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The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order
to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge,
they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at
flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute
prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three sys-
tems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object
and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psycho-
logically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability
experiments will be stressed.
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1. INTRODUCTION

Currently, the computer vision community is witnessing the
emergence of a new paradigm. Even though its roots at least
date back to work by Crowley and Christensen [1] from the
early 1990s, the idea of bringing together the achievements

This is an open access article distributed under the Creative Commons
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of 30 years of research in artificial intelligence, automatic per-
ception, machine learning, and robotics was termed cognitive
computer vision just recently (cf. [2]).

Rather than trying to tackle the philosophical, psycho-
logical, or biological subtleties of the question what charac-
terises cognition, we will adopt Christensen’s point of view
and restrict ourselves to a limited notion of cognition. Fol-
lowing his argument, we will consider cognition as the gen-
eration of knowledge based on prior models, learning, rea-
soning, and perception [3]. In this sense, cognition is an

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81529586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:cbauckha@techfak.uni-bielefeld.de
mailto:mhanheid@techfak.uni-bielefeld.de
mailto:swrede@techfak.uni-bielefeld.de
mailto:tkaester@techfak.uni-bielefeld.de
mailto:pfeiffer@techfak.uni-bielefeld.de
mailto:sagerer@techfak.uni-bielefeld.de


2376 EURASIP Journal on Applied Signal Processing
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Figure 1: (a) Interactive content-based image retrieval using speech and haptics. (b) Head-mounted cameras and display for augmented
reality visualisation of recognised objects and events in an office environment.

active process. Instead of just monitoring its surroundings,
a cognitive vision system is able to communicate or interact
with its environment. This underlines that the acquisition,
storage, retrieval, and use of knowledge is no end in itself
but guides the system’s perception and (re)action. Simulta-
neously, the capabilities to perceive and act guide cognitive
processes.Without perception and the possibility tomanipu-
late or communicate perceived entities or events, knowledge
cannot be acquired. Memory, however, is a limited resource.
Besides mechanisms for learning, cognitive vision thus also
implies attention control and a sense for relevance which
comes along with the capability to forget irrelevant infor-
mation. This requires flexible knowledge representation and
techniques for top-down and bottom-up processing as well
as functionalities for contextual reasoning and categorisa-
tion. Together with the biologically motivated principle of
multiple computations [4], categorisation yields adaptabil-
ity, flexibility, and robustness.

Christensen even argues that embodiment is a prerequi-
site for cognitive vision systems. Only the capability to in-
terfere with the environment can close the so-called percep-
tion action cycle. However, even though there is considerable
progress in the fields of mechatronics and robotics, machines
that independently explore their environments are still in
their infancy. In this contribution, we will thus argue that
human-machine interaction can compensate embodiment.
We will report results and experiences from two joint re-
search projects on complex vision systems that make exten-
sive use of the idea of the human in the loop.

First, we will present a system for interactive content-
based image retrieval (CBIR). Although state-of-the-art re-
trieval systems adapt to the preferences of their users, the in-
volved learning processes only occur on the feature level of
vision and there is no real knowledge acquisition. Claiming
CBIR as a subfield of cognitive vision would therefore mean
to overstretch the idea. However, CBIR systems are a per-
fect example of the benefits of bringing together pure com-
puter vision and human-machine interaction. The retrieval
system introduced in Section 2 combines machine learning
and adaption with intuitive multimodal interfaces for image
retrieval. While working with the system, the user may use
natural language or a touch screen facility to indicate inter-
esting image content (see Figure 1a).

Then, we will introduce systems which follow the cogni-
tive vision paradigm. They are being developed in a research
project dedicated to architectures and computational models
for visual active memories (VAMs). Visual active memories
are systems which evaluate given facts or gather and integrate
contextual knowledge for visual analysis. VAMs can learn
new concepts and categories as well as new spatiotemporal
relations. They can adapt to unknown situations and may be
scaled to different domains. Furthermore, the project inves-
tigates techniques and interfaces for advanced interactive re-
trieval. As an example, Figure 1b shows impression from ex-
periments with a prototype of a mobile VAM. Working in a
natural office environment, the user wears a head-mounted
device which is equipped with cameras and a display. Infor-
mation about recognised objects and results of user queries
are visualised using augmented reality (AR). Likewise, by dis-
playing status messages and prompts into the user’s field of
view, the system can communicate with its user and thus
close the perception-action cycle. Asking for manipulations
of the environment in order to study their effects can accom-
plish interactive object and event learning.

The long-term perspective for interactive VAM research
is to proceed towards memory prosthetic devices. The system
in Figure 1b, for instance, can be seen as a first prototype
of memory spectacles that may assist the memory challenged.
But, of course, expecting assistive technology to answer ques-
tions like “Where did I put my keys”? requires vision sys-
tems that will operate in everyday environments. The VAM
demonstrators presented in Section 3 are situated in uncon-
strained office environments. Applying multiple computa-
tions and contextual reasoning, the systems are able to iden-
tify different objects, actions, and activities. They can be op-
erated using speech and gesture; they cope with varying illu-
mination as well as cluttered video signals and have capabili-
ties in interactive object learning.

With the advent of complex, interactive, and adaptive vi-
sion systems, the problem of system evaluation arises. Ob-
viously, the evaluation of an interactive system must not be
restricted to a snapshotted performance testing. Rather, it
has to take into account that failures that appear at a cer-
tain stage of an interactive session might be corrected later
on. Also, learning and adaption might improve the system
performance over time. However, up to now, no commonly
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Figure 2: Components and conceptual architecture of the INDI system.

accepted evaluation framework that deals with these aspects
has been established. In Section 4, we will point out that us-
ability experiments provide a promising avenue to solve this
problem.We will report on a study designed by psychologists
we performed with naive users of our CBIR system. As we
will see, this methodology can lead to surprising insight on
how the human in the loop experiences his interaction with
a cognitive system. Finally, a conclusion will close this con-
tribution.

2. THE INDI SYSTEM

This section will present a system for content-based image
retrieval (CBIR) that results from a project on Intelligent
Navigation in Digital Image databases. Its characteristics are
adaptability andmultimodal interaction. Adaption to the pe-
culiarities of a certain retrieval task is guided by user feedback
and happens on the feature level of computer vision. Multi-
modal input devices are provided in order to facilitate intu-
itive handling. Figure 2 sketches the conceptual architecture
of the INDI system. In the following, we will concentrate on
the retrieval module displayed in the middle of the figure as
well as on the user interface seen on the left.

2.1. A hierarchical CBIR approach

Image retrieval usually starts with low-level feature extrac-
tion either from an entire image or from certain image re-
gions. The INDI system considers the following features:
local moments in the LUV colour space as introduced by
Stricker and Dimai [5], fuzzy histograms of the hue channel
of the HSV colour space, and edge co-occurrence histograms
which according to Brandt and Oja [6] are local shape de-
scriptors.

Since local image signatures increase the precision in
CBIR, our system automatically extracts regions of inter-
est. In an initial keypoint detection process, the most salient
points in a colour image are identified using the gener-
alised Harris keypoint detector [7]. Afterwards, they are clus-
tered using support vector clustering [8]. Pixels within the

resulting clusters represent regions of interest which allow
the computation of meaningful signatures and can be refer-
enced during a retrieval process.

Following the approach of Rui andHuang [9], we assume
an image object Ok, that is, an image or parts of an image, to
be characterised by several attributes: (i) a set of pixels; (ii) a
set of feature classes, such as colour or texture; (iii) for each
feature class fi, there is a set of specific features. Examples
of specific colour features could be histograms in different
colour spaces or some sort of brightness information. All in-
stances j of specific features are stored as sets of feature vec-
tors R = {�ri j ∈ Rij}.

Our system follows the common query-by-example ap-
proach and compute similarities between the database image
objects Ok and a query object Q. Using generalised Euclidian
distances

mij
(
�ri j ,�qi j

) = (�ri j −Wij�qi j
)T
Ωi j
(
�ri j −Wij�qi j

)
, (1)

where �ri j and �qi j are the feature vectors of the image object
and the query object, respectively, similarities are computed
separately for each feature class.

Again for each feature class, the image objects Ok are
sorted yielding several ranked lists Li j . Then, the ranks of
the objects are linearly combined which produces an over-
all similarity ranking of the image objects Ok, k = 1, . . . ,n,
of the database with respect to the query object. Since the
user of a content-based retrieval system will only want to see
reasonable matches, only the l most similar images (where
l � n) will be selected from the database and displayed on
the screen.

2.2. Adaption from relevance feedback

Iterative improvement during content-based image retrieval
requires relating the user’s high-level conception to low-level
visual features. This is realised by means of relevance feed-
back. The user can rate objects in the current result list us-
ing scores V ∈ {2, 1, 0,−1,−2} which represent ratings from
highly relevant to highly nonrelevant.
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Figure 3: Exemplary query images taken from a database of 1250
images from 10 different domains.

Preserving the information of previous search steps is
accomplished by adapting the feature weights Wij . Weights
of features that allow the distinction of relevant and non-
relevant images and thus allow to characterise the user’s
intention are increased, others are decreased:

W ′
i j =Wij + ε

l∑

k=1
V
(
Ok
) · λ(ρ(Ok,Li j

))
. (2)

Here, V(Ok) is the score of image object Ok assigned by the
user. ρ represents the rank of image object Ok in the feature-
dependent, ascendingly ordered result list Li j . λ is a continu-
ous descending function and ε is a learning rate.

Adopting another idea by Rui and Huang [10], the dis-
similarity measures are refined as well. The matrix Ωi j is
adapted using the covariances of the feature vectors of to the
image objects rated to be relevant or highly relevant. Finally,
a query vector adaption is applied where the query vectors in
the feature spaces Rij are slowly moved towards feature vec-
tors of relevant and highly relevant image objects [11, 12].

2.3. Evaluation of the CBIR components

The adaptability of the INDI system was evaluated in differ-
ent query tasks which were formulated as category searches
like “show me images resembling Q.” Independence of the
image domain was ensured by testing different categories,
namely, autoracing, flowers, and golfing examples of which
can be seen in Figure 3.

Following the usual custom in information retrieval, a
precision value was applied to evaluate efficiency and effec-
tiveness. For the sth step of an interactive query, it is defined
as

precision(s, t) = Ns,t

t
, (3)

where Ns,t represents the number of correct category images
retrieved in session s within the first t = 1, . . . , l retrieved
images.

The adaptivity of our system is illustrated in Figure 4.
It shows the evolution of the precision values for l = 27
returned images over sequences of six interactive retrieval
steps.

2.4. User interface

In order to enable easy and intuitive handling, the INDI sys-
tem provides different modalities for interaction. Except for
the mouse, there also is a touch screen facility. Both input

devices enable the selection of images or image regions. They
can be used to rate displayed database content and to ini-
tiate further selections from the database. Furthermore, a
speech recognition component developed by Fink and col-
leagues was integrated whose core component is a statistical
speech recogniser based on hidden Markov models [13].

Often, it is natural to use several input modalities simul-
taneously. For instance, users may point to the screen saying
things like “this image.” Therefore, a hierarchical event han-
dling module was developed that can fuse asynchronous in-
put events from different sources [14].

Given all these input devices, the system must be able to
relate verbally uttered commands to currently selected im-
ages or image regions in order to comprehend the user’s in-
tentions. However, fusing results from speech and vision pro-
cessing suffers from uncertainties like erroneous recognition
or partial or unspecific descriptions. Consequently, we treat
the task of speech and image integration as a probabilistic
decoding process which is modelled using Bayesian networks
(cf., e.g., [15]).

Adopting algorithms developed by Wachsmuth [16],
each region description recognised in an utterance and each
region detected in an image, are represented as separate sub-
networks. Matches between attributes obtained from speech
recognition and those derived from image processing can be
found by means of the relations in the network. After the re-
laxation of such a network, regions intended by the user will
have the highest joint probability of being part of the image
and also being referred to in an utterance [11].

3. VAMPIRE SYSTEMS

In this section, we will describe how the concept of human-
machine interaction for computer vision can be extended to
higher cognitive levels. While the previous section demon-
strated how interaction can trigger adaption on the mere
feature level of vision, this section will introduce cognitive
vision systems that can learn new concepts and can adapt
to a physical environment. We will present two systems that
are being developed in a research project called Visual Ac-
tive Memory Processes for Interactive REtrieval [17]. Both
systems are able to recognise objects and activities in an un-
constrained office environment. They can be operated us-
ing speech and gesture. Both make use of the principle of
multiple computations and store results from different per-
ceptual modules in a hierarchically organised memory. Pro-
cesses registered in the memories apply contextual reason-
ing to verify the consistence and correctness of the incom-
ing data. The memories themselves coordinate the registered
processes and provide a notification mechanism to activate
them if the memory content requires it. As such a mem-
ory is thus not a passive unit but rather is another active
component of a system, we call it a visual active memory
(VAM).

The VAM demonstrator shown in Figures 5 and 6 anal-
yses video signals from calibrated static cameras. Figure 5a
depicts a human sitting in front of an office desk which is
monitored by two cameras. One is observing the scene from
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Figure 4: Adaptation to the user’s intention expressed in terms of the evolution of the precision values in different category searches: (a)
autoracing, (b) flowers, and (c) golfing. Beginning with the second out of six search steps, positive feedback was provided. The depicted
precision values are averaged over 10 experiments.

above the other provides a side view of the desk. Figure 5b
shows a snapshot recorded with the top-view camera. In
this example, the user is pointing to one of the objects on
the desktop. In Figure 5c, the results of a view-based object
recognition algorithm are cast into the image and Figure 5d
displays the results of skin colour segmentation and hand de-
tection. As the index finger is stretched out, a gesture recogni-
tion algorithm identified a pointing gesture. Figure 5e visu-
alises the angular probability distribution that indicates the
most likely direction of this gesture.

Figure 6a exemplifies the side view on the scene. This
viewpoint is used to recognise actions and activities.
Figure 6b shows a skin colour segmentation procedure for
this example. While larger regions are assumed to depict
faces, smaller ones are assumed to represent hands. In
Figure 6c, the trajectory of one of the hands is cast into the
image. Such trajectories are analysed by a module for ac-
tion recognition. Furthermore, we see a fan projected into
the middle of the image. It indicates the image area near a
moving hand where the system expects objects which might
be manipulated next. According to the text displayed at the
top of the image, the activity that was recognised last in this
example was “reach middle” and the object that is currently
expected to be manipulated is a cup.

Figure 7 shows the interaction with the mobile VAM
demonstrator that was introduced in Figure 1b. By means of
verbal commands or pointing gestures, the user can browse
through a command menu displayed on the right of his field
of view. Selecting or deselecting menu buttons activates dif-
ferent operational modes of the system. Pointing gestures
may also be used to reference objects or regions of interest in
current the field of view. This resembles the use of the touch
screen discussed in the last section. Here, however, space is
becoming the interface; gestures are no longer bound to the
operation of a physical input device.

3.1. Architecture and components

Figure 8a sketches the conceptual architecture of our systems.
In the centre, we recognise the memory component. It is
organised hierarchically and is able to store image data
(i.e., patches cropped from images) and feature-based object
descriptions as well as more abstract descriptions of
observed events or categories. Several computational mod-
ules are grouped around the memory. Note that there is no
direct communication between these modules but all data
exchange is mediated through the memory. Also note that
some of the building blocks represent several algorithms run-
ning in parallel.
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Figure 5: (a) VAM demonstrator with two static cameras monitoring a human sitting at an office desk. Exemplary results from processing
top-view images: (b) gesture seen from above, (c) object recognition results, (d) skin colour detection, and (e) estimated pointing cone.

(a) (b) (c)

Figure 6: Office scene and results obtained from the side-view camera. (a) Side view of the office scene. (b) Skin coloured regions. (c) Results
from action recognition.

(a) (b)

Figure 7: Office desk as seen through the mobile memory spectacles shown in Figure 1b. (a) Menu selection using pointing gestures. (b)
Object referencing using pointing gestures.

All algorithms perform in real time and run simultane-
ously. As we will detail below, the results they forward to
the active memory are not considered as irrevocable facts but
as hypotheses. Processes registered on the database that pro-
vides the infrastructure for the memory continuously verify

the consistency of incoming hypotheses and assign them a
reliability. Corresponding hypotheses from different object
recognition modules as well as from the action or gesture
recognition components are fused into single abstract de-
scriptions of the scene content. Moreover, since earlier results
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Figure 8: (a) Conceptual architecture of the current VAMPIRE demonstrators and (b) active memory infrastructure.

are stored in the memory, temporary occlusion or misinter-
pretations of the current scene can be filtered out using tem-
poral context. Next, we will outline the applied algorithms
and technologies. For implementation details, please refer to
[18, 19] for the static and mobile systems, respectively.

3.1.1. Object recognition

For object recognition, the VAMPIRE systems employ
appearance-based methods. On the one hand, VPL classi-
fiers as introduced by Heidemann et al. [20] are applied.

First, combining local entropy, symmetry, and edge and cor-
ner detection, a saliency value is calculated for each image
pixel. Where there is high saliency, patches are cropped from
the image and classified in a three-step procedure using vec-
tor quantisation, PCA, and LLM neural networks. On the
other hand, we also use cascaded weak classifiers (cf. [21, 22])
for object recognition. For each object, windows of differ-
ent sizes are shifted over the image. For each window, sim-
ple texture features are fed into the cascade. Already, in the
first layer, most windows not depicting an object are rejected.
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Windows successfully passing through the whole cascade de-
pict a known object. Either method is initially trained given
manually labelled views of objects which were recorded in
different positions and under varying illumination.

Both methods allow for interactive online object learn-
ing. Two techniques are being used. Either, the mobile AR-
gear is used to focus on an unknown object. To acquire useful
views of the object, template-based image feature tracking as
proposed by Gräßl et al. [23] compensates head movements.
The second method incorporates the pointing mechanism
described above. Introducing a rejection class label that is as-
signed to salient image regions which cannot be classified,
these regions can be pointed to. If the user then moves the
referred object to produce different views, the system can ac-
quire a series of exemplary image patches. Randomly warp-
ing and distorting them yields artificial views which are then
used to retrain the classifiers [24]. In either case, object labels
are assigned verbally; to this end, the systems are equipped
with a speech recognition component [13] that was already
mentioned in Section 2.

3.1.2. Gesture and action recognition

Both, gesture as well as action recognition, rely on the detec-
tion of skin coloured image regions. To ensure robustness,
we apply adaptive skin colour segmentation based on Gaus-
sian mixtures models as described by Fritsch [25]. The mo-
bile system provides yet another way for skin colour adjust-
ment. After selecting a command for colour retraining from
the interaction menu, moving the hand in front of the head
mounted cameras produces data required for the adaption.
Skin coloured image patches of a certain size are analysed by
a VPL classifier which decides whether they depict a hand or
a even a pointing gesture.

Our action recognition framework is based on CON-
DENSATION particle filtering as introduced by Isard and
Blake [26]. Black and Jepson [27] adapted this approach to
the classification of hand trajectories. Using parameterised
trajectory models, their techniques enable the recognition of
activities solely on the basis of hand motions without incor-
porating any kind of context. For instance, “pick” motions
can be detected without information about what part has
been taken.

In [25], Fritsch proposes an extension to the work of
Black and Jepson in order to incorporate contextual knowl-
edge. He distinguishes the situational context and the spatial
context of a gesture.

The situational context of a gesture describes its neces-
sary preconditions as well as the effect the gesture has on the
scene. The spatial context of a gesture relates hand trajecto-
ries to objects being manipulated. Obviously, these objects
must be close enough to a hand trajectory to be touched or
picked for interaction. Therefore, we define a context area to
be the image area depicting objects potentially relevant for a
specific gesture. The context area is given as a circle segment
of a certain radius and angle. For interaction with objects that
do not have an intrinsic “handling direction”, its orientation
is defined relative to the moving direction of a hand. For ob-
jects that have an intrinsic “handling direction,” the context

area has an absolute orientation. Besides definingwhere sym-
bolic context is expected, we need to specify what context is
expected. This includes the relevance of the context (irrele-
vant, necessary, or optional) as well as the type of the context
object.

Actually incorporating context into recognition is done
in two ways: the situational context is applied in the select
step of the particle filter in order to initialise and select only
those samples whose preconditions match the current situa-
tion. The spatial context is taken into account in the update
step where it changes the weights of samples that match the
observations. The calculation of sample weights is extended
by a multiplicative context factor representing how well the
observed scene fits the expected symbolic context.

3.1.3. Probabilistic information fusion

Due to flawed results of the perceptual modules or to a
change in the environment, it might occur that hypotheses
stored in the memory contradict one another. Consistency
validation has to detect such conflicts and resolve them. As
motivated in [28, 29], elements in the memory are stored
as XML fragments. Apart from information describing ob-
jects, these fragments also containmetadata like, for instance,
the reliability of a hypothesis. An intrinsic memory pro-
cess that lowers the reliability of stored data guides the re-
moval, that is, the forgetting, of conflicting hypotheses. The
risk of conflicting results from object and action recognition
is minimised by considering contextual and functional rela-
tions among incoming hypotheses. As they easily integrate
different types of information, we apply Bayesian networks
to model dependencies among the various facts our system
gathers during runtime.

Consistency validation is realized as a memory pro-
cess that uses functional dependency concepts (FDCs) to rate
stored hypotheses. FDCs basically consist of Bayesian net-
works that model expectations for the relations between spe-
cific types of hypotheses.

As an example, consider a situation where the user is
sitting in front of a terminal and occasionally performs
an action called “typing.” Images of this situation that
were recorded with a head-mounted camera are shown in
Figure 9. Recognising a “typing” action is reasonable only
under certain contextual prerequisites. For example, if there
is no keyboard in the scene, “typing” hypotheses have to be
doubted. Figure 10 shows a Bayesian network and the cor-
responding conditional dependency tables used to represent
contextual prerequisites for the “typing” action.

Nodes with the prefix vis denote observable variables,
whereas exist -nodes are hidden and can only be inferred by
the process. Inferring a computer, for instance, requires the
observation of a keyboard, a mouse, and a monitor. The ob-
ject context required by a “typing” action is modelled as a
directed arc from the action node exist A typing to the ob-
ject node exist O computer.

The power of this approach lies in its applicability to
any functional context. It allows for top-down as well as for
bottom-up control and, as described in [30], this represen-
tation of contextual knowledge can guide object recognition
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Figure 10: Bayesian network for a computer setup scenario.

and scene understanding. Conflicting memory content is de-
tected as follows: for a given VAM content, the variables of an
FDC are assigned evidences e = {e1, e2, . . . , em}. From evalu-
ating the whole network, a conflict value conf can be calcu-
lated as a kind of emergence measure defined in [31]:

conf(e) = log2

∏m
i=1 P

(
ei
)

P(e)
. (4)

Here, P(e) denotes the overall probability of the given evi-
dences while the P(ei) are the marginal probabilities of the
involved random variables of the Bayesian network. If there
is a conflict, the probability P(e) is expected to be small com-
pared to the product of the probabilities P(ei) because in
this case the evidences are not explained by the given FDC.
Therefore, we will have conf(e) > 0 which allows the detec-
tion of conflicts.

In order to cope with uncertainty of the underlying per-
ception processes, soft evidences are used for the observ-
able nodes. Their variables are assigned an evidence vector
�e = (etrue, efalse)T with 0 ≤ ei ≤ 1 and

∑
ei = 1. A node’s

evidence is controlled by the reliability of the corresponding
hypothesis. The more reliable the hypothesis is, the harder is
its evidence. Evidences are set according to

(
etrue, efalse

)T = (0.5(1 + r), 0.5(1− r)
)T
. (5)

Thus, for a reliability r = 1, the evidence is set to �e = (1, 0)T

while r = 0 will yield �e = (0.5, 0.5)T which is equivalent

to an unobserved variable with no evidence. Details on the
lowering of reliabilities in case of conflicts can be found in
[32].

Probabilities for the conditional dependencies of the net-
works were estimated from manually annotated or correctly
preprocessed video data. Figure 9 shows three out of 700
training images for the network in Figure 10. If all nodes
of the network are observable, parameter estimation sim-
ply means counting the different configurations. Otherwise,
with some nodes being not observed, an EM algorithm is
used (cf. [33]).

To evaluate our consistency validation approach, we de-
fined FDCs for different constellations of objects and actions
that are typical for an office scenario. Figure 11 displays pro-
totypic results for the FDC of the “typing” action.

Figure 11a depicts a situation corresponding to a con-
sistent memory content. It shows highly reliable hypotheses
vis O monitor and vis O keyboard, which mutually support
each other. Note that conf(e) < 0.

On the other hand, the configuration in Figure 11b rep-
resents a conflict leading to conf(e) > 0. In this example,
there are hypotheses of a monitor and a “typing” action but
no hypothesis for the keyboard which violates the expecta-
tion that a keyboard should be visible while typing.

3.2. System integration

Developing complex vision systems is not only a matter
of conceptual design but also a software engineering task.
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Figure 11: Two examples of beliefs and conf-value for the FDC of the “typing” action. (a) Fitting set of hypotheses. (b) Conflict, weak
reliability

Concerning the development of a VAM, there are two major
issues: (i) information storage and data organisation for the
VAM and (ii) a suitable communication framework allowing
to distribute the different algorithms over several computers.

3.2.1. VAM infrastructure

Since it is very flexible and suited for abstract concept de-
scriptions, XML was chosen to describe content stored in the
memory. Thus, a schema for symbolic data derived from vi-
sion algorithms (e.g., objects, actions, etc.) was developed
whose instance documents are composed of common and
specific element structures (e.g., metadata-like reliability val-
ues). Beyond the simple and self-describing nature of XML
documents, this has several other advantages. For example,
the partition into common and specific elements is bene-
ficial for the realisation of generic software modules where
schema evolution allows for extensibility and XQuery/XPath
techniques provide standardised access and selection mecha-
nisms.

According to these consideration, a native XML database
[34] provides the basic infrastructure for the VAM. On top
of this embedded library, a server architecture as shown in
Figure 8b was implemented that provides data management
not only for XML but also for referenced binary data. Thus,
pictorial data can also be used in the active memory and
shared by several processes in parallel. Reference manage-
ment is carried out using RDF information that links sym-
bolic vision data to pictorial memory data. For both kinds of
data, powerful standard DBMS methods like insert, update,
remove, and query are exposed. Node selection and referral is
based on XPath statements.

Within this active memory server, for reasons of close
coupling and performance, a run-time environment for
intrinsic memory processes like forgetting or other, more

generic, statistical processes was realised. Typical scenarios
are small, fast computations that work on large subsets of
the system data. Furthermore, a subscription model for dis-
tributed event listeners was implemented, so that memory
events can trigger registered processes and the memory in-
deed becomes active. Though realized in C++ there also is a
Matlab interface for rapid prototyping of further recognition
or active memory components.

3.2.2. Communication framework

Faced with the problem of distributing the algorithms dis-
cussed above over different machines in order to guaran-
tee real-time performance, a comparative study of existing
framework technologies was carried out [35]. It yielded that
by now there is no suitable integration framework tailored to
the needs of cognitive vision. As most vision researchers are
not middleware experts, the use of CORBA, for example, was
ruled out due to its complexity and bloated standardisation.
Rather, owing to the academic background of this work, an
integration framework for an agile software process (cf. [36])
is needed.

This led to the development of an XML enabled commu-
nication framework (XCF) based on the Internet communi-
cation engine [37]. It provides an easy-to-use middleware for
building distributed object oriented systems. Its architecture
features a pattern-based design and offers communication
semantics like (a)synchronous streams, remote procedure
calls, and event channels. Similar to the data storage in the
VAM component of our systems, data exchange between dif-
ferent modules is based on XML but wrapping and transport
of binary data (e.g., images) are possible as well. Since inter-
faces are specified using XML schema, run-time type safety
is ensured, rapid prototyping is possible, and interface pro-
gramming is intuitive even for middleware novices.
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Figure 12: Example of interaction between extrinsic and intrinsic
memory processes.

Figure 12 presents a more technical sketch of the consis-
tency validation example discussed above. After an extrin-
sic memory process, like object recognition, inserts a new
hypothesis into the database, consistency validation is trig-
gered. Related database content is queried using XPath and a
conflict value is computed. Changes in the reliability values
of stored hypotheses will trigger another intrinsic process. If
they become too unreliable, hypotheses will be purged from
the memory.

This example underlines that, in combination, the XML-
basedmemory infrastructure and the XCF framework enable
to realize an architecture with low coupling between compo-
nents. Furthermore, this decoupling and the capability of the
memory to asynchronously gather and provide information
yields a high robustness against component failure.

3.3. Technical performance
Currently, the static system is running on five standard Linux
PCs (Pentium 4, 2.4GHz, 512MB); images are captured us-
ing SONY DFW VL 500 firewire cameras providing a resolu-
tion of 640 × 480 pixels. The mobile demonstrator is run-
ning on a high-performance DELL notebook (Pentium 4,
1.8GHz, 512MB); images are captured from fire-I firewire
cameras with a resolution of 320× 200 pixels.

Evaluating the core components of our systems as if they
were stand alone modules yielded the following results: at a
frame rate of 4Hz, the VPL-based recognition of gestures and
objects yields an accuracy between 90% and 82% depending
on the number of objects that have been trained [24]. The
cascaded classifier approach to object recognition processes
6 images per second and yields 92% correctness. Trained
with averaged trajectories from different videos and manu-
ally annotated information about object context, actions like
“drinking from a cup,” “reading a book,” “phoning” or “typ-
ing on the keyboard” can reliably be recognised. A test with
420 sequences yielded an accuracy of 93% [25]. Finally, local
queries with low selectivity (approximately 1% of the whole
dataset is returned) on a memory instance require an average
of 0.57 seconds on a basis of 100, 000 documents in a per-
sistent memory (for an in-depth technical discussion of the
evaluation of the XML enabled framework and the memory
component, please refer to [28, 29]).

Having read all these figures, it appears that traditional
performance assessment does not tell much about the over-
all performance of an integrated vision system. It is obvious
that it does not take into account the continuous nature of
human-machine interaction. Interaction with a flexible vi-
sion system is a process throughout which there will be mu-
tual adaption. Learning and adaption may improve the sys-
tem performance over time; recognition and interpretation
errors that may appear during an interactive session might
be corrected later on.

These considerations thus raise the problem of how to as-
sess the long-term performance of an interactive vision sys-
tem. Based on the experience reported in the next section, we
are tempted to claim that asking the human in the loop may
provide a solution.

4. INTEGRATED SYSTEM EVALUATION

Modern evaluation of intelligent systems for advanced
human-machine interaction has a history of about 10 years
(cf., e.g., [38, 39]). Proposed approaches range from assess-
ment by means of exemplary benchmarks [40] to the def-
inition of measurable performance indices [41]. However,
practical experience with performance measures was not re-
ported. Moreover, neither do the methods known from lit-
erature consider situations of triadic interaction, that is, sit-
uations where two agents coordinate their perception about
a third person, thing, or event, nor do they regard adaptive
systems.

In the following, we will outline a holistic evaluation
methodology that was applied to assess the capabilities of
the INDI system [14]. Apart from collecting technical data
like mentioned in the previous section, we also examined the
usability of our system. To this end, we carried out interac-
tive experiments where we not only measured features like
the average success rate in target search but also asked our
subjects to fill out questionnaires in order to investigate hu-
man factors in interactive image retrieval. This focused on
the following criteria adopted from Preece [39].
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Table 1: Experimental results with respect to target image.

Target image TE = time[s]
experiment

FBE = feedbacks
experiment

NI = iterations
experiment TI = time[s]

iteration
FBI = feedbacks

iteration

RaceCar-78 73.0 9.2 2.1 33.95 4.28

Balloon-36 81.3 10.8 3.3 24.65 3.29

Flowers-32 96.5 15.3 4.2 22.98 3.65

Table 2: Experimental results with respect to input modality.

Modality SE TE = time[s]
experiment

FBE = feedbacks
experiment

NI = iterations
experiment TI = time[s]

iteration

M 0.73 88.6 15.13 4.33 20.46

T 0.8 71.8 9.33 2.86 25.1

MS 0.73 79.66 11.8 2.93 27.18

TS 0.67 94.4 10.93 2.73 34.57

(i) The speed of task execution.
(ii) The functionality of the system, that is, how many dif-

ferent tasks can be performed?
(iii) The quality of the results, that is, how good is the aver-

age performance in different tasks?
(iv) The speed of learning, that is, how quick can users learn

to perform tasks with the system?
(v) The mental load, that is, do users have to think care-

fully while interacting with the system?
(vi) User satisfaction, that is, do users like working with the

system?

4.1. Procedure and design

We considered a database of 1250 images from 10 seman-
tic categories which are taken from the ArtExplosion image
collection. A total of 20 computer experienced subjects (2 fe-
male and 18 male) who had never before operated a CBIR
system were tested. They were divided into four groups of
five people each and the input modalities,

(i) mouse (M),
(ii) mouse and speech (MS),
(iii) touch screen (T),
(iv) touch screen and speech (TS),

were evaluated. Themodalitiesmouse and touch screen as well
as mouse, touch screen and speech were not examined since
initial tests revealed that people never used mouse and touch
screen simultaneously.

Each subject took part in three interactive experiments.
In each experiment, they were asked to retrieve an image
from the database that was shown to them at the beginning
(see Figure 13).

In every iteration of an interactive search, 27 images were
displayed to the subjects which they could rate in order to
navigate through the database and find the query image.
They could either score entire images or select certain regions
from an image. The maximum amount of time for each ex-
periment was limited to three minutes; if a subject was not

Figure 13: Target images for query tasks.

able to retrieve the requested image within this time, the ex-
periment was counted as a failure.

Besides the success rate SE averaged over all experiments,
the quality of interaction is characterised by the average time
TE the subjects needed to perform an experiment and by the
mean number FBE of user inputs, that is, the amount of feed-
back provided in an experiment. Given the average number
NI of iterations of a query, it is possible to deduce the ra-
tios TI and FBI describing the average time per iteration and
number of feedbacks per iteration, respectively. The above-
mentioned aspects of learning, mental load, and user satis-
faction were examined by means of the questionnaires the
subjects were asked to fill out. Faced with statements like “It
was fun to interact with the system,” they ranked their sensa-
tion on a scale from 1 (no) to 5 (yes).

4.2. Results
Tables 1 and 2 and Figure 14 summarise our findings. Look-
ing at the figures in Table 1, it is noticeable that the three tar-
get searches were of increasing complexity. This is expressed
in the increasing amount of time and feedback as well as in
the growing number of interactions shown in the table.

Table 2 lists the figures we measured with respect to the
different input modalities. We can see that subjects who only
used the mouse provided most relevance feedback but did
not achieve the best success rate. We also see that users of the
touch screen device performed best and fastest while users of
speech and touch screen were the slowest and least successful
ones.
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(h) Easy to learn.

Figure 14: Averaged results of a questionnaire survey on usability aspects in interactive CBIR. For each interaction modality (mouse (M),
touch screen (T), mouse and speech (MS), touch screen and speech (TS)), each aspect had to be rated on a scale from 1 (no) to 5 (yes).

The latter observation is especially interesting if we re-
gard Figure 14. The diagrams in this figure depict the aver-
age ranking of the factors asked for in the questionnaires. In
Figure 14a, for instance, we notice that the easiness of han-
dling the mouse and the easiness of handling mouse and
speech were both ranked 4.4; for the touch screen and speech
modality, it yielded 4.0 and the easiness of only using the
touch screen reached 3.4, These figures accord with those
in Figure 14e which summarise our subjects notion regard-
ing the patience their interaction required. Here, the touch
screen users felt that they had to be most patient. Another
interesting result becomes apparent from Figure 14d: users
of multimodal input devices rated their interaction with our
CBIR system to be more efficient than those subjects who
only worked with the mouse or touch screen.

4.3. Discussion

With respect to our six evaluation criteria, our findings
suggest the following. (i) Speed, functionality, and quality:
concerning the time TE, the number of iterations NI, as
well as the number of user feedbacks FBE, performances of
monomodal and multimodal interaction diverge. While us-
ingmouse and speech is faster than only using themouse, it is
the other way round for using touch screen and speech. How-
ever, in any case, different target searches can be performed
satisfyingly with regard to the average success as well as to av-
erage time need. (ii) Learnability: regarding the tested input
facilities, users did not sense a significant difference among
modalities. (iii) Mental load: measured results and user sen-
sations are inconsistent. Even though the touch screen group

performed best, their sensations concerning easiness and ef-
ficiency were worst. (iv) User satisfaction: multimodal in-
put facilities are well appreciated by the users of our system.
Even though their results in interactive image retrieval were
not the best, the subjects who could use speech and another
modality felt least annoyed and considered the interaction
they had with the system to be efficient and fun.

5. CONCLUSION

This contribution reported on vision systems which make
use of the concept of the human in the loop. The first sys-
tem we described is designed to enable efficient, intuitive,
and easy content-based retrieval from image databases. On
the one hand, it applies flexible techniques for image feature
extraction and adaption on the lower levels of computer vi-
sion. On the other hand, it provides several input modali-
ties. Understanding the problem of integrating the different
modalities as a probabilistic decoding task enables to fuse
the different types into consistent interpretations. As a con-
sequence, natural and seamless interaction with the system
becomes possible.

The two other systems we presented follow the cognitive
vision paradigm. They are intended to demonstrate the idea
of visual active memory (VAM). Situated in an unconstrained
office environment, both systems recognise typical office ob-
jects as well as actions involving them. Information about
recognised objects and events is stored in a memory and can
be retrieved later on. Both systems are operated using speech
or gesture; the mobile demonstrator uses AR technology to
display memory content or control interfaces.
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Robustness results from applying the principles of mul-
tiple computations and contextual reasoning. Different algo-
rithms for object and gesture recognition process image se-
quences are obtained from different views or from a set of
head mounted cameras. The results of these computations
are not seen as irrevocable facts but first of all as hypotheses.
Hypotheses resulting from recognition processes applied to
salient parts of the signal are forwarded to a memory com-
ponent. There, processes that make use of probabilistic, top-
down and bottom-up Bayesian reasoning verify their con-
sistency. As processes like consistency verification and data
deletion are triggered by the memory component, the mem-
ory indeed is an activemodule.

Basing the memory infrastructure on an XML database
and realising the technical system integration using an
XML enabled framework results in ease of use, extensibil-
ity, and robustness against component failure. Moreover, the
human-in-the-loop approach provides an avenue to even
more flexibility. While for the image-retrieval system, adap-
tion was only possible by weight adjustment on the feature
level of visual processing, the presented VAMs can learn on
higher cognitive levels. Through interaction with their users,
they can extend preacquired knowledge and learn represen-
tations and labels for new objects.

The systems introduced in this contribution thus demon-
strate that the goals of the cognitive vision paradigm are
not just illusory. Machine learning, contextual reasoning,
relevance control, and active system introspection can be
brought together and human-machine interaction can com-
pensate for embodiment. And indeed, in combination, these
techniques result in integrated systems of high robustness
and flexibility.

However, dealing with the evaluation of complex inte-
grated vision systems, human-machine interaction comes
along with new challenges. Up to now, there is only scarce
literature on how to characterise the mid- and long-term
performance of interactive systems. By means of our image
retrieval system, we thus exemplified how usability studies
might help to assess the cognitive capabilities of artificial sys-
tems. As a matter of fact, some of the results are surprising:
even though the users of simple interaction devices felt least
content with the performance of the system, they performed
best. On the other hand, users of input devices of higher cog-
nitive adequacy (natural language) experienced their inter-
action with the system to be very pleasant and efficient. Even
though they practically obtained the worst retrieval results.
Therefore, at least for now, it seems fair to conclude that re-
search in cognitive vision must face the fact that cognition
first of all lies in the eye of the beholder.
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