillations, cosmological bounds, etc.)

if their coupling to the Standard Model hypercharge is sufficiently small. The relevant pa-

rameter space has two quantities: the mass of the hidden photon and the kinetic mixing

between the hypercharge and the hidden photon. In addition, due to the above mixing

with the SM hypercharge, particles charged under the hidden U(1) acquire an effective

electric (mini-)charge and can lead to further experimental signatures. Some references for

U(1) mixing in the string theory context include [1–10]. The possibility of having hidden

U(1) gauge symmetries has also motivated interesting applications in the context of super-

symmetric models. For instance, it has been suggested that hidden U(1)’s can lead to a

possible mechanism for mediating SUSY breaking to the visible sector in a flavor indepen-

dent way [11–14]. Also, mixing of MSSM neutralinos with hidden U(1) gauginos can be a

relevant signature at the LHC [15–18].

In type II string compactifications there are two possible sources of hidden U(1) gauge

symmetries: D-branes located far away from the SM D-brane sector and which do not

intersect it, and U(1) gauge symmetries arising from Kaluza-Klein reduction of Ramond-

Ramond closed string fields. This work intends to be a systematic study of RR U(1)

gauge symmetries in Calabi-Yau compactifications and their possible mixing with D-brane

gauge bosons. In particular, we find that RR gauge bosons can mix with D-brane U(1)’s

through direct kinetic mixing (see also [19–22]) or through the mass matrix induced by a

Stückelberg mechanism. The latter is generic in Calabi-Yau orientifold compactifications

with torsional p-cycles, and can be understood in a precise way in terms of the integer

homology of the Calabi-Yau. We develop the necessary tools to describe this mixing and

provide examples of type IIA CY orientifolds in which the required torsional cycles exist

and kinetic mixing is induced via Stückelberg mass mixing.

Mixing between Ramond-Ramond and D6-brane U(1) gauge symmetries may find in-

teresting applications in the context of type II/F-theory SU(5) models, which we briefly

describe. In particular we observe that RR U(1) gauge symmetries can provide an alter-

native to the standard picture that has been developed in the context of F-theory local

GUT’s, in which the GUT gauge symmetry is broken via a hypercharge flux along the

internal dimensions [23, 24]. Such scenario is compatible with a massless hypercharge only

if certain topological conditions are imposed on the hypercharge flux. As we discuss, such

conditions are compatible with the topological conditions required for the mass mixing

between the hypercharge and RR U(1)’s and so it could happen that the actual hyper-

charge has a contamination from RR U(1) gauge symmetries. A direct consequence of this

contamination is a modification of the fine structure constant which may be crucial for

achieving actual gauge coupling unification in the present setup.

The effect of mass mixing is intimately related to another interesting feature of Calabi-

Yau compactifications with torsion in (co)homology, namely the appearance of RR discrete

gauge symmetries. Recently Banks and Seiberg [25] have shown that in every consistent

four-dimensional quantum theory of gravity massive U(1) gauge symmetries are spon-

taneously broken to discrete Zk gauge symmetries, and that there are Aharanov-Bohm
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strings and particles associated to them, with unusual charge quantization. In this sense

our study reveals that this 4d picture of massive U(1)’s is consistently realized in string

theory through the torsional (co)homology of the compact manifold. In fact, it is precisely

this set of massive RR U(1)’s the ones that in the presence of D-branes may develop a mass

mixing with open string U(1)’s, so that the massless U(1) that results from the Stückelberg

mechanism in neither open nor closed, but a linear combination of both.

While our results are equally valid for both type IIA or type IIB compactifications,

our discussion is mainly carried in the context of type IIA compactifications, since it has a

more direct connection to M-theory. The M-theory picture is particularly compelling when

analyzing Abelian gauge symmetries, since there both D6-brane and RR U(1) gauge sym-

metries arise from Kaluza-Klein reduction on the G2 manifold. In this sense, our discussion

shows that both sets of massive U(1)’s/discrete gauge symmetries arise from KK reduction

on the torsional cohomology of the G2 manifold. As a quite direct consequence of this, we

observe that Freed-Witten D6-brane gauge anomalies are lifted to M-theory backgrounds

where 4-form G4 has a torsional cohomology class in the compactification manifold.

The paper is organized as follows. In section 2 we describe the family of type IIA

Calabi-Yau compactifications in which we will carry most of our discussion, reviewing

those results in the literature which will be necessary in subsequent sections. In section 3

we describe the kinetic mixing that occurs between open and closed string U(1)’s, as well as

its lift to M-theory. We describe the effect of torsional homology in these compactifications

in section 4. In particular we first discuss the relation between torsion p-cycles and discrete

gauge symmetries and then, upon adding D-branes, to the mass mixing developed between

open and closed string U(1)’s. The latter mixing is used in section 5 in order to describe

how our results may be relevant for certain scenarios, and in the particular in the F-

theory setup described above. Finally, in section 6 we leave the realm of Calabi-Yau

compactifications, and discuss certain new features that appear when we consider type

IIA/M-theory compactifications with background fluxes.

We leave our final comments for section 7, and several technical details for the ap-

pendices. In particular in appendix A we perform the dimensional reduction to 4d of a

D6-brane action. Appendix B translates the results of the main text to the mirror sym-

metric language of type IIB compactifications, and appendix C describes how D-branes

can detect RR fields that live in the torsional cohomology of the compactification.

2 U(1)’s in type IIA compactifications

Abelian gauge bosons in weakly coupled type II string compactifications can originate

from either open or closed strings. While the former are localized in the worldvolume of

D-branes, the latter propagate along the full compactification manifold. Understanding the

circumstances under which these two apparently different sectors interact with each other

is the purpose of the next two sections. For concreteness, we will carry our discussion in the

context of 4d N = 1 type IIA compactifications on Calabi-Yau orientifolds with intersecting

D6-branes which, as shown in the literature [26–29], constitute a rich framework for model

building in string theory. Our results can however be easily translated to dual type IIB
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orientifold compactifications, as we show in appendix B. In order to set up the stage, in

this section we review those aspects of the 4d effective action of type IIA compactifications

which are relevant for our purposes.

2.1 Type IIA orientifold compactifications

Let us consider type IIA string theory on an orientifold of R1,3 ×M6, with M6 a compact

Calabi-Yau 3-fold. The orientifold action is given by Ωp(−1)FLσ, where Ωp is the worldsheet

parity reversal operator, FL is the space-time fermion number for the left-movers, and σ is

an internal involution of the Calabi-Yau. The involution acts on the Kähler 2-form J and

the holomorphic 3-form Ω of M6 as [30, 31]

σJ = −J , σΩ = Ω (2.1)

The fixed locus Λ of σ is given by one or several 3-cycles of M6, in which O6-planes are

located. One can then see that each of these 3-cycles is an special Lagrangian (sLag)

submanifold of M6, since (2.1) automatically imply the sLag conditions

J |Λ = 0 , Im Ω|Λ = 0 (2.2)

In order to cancel the RR charge of the O6-planes one may introduce D6-branes,1 each

of them wrapping a 3-cycle πa within M6. Consistency with N = 1 supersymmetry in

4d then requires that these 3-cycles fulfill the same sLag conditions as the orientifold [33–

35], namely

J |πa = 0 , Im (Ω)|πa = 0 (2.3)

usually dubbed F-term and D-term conditions, respectively, due to how they appear in the

D6-brane effective action. Cancellation of the total D6-brane charge in M6 can then be

recast as a condition in homology [36]
∑

a

Na([πa] + [π∗
a]) = 4[Λ] (2.4)

where [πa] ∈ H3(M6, Z) is the homology class of the 3-cycle πa, and [π∗
a] = [σπa] that of

the image of πa under the orientifold. Finally, Na stands for the number of D6-branes on

top of the 3-cycle πa.

One of the virtues of compactifications on Kähler manifolds resides in that there is a

one-to-one correspondence between massless fields in the 4d effective theory and de Rham

cohomology classes. In particular, for the closed string sector of the theory the spectrum

of 4d massless fields is obtained from expanding the 10d type IIA supergravity fields in a

basis of harmonic forms. To which 4d field a p-form corresponds to not only depends on its

degree p, but also on its parity under the orientifold involution σ [31, 37, 38]. We therefore

introduce a basis of cohomology representatives of definite parity under σ

σ-even σ-odd

2-forms ωi i = 1, . . . , h1,1
+ ωî î = 1, . . . , h1,1

−
3-forms αI I = 0, . . . , h1,2 βI I = 0, . . . , h1,2

4-forms ω̃î î = 1, . . . , h1,1
− ω̃i i = 1, . . . , h1,1

+

1In order to cancel RR tadpoles and build 4d chiral models one may consider coisotropic D8-branes as

in [32]. It should be straightforward to generalize the results of this paper to that case.
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paired up and normalized such that∫
ωi ∧ ω̃j = δj

i ,

∫
ωî ∧ ω̃ĵ = δĵ

î
,

∫
αI ∧ βJ = δJ

I (2.5)

The spectrum of 4d massless fields can then be arranged into h1,1
− + h1,2 + 1 chiral

multiplets and h1,1
+ vector multiplets of the 4d N = 1 supersymmetry preserved by the

compactification [31, 38]. Apart from these, there are extra vector multiplets coming from

the open string sector.

The moduli space of the compactification is parametrized by the scalar components of

the chiral multiplets. More precisely, these are given by h1,1
− Kähler moduli T î and h1,2 +1

complex structure moduli NA, with N0 the universal axio-dilaton. They result from the

expansions [38]

Jc ≡ B2 + iJ = T îωî , Ωc ≡ C3 + iRe(CΩ) = N IαI (2.6)

where B2 is the NSNS 2-form, C3 is the RR 3-form and C is a compensator field defined as

C ≡ e−φ10

√
Vol6eKcs/2 , Kcs ≡ − log

[
− i

8

∫
Ω ∧ Ω

]
(2.7)

with φ10 the 10d dilaton. The kinetic terms of the 4d chiral multiplets are then encoded

in the Kähler potential for such moduli space, that can be expressed as [38]

K

M2
P l

= − log

[
4

3

∫

M6

J ∧ J ∧ J

]
− log e−4φ4 (2.8)

where MP l is the reduced 4d Planck mass, ∗6 stands for the Hodge star operator in M6

and the 4d dilaton is given by,

e−2φ4 = 2

∫

M6

Re (CΩ) ∧ ∗6Re (CΩ) (2.9)

Particularly relevant for our purposes are the real parts of the complex structure mod-

uli. These are invariant under shifts, and therefore behave as axions in the 4d effective

theory. Their kinetic terms can be directly read from (2.8)

L =
1

2
e2φ4G−1

IJ Re(dN I) ∧ ∗4Re(dNJ) (2.10)

where

G−1
IJ ≡ M2

P l

∫

M6

αI ∧ ∗6αJ (2.11)

is a function depending only on the complex structure moduli N I . It is often convenient to

express the axions in terms of 2-forms CI
2 of R1,3 that belong to the dual linear multiplets

dCI
2 ≡ −e2φ4G−1

IJ ∗4 Re(dNJ ) (2.12)

and which arise from expanding the RR 5-form potential C5 in σ-odd harmonic 3-forms

of M6

C5 =
∑

I

CI
2 ∧ βI + . . . (2.13)

where the dots stand for further terms giving rise to 4d gauge bosons, see eq. (2.30). The

4d duality relation (2.12) then arises as a direct consequence of the 10d duality relation

F̂4 = ∗10F̂6, where F̂p = dCp−1 − Cp−3 ∧ dB2.

– 5 –
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2.2 Open string U(1)’s

In weakly coupled type II orientifolds non-Abelian gauge groups and chiral fermions charged

under them arise from open strings. As a consequence, in semi-realistic 4d compactifica-

tions the Standard Model gauge group and matter content are located in this sector.2 In

particular, for type IIA intersecting D6-brane models chiral fermions are localized at the D6-

brane intersections, and the corresponding gauge groups at the 3-cycles πa, a = 1, . . . ,K

wrapped by the D6-branes. A single D6-brane on πa will contain a U(1)a gauge the-

ory in its worldvolume, while Na coincident D6-branes wrapping πa will give rise to an

SU(Na) × U(1)a gauge group.3 In the following we will focus on the U(1) factors of such

open string gauge group.

The gauge coupling constants of such U(1) factors are obtained at the disc level by

dimensionally reducing the D6-brane DBI action (see e.g. [21, 22] and appendix A)

g−2
a = Re(fa) , fa = −iNa

∫

πa

Ωc (2.14)

Whereas at disc level the overall gauge kinetic function is diagonal, quantum corrections

may induce kinetic mixing between different D6-brane gauge factors (see e.g. [39]).

In addition to the matter multiplets at the D6-brane intersections, there are h1(πa)

massless chiral multiplets transforming in the adjoint representation of U(Na) for the a-th

stack of D6-branes. Their scalar components are given by a combination of the Wilson line

moduli θj
a and the geometric deformations φi

a of the 3-cycle πa which preserve the sLag

conditions (2.3), namely we have that

Φj
a = θj

a + λj
iφ

i
a (2.15)

where θj
a are the components of an arbitrary Wilson line harmonic 1-form

θa = θj
aζj ,

ζj

2π
∈ H1(πa, Z) (2.16)

and φi
a are the components of a normal vector preserving the sLag condition [40]

φa = φi
aXi, Xi ∈ N(πa) | LXi

J = LXi
Im Ω = 0 (2.17)

with LXi
the Lie derivative along Xi. Finally, λj

i ∈ C is a matrix relating the two basis

{ζj} and {Xi}, and can be defined as

ιXi
Jc|πa = λj

i ζj (2.18)

where ιXi
J = (Xm

i Jmn)dxn is a harmonic 1-form on the D6-brane worldvolume [40].

2This is no longer necessarily true at strong coupling, where the distinction between open and closed

string degrees of freedom becomes rather artificial.
3If πa is invariant under the orientifold action the gauge group may instead be SO(Na) or USp(Na).

Although these D6-brane can be easily incorporated into our discussion, we will not consider them in the

following, as they do not give rise to U(1) factors of the gauge group.

– 6 –
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While in principle each stack of Na D6-branes wrapping a 3-cycle πa gives rise to a

U(1)a factor, not all of these gauge symmetries survive at low energies. Indeed, several

linear combinations of U(1)’s, and in particular those which are anomalous, become massive

by an Stückelberg mechanism [36, 41, 42], with masses of the order of the string scale. In

order to describe those U(1)’s which remain massless let us introduce the set of numbers

cI
a = −

∫

πa

βI , dIa =

∫

πa

αI (2.19)

which define the Poincaré duals to the 3-cycles πa

π̂a = cI
aαI + dIaβ

I ∈ H3(M6, R) (2.20)

Notice that cI
a is proportional to the coupling of the 2-forms CI

2 to a D6-brane wrapping

πa, and that this coupling is the one triggering the Stückelberg mechanism. Indeed, dimen-

sional reduction of the D6-brane action (c.f. appendix A) reveals that some combinations

of shift symmetries in the 4d effective theory are gauged in presence of D6-branes, and

so (2.10) gets modified to

LStk =
1

2
e2φ4G−1

IJ Re(DN I) ∧ ∗4Re(DNJ) , DN I = dN I + cI
aNaA

a (2.21)

with Aa the gauge potential for U(1)a. The linear combinations of U(1) gauge symmetries

which become massive are therefore

QI =
∑

a

cI
aNaQ

a (2.22)

where Qa denotes the diagonal U(1) generator of the a-th stack of D6-branes. The number

of axions N I which are eaten in order to produce massive U(1)’s is then given by the rank

of the matrix cI
a.

In order to get a better picture of which U(1)’s remain massless, let us briefly detour

from our discussion and consider the case where the type IIA compactification is simply

given by R1,3 × M6, without any orientifold. In that case, dimensional reduction of the

closed string sector yields a 4d N = 2 spectrum, and in particular we now have 1 + h2,1

N = 2 hypermultiplets, each containing two axions instead of one. Similarly, we have

doubled the number of dual 2-forms, which arise from the reduction of C5 without any

particular orientifold parity

C5 =
∑

I

CI
2 ∧ βI +

∑

J

C2J ∧ αJ + . . . (2.23)

As a result, the number of axions that can be eaten by the D6-brane U(1)’s is doubled

with respect to the orientifold case, and we have that those open string U(1)’s that become

massive are

QI =
∑

a

cI
aNaQ

a and QJ =
∑

a

dJaNaQ
a (2.24)

With this information it is quite straightforward to provide a description of which

U(1) bosons become massive and which ones do not. For this first notice that ~γa =

– 7 –
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(~ca, ~da) is nothing but a vector in H3(M6, R) ≃ Rb3 , with b3 = 2 + 2h1,2 the number of

independent harmonic 3-forms of M6. A stack of Na D6-branes wrapping the 3-cycle πa

is then represented by the vector Na~γa, and the whole set of vectors {Na~γa}K
a=1 arising

from the K different stacks spans a vector subspace V = 〈{~γa}〉 ≃ Rr of H3(M6, R). The

dimension r of such subspace will be the number of eaten axions and massive open string

U(1)’s, while K − r will be the number of D6-brane U(1)’s that remain massless.

In the Poincaré dual language of 3-cycles this amounts to say that the number r

of massive U(1)’s correspond to the number of 3-cycles within {πa} which are linearly

independent in homology, more precisely as elements of H3(M6, R). The U(1)’s that remain

massless are those whose coefficients cI
a, dJa vanish identically, which means that they are

wrapping a trivial 3-cycle in H3(M6, R). This is impossible for a single stack of D6-branes

wrapping a sLag 3-cycle, but it can be achieved by taking linear combinations of 3-cycles.

Indeed, a simple example of the latter would be to consider two coincident D6-branes

wrapping πa which are separated via the adjoint Higgsing SU(2)×U(1)a → U(1)a1
×U(1)a2

.

The two 3-cycles πa1
and πa2

only differ by the values of their moduli Φj and so are

equivalent in homology [πa1
] = [πa2

]. This means that their U(1) gauge bosons have

exactly the same couplings to the 2-forms, ~γa1
= ~γa2

= ~γa. Hence, the combination

U(1)a1
−U(1)a2

orthogonal to U(1)a = U(1)a1
+ U(1)a2

does not couple to any axion, and

it remains as a gauge symmetry of the low energy theory. Note that this massless U(1)

combination corresponds to the formal difference of 3-cycles πa1
− πa2

, which is indeed

trivial in homology.

In general, a massless U(1) will be given by a linear combination of the form

Qb =
∑

a

nb
aQ

a such that ~γb =
∑

a

nb
aNa~γa = 0 (2.25)

and, as each vector ~γa corresponds to a 3-cycle πa we have that ~γb corresponds to a formal

linear combination of 3-cycles

πb =
∑

a

nb
aNaπa such that [πb] = 0 (2.26)

Hence, we can identify massless U(1)’s with linear combinations of D6-branes that corre-

spond to (sums of) 3-cycles πb trivial in homology. By definition, this means that there

exists a 4-chain Σ4 whose boundary is given by ∂Σ4 = πb, and so it connects all the 3-cycles

that participate in the massless U(1). As we discuss in section 3, this fact will be crucial

for computing kinetic mixing between open and closed string U(1)’s.

Let us now go back to the orientifold compactification, where the picture is quite simi-

lar. The main difference there is that the open string U(1)’s only couple to the coefficients

cI
b , and not to dJa. As a result, the number of massive U(1)’s is given by the dimension

of 〈{~ca}〉 ⊂ Rh2,1+1 ≃ H3
−(M6, R). In addition, massless U(1)’s will be given by linear

combinations of generators of the form

Qb =
∑

a

nb
aQ

a such that ~cb =
∑

a

nb
aNa~ca = 0 (2.27)

– 8 –
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and so its associated combination of 3-cycles πb built as in (2.26) does not need to be trivial

in full 3-cycle homology H3(M6, R), but only in the subspace H−
3 (M6, R) of odd 3-cycles.

Nevertheless, since we now have the orientifold images π∗
a of these 3-cycles we can construct

the linear combination

π−
b =

∑

a

nb
aNa(πa − π∗

a) (2.28)

which by (2.27) will be a trivial 3-cycle, in the sense that [π−
b ] = 0 in H3(M6, R). This

again guarantees that we can build a 4-chain Σ4 such that ∂Σ4 = π−
b .

Note that in this discussion we have mainly dealt with the de Rham cohomology group

H3(M6, R) and its homology dual H3(M6, R), rather than the more fundamental homology

group H3(M6, Z) that classifies topologically different 3-cycles. The difference between

H3(M6, Z) and H3(M6, R) does however only arise when M6 contains ZN torsional 3-

cycles, a possibility that we have implicitly ignored up to now. In fact, as we will see

in section 4 the discussion above has to be slightly modified in the presence of torsional

3-cycles. In that case the spectrum of massless and massive open string U(1)’s cannot

be understood without considering the U(1) gauge symmetries that arise from the closed

string sector, which we now turn to describe.

2.3 Closed string U(1)’s

Besides the gauge symmetries localized at the worldvolume of D-branes, there are gener-

ically extra U(1) gauge symmetries arising from the closed string sector.4 For type IIA

Calabi-Yau orientifold compactifications, massless closed string U(1) gauge bosons result

from dimensionally reducing the RR 3-form C3 on harmonic 2-forms of M6 which are even

under the orientifold involution

C3 =
∑

I

Re(N I)αI +
∑

i

Ai ∧ ωi (2.29)

where we have included the axions Re(N I) discussed above. The corresponding 4d

dual magnetic degrees of freedom arise from expanding the RR 5-form in hodge dual

harmonic 4-forms5

C5 =
∑

I

CI
2 ∧ βI +

∑

i

V i ∧ ω̃i (2.30)

Thus, overall there is a U(1)h
1,1
+ gauge symmetry in the 4d effective theory originating from

the closed string sector of the compactification.

The gauge kinetic function for these RR U(1)’s can be obtained from dimensional

reduction of the relevant kinetic term and Chern-Simons coupling in the 10d type IIA

supergravity action, resulting in [38]

fij = −iKijk̂T
k̂ (2.31)

4In particular the presence of massless closed string gauge bosons in the 4d spectrum is ubiquitous in

compactifications with extended supersymmetry.
5There are also 3-forms in the 4d theory which result from dimensionally reducing C5 on σ-odd 2-forms.

In this work we do not consider them as they are not relevant for our purposes.
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where triple intersection numbers Kijk̂ are defined as,

Kijk̂ =

∫

M6

ωi ∧ ωj ∧ ωk̂ (2.32)

Hence, contrary to what happens for open string U(1) gauge symmetries, kinetic mixing

between different RR U(1) factors can occur already at the disc level.

In general, the only objects of the 4d effective theory which are charged under RR

U(1) gauge symmetries are very massive D-particles made up from bound states of D2 and

D4-branes wrapping respectively even 2-cycles and odd 4-cycles in M6. At very special

points of the moduli space, such as orbifold points, these states can become light and the

U(1)h
1,1
+ gauge symmetry gets enhanced to some non-Abelian group.

2.4 Lift to M-theory

Whereas in weakly coupled type IIA compactifications open and closed string U(1) gauge

symmetries appear as rather different sectors, at strong coupling these differences are

smoothed out. As the coupling increases, D6-brane excitations become delocalized in the

transverse space, whereas RR bosons may feel a non-trivial potential localizing their wave-

function. At large coupling the perturbative expansion breaks down and the distinction

between open and closed string degrees of freedom also does. M-theory therefore provides

a natural framework for a unified treatment of D6-brane and RR U(1) gauge symmetries.

Let us consider M-theory compactified on a G2-holonomy manifold M̂7 admitting at

least one perturbative type IIA Calabi-Yau orientifold limit [43]

M̂7 → (M6 × S1)/σ̂ (2.33)

with σ̂ = (σ,−1) an involution which acts as the orientifold involution in M6 and reverses

the M-theory circle. The only bosonic degrees of freedom are the M-theory 3-form A3 and

the metric. Fluctuations of the latter are encoded in the covariantly constant real 3-form

Φ3 of M̂7 [44]. The massless fields in the 4d effective theory then result from expanding

A3 and Φ3 in a basis of cohomology forms,6

A3 = Re(M I)φI + Aα ∧ ωα Φ3 = Im(M I)φI
I = 1, . . . , b3(M̂7)

α = 1, . . . , b2(M̂7)
(2.34)

The massless content of the 4d effective theory is therefore given by b3 chiral multiplets

and b2 vector multiplets of N = 1 supersymmetry. The gauge group at generic points of

the moduli space is U(1)b2 , although at those points where M2 and/or M5-branes wrapping

2-cycles and 5-cycles in M̂7 become massless, it gets enhanced to some non-Abelian group.

The gauge kinetic function has been obtained in [45] from dimensional reduction of 11d

supergravity action, and it is given by

fαβ = −iM I

∫

M̂7

φI ∧ ωα ∧ ωβ (2.35)

6Note that the only independent non-trivial cohomology classes in M̂7 are H2(M̂7) and H3(M̂7), with

the other non-trivial classes related by 7d Hodge duality.
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In the limit (2.33) harmonic 2-forms and 3-forms of M̂7 decompose as,

H2(M̂7) = H2
+(M6) ⊕ Γ1

−(M6) ∧ ξ (2.36)

H3(M̂7) = H3
+(M6) ⊕ H2

−(M6) ∧ ξ ⊕ Γ2
−(M6) ∧ ξ (2.37)

where ξ is the harmonic vector of S1 and Γp
−(M6) is a set of odd p-forms which are not

globally well-defined in M6. Hence, the b2(M̂7) massless gauge bosons are mapped in

the perturbative IIA orientifold limit to b+
2 (M6) closed string and b2(M̂7) − b+

2 (M6) D6-

brane gauge bosons.7 Similarly, the b3(M̂7) complex scalars correspond to b+
3 (M6) complex

structure moduli, b−2 (M6) Kähler moduli and b3(M̂7)−b+
3 (M6)−b−2 (M6) D6-brane moduli

in the orientifold limit. Open and closed string U(1) gauge symmetries have therefore a

common origin in M-theory, as anticipated. This unified description is also particularly

useful for understanding open/closed string dualities. These occur when the G2 manifold

admits various perturbative limits of the form (2.33). In that case some RR and D6-brane

U(1) gauge symmetries may appear exchanged at different type IIA orientifold limits [43].

3 Kinetic mixing with RR photons

Given the two sets of massless U(1)’s described in the previous section, that is those arising

from open and closed string degrees of freedom, it is natural to ask how they are related

to each other. In particular, one may wonder if there is non-trivial kinetic mixing between

them. The aim of this section is to provide a simple geometric expression for the gauge

kinetic function fia that mixes open and closed string U(1)’s

S4d,mix = −
∫

R1,3

[
Re(fia)F

i
RR ∧ ∗4F

a
2 + Im(fia)F

i
RR ∧ F a

2

]
(3.1)

where F i
RR = dAi and F a

2 = dAa are 4d field strengths for RR and D-brane U(1)’s,

respectively.

A first hint on how fia should look like comes from the Chern-Simons couplings of a

single D6-brane to the RR potentials C5 and C3, encoded in the following action

SCS =

∫

R1,3×πa

P

[
Fa

2 ∧ C5 +
1

2
Fa

2 ∧ Fa
2 ∧ C3

]
(3.2)

=

∫

R1,3×πa

[
Fa

2 ∧
(

C5 +
1

2
Lφa

C5 + . . .

)
+

1

2
Fa

2 ∧ Fa
2 ∧

(
C3 +

1

2
Lφa

C3 + . . .

)]

where Fa
2 ≡ F a

2 +B2, and P [. . .] denotes the pull-back to the worldvolume of the D6-brane.

In the second line we have performed a Taylor expansion on a massless deformation (2.17)

of the D6-brane 3-cycle πa, Lφa
being the Lie derivative along such deformation. Following

the computations of appendix A (see also [21, 22]) one can dimensionally reduce such action

to obtain an expression of the form (3.1) with

fia = −iMa
ijΦ

j
a + . . . (3.3)

7The later can be heuristically understood from expanding the NSNS 2-form B2 in elements of Γ1
−(M6).
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where we have dropped all terms beyond linear order in the D6-brane moduli Φj
a, given

by (2.15). Finally we have defined

Ma
ij ≡

∫

πa

ωi ∧ ζj =

∫

ρj

ωi (3.4)

with ζj a harmonic 1-form of πa, ρj ⊂ πa its Poincaré dual 2-cycle and ωi the Calabi-

Yau 2-form related to the RR U(1). It is easy to check that Ma
ij is a moduli-independent

topological quantity, that vanishes unless some non-trivial 2-cycle ρj of πa is also non-trivial

in the Calabi-Yau M6. More precisely, for Ma
ij to be non-zero the 2-cycle ρj should be a

non-trivial element of H+
2 (M6, R), so that the rhs of (3.4) does not vanish.

In fact, the kinetic mixing (3.3) is only well-defined up to a Φ-independent term,

related to the choice of 3-cycle πa within [πa] taken to describe the point φa = 0. This

ambiguity is however only present for massive D6-brane U(1)’s, while for those U(1)’s

that are not lifted by the Stückelberg mechanism fia is fully well-defined.8 Indeed, this is

easily seen in the case of the adjoint Higgsing SU(2)×U(1)a →U(1)a1
×U(1)a2

discussed in

the previous section, in which the massless combination U(1)a1
−U(1)a2

is the one to be

considered. Recall that the two 3-cycles πa1
and πa2

only differ by the vev of their moduli

Φai
, and by consistency the kinetic mixing of RR fields with U(1)a1

−U(1)a2
should vanish

for Φa1
= Φa2

. We must then have

fi(a1−a2) = −iMa
ij(Φ

j
a1

− Φj
a2

) + . . . (3.5)

without any Φ-independent contribution. One may also see that in general this local

expression translates into the more geometrical one9

fi(a1−a2) = −i

∫

Σ
a1−a2
4

(Jc + F a1−a2

2 ) ∧ ωi (3.6)

where Σ4 is a 4-chain such that ∂Σa1−a2

4 = πa1
− πa2

, and we are identifying

∫

Σ
a1−a2
4

F a1−a2

2 ∧ ωi =

∫

∂Σ
a1−a2
4

Aa1−a2 ∧ ωi ≡
∫

πa1

Aa1 ∧ ωi −
∫

πa2

Aa2 ∧ ωi . (3.7)

It is now easy to generalize the expression (3.6) to any massless D6-brane U(1). Recall

from the previous section that such U(1) can be characterized by a linear combination

of 3-cycles πb = nb
aNaπa trivial in homology, so that there exists a 4-chain Σb

4 such that

∂Σb
4 = πb. It is then natural to expect a kinetic mixing of the form

fib = −i

∫

Σb
4

(Jc + F b
2 ) ∧ ωi (3.8)

8In order to fix this ambiguity for massive D6-brane U(1)’s one may resort to define a reference 3-cycle

π0
a in the same homology class [πa], as in [21, 22]. For the massless U(1)’s of interest for this paper such

choice of reference 3-cycle is not needed.
9Indeed, both (3.5) and (3.6) have the same dependence with respect to the open string moduli Φj

ai
,

and both vanish for Φa1
= Φa2

. For further details see [21, 22, 46].
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where again the integral over F b
2 ∧ ωi should be understood as a surface integral

∫

Σb
4

F b
2 ∧ ωi =

∫

∂Σb
4

Ab ∧ ωi . (3.9)

As before, this expression has the same Φ-dependence as the linear combination

fiaNan
b
a, with fia given by (3.3), that one would obtain by expanding the CS action (3.2).

However, in (3.8) the Φ-independent contribution to the kinetic mixing is fixed, up to a

subtle point that we now describe. Given a boundary πb, the 4-chain Σb
4 such that ∂Σb

4 = πb

is defined only up to a 4-cycle π4, since by definition ∂Σb
4 = ∂(Σb

4 + π4). Each smooth 4-

chain of the form Σb
4 + π4 will then be equally valid to enter into the expression for the

kinetic mixing and, if π4 is non-trivial in the homology of M6, then the Φ-independent

contribution to (3.8) will depend on the homology class [π4]. More precisely, the kinetic

mixing computed over Σb
4 or over Σb ′

4 = Σb
4 + πj

4, with πj
4 the Poincaré dual to the 2-form

ωj , will differ by fij = −i
∫
πj
4

Jc ∧ωi where fij is the mixing (2.31) between two RR U(1)’s.

Hence, it would seem that given an open string massless U(1)b and its associated boundary

πb, the expression (3.8) gives a discrete set of possibilities for the kinetic mixing fib.

In practice, however, one is able to distinguish between all these choices from the

physical context, so that no real ambiguity arises. Let us for instance consider the case

where, by performing a loop in the open string moduli space, the initial 4-chain Σb
4 is

deformed to Σb ′
4 = Σb

4 + πj
4. The kinetic mixing between open and closed string U(1)’s

should then vary accordingly. That is

Σb
4 → Σb

4 + nπj
4 implies fib → fib + nfij n ∈ Z (3.10)

with n the number of loops that we have performed. Such kind of behavior is well-known

in N = 1 string compactifications, where the closed string moduli space is fibered over the

open string moduli space, and so performing certain loops on the D-brane moduli space is

equivalent to shift the values of the closed string variables [47–51]. In the case at hand,

performing loops is equivalent to redefine our U(1) sector. Namely,

Σb
4 → Σb

4 + nπj
4 is equivalent to U(1)b → U(1)b + nU(1)j n ∈ Z (3.11)

and so we deduce that the 4-chains Σb
4 and Σb

4 + nπj
4 correspond to two different U(1)’s,

hence the discrepancy in their kinetic mixing with U(1)i.

While the above discussion may seem slightly speculative, one may put it in firmer

grounds by understanding the expression (3.8) from the viewpoint of its M-theory lift.

Indeed, upon fibering the M-theory circle on the 4-chain Σb
4 it is easy to see that we should

obtain a 5-cycle Λβ
5 ⊂ M̂7 related by Poincaré duality to some harmonic 2-form ωβ of the

kind described in subsection 2.4, and that corresponds to a massless U(1)β . Hence, upon

lifting our D6-brane configuration to M-theory we have to perform the replacements

U(1)b → U(1)β
Σb

4 → Λβ
5

Jc + F2 → M IφI

(3.12)
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and so we obtain

fib → −i

∫

Λβ
5

M IφI ∧ ωi = −iM I

∫

M̂7

φI ∧ ωi ∧ ωβ = fiβ (3.13)

reproducing eq. (2.35). Had we instead fibered the M-theory circle over the 4-chain Σb
4+nπj

4,

we would have ended up with a different 5-cycle Λγ
5 whose dual 2-form ωγ is different from

ωβ. More precisely, it is easy to see that we should have [ωγ ] = [ωβ] + n[ωj], from which

the relation (3.11) follows.

Before closing this section, let us point out that the expression for the kinetic mix-

ing (3.6) is quite similar to the one obtained for the open string superpotential of a D6-

brane. Indeed, following [52] we have that

WD6 = − i

2

∫

Σa
4

(Jc + F a
2 ) ∧ (Jc + F a

2 ) (3.14)

where Σa
4 is a 4-chain such that ∂Σa

4 = πa − π0
a, with π0

a a reference 3-cycle. Compared

to the D6-RR gauge kinetic mixing (3.6), the D6-brane superpotential (3.14) is basically

obtained from performing the replacement ωi → T k̂ωk̂. Following our above discussion, we

then see that a D6-brane may develop a non-trivial superpotential of the form (3.14) only

if some of the 2-cycles ρj of πa are non-trivial in the Calabi-Yau M6 and, more precisely,

if they are non-trivial elements of H−
2 (M6, R).

The similarities between WD6a
and fia are perhaps not that surprising since, from the

unorientifolded N = 2 perspective these two quantities are essentially the same one. In

the same sense that (3.14) is known to be corrected by worldsheet instantons, we would

expect that the kinetic mixing between D6-branes and RR photons is corrected as well.

Computing such worldsheet corrections is however beyond the scope of the present paper.

4 Mass mixing with RR photons

In our description above, each RR photon arises from an RR potential whose internal

profile is an harmonic wavefunction of the compactification manifold M6. In this section

we would like to argue that these are not the only RR U(1)’s of interest for phenomenology.

There are less obvious RR symmetries, which from the 4d viewpoint can be understood

as massive U(1)’s Higgsed down to Zk gauge symmetry by a Stückelberg mechanism, as

in [25]. In the following we would like to argue that in Calabi-Yau compactifications such

RR U(1)’s appear whenever the topology M6 allows for torsional p-cycles and p-forms, by

simply analyzing the 4d strings and particles that are charged under such discrete gauge

symmetries. For simplicity, we first perform such analysis in the absence of orientifolds

of D-branes. Remarkably, we find that when we include D-branes into the picture a mass

mixing arises between certain open string U(1)’s and RR torsional U(1)’s, the massless U(1)

being a linear combination of the two. We also analyze this effect from the viewpoint of M-

theory, concluding that the discrete gauge symmetries of a 4d vacuum can be understood

in terms of the torsional (co)homology groups of the M-theory compactification manifold

M̂7. Finally, we provide an explicit example of a compactification where such mass mixing
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occurs, and which illustrates different mass mixing scenarios whose phenomenology will be

analyzed in section 5.

4.1 Torsion and discrete gauge symmetries

All along the above discussion, a key role has been played by the topology of the compact-

ification manifold M6. In particular, we have been able to derive rather general features

of the 4d low energy effective action thanks to the fact that each object of the compactifi-

cation corresponds to a topological class of M6. Indeed, each massless mode of the closed

string sector, including RR U(1)’s, corresponds to a harmonic p-form of M6, and so to an

element of the de Rham cohomology group Hp(M6, R). On the other hand, each D6-brane

wrapping a sLag 3-cycle π3 ⊂ M6 corresponds to a non-trivial element of the homology

group H3(M6, R), while the non-trivial 2-cycles of π3 may also be non-trivial elements of

H2(M6, R). The well-known relations between Hp(M6, R) and Hp(M6, R), namely the

integrals of closed p-forms over p-cycles, allows then to compute the couplings between

open and closed string sectors, and from there all the analysis follows.

Given this fact, one may wonder if that is all the topological information of M6 that

is relevant for the 4d effective action. After all, a p-cycle πp ⊂ M6 not only defines an

element of Hp(M6, R), but rather one of the more fundamental group Hp(M6, Z). In

general, Hp(M6, Z) contains more information than Hp(M6, R), the difference being the

torsion homology groups Tor Hp(M6, Z), which are generated by p-cycles of M6 with a

Zk structure. As discussed below, a D-brane wrapping one of these torsion cycles cannot

be detected by an element of Hp(M6, R) and so it is invisible to the closed string mass-

less spectrum. It may however be detected by the massive closed string spectrum, and

in particular by massive sectors of the theory related to a topological class of M6. In

the following, we would like to argue that this is indeed the case, and that in our setup

the torsion groups of M6 are related to massive RR U(1)’s Higgsed down to Zk gauge

symmetries, as in the analysis of [25].

In general, the homology group Hr(MD, Z) of a D-dimensional Kähler manifold MD

consists of a free part, given by br copies of Z, and a torsional part, given by a set of finite

Zk groups,

Hr(MD, Z) = Z ⊕ . . . ⊕ Z︸ ︷︷ ︸
br

⊕Zk1
⊕ . . . ⊕ Zkn

(4.1)

Here br ≡ dim Hr(MD, R) stands for the rth Betti number of MD, which also counts

the number of harmonic r-forms of MD. The correspondence between elements of Zbr ⊂
Hr(MD, Z) and harmonic r-forms can be made via de Rham’s and Hodge’s theorems, and

amounts to the fact that given a basis of r-cycles {πj
r} generating the lattice Zbr , one can

construct a basis of harmonic r-forms {ωi
r} such that

∫
πj

r
ωi

r = δij .

The elements of Tor Hr(MD, Z) = Zk1
⊕ . . . ⊕ Zkn

are much harder to describe via

differential geometry. A generator of Zk consist of a non-trivial r-cycle πtor
r in the homology

of MD, but wrapping k times πtor
r corresponds to a trivial r-cycle. Otherwise said, πtor

r

is not the boundary of any (r + 1)-chain on MD, but we can always construct a chain

Σr+1 ⊂ MD such that ∂Σr+1 = kπtor
r . This implies that the integral of any closed r-form
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ωr over πtor
r vanishes identically, since

∫
πtor

r
ωr = k−1

∫
Σr+1

dωr = 0. As a result, D-branes

wrapped on torsional cycles of a Calabi-Yau M6 cannot be detected by the 4d massless

closed string modes, since the internal wavefunctions of the latter are described by harmonic

p-forms. In addition, D-branes wrapping torsional 2, 3 and 4-cycles are necessarily non-

BPS since their central charge, respectively measured by the integral of J , Ω and J2 over

them, also vanishes.10

While non-BPS, D-branes wrapping torsional p-cycles of M6 are stable objects of the

4d effective theory, since they have discrete conserved charges. Let us consider type IIA

string theory compactified on a manifold M6 with torsional 3-cycles, and more precisely

such that Tor H3(M6, Z) = Zk. The relations between torsional groups discussed in the

next subsection imply that Tor H2(M6, Z) = Zk as well. Hence, together with a k-torsional

3-cycle πtor
3 we will always have a k-torsional 2-cycle πtor

2 within M6. Let us now wrap

a D2-brane around πtor
2 , seen in 4d as a massive particle, and a D4-brane around πtor

3 ,

seen in 4d as a massive string. Both 4d objects are non-BPS but nevertheless stable, at

least mod k. That is, it is possible that k D-strings combine and disappear, but this can

only happen in groups of k, and not for less than k D-strings. Note that this property

has also been observed from a 4d field theory viewpoint in strings dubbed as Aharanov-

Bohm strings in [55–57] and Zk strings in [25], and which are associated to a U(1) gauge

symmetry broken down to Zk via a Stückelberg mechanism. In fact, the main property

of these strings is that certain particles, also stable mod k, can detect a non-trivial Zk

holonomy when circling around the string. As we will now show, that property is precisely

reproduced by those 4d particles and strings that arise from wrapping D-branes on torsion

cycles of M6.

Indeed, let us again consider a D4-brane on R1,1 × πtor
3 and a D2-brane wrapped on

πtor
2 and performing a closed loop γ ⊂ R1,3 around the 4d D-string. The phase picked up

by our D-particle upon performing such loop reads

hol(γ) = exp

(
2πi

∫

γ×πtor
2

C3

)
= exp

(
2πi

∫

D×πtor
2

F4

)
(4.2)

where F4 = dC3 is the RR field strength sourced by the D4-brane. In particular, we have

that dF4 = δ5, with δ5 a δ-like 5-form concentrated around R1,1×πtor
3 and with components

transverse to it. Finally, D ⊂ R1,3 is given by a disk such that ∂D = γ and it intersects

the 4d D-string once.

As the holonomy (4.2) is an observable 4d quantity, it should not depend on the

precise embedding of πtor
2 . In particular, (4.2) should not vary if we perform a continuous

deformation of the 2-cycle πtor
2 or if we pick a different representative πtor ′

2 within the

homology class [πtor
2 ] ∈ H2(M6, Z). Indeed, a D2-brane wrapped on any representative of

[πtor
2 ] is supposed to represent the same kind of D-particle in 4d, and so the holonomy (4.2)

for any of them should be the same. One can check this by considering another D2-brane

wrapping πtor ′
2 and performing the same 4d loop γ. Let us denote the phase picked by this

10This is not necessarily true for type II flux compactifications on SU(3)-structure manifolds, where the

forms Ω and J are no longer necessarily closed [53, 54].
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D-particle by hol′(γ). Since [πtor ′
2 ] = [πtor

2 ], we can construct a 3-chain Σ3 ⊂ M6 such that

∂Σ3 = πtor ′
2 − πtor

2 . We then have that hol′(γ) = e2πinhol(γ), with

n =

∫

D×πtor′
2

F4 −
∫

D×πtor
2

F4 =

∫

D×Σ3

δ5 (4.3)

where we have applied Stockes’ theorem. It is easy to see that the rhs of (4.3) is an integer,

more precisely a product of signed intersections: n = #(R1,1 ∩ D) · #(πtor
3 ∩ Σ3). Hence,

we deduce that hol′(γ) = hol(γ) as expected from four-dimensional grounds. It does then

make sense to denote the holonomy (4.2) as hol(γ, [πtor
2 ]).

Let us now consider the case where the D-particle above performs k times the loop γ.

Since kγ × πtor
2 is the same integration domain as γ × kπtor

2 we have that

[
hol(γ, [πtor

2 ])
]k ≡ hol(kγ, [πtor

2 ]) = hol(γ, [kπtor
2 ]) = 1 (4.4)

where we have used the fact that [kπtor
2 ] is trivial in the homology of M6 and so, by

the discussion above, its holonomy should be trivial. Hence, we deduce that hol(γ, [πtor
2 ])

should be a kth root of unity, just like for the Aharanov-Bohm strings of [25, 55–57].

In fact, we can be more precise about hol(γ, [πtor
2 ]). Notice that

1

2πi
log

[
hol(γ, [πtor

2 ])
] mod 1

=
1

k

∫

D×kπtor
2

F4 =
1

k

∫

D×Σ3

δ5 =
p

k
(4.5)

where Σ3 is a 3-chain such that ∂Σ3 = kπtor
2 . Again, p ∈ Z since it can be defined

as the product of transverse intersections #(R1,1 ∩ D) · #(πtor
3 ∩ Σ3). By construction

#(R1,1 ∩ D) = 1, while #(πtor
3 ∩ Σ3) is (mod 1) the exact definition of the torsion linking

form L([πtor
2 ], [πtor

3 ]): a topological invariant used to classify manifolds with torsion, and

which is the equivalent of the intersection product for non-torsional cycles [58, 59].

Recall that the intersection product I([πr], [πD−r]) = [πr] · [πD−r] is a bilinear form

between a r and a (D − r)-cycle of MD, which only depends on the homology class of

each cycle. Similarly, the torsion linking form L([πtor
r ], [πtor

D−r−1]) is a bilinear form between

torsional cycles of MD that only depends on their homology classes, and that is symmetric

for D = even. In our setup, such quantity not only computes the holonomy of a torsional

D-particle around a torsional D-string, but also the holonomy of a torsional D-string around

a torsional D-particle.

Indeed, let us consider a D4-brane wrapping πtor
3 and whose 4d worldsheet sweeps a

two-sphere S2 ⊂ R1,3 that surrounds our torsional D-particle. Similarly to (4.5) we obtain

that the holonomy for such D-string is given by

1

2πi
log

[
hol(S2, [πtor

3 ])
] mod 1

=
1

k

∫

B×kπtor
3

F6 =
1

k

∫

B×Σ4

δ7
mod 1≡ L([πtor

2 ], [πtor
3 ]) (4.6)

where B ⊂ R1,3 is a 3-ball such that ∂B = S2, Σ4 ⊂ M6 is a 4-chain with ∂Σ4 = kπtor
3 ,

and F6 is the RR field strength sourced by the D2-brane, so that dF6 = δ7 is a δ-like 7-form

on R × πtor
2 .

To sum up we have shown that, in compactification manifolds M6 with torsional cy-

cles, Aharanov-Bohm strings and particles appear in the 4d effective theory. The fractional
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holonomies that such strings and particles induce on each other is controlled by a topo-

logical invariant of M6, namely the torsion linking number L([πtor
r ], [πtor

6−r−1]). As shown

in [25], such kind of Aharanov-Bohm strings are the smoking gun for a set of discrete gauge

symmetries in 4d field theories, which arise from a massive U(1) gauge symmetry higgsed

down to Zk. As is easy to infer from our discussion, one should have a different kind of

Aharanov-Bohm string for each Zki
factor in (4.1), and so we would expect to also have a

massive U(1) for each of these factors. This will be our working assumption in the following

and, as we will see, several non-trivial consequences can be derived from it.

4.2 Massive RR U(1)’s from torsion

Let us now explore the implications of having a massive U(1) for each generator of Tor

H3(M6, Z), which is where the Aharanov-Bohm D-strings were constructed from. Notice

that our discussion above was carried in the context of type IIA string theory compactified

on a Calabi-Yau 3-fold M6, without the need of any orientifold projection or R1,3-filling

D6-branes. In the following we will continue to assume such class of 4d N = 2 compactifi-

cations, leaving the effect of the orientifold projection for the end of this subsection.

If Aharanov-Bohm strings and particles arise from wrapping Dp-branes on elements of

Tor Hr(M6, Z), then massive U(1)’s should arise from reducing RR p-forms in elements of

Tor Hr(M6, Z). That is, one should expand the RR potentials Cp in the torsional analogues

of the harmonic forms of section 2.3, which should moreover be eigenvectors of the Laplacian

∇2 = dd† + d†d. Constructing such torsional analogues of harmonic forms is quite similar

to finding an appropriate basis of p-forms to perform dimensional reduction on SU(3)-

structure manifolds [54, 60–62], since both problems deal with p-forms that are invisible

to de Rham cohomology and correspond to the internal profile of massive 4d modes.

From the viewpoint of de Rham cohomology Hr(MD, R), a torsional r-form αtor
r of a

manifold MD is trivial. Given an r-form αtor
r that represents a torsional element [αtor

r ] ∈
Tor Hr(MD, Z) = Zk we should have

∫
πr

αtor
r = 0 for any r-cycle πr of MD, for the same

reason that integrals of closed forms over torsional cycles vanish. Hence, such form can be

written as

kαtor
r = dωtor

r−1 (4.7)

with ωtor
r−1 a globally well-defined (r − 1)-form, and k ∈ Z such that kαtor

r is trivial also in

Tor Hr(MD, Z). Since ωtor
r−1 is globally well-defined, we can expand an RR potential Cp

on it.11 Indeed, we will argue below that both αtor
r and ωtor

r−1 are related to an isolated set

of massive modes of the compactification and so, in a spirit similar to [62], we will demand

that the set of representatives {ωtor
r−1} should be closed under the action of the Laplacian,

as in eq. (4.18). For concreteness, we will denote by T̂or Hr−1 the set {ωtor
r−1} of non-closed

forms which describe such 4d massive modes.

11In fact, since we are dealing with RR potentials, we should think of αtor
r as a gerbe. Then it is no

longer true that ωtor
r−1 is globally well-defined but exp(2πi

R

πr−1

ωtor
r−1) must be so for any cycle πr−1, which

is enough for our purposes. See appendix C for further details.
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Let us now relate this set of forms to the torsional cycles of a compactification. For

this one needs to make use of Poincaré duality [63]

Hr(MD, Z) ≃ HD−r(MD, Z) (4.8)

as well as of the universal coefficient theorem [58]

Tor Hr(MD, Z) ≃ Tor Hr+1(MD, Z) (4.9)

For a six-dimensional manifold M6, these two results imply that the only two finite groups

that describe torsional classes in M6 are

Tor H3(M6, Z) ≃ Tor H2(M6, Z) ≃ Tor H4(M6, Z) ≃ Tor H3(M6, Z) (4.10)

and

Tor H1(M6, Z) ≃ Tor H4(M6, Z) ≃ Tor H2(M6, Z) ≃ Tor H5(M6, Z) (4.11)

We will be mainly interested in (4.10), since Tor H3(M6, Z) classifies Aharanov-Bohm

(AB) strings built from D4-branes, and TorH2(M6, Z) dual 4d particles from wrapped

D2-branes.

Given a torsion homology group

Tor H3(M6, Z) = Zk1
⊕ . . . ⊕ Zkn

= Tor H2(M6, Z) (4.12)

then by our previous discussion we have n different kinds of 4d AB-strings and particles. In

addition we will also have 4n forms in which the RR potentials C3 and C5 can be reduced.

In order to describe (4.12) such forms will satisfy the relations

dωtor
α = kα

βαtor
β dβtor,β = −kβ

αω̃tor,α (4.13)

where kα
β ∈ Z, α, β = 1, . . . , n is an invertible symmetric matrix, and

[αtor
α ] ∈ Tor H3(M6, Z) [ω̃tor,α] ∈ Tor H4(M6, Z)

ωtor
α ∈ T̂or H2 βtor,α ∈ T̂or H3

The numbers kα in (4.12) will constrain the choice of kα
β, having kα = kα

α if k is diagonal.

For a matrix k with off-diagonal entries, kα is the smallest integer such that kα(k−1)αβ ∈
Z, ∀β. As discussed in appendix C in this formalism the torsion linking form is given by

Lα
β = L([πtor

2,α], [πtor,β
3 ]) = (k−1)α

β (4.14)

and the integrals of these forms satisfy

∫

M6

αtor
ρ ∧ βtor,σ =

∫

M6

ωtor
ρ ∧ ω̃tor,σ = δσ

ρ (4.15)

being the analogue of (2.5) for torsional cohomology.
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Clearly, this set of forms are the torsional analogues of the forms αI , ωi, ω̃i and βI

that were introduced in section 2 in order to dimensionally reduce C3 and C5. Performing

the same kind of expansion in the present basis

C3 =
∑

α

Re(Nα)αtor
α + Aα ∧ ωtor

α (4.16)

C5 =
∑

α

Cα
2 ∧ βtor,α + V α ∧ ω̃tor,α (4.17)

we obtain n pairs of electric and magnetic 4d RR U(1) gauge bosons (Aα, V α), as well as a

set of n axions Re(Nα) and 2-forms Cα
2 . These 4d modes are massive, since they correspond

to a massive U(1)n gauge symmetry broken down to the discrete subgroup (4.12). In

particular, Aα are the electric gauge bosons which couple to Zkα
particles, while Cα

2 are

the 2-forms coupled to the dual AB strings. Note that ωtor
α and βtor,α are non-closed forms

and so, unlike harmonic forms, they can have non-zero integrals over torsional cycles πtor
2

and πtor
3 , respectively.

Since {ωtor
α } and {βtor,α} should produce a well-defined massive 4d sector, we should

impose that they are eigenvectors of the Laplacian of M6 or, more generally, that they

generate a vector space closed under the action of ∇2 = dd† +d†d. That is, we require that

∇2ωtor
α = −M2

P l Mα
βωtor

β ∇2βtor,α = −M2
P l M̃

α
ββtor,β (4.18)

with M and M̃ constant matrices. Then, because [∇2, d] = 0, we also have that

∇2αtor
α = −M2

P l (k
−1 · M · k)α

βαtor
β ∇2ω̃tor,α = −M2

P l (k
−1 · M̃ · k)αβω̃tor,β (4.19)

These two mass matrices are actually related to each other, since plugging (4.18) and (4.19)

into (4.15) we obtain that M = k · M̃ · k−1. Finally, it is useful to define the quantities

f̌αβ ≡
∫

M6

ωtor
α ∧ ∗6 ωtor

β , Ǧ−1
αβ ≡ M2

P l

∫

M6

αtor
α ∧ ∗6 αtor

β (4.20)

which satisfy the relation

Ǧ−1
αβ = (k−1 ·M · f̌ · k−1)αβ (4.21)

Let us now show that all these geometric relations provide a consistent effective field

theory, and in particular the 4d field theory Lagrangian describing discrete gauge symme-

tries put forward in [25]. From (4.16) and (4.13) we have

dC3 = [Re(dNβ) + kβ
αAα] ∧ αtor

β + dAα ∧ ωtor
α (4.22)

Plugging this expression into the C3 10d kinetic term
∫

F4 ∧ ∗10F4, and integrating over

M6 we obtain the 4d Lagrangian density

Ltor
Stk =

1

2
e2φ4 Ǧ−1

αβ Re(DNα) ∧ ∗4Re(DNβ) , DNβ = dNβ + kβ
αAα (4.23)

which indeed corresponds to a Stückelberg Lagrangian for n RR massive U(1)’s, as in [25].

Note that the rather abstract relations described in the context of torsional cohomology
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acquire an elegant physical interpretation in the context of massive RR U(1)’s. In par-

ticular, we observe that relations (4.10) ensure an equal number of electric and magnetic

degrees of freedom, whereas eqs. (4.13) provide a one-to-one correspondence between mas-

sive axions and massive vector bosons. Finally, the universal coefficient theorem, eq. (4.9),

sets a correspondence between charges of 4d particles and U(1) gauge symmetries.

From (4.23) one can read the mass matrix for the gauge bosons with canonically

normalized kinetic terms, which is as expected given by M2
P lM. The quantities Ǧαβ and f̌αβ

defined in (4.20) are the torsional analogues of (2.11) and (2.31), respectively. The mass of a

RR U(1) gauge boson is thus controlled by the ratio between some combination of complex

structure moduli and some combination of Kähler moduli, a rough estimation being

m2
RR ≃ M2

P l

Vol23-cycleVol2-cycle

(4.24)

where Vol3-cycle and Vol2-cycle are the typical volumes of torsional 3- and 2-cycles, measured

in string units. In particular, for regions of the moduli space where the volume of the 2-

cycle becomes large, the RR U(1) vector boson can become light as compared to massive

D6-brane gauge bosons.

While the above discussion is carried in the context of type IIA 4d N = 2 Calabi-Yau

compactifications, one can easily adapt the above results to include the presence of an

orientifold projection. Indeed, recall from section 2 that due to the orientifold parity of

C3 and C5, massless RR U(1) gauge bosons are associated to σ-even harmonic 2-forms

ωi and σ-odd harmonic 4-forms ω̃i, classified by the groups H2
+(M6, R) and H4

−(M6, R).

Similarly, in orientifold compactifications Zk discrete gauge symmetries are classified by

the torsion groups

Tor H−
3 (M6, Z) ≃ Tor H+

2 (M6, Z) ≃ Tor H4
−(M6, Z) ≃ Tor H3

+(M6, Z) (4.25)

rather than by (4.10). In fact, when we consider the whole set of closed string degrees

of freedom that may give rise to a 4d massive U(1) symmetry via reduction on torsional

p-forms, much more possibilities appear. We have summarized in table 1 the 10d origin

of the electric degrees of freedom of massive closed string U(1) vector bosons for type IIA

Calabi-Yau orientifold compactifications. We also give the 10d origin of the particles which

are charged electrically under these U(1)’s, and of the axions which mediate the Stückelberg

mechanism giving masses to the vector bosons. Similarly, in table 2 we present the dual

magnetic degrees of freedom and 2-forms.

Needless to say, for each massive U(1) the identities (4.8) and (4.9) (or rather their

orientifold version) insure that the degrees of freedom arising from torsional groups arrange

into complete N = 1 massive vector multiplets.12 The total number of massive closed string

12Beside axions and gauge bosons, these multiplets contain scalars that control a FI-term. For the case of

vector multiplets that arise from expanding C3 as in (4.16), such scalars parametrize massive deformations

of the metric that spoil the Calabi-Yau condition. In order to write down the corresponding FI-terms we

need to expand Ω in elements of dTor H3
−, obtaining

ξα

g2
α

≃

Z

M6

Im (dΩ) ∧ α
tor
α , α

tor
α ∈ Tor H

3
+

which vanishes because of the Calabi-Yau condition dΩ = 0.
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U(1)elec. group charged particles cycle axions group

gm
µ T̂or H1

+ P Tor H+
1 gij Tor H2

+

Bm
µ T̂or H1

− F1 Tor H−
1 Bij Tor H2

−

Cµ
mn T̂or H2

+ D2 Tor H+
2 Cijk Tor H3

+

Cµ
mnop T̂or H4

− D4 Tor H−
4 Cijklm Tor H5

−

Table 1. Complete set of massive closed string gauge symmetries and charged states in weakly

coupled type IIA Calabi-Yau orientifold compactifications. P denotes the gravity wave and F1 the

fundamental string. We present also the axions which mediate the Stückelberg mechanism giving

masses to the corresponding vector boson.

U(1)mag. group charged strings cycle CI
2 group

KKµ
mnopq Tor H5

− KK Tor H−
4 KKµν

ijkl T̂or H4
−

Bµ
mnopq Tor H5

+ NS5 Tor H+
4 Bµν

ijkl T̂or H4
+

Cµ
mnop Tor H4

− D4 Tor H−
3 Cµν

ijk T̂or H3
−

Cµ
mn Tor H2

+ D2 Tor H+
1 Cµν

i T̂or H1
+

Table 2. Dual U(1) magnetic degrees of freedom and 2-forms mediating the Stückelberg mechanism.

KK denotes the Kaluza-Klein monopole.

vector multiplets in a type IIA Calabi-Yau orientifold compactification is therefore

# torsional U(1)’s = dim
(
2Tor H2

+ ⊕ Tor H2
− ⊕ Tor H3

+

)
(4.26)

Notice that some of these U(1) symmetries may actually correspond to massive gravipho-

tons. In that case even in the presence of the orientifold, 4d N ≥ 2 supersymmetry is

approximately recovered at points near the boundary of the moduli space where these vec-

tor states become light. Compactifications of this type were intensively studied for instance

in [64–67], and the particular example of section 4.5 belongs to this class.

From this point of view N = 2 and N = 1 CY3 orientifold compactifications do not

seem so different, since in order to describe N = 1 massive U(1) sectors we just need to

perform an orientifold projection of the N = 2 spectrum. The latter turns out to be a naive

statement, in particular for those compactifications that contain D-branes. Indeed, just like

torsional Aharanov-Bohm D-strings, space-time filling D-branes wrapping torsional cycles

can detect torsional U(1) symmetries. Hence, in the presence of such open string sectors

which U(1) symmetries are massless and which ones are massive needs to be reconsidered,

as we now proceed to describe.
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4.3 The Stückelberg mechanism revisited

Once that we consider type II orientifold compactifications we should also consider space-

time filling D-branes. An obvious question is therefore whether such D-branes feel the

presence of torsion in homology. In particular, in type IIA CY3 orientifold compactifications

space-time filling D6-branes wrap 3-cycles of the compactification manifold M6, for which

we assume a torsion group Tor H3 of the form (4.12). Of course, if aiming for a 4d N = 1

compactification one would never wrap a D6-brane in a purely torsional 3-cycle since (for

M6 a Calabi-Yau, c.f. footnote 10) it would be automatically non-BPS. However, recall

from section 2 that open string U(1) gauge symmetries are not associated to a particular 3-

cycle, but rather to a formal sum of them. More precisely, we saw there that each massless

open string U(1) should be related to a linear combination of 3-cycles π−
b which is trivial in

H3(M6, R) or, otherwise said, the integral of any harmonic 3-form of M6 vanishes over π−
b .

But from our discussion above it is easy to see that this does not imply that π−
b in (2.28) is

trivial in the more fundamental group H3(M6, Z): [π−
b ] could still be a non-trivial element

of Tor H3(M6, Z).

In the following we would like to argue that if π−
b is non-trivial in torsional homol-

ogy (more precisely if [π−
b ] is non-trivial in Tor H−

3 (M6, Z)) then the corresponding open

string U(1) will not be free of
∫

R1,3 C2 ∧ F couplings that mediate the Stückelberg mech-

anism. Instead, a Stückelberg coupling will be generated with the 2-forms Cα
2 in the

expansion (4.17) of the RR potential C5. As a result, [π−
b ] should be a trivial 3-cycle in

H3(M6, Z) for an open string U(1)b to be massless. If it is only trivial in H3(M6, R) but

not in Tor H−
3 (M6, Z) then a mass mixing term will be generated with torsional RR U(1)’s,

and the massless U(1) will be given by a linear combination U(1)b +
∑

α nαU(1)α, where

U(1)α are the RR U(1)’s.

In order to argue for such class of Stückelberg couplings let us consider a D4-brane

wrapping a 3-cycle πtor
3 homologous to π−

b . This setup is precisely the one considered in

section 4.1, up to the orientifold projection whose effect amounts to consider the torsion

groups (4.25) instead of (4.10). As these D-strings are the 4d Zk strings of [25], their 4d

worldsheet Σ2 contains couplings of the form

−
∑

β

cβ
b

∫

Σ2

Cβ
2 (4.27)

where the 2-form Cβ
2 is dual to the axion Re(Nβ), specified by the torsion classes [πtor,β

3 ] ∈
Tor H−

3 (M6, Z) and [πtor
2,β] ∈ Tor H+

2 (M6, Z) respectively (c.f. Tables 1 and 2). The (mod

kβ) integer coefficients cβ
b can be obtained from the expansion

[π−
b ] =

∑

β

cβ
b [πtor,β

3 ] (4.28)

so that, in terms of the linking form L, we get

cβ
b =

∑

α

kβ
α L([πtor

2,α], [π−
b ]) =

∑

α

kβ
αLα

b (4.29)
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Since a D4-string wrapped on πtor
3 can be seen as a vortex defect of the U(1)b gauge

symmetry upon D6-brane annihilation or recombination [68, 69], it follows that the open

string gauge symmetry U(1)b has the 4d couplings

−
∑

β

cβ
b

∫

R1,3

Cβ
2 ∧ F b

2 (4.30)

where F b
2 = dAb is the field strength for the U(1)b gauge boson. Otherwise said, as (4.27)

arises from dimensional reduction of the CS coupling
∫
D4 C5 of a D4-brane, eq. (4.30)

should equally arise from dimensional reduction of the coupling
∫
D6 C5 ∧ F of a D6-brane

in the same topological sector [π−
b ]. We provide a more direct derivation of this result in

appendix C.

Given the couplings (4.30), it is clear that the Stückelberg mechanism has to be re-

considered if open and closed string U(1)’s are both present. In particular, the 4d La-

grangian (4.23) has to be modified, since now the open string gauge bosons Aa also cou-

ple to the massive RR axions Re (Nβ). Putting all pieces together we arrive to a full

Stückelberg Lagrangian of the form

Ltor
Stk =

1

2
e2φ4

[
G−1

IJ Re(DN I) ∧ ∗4Re(DNJ) + Ǧ−1
αβ Re(DNα) ∧ ∗4Re(DNβ)

]

DN I = dN I +
∑

a

cI
aNaA

a DNβ = dNβ + kβ
αAα +

∑

a

cβ
aNaA

a (4.31)

where I = 1, . . . , h1,2 + 1 label the RR axions of section 2, and β = 1, . . . ,dim
(
Tor H3

+

)

the massive axions of this section. Finally, the index a runs over each stack of Na D6-

branes wrapped on a sLag 3-cycle πa and carrying a gauge group U(Na). If any of the

coefficients cβ
a is non-zero (that is, if [πa] has a component in the torsional homology group

Tor H3
+(M6, Z)), then there is some mixing between open and closed string U(1)’s in the

mass matrix, and massless gauge symmetries are a combination of both types of U(1)’s.

It is easy to see that the linear combinations of RR and D6-brane U(1)’s which become

massive due to this Stückelberg mechanism are

QI =
∑

a

cI
aNaQ

a (4.32)

Qβ =
∑

α

kβ
αQα

RR +
∑

a

cβ
aNaQ

a (4.33)

where Qβ
RR is the generator of the torsional RR U(1)α associated to [πtor

2,α].

The set of RR and D6-brane U(1) gauge symmetries which remain massless admits

an elegant interpretation in terms of integer homology classes, generalizing the results for

open string U(1) gauge symmetries of section 2.2. We have just argued that to each RR

U(1) generator entering in (4.33) we can associate a torsional 2-cycle class [πtor
2,α], as well as

a dual torsional 3-cycle class kα
γ [πtor,γ

3 ]. Hence, each linear combination of D6-brane and

torsional RR U(1) generators is mapped to an element of H−
3 (M6, Z)

Q0 =
∑

a

naQ
a +

∑

α

ňαQα
RR −→ π0 =

∑

a

Nana

2
[πa − π∗

a] +
∑

α,γ

ňαkα
γ [πtor,γ

3 ] (4.34)

– 24 –



J
H
E
P
0
9
(
2
0
1
1
)
1
1
0

for na,
∑

α ňαkα
γ ∈ Z. Extending the reasoning of section 2.2 to this case, we observe that

massless combinations of RR and D6-brane U(1) gauge symmetries correspond to linear

combinations for which [π0] is trivial in the integer homology of M6

∑

a

Nana

2
([πa] − [π∗

a]) +
∑

α,γ

ňαkα
γ [πtor,γ

3 ] = 0 (4.35)

We can illustrate this expression with a simple toy model. For that, consider the case

of two D6-branes wrapping 3-cycles πa and πb. As we discussed in section 2.2, if πa and

πb are in the same homology class, [πa] = [πb] (and [π∗
a,b] 6= [πa,b]), the linear combina-

tion U(1)a−U(1)b remains in the massless spectrum, whereas the orthogonal combination,

U(1)a+U(1)b, acquires a mass by means of the Stückelberg mechanism. We can now con-

sider a slightly different situation on which the two 3-cycles wrapped by the D6-branes

differ by a σ-odd torsional 3-cycle, [πb] − [πa] = [πtor
3 ]. According to eq. (4.33), some

of the axions which couple to the branes a and b by means of Stückelberg couplings,

couple also to the RR U(1) gauge boson. The linear combination which remains mass-

less in this case is 2[U(1)a−U(1)b]+U(1)RR, whereas the two orthogonal combinations,

U(1)a−U(1)b−4U(1)RR and U(1)a+U(1)b, are massive.

4.4 M-theory and discrete gauge symmetries

We have seen in section 2.4 that massless D6-brane and RR U(1) gauge symmetries share

a common origin in M-theory compactified on a G2 manifold M̂7, namely, they both come

from dimensional reduction of the M-theory 3-form in elements of H2(M̂7, R). From that

perspective, it is not surprising that D6-brane and RR U(1) gauge symmetries appear in

eq. (4.35) on the same footing. Indeed, one may easily show that massive D6-brane and

RR U(1) gauge symmetries also have a common lift to M-theory. For that, one has to con-

sider the more fundamental group H2(M̂7, Z), instead of H2(M̂7, R). Electrically charged

4d particles arise from M2-branes wrapping kα-torsional 2-cycles π̂tor
2,α ∈ Tor H2(M̂7, Z)

whereas 4d Aharanov-Bohm strings are M5-branes wrapping dual kα-torsional 4-cycles

π̂tor,α
4 ∈ Tor H4(M̂7, Z) (recall that for a 7d manifold Tor H2(M̂7, Z) ≃ Tor H4(M̂7, Z)).

The linking form in M̂7 then relates the classes [π̂tor
2,α] and [π̂tor,α

4 ] unambiguously. Hence,

following a similar reasoning that the one in section 4.1, it is natural to associate to each

element of Tor H2(M̂7, Z) a 4d U(1) gauge symmetry broken down to a Zkα
subgroup.

In the perturbative type IIA Calabi-Yau orientifold limit (2.33), these U(1)’s reduce to

the massive D6-brane and RR U(1) gauge symmetries discussed in the previous section.

The general picture described in [25] (see also [70]) for 4d quantum theories of gravity is

therefore realized in M-theory through torsion.

Following our discussion in section 4.2, we can introduce a set of torsional forms,

φtor
α ∈ Tor H3(M̂7, Z) and ωtor

β ∈ T̂or H2(M̂7, Z), such that

k̂α
βφtor

β = dωtor
α (4.36)

with k̂α
β ∈ Z. These are the torsional analogues of the harmonic forms φI and ωα that we

made use of to dimensionally reduce the M-theory 3-form A3. Performing the same kind
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of expansion in this basis we get

dA3 =
(
Re(dMα) + k̂α

βAβ
)
∧ φtor

α + dAβ ∧ ωtor
β (4.37)

and therefore the 4d effective Lagrangian contains Stückelberg couplings which arise from

dimensional reduction of the 11d A3 kinetic term (see also [71]). In the perturbative type

IIA limit (2.33), the M-theory Stückelberg mechanism reduces to eq. (4.31).

The fact that massive D6-brane and RR U(1)’s are both related to torsional 2-cycles

of the G2 manifold in M-theory has some interesting consequences. Indeed, consider a type

IIA orientifold compactification on a given CY3 M6. There are typically many possible

consistent configurations of D6-branes which cancel the global charge of the O6-planes. All

of them are connected through brane recombination processes. The number of massless and

massive D6-brane U(1)’s depends on the particular configuration of D6-branes at angles.

Thus, according to the above discussion there should be a family of G2 manifolds associated

to the above compactification, where each manifold corresponds to a different configuration

of D6-branes in M6. We can build such a family starting from the case on which all D6-

branes are parallel to the O-planes. Let M̂||
7 be the corresponding G2 manifold, with Betti

numbers (b2, b3). Different configurations of D6-branes at angles can be then obtained by

fibering the (co)homology of M̂||
7 accordingly to (4.36). The new G2 manifolds constructed

in this way have Betti numbers (b2 − n, b3 −n), with n = rank(k̂), and n more torsional 2-

cycles than M̂||
7 has. The matrix k̂ obviously cannot be arbitrary and, in particular, it has

to satisfy global consistency conditions such as compactness of the resulting G2 manifold.

It is also enlightening to consider in this context the open/closed string dualities that

were introduced in section 2.4 and which result from different perturbative type IIA limits

of the G2 manifold. We saw there that massless D6-brane and RR U(1) gauge symmetries

can be exchanged under these dualities, due to different splits (2.36) of H2(M̂7, R). This

statement obviously still holds true for the more fundamental group H2(M̂7, Z). Massive

D6-brane and torsional RR U(1) gauge symmetries are therefore also exchanged under

open/closed string dualities. In particular, different configurations of D6-branes at an-

gles within the same type IIA CY3 orientifold are mapped to families of type IIA CY3

orientifolds, which result from twisting the (co)homology of a torsion-free Calabi-Yau as

k : H2(M6, R)+ → H3(M6, R)+ , such that dωi = ki
IαI (4.38)

in the same spirit than [72].

In section 6.1 we discuss yet another consequence of massive D6-brane U(1)’s being

lifted to torsional homology in M-theory, namely that D6-brane Freed-Witten anomalies

in type IIA CY3 orientifolds [53, 73, 74] correspond to 4-form backgrounds in M-theory

whose cohomology class [G4] is torsion.

4.5 An explicit example

There are many examples of Calabi-Yau orientifold compactifications which have RR U(1)

gauge symmetries in their 4d spectrum. Simplest models include toroidal orbifold com-

pactifications, see e.g., [75–81]. In this section we consider a type IIA orientifold of the
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Enriques Calabi-Yau [82–84]. The large amount of symmetry of this manifold allows to

perform very explicit computations, whereas its moduli space is rich enough to contain

massless and massive RR U(1)’s and D6-branes at angles. Thus, it is an appealing setup

where to illustrate some of the above ideas on mass mixing with RR photons explicitly.

We can think of the Enriques Calabi-Yau as the smooth manifold which results from

blowing-up the singularities of a (T 2 × K3)/g1 orbifold, where g1 reverses the coordinates

of T 2 and acts on the K3 lattice as [84],

H2(K3, R) = −ΓE8
⊕−ΓE8

⊕ Γ1,1 ⊕ Γ1,1 ⊕ Γ1,1

↓
H2(K3/g1, R) = −ΓE8

⊕ Γ1,1

At the T 4/Z2 orbifold point of K3, the Enriques Calabi-Yau therefore becomes a T 6/(Z2×
Z2) freely-acting orbifold with generators

g1 : (z1, z2, z3) → (−z1, −z2, z3 + πR3) (4.39)

g2 : (z1, z2, z3) → (−z1, z2 + πR2, −z3)

g3 : (z1, z2, z3) → (z1, −z2 + πR2, −z3 − πR3)

where zi = dxi + τidxi+3, i = 1, 2, 3, are the three complex coordinates of T 2 × T 2 × T 2.

For simplicity, we work at this orbifold point of the moduli space and, moreover, we set

2πRi = 1. Generalization to arbitrary radii is straightforward.

The integer homology of the Enriques Calabi-Yau was first computed in [85] by means

of the Hochschild-Serre spectral sequence. We have summarized the result in table 3.

Different elements are identified as follows. The free part of the homology is given by

eleven 2-cycles (and their dual 4-cycles) and twenty-four 3-cycles. In the T 6/(Z2 × Z2)

limit of the Enriques Calabi-Yau, these correspond to the canonical three 2-cycles and

eight 3-cycles of the covering space, T 2 × T 2 × T 2, plus eight exceptional 2-cycles and

sixteen exceptional 3-cycles attached to the fixed points of (4.39). Apart from these, there

are three torsional 1-cycles and one torsional 2-cycle (plus their dual torsional 4-cycles and

3-cycle, c.f. eq. (4.10)).

In order to gain more intuition on the torsional part of the homology, we can look at

the explicit loci of the torsional cycles. For that, we take oriented segments in the covering

T 2 × T 2 × T 2 and draw their images under the orbifold generators, eq. (4.39). We identify

ηtor
1 = x1 ∈

[
0,

1

2

)
, x4, x5, x6 ∈

{
0,

1

2

}
, x2 = x3 =

1

4
∪ 3

4
(4.40)

ηtor
2 = x4 ∈

[
0,

1

2

)
, x1, x5, x6 ∈

{
0,

1

2

}
, x2 = x3 =

1

4
∪ 3

4

ηtor
3 = x2 ∈

[
1

4
,
3

4

)
∪ x3 ∈

[
1

4
,
3

4

)
, x1, x4, x5, x6 ∈

{
0,

1

2

}

as the loci of the three torsional 1-cycles, and

ρtor = x5 ∈ [0, 1) , x6 ∈
[
0,

1

2

)
, x1, x4 ∈

{
0,

1

2

}
, x2 = x3 =

1

4
∪ 3

4
(4.41)
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H0(M6) H1(M6) H2(M6) H3(M6) H4(M6) H5(M6) H6(M6)

Z (Z2)
3 (Z)11 ⊕ Z2 (Z)24 ⊕ Z2 (Z)11 ⊕ (Z2)

3 0 Z

Table 3. Integer homology of the Enriques Calabi-Yau.

as the locus of the torsional 2-cycle. For latter purposes we also give the locus of the

torsional 3-cycle, obtained by means of the same procedure,

πtor = x2 ∈
[
1

4
,
3

4

)
∪ x3 ∈

[
1

4
,
3

4

)
, x1 ∈ [0, 1) , x4 ∈

[
0,

1

2

)
, x5, x6 ∈

{
0,

1

2

}
(4.42)

We now consider a type IIA orientifold of the above T 6/(Z2 × Z2) orbifold, where

the orientifold involution σ reverses the coordinates x4, x5 and x6 of T 6. O6-planes wrap

the 3-cycles,

Λ0 = x1, x2, x3 ∈
[
0,

1

2

)
, x4, x5, x6 ∈

{
0,

1

2

}
(4.43)

Λ1 = x1, x5, x6 ∈
[
0,

1

2

)
, x2 = x3 =

1

4
∪ 3

4
, x4 ∈

{
0,

1

2

}

The reader may easily check that ηtor
1 , ηtor

3 and ρtor are even under σ, whereas ηtor
2 is

odd. Hence, according to the results of previous subsections (c.f. table 1), there are 6

massive closed string vector bosons arising from the torsional part of the homology. Four

of these come from dimensional reduction of the metric on ηtor
1 , the NSNS 2-form on ηtor

2 ,

the RR 3-form on πtor and the RR 5-form on the torsional 4-cycle dual to ηtor
1 . There is a

U(1)2L×U(1)2R gauge symmetry spontaneously broken to (Z2)
4. These states are identified

with the graviphoton and the 3 gauge bosons in the S − T −U vector multiplets of N = 2

orientifold compactifications on T 2 ×K3. The fact that they appear in the 4d spectrum is

understood by noting that part of the supersymmetry is only spontaneously broken in the

Enriques CY [84]. At large volumes of the first 2-torus, Im(T 1̂) ≫ 1, these vector multiplets

become light and 4d N = 2 supersymmetry is approximately recovered. In addition, there

are 2 extra massive vector bosons coming from dimensionally reducing the metric on ηtor
3

and the RR 5-forms on the dual torsional 4-cycle.

Let us now focus on the massive RR photon associated to πtor, which we have identified

as a massive graviphoton. Its mass is acquired by combining with a complex structure

axion, namely the one which results from expanding C3 on the exact 3-form related to

ρtor by eq. (4.25). Hence, D6-brane U(1) gauge bosons which couple to the same complex

structure axion will develop a non-trivial mixing with the RR photon via the Stückelberg

mechanism, as described in subsection 4.3.

Supersymmetric D6-branes wrap calibrated 3-cycles. Geometrically we can distinguish

two different cases: bulk D6-branes wrapping 3-cycles in the covering space, and fractional

D6-branes, wrapping 3-cycles which only close in the quotient space. Bulk D6-branes have

three massless chiral multiplets transforming in the adjoint representation and therefore

can move freely in the T 6. Fractional D6-branes, on the other hand, are stuck at fixed
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points of one or more generators in eq. (4.39). Whereas a precise determination would

require a detailed CFT computation which is beyond the scope of this work, we assume

that the gauge group of fractional D6-branes is U(N).

In what follows we present three different configurations of D6-branes which

lead to qualitatively different scenarios of mixing between RR and D6-brane U(1)

gauge symmetries:

Two stacks of bulk branes in the same homology class. Consider for instance two

bulk D6-branes with same wrapping numbers on T 2 × T 2 × T 2,

πa, πb : (1, 0) ⊗ (n2,m2) ⊗ (n3,−m3) (4.44)

According to our previous discussion, since the D6-branes wrap 3-cycles in the same ho-

mology class, [πa] = [πb], they do not couple to the axion which gives mass to U(1)RR.

The linear combination U(1)G1
≡ 1√

2
(U(1)a+U(1)b) becomes massive by combining with

one of the complex structure moduli of the covering T 2 ×T 2 ×T 2 and the universal axion,

whereas the orthogonal combination, U(1)Y ≡ 1√
2
(U(1)a−U(1)b), remains massless. The

corresponding gauge kinetic functions for the mass eigenstates read

fY Y = fG1G1
= −i(n2n3N0 + m2m3N1) (4.45)

fG2G2
= −iT 1̂

where U(1)G2
≡U(1)RR. In particular there is no kinetic mixing between massless and

massive linear combinations of U(1)’s.

Two stacks of fractional branes which differ by πtor. Consider now the D6-branes

a and b to be fractional, so that generically [πa] 6= [πb]. We take them to coincide in the

second and third 2-tori, whereas they are located at different fixed points in the first T 2.

For simplicity we take them to wrap the 3-cycles

πa = x1 ∈
[
0,

1

2

)
, x2, x3 ∈

[
1

4
,
3

4

)
, x4, x5, x6 = 0 (4.46)

πb = x1 ∈
[
0,

1

2

)
, x2, x3 ∈

[
1

4
,
3

4

)
, x4 =

1

2
, x5, x6 = 0 (4.47)

so that the bulk component of the branes is along the direction (1, 0) ⊗ (1, 0) ⊗ (1, 0). It

is possible to check that the 4-chain which connects πa and πb has also πtor as part of

the boundary, and therefore [πb] − [πa] = [πtor]. The massless combination of U(1) gauge

symmetries is U(1)Y ≡ 1√
5
(2U(1)a − 2U(1)b+U(1)RR), whereas the two orthogonal combi-

nations, U(1)G1
≡ 1√

2
(U(1)a+U(1)b) and U(1)G2

≡ 1√
6
(U(1)a−U(1)b − 4U(1)RR), develop

Stückelberg couplings. Thus, in this case the massless photon is a linear combination of

D6-brane and RR U(1) gauge bosons. The corresponding gauge kinetic functions are

fY Y = − 5i

81
(T 1̂ + 8N0) , fG1G1

= N0 , fG2G2
= − i

27
(8T 1̂ + N0) (4.48)

fY G2
= − 4i

27

√
10

3
(N0 − T 1̂)
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a 1
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1

a 2
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2

Figure 1. Configuration of 4 fractional D6-branes leading to two mutually hidden sectors which

communicate via RR photons.

and there is non-trivial kinetic mixing between the massless photon and one of the massive

combinations of U(1)’s.

Had we instead taken two D6-branes per stack, we would have recovered the case

of various bulk branes in the same homology class, [2πb] − [2πa] = [2πtor] = 0. More

generically, we can consider fractional D6-branes of the above type whose bulk component

is given by eq. (4.44). In that case we may argue that for n2 and n3 arbitrary integers but

m2 = m3 = 0, one has [πb]− [πa] = n2n3[πtor] which is homologically non-trivial whenever

n2n3 is an odd integer. Similar arguments show that for n2 = n3 = 0 and m2 = m3 = 1

the 3-cycles πa and πb instead differ by some exceptional 3-cycle. Hence, we conclude that

if the ratios m2/n2 and m3/n3 are even integers and n2n3 is odd, then [πb] − [πa] = [πtor].

Two mutually hidden brane sectors which communicate via RR photons. Fi-

nally we can consider two copies of the previous configuration of fractional D6-branes.

We locate each pair of branes, {a1, b1} and {a2, b2}, at different fixed points in the sec-

ond and/or third 2-torus. An explicit example is depicted in figure 1. The above pairs

are completely isolated from each other, since they carry different twisted charge (as they

wrap different exceptional 3-cycles). They couple however to the same RR U(1) gauge

boson, since they carry the same torsional charge. Thus, the two pairs {a1, b1} and {a2, b2}
communicate only via the RR photon. The two massless combinations of U(1) gauge

bosons are,

U(1)Yk
≡ 1√

5
(2U(1)ak

− 2U(1)bk
+ U(1)RR) , k = 1, 2 (4.49)

whereas massive U(1) symmetries are,

U(1)Gk
≡ 1√

2
(U(1)ak

+ U(1)bk
) , k = 1, 2 (4.50)

U(1)G3
≡ 1√

8
(U(1)a1

− U(1)b1 + U(1)a2
− U(1)b2 − 4U(1)RR)

The reader may easily check that there is kinetic mixing between the massless U(1)Yk
gauge

bosons and the massive U(1)G3
boson

fY1G3
= − i

10
√

10
(9f1 − f2 − 8T 1̂) , fY2G3

= − i

10
√

10
(9f2 − f1 − 8T 1̂) (4.51)
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with fk ≡ fak
= fbk

, k = 1, 2 the gauge kinetic functions of the D6-branes {ak, bk}, whose

explicit expression we omit for briefness. Moreover, the two massless U(1) gauge bosons

also mix through the following component of the gauge kinetic function,

fY1Y2
= − i

80
(8T 1̂ − 9f1 − 9f2) (4.52)

Hence, in this toy example the presence of a massive RR U(1) gauge boson induces kinetic

mixing between the two D6-brane sectors {a1, b1} and {a2, b2}, which otherwise would be

completely hidden from each other at low energies.

5 Some phenomenological implications

We have seen in the previous section that under certain conditions (namely, in the presence

of torsional cycles) there may appear mass mixing between RR and D-brane U(1) gauge

symmetries. In particular, massless eigenstates may be linear combinations of D-brane

and RR gauge bosons. It is natural to ask whether such a mixing may have some effect of

phenomenological interest. At first sight it seems that no effect should appear at all since

there are no perturbative light fields which could couple to the RR U(1)’s. Hence, if the

SM hypercharge contained some RR contamination we would be unable to tell it. There

are however situations in which this mass mixing may turn out to be phenomenologically

interesting. For instance, the rigid D6-brane configurations presented at the end of last

section are explicit realizations of the U(1) mediation mechanism proposed in [11, 13] (see

also [14]). Moreover, in section 3 we described kinetic mixing between RR and D-brane

U(1)’s and in the previous section we have also seen another mechanism for the generation of

kinetic mixing between visible and hidden sector massless U(1)’s. These sources of kinetic

mixing have potential phenomenological applications to the mixing of the hypercharge

U(1)Y (and hence the photon) with hidden U(1)’s, as studied e.g. in refs. [1–10, 15–18, 86].

In this section we discuss yet another interesting effect of RR U(1) gauge bosons, this

time in the context of SU(5) unification within type IIB orientifolds (or their F-theory

extension). In these constructions the SU(5) degrees of freedom live on a 7-brane which

wraps a 4-cycle S, whereas matter fields are localized at the intersection with other U(1) 7-

branes (leading to matter curves in the F-theory language). In some of these constructions

the SU(5) symmetry is broken down to the SM one by turning on a non-zero flux along the

hypercharge generator, F Y 6= 0. Generically such fluxes give rise to Stückelberg masses for

the hypercharge gauge boson, through the couplings
∫

R1,3×S
C4 ∧ FY ∧ F Y →

∫

R1,3

CY
2 ∧ FY (5.1)

with

CY
2 ≡

∫

S
C4 ∧ F Y =

∫

ρY

C4 (5.2)

where ρY denotes the Poincaré dual of F Y in S. This is unacceptable since U(1)Y disap-

pears from the massless spectrum. One way to solve this problem is to assume that ρY

is trivial in the homology of the full Calabi-Yau, although non-trivial in S [87]. In this

– 31 –



J
H
E
P
0
9
(
2
0
1
1
)
1
1
0

case the dangerous CY
2 ∧ FY coupling disappears and the problem goes away. This is the

standard solution within F-theory model building [23, 24].

In view of our results in the previous section (or rather their type IIB version discussed

in appendix B), there is however a particularly compelling alternative. Indeed, let us

assume that there is a RR U(1) gauge boson VRR which results from the expansion of

the RR 4-form in torsional forms, C4 = ARR ∧ αtor + VRR ∧ βtor + . . .. The gauge boson

is massive and the U(1)RR symmetry is spontaneously broken to a discrete ZkRR
gauge

symmetry due to a C2 ∧ dVRR Stückelberg coupling, as may be seen from eq. (B.12). If the

hypercharge flux is also along the associated torsional cycle, F Y
2 = F Y ωtor, then the same

4d 2-form C2 couples both to U(1)RR and U(1)Y and there is a Stückelberg mass term of

the form

L ⊃ −1

2

(
Re(dT ) + kRRARR +

5kY

3
AY

)2

(5.3)

where Re(T ) is the 4d axion dual of C2 and we have included the SU(5) normalization factor

for the hypercharge. In terms of gauge bosons ÃRR ≡ ARR/gRR and ÃY ≡ AY /gY with

canonical kinetic terms, there is a massless (A1) and a massive (AX) linear combination of

U(1) gauge symmetries

A1 = cos(θ)ÃY − sin(θ)ÃRR ; AX = sin(θ)ÃY + cos(θ)ÃRR (5.4)

where

sin(θ) ≡ gY kY√
g2
RRk2

RR + g2
Y k2

Y

. (5.5)

Explicit expressions for the gauge coupling constants g2
RR and g2

Y can be obtained from the

gauge kinetic functions (B.7) and (B.3) respectively. Note that for g2
Y ≪ g2

RR the massless

eigenstate mostly corresponds to the brane hypercharge U(1)Y generator, whereas in the

opposite case it is the U(1)RR factor the dominant component. The massless boson, A1,

couples to the D7-brane matter fields with coupling constant gY cos(θ). The inverse fine

structure constant α1 of the massless U(1) is therefore given by

1

α1
=

3

5αG
+

k2
Y

k2
RRαRR

(5.6)

with αRR = g2
RR/4π and αG the SU(5) fine structure constant. This implies the existence

of a correction to the standard unification of hypercharge given by the last term in this ex-

pression. Since the SU(5) unification boundary conditions work quite well, with a precision

of a few percent, this correction should not be much larger than ∼ O(1). This implies that

αRR ∼ k2
Y

k2
RR

. (5.7)

This solution to the Stückelberg mass problem of the hypercharge flux can actually

be though as a different avatar of a similar idea proposed for heterotic compactifications

in ref. [88]. In that case the extra U(1) gauge symmetry was coming from the second E8

factor of the E8 × E8 heterotic gauge group. A strong coupling regime for this second E8
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Figure 2. Two-loop running of the MSSM gauge coupling constants in the region around

1016 GeV [89]. The shaded region represents the uncertainty in the measurement of the QCD

gauge coupling constant.

was assumed. In our case, however, the structure is simpler since the extra U(1) is a RR

field with no perturbative couplings to any massless field and assuming that the U(1) is

strongly coupled is rather natural.

The above correction could in fact be of phenomenological interest to describe a known

small discrepancy in gauge coupling unification. Figure 2 shows the two-loop running of

the MSSM gauge couplings in the region around 1016 GeV adapted from [89]. The fact

that there is not exact unification may be interpreted by saying that the line 1/α1 is one

unit higher than it should. This is precisely the kind of correction provided by eq. (5.6)

for αRR ∼ k2
Y /k2

RR.

Of course this should be taken with some care since additional threshold effects may be

also present, leading to extra contributions to the gauge couplings. In particular, additional

corrections may come from the F 2 ∧ F 2 term in eq. (B.3). For the MSSM gauge kinetic

functions these corrections read [90–92]

fSU(3) = T − 1

2
τ

∫

S
F a ∧ F a (5.8)

fSU(2) = T − 1

2
τ

∫

S

(
F a ∧ F a + F Y ∧ F Y + 2F a ∧ F Y

)

3

5
fU(1) = T − 1

2
τ

∫

S

(
F a ∧ F a +

3

5
(F Y ∧ F Y + 2F a ∧ F Y )

)
.

where τ is the complex dilaton and F a are fluxes along the U(1) contained in the U(5)

gauge group of the D7-branes (see [91]). These corrections by themselves would imply an
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ordering of the size of the fine structure constants at the string scale given by

1

α3
<

1

α1
<

1

α2
. (5.9)

As remarked in [91], this ordering seems incompatible with that appearing in the unification

region (see figure 2), so that it was suggested in [91] that threshold corrections from the

Higgs triplets in SU(5) combined with those from eq. (5.8) could adjust the results for the

couplings. In our scheme such Higgs triplet threshold corrections would be unnecessary.

6 Adding background fluxes

Closed string background fluxes are a prominent mechanism for generating non-trivial

scalar potentials for the moduli of the compactification [93, 94]. In type IIA orientifold

compactifications, solutions to the equations of motion in presence of non-vanishing RR

flux require the internal space to be a half-flat manifold [95], instead of Calabi-Yau. Alter-

natively, it is possible to keep the Calabi-Yau condition for the internal manifold13 if NSNS

3-form fluxes and a non-zero VEV for the Romans parameter are also considered [96].

Having N = 1 supersymmetry in 4d requires the compactification to preserve an

SU(3) structure [97–100]. The latter can be still completely characterized in terms of an

SU(3) invariant non-degenerate 2-form J and a holomorphic 3-form Ω but, in contrast to

the SU(3) holonomy case, these are not necessarily closed forms, dJ 6= 0, dΩ 6= 0. In

particular, for half-flat manifolds dJ and dΩ satisfy the conditions,

J ∧ dJ = 0 , Im(dΩ) = 0 (6.1)

Hence, families of half-flat orientifolds can be built by twisting the σ-odd cohomology of a

Calabi-Yau orientifold as

f : H2(M6, R)− → H3(M6, R)− , such that dωî = fîIβ
I (6.2)

generalizing the construction that we presented at the end of section 4.4. In the following

we discuss two main features that appear in this type of SU(3)-structure manifolds: the

appearance of F-terms and their interplay with D-terms and the fact that D-brane gauge

kinetic functions may depend on open string moduli.

6.1 F-terms and Freed-Witten anomalies

The equations of motion for a type IIA SU(3) structure orientifold compactification with

fluxes can be conveniently expressed (in the limit of diluted RR fluxes) as the vanishing of

the F-terms of the following 4d effective superpotential [38, 101],

W =

∫

M6

[
Ωc ∧ (HNS + idJ) + eJc ∧ FRR

]
(6.3)

Here FRR denotes the formal sum of RR field-strengths, FRR = F0 +F2 +F4 +F6, whereas

HNS is the NSNS 3-form. Note that this superpotential may a priori depend on all moduli

13Neglecting backreaction of the fluxes and localized sources.
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F-terms D-terms

type IIA FRR, HNS, Tor H−
2 ≃ Tor H+

3 Tor H+
2 ≃ Tor H−

3 , D6-branes

M-theory G4, Tor H3 Tor H2 ≃ Tor H4

Table 4. Higher dimensional origin of F-terms and D-terms of the 4d effective theory in a gen-

eral type IIA SU(3) structure orientifold compactification. G4 denotes the M-theory 4-form field-

strength. We have not considered torsional 1-cycles.

of the compactification. In particular the vev’s of Kähler moduli governing the gauge

kinetic function of RR U(1) gauge symmetries (and therefore their mass, for massive RR

U(1)’s) can be fixed in this way.14

We have summarized in table 4 the higher dimensional origin of 4d F-terms and D-

terms in general type IIA SU(3) structure orientifold compactifications. We have seen

already that, neglecting torsional 1-cycles, D-terms in the 4d theory are associated to

massive RR U(1) vector multiplets coming from σ-even torsional 2-cycles (Tor H+
2 (M6, Z))

and to massive D6-brane U(1) vector multiplets. All of these have a common origin in

the torsional 2-cycles of the G2 manifold in M-theory (Tor H2(M̂7, Z)). Similarly, from

eq. (6.3) we observe that F-terms are associated to background fluxes of the NSNS and RR

forms of type IIA supergravity and to σ-odd torsional 2-cycles (Tor H−
2 (M6, Z)). These

have an M-theory origin on background fluxes of the M-theory 4-form and the torsional

3-cycles of the G2 manifold (Tor H3(M̂7, Z)) encoded in the non-closure of the G2 invariant

3-form, dΦ3 6= 0.

The interplay between F-terms and D-terms in the 4d effective theory is subtle. Shift

symmetries of axions which participate in some Stückelberg mechanism should not be

spoiled by quadratic or higher order couplings induced by superpotential (6.3). As it was

shown in [73], for massive D6-brane U(1) gauge symmetries this leads to a set of constraints

which turn out to be equivalent to the cancelation of Freed-Witten (FW) anomalies [102–

105] in the worldvolume of D6-branes. Indeed, from eq. (2.21) we observe that the RR

3-form transforms under a D6-brane U(1)a gauge transformation as,

Aa → Aa + dχ ⇒ δaC3 = −cI
aNaαIχ (6.4)

Requiring this to be a symmetry of the superpotential (6.3) leads to the generalized FW

condition [73, 74],

δaW = 0 ⇒
∫

πa

(HNS + idJ) = 0 ∀J (6.5)

Moreover, it was noticed in [104, 105] that this condition can be relaxed if D4-branes

stretching between D6-branes and their orientifold images are also present in the compact-

ification.

14Apart from superpotential (6.3), the torsion in eq. (6.2) induces also a superpotential in the worldvolume

of D6-branes for the open-string moduli (c.f. eq. (3.14)) [53]. Thus, the amount of kinetic mixing between

RR and D6-brane U(1) symmetries can be also stabilized in half-flat orientifold compactifications.
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In the context of the more general Stückelberg Lagrangian (4.31), we have seen that

C3 can also transform under RR U(1) gauge transformations,

Aα → Aα + dχ ⇒ δαC3 = −kα
βαtor

β χ (6.6)

Following the same reasoning than before, we obtain the following additional consistency

condition,

δαW = 0 ⇒
∫

πtor,α
3

(HNS + idJ) = 0 ∀J (6.7)

for any πtor,α
3 ∈ Tor H−

3 (M6, Z). Let us look in more detail to this condition. First of all,

it requires that the net HNS flux threading any σ-odd torsional 3-cycle vanishes. If there

were a non-zero flux of HNS , then dHNS 6= 0, and the Bianchi identity for HNS would not

be satisfied. By this argument we therefore also expect that (6.7) can be relaxed in the

presence of NS5-branes wrapping dual torsional 2-cycles belonging to Tor H+
2 (M6, Z).

Similarly, the constraint (6.7) for dJ admits also a natural interpretation. We can

express it equivalently as,

Tor H3
−(M6, Z) ∩ T̂or H3

−(M6, Z) = 0 (6.8)

which, from the point of view of bijections (4.38) and (6.2), simply accounts for the nilpo-

tency of the exterior derivative, d2 = 0 ⇒ fîIkj
I = 0 [72].

The conditions (6.5) and (6.7) can be discussed in a unified way from the point of view

of their M-theory lift. Indeed, they both reduce to the M-theory constraint
∫

πtor,α
4

(G4 + dΦ3) = 0 ∀Φ3 (6.9)

for every πtor,α
4 ∈ Tor H4(M̂7, Z). This condition could have been directly derived by

requiring the M-theory superpotential [106–109] to be invariant under U(1) gauge trans-

formations of massive torsional U(1) symmetries. By similar arguments, eq. (6.9) can be

relaxed if M5-branes wrapping dual torsional 2-cycles in Tor H2(M̂7, Z) are present.

6.2 Adjoint-dependent gauge kinetic functions

We have seen in section 3 that the kinetic mixing fia between open and closed string

U(1)’s is a non-trivial holomorphic function of the open string moduli Φj
a that describe the

embedding of the D6-brane 3-cycle πa. The only requirement for this to be the case is that

the 2-cycle ρj ⊂ πa associated to Φj
a is a non-trivial element of H+

2 (M6, R). The D6-brane

gauge kinetic function fa has on the other hand a constant value all over the open string

moduli space, simply because

fa =

∫

πa

Ωc =

∫

πa

(
C3 + ie4A−φ10Re (Ω)

)
(6.10)

and for CY3 orientifolds dΩc = 0, at least in the constant warp factor limit dA = 0.

For flux compactifications on half-flat manifolds, however, this does no longer need to

be true, since in general Re dΩ 6= 0. Indeed, let us consider type IIA compactifications
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to 4d N = 1 Minkowski vacua. Supersymmetry imposes the following conditions on the

background [110, 111]

d(3A − φ10) = HNS + idJ = 0 F0 = F4 = F6 = 0 (6.11)

d(e2A−φ10Im Ω) = 0 d(e4A−φ10Re Ω) = −e4A ∗6 F2 (6.12)

where F2 = dC1 is the RR 2-form field strength (not to be confused with the D6-brane

gauge field strength F a
2 ). Even if Im Ωc is non-closed, for a D6-brane wrapped on a sLag 3-

cycle πa eq. (2.14) is still true. Hence, we see that fa depends on the particular embedding

of πa, and therefore on the open string moduli Φj
a. Part of this dependence is due to the fact

that the warp factor is non-constant, and it arises even in the absence of any twist (6.2),

by simply taking into account the backreaction of the D6-branes. We will not be interested

in this warp factor dependence of fa, which following [112–114] can be interpreted as a

threshold correction to the gauge kinetic function, but rather on a Φ-moduli dependence

that remains even in the limit of constant warp factor.

Indeed, in the limit of constant warp factor we have that F2 is a primitive (1,1)-form,

and so

d(e4A−φ10Re Ω) = e4AJ ∧ F2 (6.13)

On the other hand, the Chern-Simons part of the D6-brane action contains a coupling of

the form

SCS =
1

2

∫

R1,3

F a
2 ∧ F a

2

∫

πa

Fa
2 ∧ C1 (6.14)

Combining both terms and taking a Lie derivative of the DBI + CS actions we obtain that

the gauge kinetic function depends on the open string moduli Φj
a as

fa = fa|Φj
a=0

− iPa
j Φj

a + . . . (6.15)

where

Pa
j ≡

∫

πa

F2 ∧ ζj =

∫

ρj

F2 (6.16)

Hence, if the pull-back of the RR field strength F2 is topologically non-trivial over a 2-cycle

ρj within a D6-brane 3-cycle πa, then the gauge kinetic function fa will depend non-trivially

on the corresponding open string modulus Φj
a.

This result is quite similar to the one obtained for the kinetic mixing, eq. (3.3). Indeed,

if we compare (6.15) with the expression for the kinetic mixing (3.3), we just need to replace

ωi → F2. The 2-form F2 is however quite different from ωi. Indeed, from eqs. (6.11)

and (6.12) we observe that F2 is a non-closed σ-odd primitive (1,1)-form. Moreover, as

shown in [53], [dF2]/N is Poincaré dual to some torsional 3-cycle [ΛF ] wrapped by some

O6-plane, a fact that relaxes the RR tadpole conditions and allows certain D6-branes to be

BPS while wrapping purely torsional 3-cycles. Hence, using the language of section 4 we

conclude that F2 ∈ T̂or H2
−(M6, Z), and therefore (6.16) is nothing but the torsion linking

number of [ΛF ] and [ρj ]. That is, in order for fa to depend on some open string modulus

Φj
a, the associated 2-cycle ρj should have a non-trivial component on the torsion homology

group Tor H−
2 (M6, Z).

– 37 –



J
H
E
P
0
9
(
2
0
1
1
)
1
1
0

7 Conclusions

In this paper we have analyzed an important aspect of 4d type II compactifications and

their M/F-theory relatives, namely the structure of Abelian gauge symmetries that survive

at low energies. We have in particular considered those Abelian symmetries that in one

way or another couple to the Standard Model (SM) degrees of freedom of any realistic

compactification of this kind. Naively, these amount to the D-brane U(1)’s that remain

massless after the Stückelberg couplings of [36] have been taken into account. We have

however seen that Abelian symmetries arising from the closed string RR sector of the theory

can also play a non-trivial role in describing the visible sector of a realistic compactification.

One simple way this can happen is via the kinetic mixing of the SM hypercharge

and a massless RR U(1) gauge symmetry. Such kind of kinetic mixing between open and

closed string U(1)’s have been previously discussed in the D-brane literature, and are in

general quite difficult to compute. Here we have provided a global geometric description

of such mixing, which may help computing this U(1)Y −U(1)RR kinetic mixing in specific

type II models. In particular, in type IIA intersecting D6-brane models an open string

U(1) is given by a formal sum of 3-cycles in the compactification manifold M6, namely

those 3-cycles wrapped by the D6-branes, together with a 4-chain Σ4 that connects them.

The open-closed kinetic mixing is then expressed as an integral over this 4-chain Σ4, see

eq. (3.8). Note that previous expressions in the literature rely on the existence of open

string moduli Φj for the D6-branes, and basically provide the dependence of the kinetic

mixing fib on them. These Φj are however massless adjoint fields which are unwanted in

a realistic model, and so in practice one needs an expression like (3.8) that provides the

kinetic mixing even in the absence of any open string modulus.

Kinetic mixing is however not the most direct interplay between RR and open string

Abelian symmetries. One can see this by first realizing that RR U(1)’s are not the only

class of Abelian gauge symmetries that arise from the RR sector of a compactification. In

general one will also have discrete Zk gauge symmetries which, as shown in [25] are actually

a massive U(1) gauge symmetry broken down to Zk via an Stückelberg mechanism. As

argued in [25] these Zk gauge symmetries should be accompanied by Aharanov-Bohm

strings and particles charged under them, and we have seen that for type II/M-theory

compactifications this is the case if the compactification manifold M contains a very specific

topological feature: a non-trivial torsion homology group Tor H∗(M, Z). Torsion homology

groups are generic in type II/M-theory compactification manifolds, but oftentimes ignored

because they are invisible to usual methods of dimensional reduction. In particular, for

Calabi-Yau compactifications torsional groups in (co)homology are not associated to any

massless sector of the theory. From our findings we see that they are however related

to a very special massive sector: a RR U(1) gauge symmetry with a topological, built-in

Stückelberg coupling.

The above result would perhaps not be very relevant for phenomenology was it not for

the fact that D-brane U(1) can also participate in such built-in Stückelberg mechanism.

Indeed, a careful analysis shows that, e.g., D6-brane wrapping torsional 3-cycles couple

to the 4d 2-forms that mediate this mechanism. Hence, in order to know if a D6-brane
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ρj ⊂ πa is non-trivial on Φj
a appears on

H+
2 (M6, Z) fia (3.8)

H−
2 (M6, R) WD6a

(3.14)

Tor H−
2 (M6, Z) fa (6.15)

Table 5. Relation between the topology of the non-trivial 2-cycles ρj of a D6-brane 3-cycle πa and

the quantities of the low energy effective action in which it appears. We have included the equations

that describes this quantity in the main text. The last line is only true for the flux compactifications

of section 6.

U(1) is massless, we should know if its associated 3-cycle contains a torsional piece or

not. If it does, then the built-in Stückelberg mechanism induces a mass mixing between

this D6-brane and several torsional RR U(1)’s, and the resulting massless U(1) will be a

linear combination of all of them. Hence, for many D-brane models the naive spectrum of

massless open-string U(1)’s is not so. Several of them are actually contaminated by RR

torsional U(1)’s.

We have provided an explicit type IIA example in which such mass mixing occurs,

and which illustrates several scenarios of phenomenological interest. In fact, even if our

discussion has mainly taken place in the context of type IIA compactifications, we have

found that the most direct application of our results takes place in the context of type

IIB/F-theory GUT models. Indeed, most GUT F-theory constructions are based on relat-

ing the hypercharge U(1)Y to a 2-cycle ρY trivial in H2(M, R). This however leaves the

possibility for ρY to be non-trivial in Tor H2(M, Z). If that were the case then the open

string U(1)Y would not be massless, but rather U(1)′Y = U(1)Y +U(1)RR. In particular,

this would mean that the fine structure constant α1 for such models should be recomputed,

with a non-trivial contribution coming from αRR. Interestingly, we find that this contri-

bution substantially alleviates the gauge coupling unification problems pointed out in [91].

It would be remarkable if the key for gauge coupling unification in F-theory relied in the

torsional homology of the compact manifold.

On a more formal side, along our discussion of U(1)’s in type IIA models we have found

that a key role is played by the 2-cycles ρj within the 3-cycles π3 wrapped by the D6-branes.

Recall that for a D6-brane wrapped on a BPS 3-cycle π3 the open string adjoint moduli

Φj are in one-to-one correspondence with the non-trivial 2-cycles ρj of π3. In general, it

is not known whether such 2-cycles are trivial in the ambient space M6 or not. We have

however found that the interesting physics happens whenever they are non-trivial, in the

sense that then Φj enters into some effective theory quantity. We have summarized these

results in table 5. It would be very interesting to explore if, via some effective field theory

argument, one can obtain a general result on when the 2-cycles of a special Lagrangian are

non-trivial in the compactification manifold.
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A D6-brane dimensional reduction

In this appendix we dimensionally reduce the terms of the D6-brane DBI-CS action that are

relevant for the purposes of this work (see also [21, 22] for the reduction of these and other

terms in the action). In particular we are interested in computing Stückelberg couplings

and mixed terms between RR and D6-brane U(1) factors in the gauge kinetic function.

These arise from the piece of the action which contains the RR 3-form and 5-form,

S
(a)
CS = µ6

∫

R1,3×πa

P

[
C5 ∧ Fa

2 +
1

2
C3 ∧ Fa

2 ∧ Fa
2

]
(A.1)

= µ6

∫

R1,3×πa

(
1 +

1

2
Lφa

+ . . .

)[
C5 ∧ Fa

2 +
1

2
C3 ∧ Fa

2 ∧ Fa
2

]

where

Fa
2 ≡ F a

2 + B2 (A.2)

In this expression µ6 is the D6-brane charge and P [. . .] denotes the pull-back to the world-

volume of the D6-brane. We have performed a normal coordinate expansion to linear order

in the geometric deformations (2.17).

We follow the usual procedure for dimensional reduction. That is, we expand C3 and

C5 in the basis of forms, as in eqs. (2.29) and (2.30). In addition we have argued in

section 4.2 that it is possible to introduce an extra set of torsional forms in order to also

account for the torsional cycles of the Calabi-Yau (c.f. eqs. (4.16)–(4.17)). The complete

field strength expansions read (see footnote 5),

F4 = Re(dN I) ∧ αI + dAi ∧ ωi +
(
Re(dNα) + kα

βAβ
)
∧ αtor

α + dAα ∧ ωtor
α (A.3)

F6 = dV i ∧ ω̃i + dCI
2 ∧ βI +

(
dV α − kα

βCβ
2

)
∧ ω̃tor,α + dCα

2 ∧ βtor,α (A.4)

Plugging these expressions into (A.1) and integrating by parts we obtain

S
(a)
CS =µ6

∫

R1,3

[
−
(
cβ
aCβ

2 + cI
aC

I
2

)
∧ F a

2 +
1

2
dIaRe(dN I) ∧ Aa ∧ F a

2 (A.5)

+
1

2

(
Ra

i,jφ
j
adV i+Ma

ijθ
j
adAi+Sa

i,j,k̂
φj

a

(
Re(T k̂)dAi−Ai ∧ Re(dT k̂)

))
∧ F a

2 + . . .

]
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where B2 = Re(T k̂)ωk̂, Wilson line moduli θj
a were defined in eq. (2.16) and the topological

invariants cI
a, dIa and cβ

a in eqs. (2.19) and (4.29) (see also appendix C). Moreover, we

have introduced the integrals,

Ma
ij =

∫

πa

ωi ∧ ζj , Ra
i,j =

∫

πa

ιXj
ω̃i , Sa

i,j,k̂
=

∫

πa

ιXj
ωi ∧ ωk̂ , (A.6)

where inclusion of the integrand to the 3-cycle πa should be understood in all these

expressions.

Notice that both electric and magnetic degrees of freedom appear explicitly in eq. (A.5).

The reason is that CS actions are given in a democratic formulation, so that all RR forms

appear explicitly in the action. In order to express (A.5) in terms of only electric degrees

of freedom, we note that

Ra
i,jdV i − Sa

i,j,k̂
Ai ∧ Re(dT k̂) = −Ra

i,jKilk̂Im(T k̂) ∗4 dAl (A.7)

= −Sa
l,j,k̂

Im(T k̂) ∗4 dAl = −Ma
lkIm(λk

j ) ∗4 Al

In this expression the first equality is obtained from applying the 10d relation F̂4 = ∗10F̂6,

with F̂p = dCp−1 − Cp−3 ∧ dB2, in eqs. (A.3) and (A.4), whereas for the second equality

we have made use of Kijk̂ω̃
i = ωj ∧ ωk̂. Finally, we have made use of eq. (2.18) in order to

express the result in terms of λk
j . Moreover, one may also check that

Sa
i,j,k̂

Re(T k̂)dAi = Ma
ikRe(λk

j )dAi (A.8)

Putting all pieces together we finally obtain,

S
(a)
CS = µ6

∫

R1,3

[
−
(
cβ
aCβ

2 + cI
aC

I
2

)
∧ F a

2 +
1

2
dIaRe(dN I) ∧ Aa ∧ F a

2

+
1

2
Ma

ik

(
Re(Φk

a)dAi ∧ F a
2 − Im(Φk

a) ∗4 dAi ∧ F a
2

)
+ . . .

]
(A.9)

where we have expressed the result in terms of the complex open string moduli Φk
a, defined

in eq. (2.15). The first term in the integrand is the Stückelberg coupling giving mass to

some linear combination of U(1) gauge bosons that we discussed in section 4.3. Indeed,

adding the kinetic term for the 2-forms (which can be obtained by dimensionally reducing

the 10d F6 kinetic term) and integrating out CI
2 (see for instance [115]), leads to eq. (4.31).

The second term in (A.9) corresponds to the coupling of complex structure axions to D6-

brane U(1) gauge bosons. It combines with the kinetic term for D6-brane U(1) gauge

bosons (obtained by dimensionally reducing the DBI action [21, 22]) to give the tree-level

gauge kinetic function of D6-brane U(1) gauge bosons,

fa = −i

∫

πa

Ωc (A.10)

The remaining terms in the integrand of eq. (A.5) correspond to the kinetic mixing between

RR and D6-brane U(1) gauge symmetries discussed. These can be expressed in terms of a
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mixed gauge kinetic function,

fia = −iΦk
a

∫

πa

ωi ∧ ζk + . . . (A.11)

which is well-defined up to a Φ-independent term, as discussed in section 3.

B Type IIB compactifications

For the most part of this work we have discussed RR U(1) gauge symmetries arising in

type IIA Calabi-Yau orientifold compactifications. Similar considerations, however, apply

to type IIB Calabi-Yau orientifold compactifications and their F-theory relatives. In this

appendix we rephrase the main results of this paper in the language of type IIB Calabi-

Yau orientifolds. Since both types of compactifications are related by mirror symmetry

and most of the ingredients are topological, the discussion follows closely the one in the

main part of the paper. This alternative exposition, however, is better adapted to some of

the phenomenological applications with D7-branes which we describe in section 5.

We consider type IIB Calabi-Yau orientifold compactifications with D3 and/or D7-

branes. The orientifold action is given by Ωp(−1)FLσ, and the involution σ satisfies [30, 31],

σJ = −J , σΩ = −Ω (B.1)

Fixed loci of σ are points and/or complex 4-cycles in M6, and lead to O3 and O7-planes

respectively. In order to cancel the RR-charge of the O-planes one may therefore introduce

D3-branes and/or magnetized D7-branes wrapping complex 4-cycles in M6.

Since the roles of h1,1(M6) and h1,2(M6) are exchanged under mirror symmetry, the

closed string spectrum of 4d massless fields now consists of h1,1 + h1,2
− + 1 chiral multiplets

and h1,2
+ vector multiplets of the 4d N = 1 supersymmetry [31, 37]. The moduli space,

spanned by the scalar components of the chiral multiplets, consists of h1,1 Kähler moduli,

h1,2
− complex structure moduli, and a complex axiodilaton, τ = C0+ie−φ10 . To simplify the

discussion, we set h1,1
− = 0 in what follows, without loss of generality of our results. With

that assumption, all Kähler moduli of the compactification come from the expansion [37].

Jc ≡ C4 −
i

2
e−φ10J ∧ J = −T iω̃i , (B.2)

with ω̃i a basis of σ-even 4-forms.

Chiral matter in type IIB orientifold compactifications typically arise from D3 and/or

magnetized D7-brane intersections. We are particularly interested in the case of D7-branes,

as they play a prominent role in F-theory GUT model building [116, 117]. At generic points

of the moduli space, each stack of Na D7-branes with equal magnetization carries a U(Na)

gauge theory in its worldvolume. The 4d gauge kinetic function is given by [118]

fa = −iNa

∫

Sa

[Jc + τTr(F2 ∧ F2)] (B.3)

where Sa is the complex 4-cycle wrapped by the stack of D7-branes. There are complex

scalar fields transforming in the adjoint representation of the gauge group. These span the
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open string moduli space of the D7-brane [19] and are given by h1,0(Sa) complex Wilson

line moduli, ai
a, and h2,0(Sa) geometric moduli, Φk

a.

Magnetized D7-branes generically develop Stückelberg couplings in their 4d effective

action, so that their diagonal U(1) gauge boson becomes massive, SU(Na)×U(1)a →
SU(Na). This can be explicitly seen by dimensionally reducing the following piece of

the D7-brane Chern-Simons action [118]

SCS =

∫

R1,3×Sa

P [C4 ∧ Fa
2 ∧ Fa

2 ] = µ7

∫

R1,3

Ci
2 ∧ F a

2

∫

Sa

ωi ∧ F
a
2 + . . . (B.4)

where F
a
2 denotes the background of F a

2 in Sa, ωi is a basis of 2-forms even under σ and

Ci
2 are the 4d 2-forms dual to the Kähler axions Re(T i). This Stückelberg coupling is

mirror symmetric to the one described in section 2.2 for D6-branes. As occurs in that case,

the discussion can be rephrased in terms of homology classes, however, for D7-branes the

relevant homology group is H+
2 (M6, Z) instead of H−

3 (M6, Z). Indeed, if ρF
a denotes the

Poincaré dual of F
a
2 in Sa, we can express (B.4) as

SCS =

∫

R1,3

Ci
2 ∧ F a

2

∫

ρF
a

ωi (B.5)

Massless U(1) gauge bosons thus correspond to combinations for which [ρF
a ] is trivial in

H+
2 (M6, Z), so that there is a 3-chain Σ3 ⊂ M6 whose boundary is ∂Σ3 = ρF

a ⊂ Sa.

Besides the gauge symmetries coming from the open string sector, there are

h1,2
+ (M6, R) massless RR U(1) gauge bosons in the 4d spectrum. These result from di-

mensionally reducing C4 in a symplectic basis of even 3-forms, (αI , β
I), I = 0, . . . , h1,2

+ .

The complete expansion of C4 is thus given by

C4 =
∑

I

(AI ∧ αI + V I ∧ βI) +
∑

i

(
Ci

2 ∧ ωi − Re(T i)ω̃i
)

(B.6)

where electric and magnetic vectors, AI and V I , are related by the 10d self-duality condition

F̂5 = ∗10F̂5, with F̂5 = dC4 + 1
2C2 ∧ dB2 − 1

2B2 ∧ dC2. The 4d gauge kinetic function of

these RR U(1)’s can be obtained from dimensional reduction of the F̂5 kinetic term in the

10d type IIB supergravity action. The final result is given by [37]

fIJ = −i
∂2F

∂τ̂I∂τ̂J

∣∣∣∣
τ̂K=0

, (B.7)

where F is the N = 2 prepotential of the Calabi-Yau 3-fold, which is a holomorphic

function of the N = 1 complex structure moduli τI and of the additional N = 2 complex

structure deformations τ̂K . The latter ones are projected out by the orientifold, so that

fIJ is a holomorphic function depending only on the N = 1 complex structure moduli [37].

Let us now turn to the discussion of kinetic mixing between RR and D7-brane U(1)

gauge symmetries. Kinetic mixing between both types of U(1)’s can be triggered by ge-

ometric deformations of the D7-branes. Indeed, expanding the pull-back in the rhs of
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eq. (B.4) to linear order in the geometric deformations of the D7-brane, one obtains

S
kin,(1)
CS =

∫

R1,3×Sa

ιΦaF5 ∧ Fa
2 ∧ Fa

2 + . . . (B.8)

=

∫

R1,3

F a
2 ∧ dAI

∫

Sa

ιΦaαI ∧ F
a
2 +

∫

R1,3

F a
2 ∧ dV I

∫

Sa

ιΦaβI ∧ F
a
2 + . . .

Eliminating the magnetic vectors dV I by means of the 10d self-duality condition of F̂5,

this leads to the following 4d mixed gauge kinetic function

fIa = −i

∫

Sa

ιΦaγI ∧ F
a
2 + . . . = −i

∫

ρF
a

ιΦaγI + . . . , γI ≡ αI + ifIJβJ (B.9)

As occurs with the analogous expression for D6-branes, eq. (3.3), this derivation has a

Φ-independent ambiguity which can be explicitly fixed for massless D7-brane U(1) gauge

bosons. In that particular case, following the same reasoning than in section 3, we can

express the 4d mixed gauge kinetic function (up to shifts of the open string moduli) as an

integral over the 3-chain Σ3 related to the massless combination of D7-brane U(1)’s,

fIa = −i

∫

Σ3

γI (B.10)

Apart from the gauge kinetic mixing triggered by the geometric deformations of the

D7-branes, it is also possible to have kinetic mixing between D7-brane and RR U(1) gauge

symmetries triggered by Wilson line deformations [19], in models where these are present.

Indeed, integrating by parts the r.h.s. of eq. (B.4) and proceeding as before we get [19],

S
kin,(2)
CS = −

∫

R1,3×Sa

F5 ∧ F a
2 ∧ Aa → fIa = −i

∫

ρF
a

aa ∧ γI (B.11)

Finally, D7-brane and RR U(1) gauge symmetries can also mix through the mass

matrix induced by the Stückelberg mechanism. This is only possible if both types of gauge

bosons couple to a common set of 4d 2-forms. As it was thoroughly discussed in section 4,

massive closed string U(1) vector bosons arise from torsional cycles of the Calabi-Yau. We

have summarized in tables 6 and 7 the 10d origin of the electric and magnetic degrees

of freedom of massive closed string U(1) symmetries in type IIB Calabi-Yau orientifold

compactifications. These tables are the mirror symmetric counterparts of tables 1 and 2.

Massive RR U(1) gauge bosons come from reduction of C2 on Tor H−
1 and C4 on

Tor H+
3 . We are particularly interested on massive RR U(1) symmetries which arise from

the expansion of C4. The reason is that those are the ones which can couple to the same

type of axions than magnetized D7-branes do, namely to Kähler axions. In order to show

this explicitly, we can introduce torsional forms ωtor
α ∈ T̂or H2

+ and αtor
α ∈ Tor H3

+, with

dωtor
α = kα

βαtor
β , accordingly to the procedure described in section 4.2. We then have

dC4 =
∑

α

[(
dAα + kα

βCβ
2

)
∧ αtor

α +
(
Re(dTα) − kα

βV β
)
∧ ω̃tor,α

+ dCα
2 ∧ ωtor

α + dV α ∧ βtor,α
]

+ . . . (B.12)
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U(1)elec. group charged particles cycle axions group

gm
µ T̂or H1

+ P Tor H+
1 gij Tor H2

+

Bm
µ T̂or H1

− F1 Tor H−
1 Bij Tor H2

−

Cµ
m T̂or H1

− D1 Tor H−
1 Cij Tor H2

−

Cµ
mno T̂or H3

+ D3 Tor H+
3 Cijkl Tor H4

+

Table 6. Complete set of massive closed string gauge symmetries and charged states in weakly

coupled type IIB Calabi-Yau orientifold compactifications. P denotes the gravity wave and F1 the

fundamental string. We present also the axions which mediate the Stückelberg mechanism giving

masses to the corresponding vector boson.

U(1)mag. group charged strings cycle CI
2 group

KKµ
mnopq Tor H5

+ KK Tor H+
4 KKµν

ijkl T̂or H4
+

Bµ
mnopq Tor H5

− NS5 Tor H−
4 Bµν

ijkl T̂or H4
−

Cµ
mnopq Tor H5

− D5 Tor H−
4 Cµν

ijkl T̂or H4
−

Cµ
mno Tor H3

+ D3 Tor H+
2 Cµν

ij T̂or H2
+

Table 7. Dual U(1) magnetic degrees of freedom and 2-forms mediating the Stückelberg mechanism.

KK denotes the Kaluza-Klein monopole.

where ω̃tor,α ∈ Tor H4
+ and βtor,α ∈ T̂or H3

+ are the dual forms to ωtor
α and αtor

α through

eq. (4.15). Dimensionally reducing the kinetic term of F̂5 in the 10d type IIB supergravity

action we therefore obtain a 4d Stückelberg Lagrangian analogous to eq. (4.23) [14].

From eq. (B.4) we observe that for a stack of magnetized D7-branes to develop a

Stückelberg coupling to the same 2-form Cα
2 , the 4-cycle wrapped by the D7-branes must

contain the torsional 2-cycle associated to the massive RR U(1) gauge symmetry. Moreover,

the Poincaré dual of the magnetization should have a non-vanishing component along

it, ρF
a ∈ Tor H+

2 (M6, Z). In that case we can express the Stückelberg coupling in the

worldvolume of the D7-branes as,

SCS =

∫

R1,3

Cα
2 ∧ F a

2

∫

ρF,tor
a

ωtor
α + . . . (B.13)

Note that ωtor
α and ρF,tor

a are torsional on M6, but not necessarily on the 4-cycle Sa. Indeed,

defining the 3-chain Σtor
3 such that ∂Σtor

3 = kρF,tor
a , with k the rank of the torsion, one often

finds that ρF,tor
a ⊂ Sa but Σ3 6⊂ Sa.

The discussion of which combination of RR and D7-brane U(1) gauge symmetries re-

main massless then closely follows the one for D6-branes. As we have argued, we can

associate an element of Tor H+
2 (M6, Z) to each RR U(1) gauge symmetry developing a

Stückelberg coupling. Hence, given a homology class [Sa] ∈ H+
4 (M6), massless combina-
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tions of U(1) gauge symmetries are in one to one correspondence with homologically trivial

combinations of elements in H+
2 (M6, Z) with non-zero pull-back to [Sa].

C D-branes and torsion invariants

One of the most important results regarding torsion in (co)homology is the Universal

Coefficient Theorem [58]. Rather than (4.9), the canonical version of this theorem is

Tor Hr(MD, Z) ≃ Hom (Tor Hr−1(MD, Z), Q/Z) (C.1)

That is, each class of torsional r-forms [ω̃tor] should be understood as a function that maps

torsional cycles πtor
r−1 to phases

πtor
r−1 7→ exp

(
2πiϕ(πtor

r−1)
)

(C.2)

such that ϕ(πtor
r−1) is the same for each cycle on the same homology class [πtor

r−1] ∈
Tor Hr−1(MD, Z), and ϕ([πtor

r−1]) + ϕ([πtor
r−1

′
]) = ϕ([πtor

r−1 + πtor
r−1

′
]). This gives a one-to-one

correspondence between the possible choices for ϕ and the elements of Tor Hr−1(MD, Z),

from which (4.9) follows.

In terms of this more fundamental definition, it is easy to see why in the main text

we have identified certain p-forms with elements of Tor H∗(M6, Z). For instance, if we

take a torsional 2-cycle πtor
2,α of M6 we can construct a bump 4-form δα

4 = δ4(π
tor
2,α) that

has components transverse to πtor
2,α and a δ-like support on it. In order to associate [δα

4 ]

with an element of Tor H4(M6, Z) we should provide a map of the form (C.2) for the set

of torsional 3-cycles of M6. But we can do this by simply taking a 3-form Fα
3 such that

dFα
3 = δα

4 and integrating it over each torsional 3-cycle πtor
3 . Indeed we have that

ϕα(πtor,β
3 ) ≡

∫

πtor,β
3

Fα
3 =

∫

πtor,β ′

3

Fα
3 +

∫

Σ4

δα
4 (C.3)

where we have taken another torsional 3-cycle πtor,β ′
3 such that [πtor,β ′

3 ] = [πtor,β
3 ] and a

4-chain Σ4 such that ∂Σ4 = πtor,β
3 − πtor,β ′

3 . Notice that (C.3) is independent of the choice

of Fα
3 that we take, so in the following we will replace Fα

3 → d−1(δα
4 ). Moreover, since the

integral of δα
4 over this 4-chain is necessarily an integer number, it follows that the map

πtor,β
3 7→ exp

(
2πiϕα(πtor,β

3 )
)

(C.4)

does only depend on the homology class [πtor,β
3 ]. In addition, (C.4) respects the group law

of Tor H3(M6, Z), and so it is indeed an element of Hom (Tor H3(M6, Z), Q/Z). Hence, we

can also think of it as an element of Tor H4(M6, Z), namely the Poincaré dual of [πtor
2,α].

Given this identification, it is easy to see that (C.3) is nothing but the torsion linking

number of [πtor
2,α] and [πtor,β

3 ]. Indeed, following the definition of the main text we have that

Lα
β = L([πtor

2,α], [πtor,β
3 ])

mod 1≡ 1

kβ

∫

Σβ
4

δα
4 =

1

kβ

∫

kβπtor,β
3

d−1(δα
4 )

=

∫

πtor,β
3

d−1(δα
4 ) =

∫

M6

δ3,β ∧ d−1(δα
4 ) (C.5)
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where kβ is the minimal integer such that kβπtor,β
3 is trivial in homology, and we have

taken a 4-chain Σβ
4 such that ∂Σβ

4 = kβπtor,β
3 . Finally, we have defined a bump form

δ3,β = δ3,β(πtor,β
3 ) for the torsional 3-cycle πtor,β

3 . We can also define the torsion linking

form L in terms of the latter

Lβ
α = L([πtor,β

3 ], [πtor
2,α])

mod 1≡
∫

πtor
2,α

d−1(δ3,β) =

∫

M6

δα
4 ∧ d−1(δ3,β) (C.6)

from which is easy to see that for a 6d manifold L is symmetric, and that kLα
β ∈ Z for

k = g.c.d.(kα, kβ).

The torsion linking form is the main topological quantity that one may construct

from the finite groups Tor H3(M6, Z) and Tor H2(M6, Z) and, by Poincaré duality, they

express relations that are obeyed by the groups Tor H3(M6, Z) and Tor H4(M6, Z). Indeed,

from (C.5) and (C.6) we see that we can always construct a set of 2-forms {F2,β} and 3-

forms {Fα
3 } such that

∫

M6

δ3,β ∧ Fα
3 =

∫

M6

δα
4 ∧ F2,β = δα

β (C.7)

and

dF2,β = (L−1)β
αδ3,α dFα

3 = −(L−1)αβδβ
4 (C.8)

where we have used the fact that L is invertible.

As these relations contain topological information of the torsion homology groups,

we should impose similar ones to each set of forms with integer coefficients that aim to

represent Tor H3(M6, Z) and Tor H4(M6, Z). In the main text we have done so for a set

of forms that can be thought as smoothed out versions of the bump forms δα
4 and δ3,β .

More precisely we have the relations

[δ3,α] = [αtor
α ] ∈ Tor H3(M6, Z) [δα

4 ] = [ω̃tor,α] ∈ Tor H4(M6, Z)

F2,α ∼ ωtor
α ∈ T̂or H2 F β

3 ∼ βtor,α ∈ T̂or H3
(C.9)

where the set T̂or Hp is closed under the action of the Laplacian, see eqs. (4.18). That this

set of forms exists has been our working assumption in section 4.

How can we construct a smoothed out version of our bump functions? One possible

way is, following [54], to consider objects in relative cohomology. Indeed, let us take a set

of torsional 2-cycles {πtor
2,α} and 3-cycles {πtor,α

3 } such that their homology classes generate

Tor H2(M6, Z) and Tor H3(M6, Z), respectively. We may consider a particular 2-cycle

and construct the relative cohomology groups Hp(M6, π
tor
2,α). Those are constructed as in

usual de Rham cohomology, but cochains are instead given by pairs of forms (σp, σ̃p−1) ∈
Ωp(M6) × Ωp−1(πtor

2,α) and the differential by

d(σp, σ̃p−1) = (dσp, σp|πtor
2,α

− dσ̃p−1) (C.10)

Thus, let us take the pair (δ3,β , 0), defining a non-trivial class [(δ3,β , 0)] ∈ H3(M6, π
tor
2,α).

Any other 3-form αtor
β such that (αtor

β , 0) is in the same relative cohomology class [(δ3,β , 0)]
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satisfies that αtor
β − δ3,β = dσ2,β with σ2,β such that σ2,β|πtor

2,α
= dσ̃1 for some 1-form σ̃1 of

πtor
2,α. This implies that in (C.6) we can replace δ3,β with αtor

β , since

∫

πtor
2,α

d−1(αtor
β ) =

∫

πtor
2,α

d−1(δ3,β) +

∫

πtor
2,α

σ2 =

∫

πtor
2,α

d−1(δ3,β) +

∫

πtor
2,α

dσ̃1 = Lβ
α (C.11)

We can repeat the same construction for [(δα
4 , 0)] ∈ H4(M6, π

tor,β
3 ). There we have that

for any 4-form ω̃tor,α such that (ω̃tor,α, 0) ∼ (δα
4 , 0) in H4(M6, π

tor,β
3 ), we can replace

δα
4 → ω̃tor,α in (C.5) and obtain the same result. It then follows that the set of forms

{αtor
β } and {ω̃tor,α} constructed in this way satisfy relations equivalent to (C.7) and (C.8),

namely [54] ∫

M6

αtor
β ∧ βtor,α =

∫

M6

ωtor
β ∧ ω̃tor,α = δα

β (C.12)

and

dωtor
β = (L−1)β

ααtor
α dβtor,α = −(L−1)αβ ω̃tor,β (C.13)

More importantly, this means that the phases (C.2) that these forms associate to each

torsional 2 and 3-cycle of our construction are exactly the same as the bump forms δα
4 and

δ3,β and, in this sense, they can be thought as the same elements of Tor H4(M6, Z) and

Tor H3(M6, Z).

In order to complete the construction (C.9) we need to find a set of representatives

{αtor
α } and {ω̃tor,β} of the above relative cohomology classes which form a closed set under

the action of the Laplacian, in the sense of eq. (4.19). That such kind of basis exists has

been shown to be the case for simple examples of torsional manifolds like twisted tori, as

well as for other manifolds obtained by twists of the form (4.38) and (6.2), see [72, 119, 120].

For those constructions we have that

−
∫

πtor,β
3

βtor,α = δα
β (C.14)

and so expanding the RR potential C5 as in (4.17) and dimensionally reducing it over a

D6-brane wrapping a torsional 3-cycle we obtain the couplings (4.30).

The results of this paper, however, do not rely on the above construction and can be

derived using the more abstract language of gerbes (see e.g. [46]), which is the precise way

to describe RR field strengths and potentials. From such viewpoint we should think of

αtor
α as the curvature of a 1-gerbe, and ω̃tor,α as the curvature of a 2-gerbe. Taking an

appropriate covering {Ua} of M6 we can characterize a 1-gerbe with curvature 3-form α

by a set of forms that satisfy

α|Ua = dFa

Fb − Fa = dAab

i (Aab + Abc + Aca) = g−1
abcdgabc

(C.15)

with gabc : Ua ∩ Ub ∩ Uc → S1 a cocycle that defines the gerbe, and that is analogous to a

set of transitions functions gab : Ua ∩ Ub → S1 for a line bundle.
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As discussed in [46], if the gerbe curvature α vanishes identically then we can write

Fa = dBa on Ua, and we say that we have a gerbe with a flat connection. Similarly to

the case of line bundles, where a flat connection defines a homomorphism π1(M6) → S1,

a 1-gerbe with a flat connection defines a homomorphism H2(M6, Z) → S1 , and we dub

the phase associated to each 2-cycle of M6 as the holonomy induced by the gerbe. If we

restrict this homomorphism to Tor H2(M6, Z) → S1, then we see that this holonomy is

nothing but the phases of the map (C.2) for r = 3, and so a 1-gerbe with flat connection

can be related to an element of Tor H3(M6, Z). If the curvature α does not vanish then

we can still define a holonomy for each 2-cycle π2, but now it varies within the homology

class [π2]. Indeed, let us consider two homologous 2-cycles π2 and π′
2, and a 3-chain Σ3

such that ∂Σ3 = π′
2 − π2. Then we have that

hol (π′
2) = hol (π2) · exp

(
2πi

∫

Σ3

α

)
(C.16)

which is a well-defined quantity because
∫
Π3

α ∈ Z for each 3-cycle Π3 ⊂ M6.

Let us now consider a 1-gerbe whose curvature α does not vanish but it is trivial in

H3(M6, R), as it is the case for the torsional 3-forms αtor
α considered in this work. In that

case we have that on the patch Ua, Fa = F + dBa with F a globally well-defined 2-form

such that dF = α. From (C.16) and the fact that
∫
Σ3

α =
∫
π′
2

F −
∫
π2

F it follows that

h̃ol (π2) = hol (π2) · exp

(
−2πi

∫

π2

F

)
(C.17)

only depends on the homology class of π2, and therefore it defines a homomorphism

Tor H2(M6, Z) → S1 that allows to identify α with an element of Tor H3(M6, Z).

Clearly, we can define h̃ol for a gerbe of any degree. There is however a particularly

elegant way to define it for torsional r-cycles, based on the topological invariants built

on [121] (see also [122]). Indeed, let us consider a torsional r-cycle πtor
r and the holonomy

induced on it by a (r − 1)-gerbe curvature αr+1. Since πtor
r is torsional, we have that

kπtor
r = ∂Σr+1 for some 4-chain Σ4 and k ∈ Z. Then we can write

h̃ol (πr) = hol (πr) · exp

(
−2πi

k

∫

Σr+1

αr+1

)
(C.18)

Remarkably, (C.18) is precisely what we obtain when we compute the couplings (4.30)

between D6-brane U(1) gauge bosons and RR massive axions. Indeed, in this case the

gerbe curvature is given by ω̃tor,β, and the torsional cycle by the sum of 3-cycles π−
b that

we associate to the open string U(1)b. Naively, the coefficients cβ
b are obtained from the

D6-brane dimensional reduction as
∫

π−

b

βtor,β = −kβ
α

∫

π−

b

d−1(ω̃tor,α) → ikβ
α

2π
ln holα(π−

b ) (C.19)

where holα is the holonomy induced by ω̃tor,α. However, to this quantity we need to

substract the one that appears in the kinetic mixing of U(1)b and the torsional RR U(1)’s.
∫

R1,3

(dV α − kα
βCβ

2 ) ∧ F b
2

1

kb

∫

Σb
4

ω̃tor,α (C.20)
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where ∂Σb
4 = kbπ

−
b . Using that the matrix k is symmetric, it is possible to see that sub-

tracting the kinetic mixing coefficient amounts to replace holα(π−
b ) → h̃olα(π−

b ) in (C.19).

Therefore, since by definition

1

2πi
ln h̃olα(π−

b ) = Lα
b , (C.21)

we recover via (4.29) the result of the main text.
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