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Abstract
The paper deals with the state-dependent impulsive problem

Z()=f(t,z(t) foraetelab],
z2(t+H) -z(t)=J (7,2(1)), y(@(r) =1,
£(2) = co,

where [g,b] C R, ¢y € R, f fulfils the Carathéodory conditions on [a, b] x R, the
impulse function J is continuous on [g,b] x R, the barrier function y has a
continuous first derivative on some subset of R and £ is a linear bounded functional
which is defined on the Banach space of left-continuous regulated functions on [q, b]
equipped with the sup-norm. The functional £ is represented by means of the
Kurzweil-Stieltjes integral and covers all linear boundary conditions for solutions of
first-order differential equations subject to state-dependent impulse conditions. Here,
sufficient and effective conditions guaranteeing the solvability of the above problem
are presented for the first time.

MSC: 34B37;34B15

Keywords: first-order ODE; state-dependent impulses; transversality conditions;
general linear boundary conditions; existence; Kurzweil-Stieltjes integral

1 Introduction

The investigation of impulsive differential equations has a long history; see, e.g., the mono-
graphs [1-3]. Most papers dealing with impulsive differential equations subject to bound-
ary conditions focus their attention on impulses at fixed moments. But this is a very par-
ticular case of a more complicated case with state-dependent impulses. Boundary value
problems with state-dependent impulses, where difficulties with an operator representa-
tion appear (cf Remark 6.2), are substantially less developed. We refer to the papers [4—6]
and [7] which are devoted to periodic problems, and for problems with other boundary
conditions, see [8, 9] or [10-12].

Here, in our paper, we present an approach leading to a new existence principle for im-
pulsive boundary value problems. This approach is applicable to each linear boundary
condition which is considered with some first-order differential equation subject to state-
dependent impulses. The important step is a proof of a transversality (Remark 2.3 and
Lemmas 5.1 and 5.2), which makes possible a construction of a continuous operator (Sec-
tion 6) whose fixed point leads to a solution of our original impulsive problem (Section 7).
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Notation
Let MCcR", neN, [a,b] CR.
« C(M) is the set of real functions continuous on M.
+ AC(M) is the set of real functions absolutely continuous on M.
« LLa, b] is the set of real functions Lebesgue integrable on [a, b].
» L°[a, b] is the set of real functions essentially bounded on [, b].
« BV[a, b] is the set of real functions with bounded variation on [a, b].
+ Gila,b] is the set of real left-continuous regulated functions on [, b], that is,
z€ Gila,b] ifand only if z: [a,b] — R, and for each 7; € (4, b] and each 1, € [a, D),

z(11) =z(t1—) = lim z(¢), zZ(1o+) = tlim z(t) e R. (1.1)

t—>11— —>T+

« Car([a, b] x M) is the set of functions f: [a,b] x M — R such that
(i) f(-,x): [a,b] — R is measurable for all x € M,
(i) f(t,-): M — R is continuous for a.e. t € [a, b],
(iii) for each compact set Q C M, there exists mq € L![a, b] satisfying

Lf(t,x)| <mq(t) forae.te[a,b]andeachxeQ.
o The set L*°[a, b] equipped with the norm
lIz]loo = sup ess{ |z(t)| i te€la, b]} for z € L*°[a, b] (1.2)
is a Banach space.
« Since Cla, b]) C Gr[a,b] C L*[a, b], we equip the sets Cla, b] and G_[a, b] with the
norm || - ||« and get also Banach spaces (cf [13]). Then (1.2) can be written as
Izlloo = sup{ |z(t)| 1 t€la, b]} for z € G[a, b] (1.3)
and

Izlloo = max{|z(t)| :t€la, b]} for z € Cla, b]. (1.4)

+ Wb®[g, b] is the Banach space of functions z: [a,b] — R such that z € AC[a, b] and
Z' € L®|a, b], where the norm || - |1, is given by

Izll100 = llzlloo + |]|,  for z € W"*[a,b]. (1.5)
» x4 is the characteristic function of a set A, where A C R.

2 Formulation of problem
We investigate the solvability of the nonlinear differential equation

Z(8) =f(t,2(2)) (2.1)

subject to the state-dependent impulse condition

z(t+) —z(7) = j(r,z(r)), y(z(t)) =1, (2.2)
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and the general linear boundary condition
£(z) = co. (2.3)
Here we assume that

f € Car([a,b] x R), J €C([a,b] xR), [a,b] CR,
K € (0,00), y € C'[-K,K], ¢ R,

and £: G;[a,b] — R is a linear bounded functional.

Definition 2.1 A function z: [a,b] — R is a solution of problem (2.1), (2.2) if
« there exists a unique 7 € (g, b) such that y (z(t)) = t;
« the restrictions z|[,r) and z|( ) are absolutely continuous;
¢ z(t+) =2(7) + T (7,2(7));

« z satisfies equation (2.1) for a.e. ¢ € [a, b].
Definition 2.2 A graph of a function y : [-K, K] — R is called a barrier y.

Remark 2.3 Let S be the set of all solutions of problem (2.1), (2.2). According to Def-
inition 2.1, each function z € S satisfies a transversality property, which means that the
graph of z crosses a barrier y at a unique point t € (a, b), where the impulse J acts on z.
After that (for ¢ € (z,b]) the graph of z lies on the right of the barrier y. This transver-
sality property follows from transversality conditions (cf. (4.5), (4.6)) and it is proved in

Section 5.

Assume that zj,z) € S and z; # z;. Then there exists a unique t; € (a,b) such that
y(zi(t;)) = 7; for i = 1,2 and 1y # 15 can occur. Therefore different functions from S can
have their discontinuities at different points from (a, b). Our aim in this paper is to prove
the existence of a solution of problem (2.1), (2.2) satisfying the general linear bound-
ary condition (2.3). To do this, we need a suitable linear space containing S. Due to
state-dependent impulses, the Banach space of piece-wise continuous functions on [, b]
with the sup-norm cannot be used here. Therefore we choose the Banach space G, [a, b].
Clearly, by (1.1), S € G.[a, b]. The operator ¢ in the general linear boundary condition
(2.3) can be written uniquely in the form

b
£60) = kela) + o [ o) d[2(0) 25)

where k € R, v € BV([q,b] and («xs) f“b is the Kurzweil-Stieltjes integral (cf. [14], Theo-
rem 3.8). Representation (2.5) is correct on S, because for each z € G;[a, b] the integral
«s) /. ab v(£) d[z(¢)] exists. Its definition and properties can be found in [15] (see Perron-
Stieltjes integral based on the work of Kurzweil).

Definition 2.4 A function z: [a,b] — R isasolution of problem (2.1)-(2.3) if z is a solution
of problem (2.1), (2.2) and fulfils (2.3).
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3 Green'’s function
For further investigation, we will need a linear homogeneous problem corresponding to
problem (2.1)-(2.3). Such problem has the form

Z(t) =0, (3.1)

L(z) =0, (3.2)

because the impulse in (2.2) disappears if J = 0. We will also work with the non-

homogeneous equation
Z(t) = q(t), (3.3)
where g € L![a, b].

Definition 3.1 A solution of problem (3.3), (3.2) is a function z € AC|a, b] satisfying equa-
tion (3.3) for a.e. t € [, ] and fulfilling condition (3.2).

Remark 3.2 If x is a solution of problem (3.3), (3.2), then x belongs to ACla, b], and con-
sequently condition (3.2) can be written in the form (cf. (2.5))

b
L(x) = kx(a) + / v(t)x'(t)dt =0, (3.4)

where k € R, v € BV and the Lebesgue integral f: v(t)x' () dt is used.

Definition 3.3 A function G: [a,b] x [a,b] — R is the Green’s function of problem (3.1),
(3.2) if
(i) for any s e (a,b), the restrictions G(-,5)|(4,5), G(:,8)(s,6) are solutions of equation
(3.1) and G(s+,s) — G(s,s) = 1, where G(s,s) = G(s—, s);
(i) G(t,-) € BV[a,b] for any ¢ € [a, b];
(iii) for any g € I.![a, ], the function

fulfils condition (3.4).

Lemma 3.4 Let £ be from (2.5) with k € R and v € BV|a, b].
(i) k#0 ifand only if there exists the Green’s function G of problem (3.1), (3.2) which
has the form

Glts) =1 & = (3.6)
1-¢ .

(i) &k #0 ifand only if there exists a unique solution x of problem (3.3), (3.4), which has a
form of (3.5) with G from (3.6).
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Proof Clearly, G given by (3.6) fulfils (i) and (ii) of Definition 3.3 if and only if k # 0. A gen-
eral solution of equation (3.3) is x(f) = c + f; q(s) ds, where c € R. By (3.4),

b
£(x) = ke + / v(t)q(¢) de = 0.

The equation

b
ke = —/ v(t)gq(t) de

has a unique solution c if and only if k # 0. Then a unique solution x of problem (3.3), (3.4)

is written as

b t
x(t) = —%/ﬂ v(s)g(s) ds+/; q(s)ds

t b
:/ﬂ (1—$>q(s)ds+/t <—$)q(s)ds, t €la,b]. O

Lemma 3.5 Let G be the Green's function of problem (3.1), (3.2), where £ is from (2.5) and
k #0. Then, for each s € [a, b), the function G(-,s) belongs to G[a, b] and

K(G(-,s)) =0, sé€]lab). (3.7)
Proof Choose s € [a,b). By (3.6),

G(t,s) = X (2) — % for t € [a, b].
Consequently, the function G(-,s) belongs to Gg[a,b]. This yields that the integral
(KS) f: v(t) d[G(t, s)] exists for each v € BV [a, b]. Note that since G(+, s) is not continuous on

[a, b], formula (3.4) cannot be used for G(-,s) in place of x. Instead, we use the properties
of the Kurzweil-Stieltjes integral which justify the following computation

b b
Ks) / D d[G(E9)] = ks ] V(t)d[x(s,b](t) - g]

b b
= (1<s>/ v(t) d[ X6 (8)] - (KS)f V(t)d[g] = v(s).

Hence, by (2.5), we get

b
Z(G(.,s)) =kGl(a,s) + (Ks)/ V(t)d[G(t,s)] - k(“;{“)) +v(s)=0. 0

Example 3.6 Consider a solution x of problem (3.3), (3.2), where £ has a form of the two-

point boundary condition

L(x) = ax(a) + Bx(b) =0, o,BeR. (3.8)
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We will show that £ can be expressed in a form of (3.4). If « + 8 # 0, then k and v can be
found from the equality

ax(a) + Br(b) = kx(a) + / ' W) (£) de.
Assuming that v(t) = vy € R, we get
ax(a) + Bx(b) = kx(a) + vo (x(b) - x(a)),
and hence k = & + B, vo = B. In addition, if o + B # 0, then (¢f. (3.6))

—Lﬁ fora<t<s<b,
G(t,s) = ot

1- 2 fora<s<t<b.
a+f

Example 3.7 Consider a solution x of problem (3.3), (3.2), where £ has a form of the multi-
point boundary condition

0(x) = Zaix(ti), o €R,i=0,1,...,n,neN. (3.9)
i=0

Herea=ty<ti<---<t,=b.1If Z?:o a; # 0, then k and v of (3.4) can be found from the
equality

n b
> e(ti) = kx(a) + / () (£) de. (310)
i=0 @

Assume that v is a piece-wise constant right-continuous function on [a, b], that s,

v(s)=v; forse[t,ti1),i=0,...,n-2,

v(s) =v,1  fors e [t,1,b],

wherev; €R,i=0,...,n-1. By (3.10), we get

" n-1 tiv1
> e(t) = kn(a) + v / X () dt
i=0 i=0 Ut

= kx(a) + vo (x(tl) - x(a)) +1 (x(tz) - x(tl)) +oo+Vy (x(b) - x(tn_l)).

Consequently,
n n
v,-:Za,», i=0,...,n-1, /(=Zaj.
j=i+l j=0

To summarize, if Z;l:o o; 70, then

n
v(s) = Zaj fors e [t;,ti:1),i=0,...,n—=2,
j=itl

v(s)=a, forse[t,1,b],
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and further (¢f. (3.6))

—ZZ(S)O[_ fora<t<s<b,
G(t,s) = /=07

1- fora<s<t<b.
j=0 %

Example 3.8 Consider a solution x of problem (3.3), (3.2), where £ has a form of the

integral condition

where & € L[a, b]. If fab h(£)d& #1, then k and v of (3.4) can be found from the equality

b b
x(b)—/ h(€)x(€)dE =kx(a)+/ v(t)x'(¢) dt. (3.11)

a

Let us put

v(s) :/ h(&)dé + v(a).
Then

b b

/ v(E)x'(£)dE = - f h(§)x(§) d& + v(b)x(b) — v(a)x(a)

and (3.11) gives v(a) = k, f: h(¢)d& + k =1. Consequently,
b b

k:l—/ h(&)dg, v(s):l—/ h(E)de, sela,b].

Similarly, if
b
) =xla)- | M) e

and fab h(£)dE #1, we derive

b b
k:l—/ h(&)dé, v(s):—/ h(&)dE, sela,b).

In both cases, G is written as

_ v(s)
Glt,s) = 1- /2 h(e) dg
1—,,"(73) fora<s<t<b.

1- ;) h(€)dg

fora<t<s<b,
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4 Assumptions

An existence result for problem (2.1)-(2.3) will be proved in the next sections under the ba-

sic assumption (2.4) and the following additional assumptions imposed on f, ¢, 7 and y.

(i) Boundedness of f

There exists & € L.°°[a, b] such that
f(t,x)| <h(t) forae.telab]landallxeR.

(ii) Boundedness of J

There exists Jy € (0,00) such that
|T(t,x)| <Jo fortela,bl,xecR.

(iii) Boundedness of y

There exist ay, b1 € (a, b) such that
a <yx)<b forxel[-K,K].

(iv) Properties of £
£ fulfils (2.5), wherek e R,k #0,veBV[a,b] N Clay, b1].

(v) Transversality conditions

1

forx € [-K, K],
171l

Iy )] <

either J(¢t,x) >0, y'(x) <0 fort e [ay,b],x€[-K,K],
or J(t,x) <0, y'(x) >0 fortelay,b],x€[-K,K],

where / is from (4.1) and a1, b; are from (4.3).
(vi) L*°-continuity of f

For any ¢ > 0, there exists § > 0 such that

=yl <8 = If(,x) —f( Do <& %,y € [-K,K].

Remark 4.1

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(a) Boundedness of f and J can be replaced by more general conditions, for example,

growth or sign ones, if the method of a priori estimates is used. See, e.g,, [16, 17].

(b) Continuity of v on [a1, b1] is necessary for the construction of a continuous operator

in Section 6. Note that then we need t,...,£,-1 ¢ [a1, ;1] in Example 3.7.

(c) Clearly, if f is continuous on [4, b] x [-K, K], then f fulfils (4.7).

(d) LetthereexistpeN, ¢ € L*®[a,b] and g; € C(R),i=1,...,p, such that

p
[f(t%) -f 69| <v(®) Y |gix) - g0

i=1

Page 8 of 18
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fora.e. t € [a,b] and all x,y € [-K, K]. Then f fulfils (4.7). An example of such a
function f is

b
ftx) = filthgix) +fole),

i=1

where fj € L®[a,b],j=0,1,...,p, g € C[-K,K],i=1,...,p.

5 Transversality
Consider K € (0,00), h € L*°[a, b] and define a set 5 by

B={ueW"a,b]: |ulw <K,

|| o < Ihlloo} (5.1)
The following two lemmas for functions from 5 are the modifications of lemmas in [10]

and provide the transversality (cf Remark 2.3) which will be essential for operator con-

structions in Section 6.

Lemma 5.1 Let y satisfy (2.4), (4.3) and (4.5). Then, for each u € B, there exists a unique
T € (a, b) such that

T =y (u(r)). (5.2)
In addition t € a1, by].

Proof Let us take an arbitrary u € B and denote
o(t) = y(u(t)) —t, te€la,b].

Then, by (2.4) and (5.1), we see that o € AC[a, b] and
o'(t) = y/(u(t))u’(t) -1 fora.e.te€la,b].

Since u(a), u(b) € [-K, K], condition (4.3) gives

o(a)= y(u(a)) —a>a;—a>0,

o(h):y(u(b))—bfbl—b<0.

Consequently, there exists at least one zero of o in (a,b). Let t € (a,b) be a zero of o. By
virtue of (4.5) and (5.1), we get, for t € [a,D], t # T,

sign(t — 7)o (t) = sign(t —T) /to/(s) ds = sign(t — 1) /t(y/(u(s))u’(s) - 1) ds

. A
< mgn(t—r)/ (W"h”oo—1> ds=0.

< sign(t — t)/ (‘y'(u(s))’ . Hu’“oo —1) ds
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That is,
o>0 onla,r1), o0 <0 on(r,b]. (5.3)
Hence 7 is a unique zero of o, and (4.3) yields t € [a1, b1]. O

Due to Lemma 5.1, we can define a functional P: B — [ay, b;] by

Pu-t, (5.4)
where 1 fulfils (5.2).
Lemma 5.2 Let y satisfy (2.4), (4.3) and (4.5). Then the functional P is continuous.
Proof Let us choose a sequence {u,}5; C B which is convergent in W (g, b]. Then

u, € W-*[a, b], tn]l00 < K, |, | < lhlloss nE€N, (5.5)
and there exists u € W"*®[q, b] such that

Tim [l = 100 = . (5.6)
So, by virtue of (1.5) and (5.5),

lalloo = Tim = telloc + Tim sy lloe < K,

[l = Jim [l =20 [+ lim [l ][ < 1lc.
We see that u € B. For n € N, define

0,(t) = y(un(t)) -t o(t) = y(u(t)) —t, te€la,b].
By Lemma 5.1,

o.(t,) =0, o(t)=0, wheret,="Pu,,t=PunecN. (5.7)
We need to prove that

nlggo T, =T. (5.8)
Conditions (2.4), (1.5) and (5.6) yield

nlingo o,=0 inCla,b]. (5.9)

Let us take an arbitrary ¢ > 0. By (5.3) and (5.9) we can find § € (t —¢,7),n € (t,7 +¢) and
ny € N such that 0,,(§) > 0, 0,,(n7) < 0 for each n > ny. By Lemma 5.1 and the continuity of
o, we see that 7, € (§,1) C (t —¢&,1 + &) for n > ng, and (5.8) follows. O
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6 Fixed point problem

In this section we assume that
conditions (2.4), (4.1)-(4.7) are fulfilled, (6.1)

and we construct a fixed point problem whose solvability leads to a solution of problem
(2.1)-(2.3). To this aim, having the set B from (5.1), we define a set Q by

Q=B x BC W"®[a,b] x W-®[a,b], (6.2)

and for u = (u1,uy) € 2, we define a function f,: [a,b] — R as follows. We set, for a.e.
t €la,b],

£l = St u(2) ffte[tlﬂ’ul], 63)
ft,uy(t)) ift e (Puw,b],

where P is defined by (5.4) and the point Pu; € [a1, b1] is uniquely determined due to
Lemma 5.1. By (4.1)

Su€L¥[a,b],  fulloo = 17l (6.4)

Now, we can define an operator F: Q — Wb'®[a,b] x W'®[a, b] by F(uy, us) = (x1,%2),

where
be (&, 8)fu(s)ds + L
mult) < Pu1 J (Puy, uy(Puy)) ift <Py, o
f G(t S)_f(S, 1751 S) ds + C_O
73141 JPuy,us(Pwy)) + Ayu if£> Py,
fgb G(t, Sf(S,I/tz (s))ds + 5_0
wH=1 +(1- Pul )T (Puy, ua(Pw1)) + Asu if £ <P, oo
fa G(t,s)fu(s)ds + 7
* (1 - @)j(lpul’uﬂpul)) ift > Pm.

Here the functionals A;: € — R and A,: Q — R are defined such that the functions x;

and x, are continuous at the point Pu;. Therefore

Aju = f G(Puy, s)f,(s) ds—f G(Puy, s)f (s, u1(s)) ds,

6.7
Aoy = fa G(Puy, s)f,,(s)ds — fa G(Puy, s)f (s, uz(s)) ds. (67

Differentiating (6.5) and using (3.6) and (6.3), we get

x(£) =f(t, ui(t)) fora.e. t €(a,bl,i=1,2. (6.8)


http://www.boundaryvalueproblems.com/content/2013/1/195

Rachtinek and Rachiinkova Boundary Value Problems 2013, 2013:195 Page 12 of 18
http://www.boundaryvalueproblems.com/content/2013/1/195
This together with (4.1) yields
|#] . < Ihlloer  i=1,2. (6.9)

Since v € BV|a, b] (¢f (4.4)), we see that (6.4)-(6.6), (3.6), (4.1) and (4.2) give

[Vlloo lcol
%illoo < 3(1 )(b a)llhlloo + ——
Ik| Ik|

1]l -
+(1 A )]0, i=1,2. (6.10)

Due to (6.8)-(6.10), we see that x; € W [q, b], i = 1,2, and the operator F is defined well.

Lemma 6.1 Assume that (6.1) holds and that Q and F are given by (6.2) and (6.5), (6.6),
respectively. Then the operator F is compact on Q.

Proof
Step 1. We show that F is continuous on Q2. Choose a sequence

{M[n]}:il = {(u% ]’u[zn])}nﬂ cQ

which is convergent in WV [a, b] x W' |[q, b], that is, (cf. (1.5)) there exists u = (uy, u2) € Q

such that
tim [l =, =0, tim [ -], <0, (611

Lemma 5.1 and Lemma 5.2 yield

Pul,Pugn] €la,bi], neN, lim ’Pugn] =Pu, (6.12)

n—0o0

where P is defined by (5.4). Denote

x = (1, %) = F (w1, u2), = (i, a)) = F(u,ul"), neN. (6.13)
We will prove that
tim [ <], <0, lim [ <], - (619

By (4.7), (6.8), (6.11) and (6.13),

fim [ (") =i = tim £ (i () =f ()], =0, i=12, (6.15)

n—00

Using (4.1), we get

= (6.16)

lim '/Tn [f(s, ugn] () —f(s u2 s))| ds

n—00

<2 hm '/ h(s)ds| =
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Since
b
/ (i () = fiu(s)) ds / ( (s, () = f (5, m1(5)) ) ds
+ / (7 (s, u[Z"] (8)) —f (s, u2(s))) ds
+/ n(f(s, " (s)) = f (s, u5"(5))) ds
the Lebesgue dominated convergence theorem and (6.16) give

b
lim f | (s) = fu(s)| ds = 0. (6.17)

Using (6.13) and (6.5), we get

b
|2 (@) - x1(a) | 5/ |G(a,s)| - |f,in (s) = fuls)| ds

v(’Pu["])
+
k

v(Puy)
k

T (Pu? e (Pul")) -

J (Pur, ur(Puy)) ‘

The continuity and boundedness of P, J and v (¢f. Lemma 5.2, (2.4), (4.2), (4.4) and (6.12))
imply

lim

n— 00

v(Pul™)
k

T (Pul™,ul” (Puy™)) - —V(iul)

T (Puy, ul(Pul))‘

A o |T (P, ™ (Puy™)) = T (Pus, s (Pun))|

- |k| n— 00
+ ﬁ lim V(Pu%”]) - v(Puy)| =0,
wherefrom, by the boundedness of G and (6.17),

hm |x[”] (@) - x1(a)| = 0. (6.18)

Using (6.13) and integrating (6.8), we get

t
5050+ [ foue)d  A0-a@ f Flsu(9) ds,
a
and, due to (6.15) and (6.18), we arrive at
nll)rgo“x - X1 Hoo =0. (6.19)
Similarly, we derive

lim ’x[;’] (b) —xz(b)‘ =0, lim ||x[2"] — % HOO =0. (6.20)
n—0o0 n—0o0

Properties (6.15), (6.19) and (6.20) yield (6.14).
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Step 2. We show that the set F(Q) is relatively compact in W»®[g,b] x W *[q, b].
Choose an arbitrary sequence

{20} € F(Q) € W[a,b] x W*[a,b].

We need to prove that there exists a convergent subsequence. Clearly, there exists
(@™, ul™)}°, € Q such that

]—'(u&"], ! )= (x%”],x[z"]), neN.

Choose i € {1,2}. By (5.1) and (6.2), it holds

(o cWla bl u] <K,

[y oras

51

! () - ul (t)] = < hlloolts — ta]

for t1,t; € [a,b], n € N. Therefore, the Arzela-Ascoli theorem yields that there exists a

subsequence

()b e { " )1
which converges in C[a, b] x C[a, b]. Consequently, for each ¢ > 0, there exists my € N
such that for each m € N,

[

m=my = |ul™ -u™| <e i=12.

Similarly as in Step 1, we prove (cf. (6.15), (6.19), (6.20))
) <, e <o, ie12
which gives by (1.5) that {(x[",x0")}°_, is convergent in W[4, b] x W[4, b]. O

Remark 6.2 If there exists 7g € [ay, b1] such that y (x) = 7y for x € [-K, K], then problem
(2.1)-(2.3) has an impulse at fixed time 1y and a standard operator Fy, acting on the space

of piece-wise continuous functions on [4, b] and having the form

b
(For)(t) = / G(t,9)f (s,2(s)) ds + C/—f +G(t,70)T (10,2(r0)), t€[a,b], (6.21)

can be used instead of the operator F from (6.5), (6.6). But this is not possible if y is not
constant on [-K, K]. The reason is that then an impulse is realized at a state-dependent
point T = y(z(7)), and Fy with 7 instead of 79 should be investigated on the space G [a, b].
But if we write a state-dependent 7 instead of a fixed 1y in (6.21), Fy loses its continuity

on Gy [a, b], which we show in the next example.
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Example 6.3 Leta =0, b =2 and £ be from (2.5) with k € R, k # 0 and v € C[0, 2]. Con-
sider the functions

1
u(t) =1, u,(t)=1-—, tel0,2],neN.
n
Clearly, 1, — u uniformly on [0, 2] and hence

lim ||u, — t]lc = 0.
H—0Q

For n € N, denote x,, = Fou, and x = Fou. Assume that the barrier y is given by the linear
function y (x) = x on R and the impulse function 7 (t,x) = 1 for ¢ € [0,2], x € R. Then

t=y(u(r) =u(r) =1,
T = ¥ (Un(Tn)) = th(T,) =1 - % neN,

and, according to (6.21), we have for ¢ € [0, 2]

2 1 o 1
x,,(t):/ G(t,s)f(s,l——)ds+—+G<t,1——>, nel,
0 n k n

2
x(t) = / G(t,)f (s, 1) ds + %0 + G(t,1).
0

Consequently,
2 1
lim (x,(1) —x(1)) = lim / G(L,s) <f<s,1 - —) —f(s 1)) ds
n—oo Jq n

+ lim (G(Ll— l) - G(1, 1)>
n—00 n
v(1) v(1)
= 1 —_ T —_ (—T) = ]_

due to (3.6). Hence x,,(1) - x(1) and we have also ||x, —x||» — 0, and Fy is not continuous
on G;[0,2].

Lemma 6.1 results in the following theorem.
Theorem 6.4 Assume that (6.1) holds and that the set Q is given by (6.2), where

K> (1 + %)(B(b—a)llhllm +Jo) + % (6.22)

Further, let the operator F be given by (6.5), (6.6). Then F has a fixed point in Q.
Proof By Lemma 6.1, F is compact on . Due to (5.1), (6.2), (6.5), (6.6), (6.10) and (6.22),
FQ)cQ.

Therefore, the Schauder fixed point theorem yields a fixed point of F in Q. g
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7 Main result

The main result, which is contained in Theorem 7.1, guarantees the solvability of problem
(2.1)-(2.3) provided the data functions f, J and y are bounded (cf (4.1)-(4.3)). As it is
mentioned in Remark 4.1, Theorem 7.1 serves as an existence principle which, in combi-
nation with the method of a priori estimates, can lead to more general existence results
for unbounded f and J and concrete boundary conditions.

Theorem 7.1 Assume that (6.1) and (6.22) hold. Then there exists a solution z of problem
(2.1)-(2.3) such that

lzlloo < K. (7.1)

Proof By Theorem 6.4, there exists u = (11, us) € Q which is a fixed point of the operator
F defined in (6.5) and (6.6). This means that

fab G(t,8)fu(s)ds + %0

_ WPu) .
m=y , " I (Puy, ur(Pur) if £ <P, (7.2)
fa G(t,s)f (s, u1(s)) ds + CTO

- —V(Zul)j(Pul,Ml(Pul)) + A it > Py,

fah G(t’ S)_f(S, Mz(s)) ds + CTO

_ UPw) .
MZ(t) - b i (1 K )j(Pul’ ul(Pul)) + AZU if t =< Pm: (73)
RO

+ (1= 229 T (Puy, w1 (Puy)) if £> P,

where G, P, f,,, A1, A, are given by (3.6), (5.4), (6.3), (6.7), respectively. Recall that Pu; is
a unique point in (a, b) satisfying

Puy =1 € [a1,b1], where 1 = y(ul(n)). (7.4)
For t € [a, b], define a function z by

0) = u(t) iftela, o, 7.5)
ux(t) ift e (ry,b].

Differentiating (7.2), (7.3) and using (3.6) and (6.3), we get u;(t) = f(¢,u;(t)) for a.e. t €
[a,b],i=1,2, and consequently

Z(t) =f(t,z(t)) fora.e. t € [a,b].
By virtue of (7.2)-(7.5), we have

2(n+) —2(n) = uy(n) —m(n) = I (v, m(n)) = I (v, 2(n)). (7.6)
Let us show that t; is a unique solution of the equation

t=y(z(t)) (7.7)

Page 16 of 18
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in [a, b]. According to (7.4) and (7.5), it suffices to prove

t#y(u2(t)), te(m,bl (7.8)
Since (1, uy) € 22, we have (cf (5.1) and (6.2))

luilloo <K, ||M§||OOS||h||oo, i=12.

Assume that the first condition in (4.6) is fulfilled. Then J(71,%) > 0, y'(x) < 0 for x €
[-K,K]. Put

o(t) = y(uz(t)) —t, te€la,b].
By (7.6), ux(t1) — w1 (1) = J (11, ua(71)) > 0, and since y is non-increasing, we have
o(r) =y (ua(n)) - <y(m(n) -1 =0

due to (7.4). Using (4.5), we derive for ¢ € (zy, b]

t

o(t)=/ (V’(uz(S))u/z(S)—l)dSS/ (|¥' (wa2(s))] - |

2% ol

t 1
< — 4| —1) ds=0.
L (”h”oo *

So, (7.8) is valid. If the second condition in (4.6) is fulfilled, we use the dual arguments.
Finally, let us check that £(z) = ¢y. By (7.2)-(7.6) and (3.6), we have

/
Uy

-1)ds

[ee]

b
z(t) = / G(t,9)f (s,2(s)) ds + C/—? +G(t, )T (1, 2(10)). (7.9)

Put

b
x(2) =/ G(t,s)f(s,z(s)) ds. (7.10)

Then, according to (iii) of Definition 3.3 and Remark 3.2, we get £(x) = 0. Further, using
(3.7) from Lemma 3.5, we arrive at £(G(-, 1)) = 0. Consequently, due to (2.5), (7.9) and
(7.10), £(z) results in

£(z) = £(x) + E(%) +0(G(, )T (1, 2(11))
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