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vacuum block provides an avatar of the black hole information paradox in the form of
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2 corrections to the vacuum

block, and we provide integral formulas for general Virasoro blocks. We comment on the in-
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1 Introduction and discussion

To make predictions about the thermodynamic behavior of a system, we usually study a

statistical ensemble of states codified by a partition function. In this standard ‘macroscopic’

approach, the entropy function S(E) plays a key role, counting the number of states eS(E)

with energy E and determining the phase diagram of the theory as a function of the

temperature. For example, the Cardy formula [1, 2] for S(E) predicts the asymptotic

density of states in CFT2, thereby counting the number of black hole states in quantum

gravity theories in AdS3 [3, 4].

We have taken a rather different ‘microscopic’ approach to thermodynamics in

AdS/CFT [5–7], studying the correlation functions of light probe operators in the back-

ground of a heavy CFT microstate. Intuitively, we expect that there should be very little

difference between observables computed in a thermal density matrix and those computed

in a pure state randomly chosen from the canonical ensemble. Via the operator/state cor-

respondence, we can infer thermodynamic properties from a 4-pt correlator by comparing

〈OH(∞)OL(1)OL(z)OH(0)〉 ?≈ 〈OL(1)OL(z)〉TH =

(
πTH

sin(πTHt)

)2hL

(1.1)

where z = 1−e−t, OH is a heavy operator, and the last equality holds in CFT2. We obtain

precisely this relation [8] by approximating the left-hand side with the Virasoro vacuum
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conformal block, computed at large central charge c in the limit hH ∝ c� hL. In the light-

cone OPE limit [9, 10], this will be a good approximation for any CFT2 without additional

conserved currents; more generally it provides an interesting universal contribution to the

correlator capturing gravitational effects in AdS3. Thus the thermodynamic properties of

high energy states in CFT2 at large c are built into the structure of the Virasoro algebra.

In this work we will study 1/c corrections to the Virasoro conformal blocks and their im-

plications for thermodynamics. These will include both semi-classical corrections at higher

orders in hL/c and genuine ‘quantum’ corrections. We use the terminology ‘semi-classical’

and ‘quantum’ because these correspond, respectively, to the gravitational backreaction of

the light probe and to gravitational loop effects in AdS3. In the remainder of this intro-

duction we will discuss how our discussion relates to the black hole information paradox,

and then we provide a summary of the results.

Chaos can also be studied by taking a limit of CFT 4-point correlators [11–13], with

a universal bound expected for large central charge theories [14]; the implications of our

results for chaos will be discussed in a forthcoming work.

1.1 The information paradox and the vacuum block

The black hole information paradox has many guises. In its most visceral and pressing form,

it requires understanding the correct description of physics near black hole horizons, and

in particular, the question of whether the semi-classical description can survive as a good

approximation while simultaneously allowing for unitary evolution [15–18]. Such problems

remain extremely perplexing and important, but they are difficult (or impossible?) to

formulate as a precise question about CFT observables, and progress on this front may

require qualitatively new ‘observables’ [19–21].

A more straightforward manifestation of the information paradox can be formulated

directly in terms of CFT correlators. In the background of a large AdS-Schwarzschild

black hole, the two-point correlation function with Lorentzian time-separation tL decays

exponentially at large time [22]. This means that information dropped into the black hole at

an initial time never comes out. A CFT living on a non-compact space or a CFT at infinite

central charge may also have thermal correlators that decay exponentially for all times, as

can be seen explicitly by analytically continuing the right-hand side of equation (1.1) for the

case of CFT2 on the thermal cylinder. However, for a CFT living on a compact space with

finite central charge and at a finite temperature,1 correlators cannot decay exponentially

for all times, as this would signal loss of information concerning a perturbation to the

thermal density matrix.

We add another layer to the story by studying the correlators of light operators in

the background of a heavy pure state. This makes it possible to probe the pure quantum

state of a one-sided BTZ black hole, instead of an ensemble of eS black holes. In the

thermodynamic limit we expect the relation of equation (1.1) to hold, leading to a sharp

Euclidean-time signature of information loss. Thermal 2-pt correlators are periodic under

1For a CFT, we can connect the non-compact and compact cases by taking the infinite temperature

limit and measuring distances in units of 1/T .
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tE → tE + β. This periodicity leads to additional singularities in equation (1.1) from

periodic images of the OL(z)OL(1) OPE singularity, which occur in the Euclidean region

at z = z̄ = 1−e
n
TH for any integer n. Although these singularities are obligatory for thermal

2-pt correlators, they are forbidden in the 4-pt correlators of a CFT at finite central charge

c [23]. So these singularities are a sharp signature of information loss in the large central

charge limit, analogous to the bulk point singularity [24–26], a signature of bulk locality.

In the case of either exponential decay in tL for thermal 2-pt correlators or periodicity in

tE for pure-state 4-pt correlators, it would be most interesting to have a bulk computation

resolving the paradox. Unfortunately, we do not have a non-perturbative definition of the

bulk theory, and in fact, the bulk theory may be precisely defined only via a dual CFT.

In this paper we will focus on Euclidean time periodicity and its manifestation in

the Virasoro conformal blocks. We expect that unitarity can only be restored by non-

perturbative effects in 1/c, and in particular that perturbative 1/c corrections should not

violate the thermal periodicity tE → tE + β of the large c heavy-light correlators. These

expectations are primarily based on the expectation that 1/c corrections correspond to

loop effects around the infinite c gravity saddle, which is an AdS black hole background

with fixed Euclidean-time periodicity, and thus such corrections should at most produce

perturbative corrections to β. Roughly speaking, unitarity restoration should rely on con-

tributions from different saddles and therefore involve effects of order e−S ∼ e−O(c).2 Such

non-perturbative effects will be addressed more directly in future work.

We will compute 1/c corrections to the Virasoro blocks and study their behavior in

Euclidean time. We find that the 1/c corrections to the vacuum block do violate period-

icity, with a non-trivial monodromy under tE → tE + β. Intriguingly, there appear to be

two relevant time scales, of order t ∼ c and t ∼ eO(c), as the correlator has non-trivial

dependence on both t and log t.

However, we do not believe that these effects have any immediate connection with the

resolution of the information paradox. Conformal blocks have unphysical monodromies

in the Euclidean plane that cancel when they are summed to form full CFT correlation

functions. The monodromies we find in the 1/c expansion of Virasoro blocks seem to play

a similar role to the more banal monodromies of global conformal blocks. In section 3 we

explain how these monodromies can arise from AdS computations of the blocks in terms

of ‘geodesic Witten diagrams’ [27–29]. The case of both global and Virasoro blocks can

be given a parallel treatment, which suggests that the Euclidean-time monodromies of the

1/c corrections are likely to disappear in the full correlators.

1.2 Summary of results

In previous work we showed that in the heavy-light semi-classical limit, the vacuum con-

formal block can be written as

V(t) = ehLt
(

πTH
sin(πTHt)

)2hL

, (1.2)

2Recall that S(E) ≈ 2π
√

cE
6

, so for E ∝ c this is formally O(c).
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where

TH =

√
24hH
c − 1

2π
(1.3)

and z = 1 − e−t. Rescaling τ ≡ iπTHt so that we measure distances in units of TH , and

then taking TH →∞, we see that the full structure of the vacuum block is preserved.

Here we show that in the large temperature limit, the first correction in a 1/c expansion

of the heavy-light vacuum block is

V(τ) = ehLt
(

πTH
sin(πTHt)

)2hL
[
1 +

hL
c
V(1)
hL

+
h2
L

c
V(1)

h2
L

]
,

V(1)
hL

=
csch2

(
αt
2

)
2

[
3
(
e−αtB

(
e−t,−α, 0

)
+ eαtB

(
e−t, α, 0

)
+ eαtB

(
et,−α, 0

)
+e−αtB

(
et, α, 0

))
+

1

α2
+ cosh(αt)

(
− 1

α2
+ 6H−α + 6Hα + 6iπ − 5

)
+ 12 log

(
2 sinh

(
t

2

))
+ 5

]
− t
(
13α2 − 1

)
coth

(
αt
2

)
2α

+ 12 log

(
2 sinh

(
αt
2

)
α

)
,

V(1)

h2
L

= 6

(
csch2

(
αt

2

)[
B(e−t,−α, 0) +B(et,−α, 0) +B(e−t, α, 0) +B(et, α, 0)

2
+H−α

+Hα + 2 log

(
2 sinh

(
t

2

))
+ iπ

]
+ 2

(
log

(
α sinh

(
t

2

)
csch

(
αt

2

))
+ 1

))
.

(1.4)

where B(x, β, 0) = xβ2F1(1,β,1+β,x)
β is the incomplete Beta function, z = 1− e−t, Hn is the

harmonic function, and α ≡
√

1− 24hH
c
∼= 2πiTH .3

An important point is that the methods we use in this paper can obtain terms that

are not visible at any order in the “semi-classical” part of the conformal blocks. This

semi-classical part is defined as

lim
c→∞

1

c
logV(z), (1.5)

where the ratios δi ≡ hi/c of the external dimensions to c are all held fixed. After taking

the logarithm of V, the O(h2
L/c) correction term above can be seen to survive in this limit,

but the O(hL/c) term does not and thus goes not only beyond leading order in δL but

beyond the semi-classical limit itself.

After this work was substantially completed, the paper [30] appeared that uses a different

method to compute an integral expression for the order h2
L/c (semi-classical) result.

3These expressions have various branch cuts; to be precise, one should start with the conventional

definition of these special functions in the region Im(z) < 0 to obtain the “first sheet” behavior near the

Euclidean OPE limit, and extend the function by analytic continuation.

– 4 –



J
H
E
P
0
5
(
2
0
1
6
)
0
7
5

2 Corrections to the vacuum conformal block

2.1 Review

Conformal blocks in 2d CFTs are contributions to four-point correlation functions from

irreducible representations of the full Virasoro algebra, and as such resum contributions

from all powers of the stress tensor. These contributions are dual to those of all multi-

graviton contributions in AdS, and thus automatically encode an enormous amount of

information about gravity in AdS3. To distinguish these conformal blocks from simpler

expression that contain irreducible representations of the global subgroup SL(2,C), we refer

to the former as Virasoro conformal blocks and the latter as global conformal blocks. The

explicit form for global conformal blocks in 2d has been known for some time and is just a

hypergeometric function [31]; this is in contrast with Virasoro blocks, where, despite various

systematic expansions [31–37], no closed form expression is known. In [8, 28, 30, 38–42]

methods have been developed for computing the Virasoro conformal blocks in a “heavy-

light” limit, where the central charge as well as the conformal weight of two “heavy”

external operators are taken to be large, while the conformal weight of two “light” external

operators is held fixed. The most efficient technique [38] works by using the conformal

anomaly to absorb the leading order contribution of the stress tensor in this limit into a

deformation of the metric.

To be more precise, recall that the Laurent coefficients of the stress tensor depend on

the coordinates being used:

T (x) =

∞∑
n=−∞

L
(x)
n

xn+2
. (2.1)

The usual Virasoro generators Ln ≡ L(z)
n are the Laurent coefficients in the flat coordinate

z, where the CFT lives in the metric ds2 = dzdz̄. The subset of Ln with n ≤ −1 are

raising operators which, when acting on a primary state, provide a natural basis for all

states in a conformal block. So, one can work out the conformal blocks for a four-point

function 〈φH(∞)φH(1)φL(z)φL(0)〉 by expanding the state created by φL(z)φL(0)|0〉 in this

natural basis

φL(z)φL(0)|0〉 ⊃ zh−2hL
∑
{mi,ki}

c{mi,ki}z
∑
imikiLk1

−m1
. . . Lkn−mn |h〉, (2.2)

where |h〉 is the primary state of the conformal block and c{mi,ki} are coefficients that are

fixed by conformal symmetry. Recall that primary states are defined as those annihilated

by the lowering operators Ln with n ≥ 1. One way to compute the Virasoro block is to

construct a projector Ph:

Ph ≡
∑

{mi,ki},{m′i,k′i}

Lk1
−m1

. . . Lkn−mn |h〉N−1
{mi,ki},{m′i,k′i}

〈h|Lk
′
s
m′s
. . . L

k′1
m′1
,

N{m′i,k′i},{mi,ki} ≡ 〈h|L
k′s
m′s
. . . L

k′1
m′1
|Lk1
−m1

. . . Lkn−mn |h〉. (2.3)

Acting with Ph to make PhφL(z)φL(0)|0〉, one automatically obtains

the sum over the basis in (2.2) with coefficients given by evaluating

– 5 –
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∑
{m′i,k′i}

N−1
{mi,ki},{m′i,k′i}

〈h|Lk
′
s
m′s
. . . L

k′1
m′1
φL(z)φL(0)|0〉. The conformal block itself is

just given by 〈φH(∞)φH(1)PhφL(z)φL(0)〉, the four point correlator projectioned onto the

irreducible representation of Virasoro built from the primary state |h〉.
However, in the heavy-light limit, this is not a very efficient basis to use. Although the

normalization factors N{m′i,k′i},{mi,ki} grow with c for most contributions and thus produce a

large suppression, these can be compensated in the Virasoro block by factors of the heavy

operator dimension coming from the numerator 〈φH(∞)φH(1)Lk1
−m1

. . . Lkn−mn |h〉. Fortu-

nately, there exists another natural basis that avoids this difficulty. It is easy to see that

any other set of coordinates x which begins linearly in Euclidean coordinates z at small z

will again have the property that L
(x)
n with n ≤ −1, and thus also provides a natural basis.

In [38] it was noted that the choice of coordinates

w = 1− (1− z)α, α =

√
1− 24hH

c
, (2.4)

leads to remarkable simplifications in the basis generated by L−n ≡ L
(w)
−n ; in particu-

lar, at leading order in 1/c, the only basis elements that contribute are those of the

form Ln−1|h〉. The reason is that when one forms the projector Ph,w in this basis,

there is no longer any enhancement from the conformal weight of the heavy operator

in 〈φH(∞)φH(1)Lk1
−m1

. . .Lkn−mn |h〉. The simplest way to see this is to note that due to the

conformal anomaly,
〈φH(∞)φH(1)T (w)|h〉
〈φH(∞)φH(1)|h〉 = h

1− z(w)

z2(w)
. (2.5)

This does not grow with hH , and therefore factor of hH cannot compensate for the sup-

pression by factors of c from the norms N{m′i,k′i},{mi,ki}.
To go to subleading orders in 1/c, we have to include some of these suppressed terms.

Clearly, we have to include terms where the suppression from the norm involves only one

factor of c, but there are also some contributions that must be included where the norm

produces two factors of c. The reason is that in the sum over modes, factors of the form

〈φH(∞)φH(1)L−nL−m|h〉 with two L’s can produce a factor of c upstairs. This is again

easiest to understand by looking at correlators with the stress tensor, where this positive

factor of c arises from the limit when two T ’s are brought together. In general, a correlator

with 2k insertions of T can have at most ck upstairs from such TT OPE singularities, and

there will be a suppression by c−2k coming from the norm of the physical T modes. Thus,

to compute to order 1/ck we will have to consider 2k factors of L−n’s.

2.2 Computation

The projector Ph,w for the L−n is similar to the original Euclidean basis projector Ph.

Inside a four-point function, it takes the form

〈φH1(∞)φH2(1)Ph,wφL1(z)φL2(0)〉 = (2.6)∑
{mi,ki},{m′i,k′i}

〈φH1(∞)φH2(1)Lk1
−m1

. . .Lkn−mn |h〉N−1
{mi,ki},{m′i,k′i}

〈h|Lk
′
s
m′s
. . .Lk

′
1

m′1
φL1(w)φL2(0)〉.

– 6 –
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As shown in [38], this correctly acts as a projector onto the L−n modes when the overlap

factor 〈h|Lk
′
s
m′s
. . .Lk

′
1

m′1
φL(w)φL(0)〉 is just given by the analogous Euclidean overlap factor

after a conformal transformation on the φL’s:

〈h|Lk
′
s
m′s
. . .Lk

′
1

m′1
φL1(w)φL2(0)〉 ≡ (w′(z))hL1 (w′(0))hL2 〈h|Lk

′
s
m′s
. . . L

k′1
m′1
φL1(z(w))φL2(0)〉.

(2.7)

The norm factors N{mi,ki},{m′i,k′i} are unchanged from the Euclidean basis. The only piece

that changes substantially is the overlap with the heavy operators:

〈φH(∞)φH(1)Lk1
−m1

. . .Lkn−mn |h〉. (2.8)

Our strategy for computing these will be to compute the corresponding

〈φH(∞)φH(1)T (w1) . . . T (wn)〉 correlators and read off the Laurent coefficients. In

the following, we will focus on the vacuum block with hH1 = hH2 , hL1 = hL2 for simplicity,

and relegate the calculation of the general case to appendix A.

It will be convenient to choose the insertions of the heavy operators to be at 0 and ∞
rather than at 1 and ∞; this corresponds to z → 1− z and w → 1−w compared to above.

Correlators can be computed in w most easily by using the OPE:

T (w)φH(∞)
w∼∞∼ 0, (2.9)

T (w)φH(0)
w∼0∼ 0,

T (w1)T (w2)
w1∼w2∼ c

α4w2
1w

2
2

(
z2

1z
2
2

2z4
12

+
z1z2

z2
12

(
1− α2

12
+
α2w1w2(T (w1) + T (w2))

c

))
,

where hH = c
24(1 − α2) and zi ≡ z(wi) = w

1
α
i . The notation “∼” here means “equal

up to regular terms.” Since w2T (w) is holomorphic in z(w), these OPEs determine the

singularities and therefore the complete functional dependence of T correlators in terms of

correlators without T insertions. Since the transformation from w to z is regular except

at z = 0,∞, the last OPE above, T (w1)T (w2) is just a rewriting of the standard TT OPE

T (w1)T (w2) ∼ c/2
w4

12
+ 2T (w2)

w2
12

+
∂w2T (w2)

w12
+ · · · .

Applying the OPE to one or two insertions of T (w) we find

〈φH(∞)φH(0)T (w)〉
〈φ(∞)φ(0)〉 = 0,

〈φH(∞)φH(0)T (w1)T (w2)〉
〈φ(∞)φ(0)〉 = c

z1z2

α4w2
1w

2
2

[
z1z2

2z4
12

− (α2 − 1)

12z2
12

]
. (2.10)

Expanding the above 〈φHφHTT 〉 correlator at w1 ∼ w2, one can see that there is only

a fourth-order pole at w1 ∼ w2 and the higher order poles cancel, as is enforced by the

TT OPE. To compute the 1/c correction to the leading order heavy-light Virasoro blocks,

the only modes we need to sum are single- and double-L modes. Calculating the overlap

factors with the light operators and the inner product factors that enter is a straightforward

application of the Virasoro algebra. It will be convenient to use a basis of double-L modes

that are symmetric in the indices, i.e. of the form L(m,n) ≡ LmLn+LnLm
2 . One finds

〈L(m,n)φL(z)φL(0)〉 =
1

2
hL (2(m− 1)(n− 1)hL + (m− 1)m+ (n− 1)n) zm+n−2hL ,

〈Lm+nφL(0)φL(0)〉 = hL(m+ n− 1)zm+n−2hL , (2.11)

– 7 –
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and

M(m,n),(m,n) ≡ 〈L(m,n)L(−m,−n)〉,
M(m,n),(m+n) ≡ 〈L(m,n)L−(m+n)〉,
M(m+n),(m+n) ≡ 〈Lm+nL−(m+n)〉. (2.12)

Inverting and expanding to O(1/c2),

M−1
(m,n),(m,n) =

144

c2nm(n2 − 1)(m2 − 1)(1 + δn,m)
+O

(
1/c3

)
, (2.13)

M−1
(m,n),(a) = −72

(m+2n)
n(n2−1)

+ (n+2m)
m(m2−1)

c2(m+ n− 1)(m+ n)(m+ n+ 1)(1 + δn,m)
δa,m+n +O

(
1/c3

)
.

Now, these factors can be substituted into the sum that defines the projector. We can take

advantage of the fact that 〈φHφHT (w1)T (w2)〉 is a generating function for 〈φHφHL−nL−m〉
in order to write these terms as contour integrals in the following form:

〈φHφHPh,wφLφL〉 =
∑
m,n

〈φHφHL−nL−m〉
(
M−1

(m,n),(m,n)〈LmLnφLφL〉 (2.14)

+M−1
(m,n),(m+n)〈Lm+nφLφL〉

)
=

(
w′(z)w′(1)

w2

)hL ∮ dw1

2πiw1

dw2

2πiw2
〈φHφHT (w1)T (w2)〉G(w1, w2),

where

G(w1, w2) =

(
w′(z)w′(1)

w2

)−hL∑
m,n

w2
1w

2
2

wn1w
m
2

(
M−1

(m,n),(m,n)〈LmLnφLφL〉 (2.15)

+M−1
(m,n),(m+n)〈Lm+nφLφL〉

)
=

∑
n≥2,m≥2

(
w

w1

)n( w

w2

)m 72hLw
2
2w

2
1 (hL(m+ n)(m+ n+ 1) +mn)

c2m(m+ 1)n(n+ 1)(m+ n)(m+ n+ 1)
.

The sum on m in G(w1, w2) can be done in closed form, and we get a combination of

powers, logs, and hypergeometrics of the form

2F1

(
1, 2 + n, 4 + n,

w

w2

)
, 2F1

(
1, 3 + n, 4 + n,

w

w2

)
. (2.16)

The integration contour in (2.14) must have |w| < |w1| < 1, |w| < |w2| < 1, since the sum

over powers of w1, w2 converges in G2 when |w| < |w1|, |w2|, and the sum over powers of

w1, w2 in 〈φφTT 〉 converges when 1 > |w1|, |w2|. Starting with the contour integral over

w2, we can shrink it down as far as possible. However, the sum over m produces branch

cuts that prevent one from shrinking the contour all the way down to the origin. These

branch cuts in w2 are along the real axis between 0 and w; the discontinuities across this
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branch cut can be read off from the coefficients of the logarithms in G(w1, w2), together

with the following expressions for the discontinuities of the hypergeometric functions:

discIm(w2)→0

[
2F1

(
1, 2 + n, 4 + n,

w

w2

)]
= 2πi

(2 + n)(3 + n)w2
2(w2 − w)

w3

(w2

w

)n
discIm(w2)→0

[
2F1

(
1, 3 + n, 4 + n,

w

w2

)]
= −2πi(3 + n)

(w2

w

)n+3
. (2.17)

We therefore reduce to

〈φHφHPh,wφLφL〉 ≡
(
w′(z)w′(1)

w2

)hL (
hLV(1)

hL
+ h2

LV(1)

h2
L

)
,

V(1)
hL

= w−2hL

∮
dw1

2πiw1

∫ w

0
dw2〈φHφHT (w1)T (w2)〉

×
∑
n≥2

72w2w
2−n
1 wn−1

((
w2
w

)
n (nw2 − nw − w2) + w2

)
cn (n2 − 1)

,

V(1)

h2
L

= w−2hL

∮
dw1

2πiw1

∫ w

0
dw2〈φHφHT (w1)T (w2)〉

×
∑
n≥2

72w2w
2−n
1 wn−1 (w − w2)

cn(n+ 1)
. (2.18)

We interpret the V(1)
hL

term as a true ‘quantum’ correction while V(1)

h2
L

is ‘semi-classical’. The

former would correspond to a loop effect in AdS3, while the latter captures effects from

classical gravitational backreaction from the light probe object.4 Finally, the remaining

sum on n converges in the region that |w1| > |w2|, and gives

V(1)
hL

=
w−2hL

cw2

∮
dw1

2πiw1

∫ w

0
dw2〈φHφHT (w1)T (w2)〉

×
(
−36w1

(
w2

2 (w1 − w) 2 log

(
1− w

w1

)
+ (w2 − w1)w

(
w2 (w2 − w) + (2w1w2 − (w1 + w2)w) log

(
1− w2

w1

))))
,

V(1)

h2
L

= w−2hL

∮
dw1

2πiw1

∫ w

0
dw2〈φHφHT (w1)T (w2)〉

×
36w1w2 (w − w2)

(
w (2w1 − w) + 2w1 (w1 − w) log

(
1− w

w1

))
cw2

. (2.19)

Thus, we can shrink the w1 contour onto the branch cut from 0 to w. However, note that

after we do this, the branch cut from log(1 − w2
w1

) is crossed when w1 < w2, but not when

w1 > w2. One also crosses a pole at w1 ∼ w2 in 〈φHφHTT 〉. However, as explained below

equation (2.10), the only such singularity is 〈φHφHTT 〉 ∼ c/2
w4

12
. This does not contribute to

4Note that there is no O(h0
L) piece. In fact, this is true at all orders in 1/c, since such a term would have

to survive in the limit that hL = 0. But in that case, φL would have to be the identity operator, so the

vacuum “block” would be the 〈φH(∞)φH(1)〉 two-point function, which is just constant normalized to 1.
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any 〈φHφHL−nL−m〉 overlap term with n,m ≥ 2, since in a small w1, w2 expansion it does

not have any terms with non-negative powers of both w1 and w2, so we can just subtract

it out. Taking this into account, we finally obtain

V(1)
hL

= − 36

cw2

∫ w

0
dw1

∫ w

0
dw2〈φH(∞)φH(1)T (w1)T (w2)〉′

×
[
w2

2 (w1 − w) 2 −Θ(w2 − w1) (w1 − w2)w (2w1w2 − (w1 + w2)w)
]

V(1)

h2
L

= − 72

cw2

∫ w

0
dw1

∫ w

0
dw2〈φH(∞)φH(1)T (w1)T (w2)〉′

× [w1w2 (w1 − w) (w2 − w)] (2.20)

The primes on the correlators indicate that we are to subtract out their ∼ c/2
w4

12
singularities.

The function V(1)

h2
L

contributes to the conformal block at O(
h2
L
c ) times a function of α,

and consequently it is part of the “semi-classical” piece. The semi-classical part is defined

as the piece of log V that is formally of O(c) in the limit where c is large and hH/c, hL/c

are held fixed. However, the function V(1)
hL

contributes only to log V at O(c0) in this limit

and therefore goes beyond the semi-classical part of the block.

We were able to evaluate both the semi-classical and quantum 1/c corrections, which

are written closed form in equation (1.4). In what follows we will examine some interesting

limits of the general result.

2.3 Small hH limit

The main reason that the integrals in (2.20) are difficult is that 〈φH(∞)φH(1)T (w1)T (w2)〉
written as a function of w1, w2 contains non-integer powers of w1, w2 arising from zi =

1− (1− wi)1/α. In the limit that hH/c is small, we can expand the correlator 〈φHφHTT 〉
around α = 1, and these become integer powers and logarithms. At O(α− 1), one has

〈φH(∞)φH(1)T (w1)T (w2)〉′

= (α− 1)

c

(
−(w2

1+2(5w2−6)w1+(w2−12)w2+12)w12

(w1−1)(w2−1) − 6 (w1 + w2 − 2) log
(

1−w2
1−w1

))
6w5

12

+O((α− 1)2). (2.21)

The resulting integrals in (2.20) can be easily evaluated. The result is

V(1)

h2
L

= 6
(α− 1)

z2

(
4z2 + 2(z − 1) log2(1− z)− (z − 2)z log(1− z)

)
+O

(
(α− 1)2

)
V(1)
hL

=
(α− 1)

z2

(
−6(z − 2)z

(
Li2

(
1

1− z

)
+ Li2(z)

)
+
(
π2(z − 2)− 16z

)
z

− 3(3(z − 2)z + 2) log2(1− z) + (z − 2)z(6 log(z) + 6iπ − 1) log(1− z)
)

+O((α− 1)2).

(2.22)

Since w = z + O(α − 1), there is no difference between using w vs z in the expression at

leading order in O(α− 1) above. We have checked these expressions against a direct small

z expansion up to O(z8) using the methods of [31].
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2.4 Large T limit

It is more interesting to consider limits that allow α = 2πiTL to be imaginary, since that

is the regime where the heavy state develops a horizon in AdS and a temperature. The

limit that is most likely to be generic is that where TL is taken to ∞. In particular, as

mentioned in the introduction, in this limit one can rescale distance as x→ x/T to obtain

the infinite radius limit of the circle. While the two-point function on the circle at finite

radius and finite temperature is equivalent to a two-point function on the torus and is thus

not a universal quantity, the two-point function on the plane at finite temperature is the

universal function (1.1), independent of all CFT data except for the dimension hL.

Fortunately, T →∞ is also a limit where the integrand (2.20) simplifies significantly:

〈φH(∞)φH(1)T (w1)T (w2)〉′

=
1

12
c

 6− log2
(

1−w2
1−w1

)
(w1 − 1) 2 (w2 − 1) 2 log4

(
1−w2
1−w1

) − 6

(w1 − w2) 4

 . (2.23)

Substituting this into (2.20), we obtain the result

V(1)
hL

= − 1

cw2

[
24(w − 1)2Ei(− log(1− w)) + 24li(1− w) + 10w2 − 24γE((w − 2)w + 2)

+48(w − 1) log(− log(1− w))− w((26− 25w) log(1− w) + 24w log(w))]

V(1)

h2
L

= − 12

cw2

[
−4(w − 1)Ei(− log(1− w))− 4(w − 1)li(1− w)− 2w2

−w2 log
(
(1− w) log2(1− w)

)
+ 2w2 log(w)− 8iπw + 8γEw

+8(w − 1) log(log(1− w)) + 8iπ − 8γE ] , (2.24)

where Ei and li are the exponential and logarithm integral functions, respectively.

Since the periodicity in Eulidean time is expected to be 1/T , in the infinite temperature

limit we want to scale t to zero with tT fixed. The variable w depends on t through

w = 1− e2πiT t, so whether or not the block is periodic in tT is a question of it monodromy

as w is taken around 1 in the complex plane. One can start by looking at the behavior

of (2.24) around w ∼ 1:

V(1)

h2
L

= −12

c
(log(1− w) + 2 + 2 log(− log(1− w)) + . . . ) ,

V(1)
hL

=
1

c
(log(1− w) + 24γE − 10 + . . . ) . (2.25)

The presence of these logarithms lead to non-trivial monodromies around w = 1, and as a

result the vacuum block on its own is not periodic in time.5

2.5 Dependence on T

Next, we want to consider how the 1/c correction varies as a function of temperature.

Note that the first several terms in the small w expansion at large α and at small α are

5Since 1− w = e2πiTt has unit norm, it is necessary to check the monodromy not just in a small 1 − w
expansion. This is straightforward to do using (2.24) and does indeed contain a non-trivial monodromy as

Tt→ Tt+ 1.
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remarkably similar:

V(1)
hL

=

{
− (α−1)

75c w
4
(
1 + 2w + 2.781w2 + 3.342w3 + 3.728w4 + . . .

)
α→ 1

− 11
1800cw

4
(
1 + 2w + 2.783w2 + 3.350w3 + 3.744w4 + . . .

)
α→ i∞

V(1)

h2
L

=

{
− (α−1)

15c w
4
(
1 + 2w + 2.786w2 + 3.357w3 + 3.757w4 + . . .

)
α→ 1

− 11
360cw

4
(
1 + 2w + 2.793w2 + 3.380w3 + 3.800w4 + . . .

)
α→ i∞ (2.26)

The fact that both begin as 1+2w follows from global conformal symmetry, but the similar-

ity of the subsequent terms is non-trivial. It reflects the fact that each additional ‘graviton’

is making a suppressed contribution, so that both functions are well-approximated at small

w by the lowest dimension 2-graviton global block w4
2F1(4, 4, 8, w). As discussed in the

next section, we believe that the similarity at α = 1 and α = i∞ is a consequence of the

fact that the BTZ solution is simply an orbifold of AdS3, although it would be interesting

to see this explicitly.

In figure 1 we plot the w-dependence for various values of α to show this agreement

explicitly. As one can see there, it is only near α ∼ 0 (which is the minimum threshold for

black holes in AdS3) that the w-dependence differs significantly from either the α = 1 or

α = i∞ extreme.

3 Expectations from thermodynamics and AdS/CFT

In the last section we computed perturbative 1/c corrections to the Virasoro conformal

blocks in the heavy-light limit. Unlike the leading order vacuum block, these corrections

appear to deviate from expectations from thermodynamics, or equivalently, from black hole

physics in AdS3, as they have non-trivial monodromies in Euclidean time. In what follows

we will explain this in more detail, and then show that our results do not necessarily

differ from expectations from AdS/CFT. The main point is that individual conformal

blocks generically have unphysical monodromies that can cancel when they are summed to

compute full CFT correlators, and that these monodromies have a simple origin in AdS.

3.1 Periodicity in Euclidean time and pure state thermodynamics

Let us summarize the well-known features of field theory correlation functions in the canon-

ical ensemble, to facilitate comparison with the pure state correlation functions and asso-

ciated conformal blocks that we have studied.6

The thermal 2-pt function is

F12(tL, ~x) ≡ Tr
(
e−βHO1(tL, ~x)O2(0)

)
(3.1)

6For a more general discussion see e.g. section 4.1.2 of [19]. The connection between Lorentzian and

Euclidean correlators in a CFT context was extensively reviewed in [43].
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Figure 1. This figure shows the similarity in the functional dependence of V(1)
hL

and V(1)

h2
L

for

different values of α. Left,top: the ratio N(α)
V(1)

hL
(w;α)

V(1)
hL

(w;α=i∞)
, where a normalization N(α) =

− 11α4

(1−α)(α+1)(11α2+1) scales them to agree at z ∼ 0. Right,top: same as the left, but for the O(h2L)

term N(α)
V(1)

h2
L

(w;α)

V(1)

h2
L

(w;α=i∞)
. The endpoints α = 1 and α = i∞ are very close, but the difference be-

comes more significant near α ∼ 0. Left and right, bottom: same as the top, but as a function of z

for real z.

where we emphasize that tL is a Lorentzian time coordinate. Inserting a complete set of

states shows

F12(tL, ~x) =
∑
ψ,ψ′

〈ψ|e−(β−itL)HO1(0, ~x)e−itLH |ψ′〉〈ψ′|O2(0)|ψ〉

=
∑
ψ,ψ′

〈ψ′|eitLHO2(0)e−(β+itL)H |ψ〉〈ψ|O1(0, ~x)|ψ′〉 (3.2)

which leads to the KMS condition

F12(tL − iβ, ~x) = F21(tL, ~x) (3.3)

stating that the correlator is periodic in imaginary time, up to an exchange of the order of

the operators. In relativistic QFTs, the two operators commute at space-like separations

|tL| < |~x|, which means that F12 and F21 must be analytic continuations of each other. From

the single Euclidean correlator F(tE , ~x) we can obtain either F12 or F21 by approaching

the lightcone branch cuts of F at t2L = ~x2 from different sides. For the cases that we will

be studying O1 = O2 = OL.
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In recent work [8, 38, 39] we have been comparing thermal 2-pt correlators with the

4-pt correlator in a heavy background

〈OH(∞)OL(1)OL(z)OH(0)〉 ≈ 〈OL(1)OL(z)〉T =

(
πT

sin(πTt)

)2hL

, (3.4)

where z = 1− e−t+iφ. In CFT2 the thermal 2-pt correlator of Virasoro primary operators

is uniquely fixed via a conformal mapping from the plane to the cylinder. The thermal

correlator agrees precisely with the large c heavy-light Virasoro vacuum conformal block,

where 2πT =
√

24hH
c − 1 is the temperature.7

The limit of large central charge with fixed hH/c can be interpreted as a high-energy

limit in a theory with many-degrees of freedom. Thus we expect an identity such as equa-

tion (3.4), because in the thermodynamic limit, a pure state drawn from the canonical

(or micro-canonical) ensemble should be very difficult to distinguish from the true thermal

density matrix. In AdS/CFT, this is the statement that black holes and very high energy

microstates should be nearly identical. In fact, in AdS3 there are no approximately stable

orbits around black holes, so these states are even more ‘inescapable’ than in higher di-

mensions. We expect that order-by-order in the 1/c expansion, heavy-light correlators will

appear thermal, and that only non-perturbatively small effects may violate the approximate

KMS condition in heavy-light correlators.

We pause to note a subtlety concerning the identification in equation (3.4): we should

really be comparing the full heavy-light 4-pt correlator with 〈OLOL〉T on the torus, since

both functions must be periodic in the angular φ coordinate under φ → φ + 2π. But the

2-pt function on the torus is not fixed by conformal invariance; this corresponds to the

fact that Virasoro blocks other than the vacuum will contribute to the complete heavy-

light 4-pt function. The vacuum does make an important universal contribution, but for

example from an AdS3 description there would also be double-trace OL∂nOL contributions

that sum up to restore the perioidicity in φ at any t. One can avoid these complications by

studying the light-cone OPE limit [9, 10], or by taking the limit of T →∞ with Tt fixed,

so that the φ direction is effectively non-compact when distances are measured in units of

1/T . In that large temperature limit and at large c, the identification of equation (3.4)

becomes precise.

In section 2 we computed the 1/c corrections to the heavy-light Virasoro conformal

blocks and found deviations from the thermal result that could not be interpreted as a per-

turbative renormalization of the temperature. In the next sections we will discuss how con-

formal blocks can be computed from AdS in order to explain why our thermality-violating

1/c corrections should not necessarily be interpreted as a violation of the Euclidean-time-

periodicity seen in equation (3.4). To be precise, we need to distinguish between two

different notions of thermality. The first, which is specific to 2d CFTs, is that at infinite T

(or equivalently, through rescaling, in a CFT in non-compact space), the two-point function

should be exactly (3.4). The second is that the two-point function should be periodic in

7Both sides of the identity can accomodate separate holomorphic and anti-holomorphic temperatures T

and T̄ , with the case T 6= T̄ corresponding to a spinning BTZ black hole in AdS/CFT.
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Euclidean time. Knowledge of the vacuum Virasoro block is sufficient to see that the first

of these is violated, assuming even a mild O(1) gap in dimensions of operators. The reason

is that (3.4) makes a definite prediction for the coefficients of OPE singularities in the

four-point correlator, and low-order singularities can receive contributions only from low-

dimension operators. Thus, a small gap is enough to imply that the first few such singulari-

ties receive contributions from only the vacuum block, and therefore that the OPE does not

match the prediction of (3.4). This is in contrast with the second, more general, criterion

for thermality, which requires knowledge of the correlator at finite values of t and therefore

depends on the full operator content of the theory; this will be the main focus of the fol-

lowing sections. However, our results do show that in the lightcone OPE limit, where the

Virasoro vacuum block dominates (assuming no additional conserved currents), the form

of the 1/c corrections imply that the correlator cannot be separately periodic in t± iφ.

As a final comment, note that we can reproduce the exact canonical ensemble by

summing over individual pure microstates, so that

〈OL(1)OL(z)〉T ≡
∑
O
e−EO/T 〈O(∞)OL(1)OL(z)O(0)〉 (3.5)

In this relation we must let the sum range over both Virasoro primaries and descendants,

whereas in equation (3.4) we have been focusing on Virasoro primaries OH . In a CFT2

where 〈OL(1)OL(z)〉T is entirely fixed by conformal invariance, this relation provides a

constraint on CFT data closely related to modular invariance.

3.2 Monodromies of global conformal blocks from AdS

Local operators in QFTs commute at spacelike separation, so CFT correlators like

〈OH(x1)OH(x2)OL(x3)OL(x4)〉 (3.6)

are single valued analytic functions of the Euclidean xi, with singularities only occurring in

the OPE limits where xi and xj coincide. This property also holds when CFT correlators

are obtained from a quantum field theory in AdS via the AdS/CFT dictionary and the

bulk Feynman diagram expansion.

However, conformal blocks do not have this property. For example, consider a con-

formal block in the channel HH → LL, which can be computed as a sum over intermedi-

ate states

G∆,` = 〈OH(∞)OH(1)

 ∑
α descO∆,`

|α〉〈α|

OL(z, z̄)OL(0)〉 (3.7)

where the states |α〉 are all in the irreducible representation of a primary state/operator

O∆,` with dimension and total angular momentum ∆, `. Equivalently, this can be computed

by expanding in the OPE limit z, z̄ → 0.

Analytically continuing the variables z and z̄ = z∗ around the heavy operator OH(1),

as pictured in figure 2, we venture outside regime where the OL(z, z̄)OL(0) OPE converges.

If we interpret 1−z = e−t+iφ as a coordinate on the cylinder (so that the positions of OH(1)

and OL(0) are effectively switched), then we are simply continuing φ→ φ+2π. To be very
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10

z

10

z̄

Figure 2. This figure shows the analytic continuation in z and z̄ that are equivalent to rotating

OL(z) around the global AdS cylinder. An operator at infinity is not displayed.

OH(0)

OH(1)

OL(1)

OL(z)

Figure 3. This figure depicts a ‘geodesic Witten diagrams’ that can be used to compute a

conformal block from AdS [27]. The lines connecting the two light operators to each other and the

two heavy operators to each other are both geodesics, while the wavy line designates a propagator

whose endpoints have been fixed to these geodesics. The only integrals are over the positions of the

bulk-to-bulk propagator along the geodesics.

explicit, in the case of global 2d conformal blocks we can write

Gh,h̄(z, z̄) = Fh(z)Fh̄(z̄) + Fh(z̄)Fh̄(z), with Fβ(x) ≡ xβ2F1(β, β, 2β, x) (3.8)

where ∆ = h+ h̄ and ` = |h− h̄|. The hypergeometric functions have logarithmic branch

cuts around z, z̄ = 1 with non-trivial monodromies.

We would now like to explain how these monodromies arise from an AdS calculation.

First of all, note that since we are studying conformal blocks, not CFT correlators, we are

not asking a question about standard bulk Feynman diagrams. These diagrams must be

single-valued in the Euclidean region.

However, as has been shown recently [27], both global and Virasoro conformal

blocks [28] can be computed from a certain simplified version of a bulk Feynman diagram,

which the authors of [27] refer to as ‘geodesic Witten diagrams’. To obtain a geodesic

Witten diagram, we begin with a Feynman diagram for a 4-pt CFT correlator with four

boundary-to-bulk propagators and a single bulk-to-bulk exchange propagator GBB(X,Y ),

as pictured in figure 3. But instead of allowing X and Y to range over AdS, we confine

these bulk points to geodesics when computing the diagram. The geodesics always connect

the pairs of operators whose OPE limits define the conformal block.
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OL(1)

OL(z)

OL(1)OL(1)

OL(z)

OL(z)

OH(1)

OH(0)OH(0)OH(0)

OH(1) OH(1)

Figure 4. This figure shows what happens when we analytically continue the external points of a

geodesic Witten diagram. As z moves around the cylinder, the heavy and light geodesics must cross,

and as they do, the propagator connecting them passes through its short-distance singularity. Note

that in d > 2 dimensions this crossing is enforced by geometry, not by topology. This is the origin

of the non-trivial monodromy of the conformal block. Similar reasoning leads to a monodromy in

Euclidean time for non-vacuum heavy-light Virasoro blocks [38].

We can give a simple heuristic explanation of the origin of geodesic Witten diagrams

as follows; for more rigorous derivations see [27]. A 4-pt tree-level Witten diagram com-

putation in AdS can always be decomposed [44] (see [27, 45] for recent discussions) into

one ‘single-trace’ conformal block and an infinite sum of ‘double-trace’ conformal blocks,

where the former corresponds to the state exchanged in the bulk-to-bulk propagator, and

the latter correspond to the external states. In the limit that the external states have very

large dimension, the bulk computation will be well-approximated by a geodesic Witten

diagram via the geometric optics approximation for the heavy bulk states; in the same

limit, the double-trace contributions decouple. Thus in general we expect that the unique

‘single-trace’ conformal block must correspond to the geodesic Witten diagram.

Given that conformal blocks can be computed as geodesic Witten diagrams, it is easy

to discover the AdS origin of their non-trivial monodromies. The analytic continuation

of figure 2 can be applied to a geodesic Witten diagram computation, which takes the

schematic form

G∆,0(z, z̄) =

∫ ∞
−∞

dλdλ′Gb∂(−∞, X(λ))Gb∂(∞, X(λ))

×
(

e−2∆σ(X,Y )

e−2σ(X,Y ) − 1

)
Gb∂(1, Y (λ′))Gb∂(z, Y (λ′)) (3.9)

and is pictured in figure 4. The bulk variables X(λ) and Y (λ′) run along the two geodesics,

which are parameterized using λ, λ′. The expression in parentheses is the (scalar) bulk-

to-bulk propagator, with σ(X,Y ) the distance between the two bulk points. Crucially, as

1 − z = e−t+iφ is continued in φ, we necessarily pass through a configuration where the

two geodesics cross, which requires that we integrate over the short-distance singularity

of the bulk-to-bulk propagator. Note that the pure vacuum conformal block has a trivial

monodromy, since the relevant computation would not include a bulk-to-bulk propagator.
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Informally, we might say that the geodesic Witten diagram treats the external oper-

ators as classical sources in the bulk, which ‘remember’ their relative orientation. When

we compute standard Witten diagrams, the external operators are treated as quantum

fields in AdS. The path integral sums agnostically over all their bulk trajectories, destroy-

ing any ‘memory’ of the classical trajectories. Cancellations between the monodromies of

‘single-trace’ and ‘double-trace’ operators encode the eradication of this classical memory.

In summary, individual conformal blocks have unphysical monodromies in φ, even

though the blocks have been computed from a physical process transpiring in a spacetime

that is manifestly periodic under φ→ φ+ 2π. Next let us consider an analogous question

concerning thermal periodicities and Virasoro blocks.

3.3 Monodromies of Virasoro conformal blocks and AdS/CFT

Thermal states in CFT2 are dual to BTZ black holes in AdS3. As discussed in section 3.1,

a simple way to recognize the temperature is from the Euclidean-time periodicity of the

2-pt correlator. This feature can be observed directly in the spinless Euclidean BTZ metric

ds2 =
(
r2 + α2

)
dt2 +

dr2

r2 + α2
+ r2dφ2 (3.10)

where α2 ≤ 1, and α is imaginary in the BTZ case. The Euclidean time coordinate must

be periodically identified under t ∼ t+ 1/TH to avoid a singularity at the horizon r = |α|,
where we note that the temperature is TH = |α|

2π . We expect that this periodicity will be

inherited by AdS/CFT correlators computed from perturbative Feynman diagrams in the

black hole background.

Geodesic Witten diagrams in AdS3 have been used to obtain semi-classical Virasoro

conformal blocks [28]. To leading order in the semi-classical limit, we can compute the

heavy-light Virasoro blocks in the same way that we obtained global conformal blocks

in section 3.2. The difference is that we evaluate the geodesic Witten diagrams in the

gravitational background of the heavy operator, instead of in pure AdS.

In the last section we studied monodromies of global conformal blocks under φ →
φ+ 2π. We are now interested in Euclidean time periodicity, t→ t+ 1

TH
for the Virasoro

blocks. For the case of non-vacuum blocks, the reasoning from the last section can be copied

directly, replacing φ with t. In fact the global AdS3 metric is identical to the spinless BTZ

metric in the high temperature limit, after rescaling r → r/r+ and exchanging the roles of t

and φ. So the monodromies of the non-vacuum heavy-light blocks first obtained in [38] can

be understood heuristically from the ‘memory’ effect of the geodesic Witten diagrams [28].

The semi-classical Virasoro vacuum block computes the exponential of a geodesic

length [8, 29, 46] in a deficit angle or BTZ background, and in both cases it has a pe-

riodicity set by α. For real α this is a periodicity in φ associated with the deficit angle,

while for imaginary α = 2πiTH it is periodicity in Euclidean time. What remains is to

understand the presence of a non-trivial monodromy in the 1/c correction to this vacuum

block, as we found in section 2.

The geodesic Witten diagram technology has not been applied in the presence of per-

turbative 1/c corrections, so it is not entirely clear how to proceed. Even in the case of
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Figure 5. This figure shows gravitational one-loop diagrams in AdS that could contribute to

heavy-light Virasoro blocks at order 1/c. In the small hH/c limit, we expect that the two diagrams

on the left should correspond with the 1/c effects in equation (2.22). More generally, the pair of

diagrams on the left should be equivalent to the pair on the right with bulk propagators computed

in the background gravitational field of the heavy operator.

the large c semi-classical blocks, instead of full bulk propagators (which include a sum over

images [47] in order to satisfy the correct boundary value problem), the authors of [28]

used pure AdS propagators with a rescaling t, φ → αt, αφ. This led to the correct result,

and it might be interpreted as a strategy for eliminating double-trace contributions, but it

was not given an a priori derivation.

We will proceed by discussing the most natural generalization of the geodesic Witten

diagrams which leads to a single Virasoro conformal block. Some relevant diagrams are

pictured in figure 5. The pair of diagrams on the right clearly have a different structure

from those we have considered previously, and in particular, the simple reasoning of figure 4

no longer applies, since there are no explicit propagators connecting the deficit angle/black

hole to the light operator geodesic. The third diagram from the left leads to an integral of

the schematic form∫
dλ1dλ2G∂B(1, Y1(λ1))GBB(Y1(λ1), Y2(λ2))Ggrav(Y1(λ1), Y2(λ2))G∂B(Y2(λ2), z)

(3.11)

where λi parameterize two points Yi(λi) on the light operator geodesic, and the two bulk-

to-bulk propagators correspond to the light operator and the gravitational field.

We can think of the bulk-to-bulk propagators in the BTZ background as the result

of summing an infinite set of diagrams connecting a free AdS bulk-to-bulk propagator

to a succession of graviton propagators. This justifies the expectation of a non-trivial

monodromy as we rotate z on the thermal circle. We will need the relevant bulk-to-bulk

propagator8 in a deficit angle or BTZ black hole backgrounds. Since these backgrounds are

orbifolds of pure AdS3, the propagators can be determined through the method of images.

This sum over images produces a new logarithmic singularity in the propagators at the

8To perform the full computation it would probably be most expedient to use the Chern-Simons form

for gravity; for a convenient form for the C-S propagator see appendix A.2 of [48].
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location of the deficit angle and at the black hole singularity [49]. Without the sum over

images the propagators have only a short-distance singularity.

Thus we are led to conjecture that the internal propagators in the diagrams on the right

of figure 5 should include a sum over images, so that they are sensitive to the deficit angle

or black hole singularity. The integration over such propagators could then explain the

monodromy of the 1/c correction to the Virasoro vacuum block under analytic continuation

in Euclidean time. It would be interesting to explore this question further, and to obtain

explicit agreement between our CFT2 computation and a gravity calculation in AdS3.

Given that we are arguing that double-trace operator conformal blocks must be in-

cluded to see the correct “thermal” properties of the heavy-light correlator, one may wonder

why the leading order in 1/c vacuum correlator did not suffer from non-periodic mon-

odromies. The simplest way to understand this is that there is a limit where the vacuum

block actually is the full correlator: in the limit of infinite T and infinite c, the contribution

from double-trace operators is indeed negligible, leaving only the vacuum block to fulfill

the thermal properties of the theory.

As a final comment, in section 2.5 we pointed out that the functional form of the 1/c

corrections appears very similar at large temperature and at small hH , two regimes that

are very different physically. We believe that from the bulk point of view, this is due to

the fact that BTZ backgrounds are locally pure AdS. Diagrams such as those in figure 5

will produce very similar corrections for all values of α at small z, where the light operator

geodesics in figure 5 do not extend very far into the bulk.
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A Subleading order in 1/c from projectors

When we expand to subleading order at large c with operator dimensions held fixed, it is

straightforward to see that the only states that contribute are the modes of a single stress

tensor, and that the resummation of all these modes just gives the T global conformal

block. We can ask whether an analogous approach is tractable in an expansion around

the semi-classical limit. Much of the structure is the same as the expansion around the

classical limit. Considering the different factors in the projector,

Ph,w ≈
∑

{mi,ki},{m′i,k′i}

Lk1

−m′1
· · · Lkn−m′n |h〉M

−1
{mi,ki},{m′i,k′i}

〈hw|Lknmn · · · Lk1
m1

(A.1)
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where M is the inner product matrix of the bra and ket states, we see that both M and

〈hw|Lknmn . . .Lk1
m1
φLφL〉 are exactly the same as in the classical limit, up to a conformal

transformation acting on the light fields. The only factor that changes is the left-action,

〈φHφHLk1

−m′1
· · · Lkn−m′n |h〉. (A.2)

We begin by calculating the overlap with the light states. As in the body of the article, it

will be convenient to work in a basis that is symmetric in the indices, L(m,n) ≡ LmLn+LnLm
2 .

The overlap with the light states is a straightforward exercise in commuting the L’s toward

the right, to obtain

〈h|Lm+nφL1(z)φL2(0)〉 = Chφφ(h− h2 + h1(m+ n))zh−h1−h2+m+n,

〈h|L(m,n)φL1(z)φL2(0)〉 (A.3)

= Chφφ
(h−h2+h1m+n)(h−h2+h1n)+(h−h2+h1m)(h−h2+m+h1n)

2
zh−h1−h2+m+n.

The inner product factors are also straightforward, though require much more book-

keeping. The only non-vanishing matrix elements are of the form

〈h|LmLnL−nL−m|h〉, 〈h|Lm+nL−nL−m|h〉, 〈h|LmLnL−n−m|h〉, 〈h|Lm+nL−n−m|h〉.
(A.4)

Taking into account mixing between states L(m,n) and L(a,b) with a+ b = m+ n, we find

M−1
(1),(1) =

1

2h
, (A.5)(

M−1
(2),(2) M−1

(2),(1,1)

M−1
(1,1),(2) M

−1
(1,1),(1,1)

)
=

(
2
c + 4(5−8h)h

c2(1+2h)
− 3
c(1+2h) + 6h(−5+8h)

c2(1+2h)2

− 3
c(1+2h) + 6h(−5+8h)

c2(1+2h)2
1

4h(1+2h) + 9
2c(1+2h)2 + 9(5−8h)h

c2(1+2h)3

)
,

For m ≥ 2, n ≥ 2, one has

M−1
(m+n),(m+n) =

[
2c2h(m+ n)2

(
(m+ n)2 − 1

)2]−1

× 3
(

2h(m+ n− 1)((m+ n)((m+ n)(4c+ 3(m+ n− 2)(m+ n) + 55)

+ 4(c+ 1))− 12)+(m+ n− 1)(m+ n+ 1)2(c(m+ n− 2)(m+ n)− 24)

− 192h2(m+ n)− 48h(m+ n)
(

(m+ n)2 − 1
)
Hm+n−2

)
,

M−1
(m+1),(m,1) = − 3

(
−24h

(
m2 − 2m− 2

)
− 24m(m+ 2)

)
c2h(m− 1)m2(m+ 1)2(m+ 2)

− 3
(
m2 − 1

)
ch(m− 1)m(m+ 1)2

,

M−1
(m,1),(m,1) = − 144(h+ 1)

c2h(m− 1)2m(m+ 1)2
− 6

(
1−m2

)
ch(m− 1)2m(m+ 1)2

M−1
(m+n),(m,n) = − 72

(
m4 + 2m3n−m2 + 2mn

(
n2 − 2

)
+ n4 − n2

)
c2m (m2 − 1)n (n2 − 1) (m+ n− 1)(m+ n)(m+ n+ 1)(δm,n + 1)

M−1
(m,n),(m,n) =

144

c2m (m2 − 1) (n3 − n) (δm,n + 1)
. (A.6)

In section 2.2, we combined both the inner product factors and the overlap factors with

the light operators into a single function G(z1, z2). We can do the same thing here, except
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now we have two functions, one for a single L in the overlap with the heavy operators, and

one for a double L in the overlap with the heavy operators. That is,

G1(w1) =

(
w′(z)h1w′(1)h2

wh1+h2−hO

)−1 ∞∑
a=1

w2
1

wa1
M−1

(a),(a)〈h|LaφLφL〉 (A.7)

G2(w1, w2) =

(
w′(z)h1w′(1)h2

wh1+h2−hO

)−1

×
∞∑

m,n=1
m≥n

w2
1w

2
2

wn1w
m
2

(
M−1

(m,n),(m,n)〈h|LmLnφLφL〉+M
−1
(m,n),(m+n)〈h|Lm+nφLφL〉

)
.

To get the functions G1, G2 as the above sum, one just needs to put together the

expressions for the overlap with the light operators and the expressions for the inner product

factors. The resulting expressions are quite lengthy and so we do not present them here,

since in any case it is easy to substitute the explicit expressions above for the constituent

factors. Next, we need to evaluate the overlap with the heavy operators. As mentioned

earlier, this is most easily performed by using the fact that correlation functions with T are

effectively generating functions for these overlap factors. Since w2T (w) is holomorphic, we

can compute its correlators under a conformal transformation to w coordinates by using the

singularities of its OPE in these coordinates, or by starting with standard Euclidean space

formulae for correlators of T (z)s in terms of correlators without them and then explicitly

performing the conformal transformation to w coordinates. In any case, we obtain

〈φH1(∞)φH2(0)T (w)O(zO)〉 =
Chφφ

α2w2zh+h2−h1
O

(
hOzzO

(zO − z)2
− h12

2

zO + z

zO − z

)
(A.8)

for the single-T correlator, and

α4w2
1w

2
2〈φH1(∞)φH2(0)T (w1)T (w2)O(1)〉

= c

(
z2

1z
2
2

2z4
12

−
(
α2 − 1

)
z1z2

12z2
12

)

+
h2
O

(z1 − 1) 2 (z2 − 1) 2
+

(hO + h12)h (z1z2 − 1)

(z1 − 1) 2 (z2 − 1) 2

+
h12 (h12 (z1 − 1) + hz1)

2 (z1 − 1) 2
+
h12 (h12 (z2 − 1) + hz2)

2 (z2 − 1) 2
+

h12 (hO + h12)

(z1 − 1) (z2 − 1)

+
z1z2 (hO (z1 + z2) + h12 (z1z2 − 1))

(z1 − 1) (z2 − 1) z2
12

+
h2

12

4
(A.9)

for the double-T correlator.

The conformal block in terms of these factors is given by the following integral:

〈φHφHPh,wφLφL〉 =

(
w′(z)h1w′(1)h2

wh1+h2−hO

)
×
[ ∮ dw1

2πiw1

dw2

2πiw2
〈φH1(∞)φH2(1)T (w1)T (w2)O(0)〉G2(w1, w2)

+

∮
dw1

2πiw1
〈φH1(∞)φH2(1)T (w1)O(0)〉G1(w1)

]
. (A.10)
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