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Abstract. The paper examines the one-dimensional total variation flow equation with Dirichlet boundary
conditions. Thanks to a new concept of “almost classical” solutions we are able to determine evolution of
facets – flat regions of solutions. A key element of our approach is the natural regularity determined by
the nonlinear elliptic operator, for which x2 is an example of an irregular function. Such a point of view
allows us to construct solutions. We apply this idea to numerical simulations for typical initial data. Due to
the nature of Dirichlet data, any monotone function is an equilibrium. We prove that each solution reaches
such a steady state in finite time.

1. Introduction

The equation which is the topic of this paper

ut − d

dx
(sgn (ux )) = 0, u(a) = ab, u(b) = ae, ab, ae ∈ R (1.1)

is a one-dimensional example of the total variation flow. The motivation to study this
problem is twofold: (a) image analysis, see [1,5,27,34]; (b) crystal growth problems,
see [4,25,32,36]. There are different physically relevant models, where a similar
to ours surface energy appears, but the corresponding evolutionary problem is not
necessarily set up, see for example, [11].

Equation (1.1) may be interpreted as a steepest descent of the total variation, that
is, we can write (1.1) as a gradient flow ut ∈ −∂ E(u) for a functional E . This is
why we can apply the abstract nonlinear semigroup theory of Komura, see [10,15],
to obtain existence of solutions. This has been performed by [25,20,27] and also by
[2,3,7,12,14,33]. However, the generality of this tool does not permit to study fine
points of solutions to (1.1).

Solutions to (1.1) enjoy interesting properties, Fukui and Giga, [20], have noticed
that facets persist. By a facet we mean a flat part (i.e., affine) of the solution with zero
slope. Zero is exactly the point of singularity of function | · |. This is why the problem
of facet evolution is not only nonlocal but highly anisotropic. Our equation (1.1) is at
least formally parabolic of the second order. This is why we call the above behavior
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of solutions the sudden directional diffusion. However, even more dramatic effects of
singular diffusion can be seen in the fourth order problems, see [21].

As we have already mentioned, certain properties of facets were established in [20],
for example, their finite speed of propagation was calculated. What is missing is the
description of the process how they merge and how they are created. In [30], we studied
a problem similar to (1.1). We worked there with a simplification of the flow of a closed
curve by the singular mean weighted curvature. We have shown existence of so-called
almost classical solutions, that is, there is a finite number of time instances when the
time derivative does not exist. However, the results of [30] indicate lack of efficiency
of the methods used there. This fact is our motivation to rebuilt the theory from the
very beginning. For this reason, we consider here the model system admitting effects
of sudden directional diffusion. Hoping that our approach will be suitable for more
general systems.

Our approach is as follows. We notice that the implicit time discretization leads
to a series of Yosida approximations to the operator on the right-hand-side (r.h.s. for
short) of (1.1). We study them quite precisely, because we consider variable time steps.
As a result, we capture the moment when two facets merge. We do not perform any
further special considerations. We want to see how the regularity of original solutions
is transported via solvability of the Yosida approximation. Due to the one-dimensional
character of the problem, we are able to obtain a result so good that it is of the max-
imal regularity character, what is rather expected for quasilinear parabolic systems.
Let us underline that properly understood smoothness is the most important question
connected to solvability of the original system. We modify standard regularity setting
in order to capture all phenomena appearing in the system. As a result of our con-
siderations, we come to the conclusion that the best smoothness we could expect for
a solution u that u(·, t) be a piecewise linear function, while x2 is an example of an
irregular function.

Our main goal is monitoring the evolution, as well creation, of the facets and a
precise description of the regularity of solutions to (1.1). For this purpose, we apply
methods, which are distinctively different from those in the literature. We develop
ideas which appeared in our earlier works. A key point is a construction of a proper
composition of two multivalued operators: the first one is sgn understood as a max-
imal monotone graph, the other one is ux , which is defined only a.e. We leave aside
the issue that in general this is a measure, not a function. This problem is resolved
differently by the authors applying the semigroup approach, [5,12,20,25] etc. We treat
ux as a Clarke differential (see (2.1) and the text below this formula). Here, we show
that this composition is helpful when: we construct solutions, see Theorem 3.1; and
we discuss regularity of solutions, see Theorems 2.1 and 2.2.

On the other hand, there are two sorts of results available up to now to deal with (1.1):
(1) the method based on the abstract semigroup theory, see for example, [5,20,25] and
[12]. It is very general and elegant, it enables us to study the facet motion, but it
does not capture all relevant information. The intrinsic difficulty associated with this
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method is the fact that the energy functional corresponding to (1.1) is not coercive,
also see below Lemma 2.1 and the proof of Theorem 3.1. (2) the method based on the
appropriate definition of the viscosity solution [22,23]. However, a different kind of
problem was studied there. This is an active research field, see [26,37].

Our approach is based on the Yosida approximation, defined by as a solution of the
resolvent problem

λu − d

dx
(sgn (ux )) = λv in (a, b), (u − v)|∂[a,b] = 0. (1.2)

There are a couple of points to be made here. Firstly, we will construct u, a solution
to (1.2), by very simple means; this is done in Sect. 3. This process resembles looking
for a good notion of a weak solutions to a PDE. Since we came up with an integral
equation, we will call its solutions mild ones, see formula (3.15). Secondly, (1.2) may
be interpreted as an Euler-Lagrange equation for a nonstandard variational functional.
Namely, we set

J (u)=
{∫ b

a |Du| if u ∈ D(J ) ≡ {u ∈ BV [a, b], u(a) = ab, u(b) = ae},
+∞ if L2(a, b)\D(J ),

(1.3)

where
∫ b

a |Du| is the total variation of measure Du. We stress that we consider the
space BV over a closed interval. Then, (1.2) may be seen as

v ∈ u + h∂J (u), (1.4)

where ∂J is the subdifferential of J and h = 1
λ

. The form of (1.4) allows us to look
at (1.2) as at a semidiscretization in time of the system (1.1). Thanks to Lemma 3.3 we
are allowed to split and add time steps h, obtaining this way a semigroup generating
the solution to (1.1). These properties are applied in Sect. 5.

Thus, no matter which point of view we adopted, u is given as the action of the
nonlinear resolvent operator R(λ, A) on v, that is,

u = R(λ, A)(v) ≡ (λ + A)−1(v), where A = − ∂

∂x
sgn

∂

∂x
.

However, the notion of a mild solution to (1.2) does not permit us to interpret this equa-
tion easily. On the other hand, by convex analysis, we can see (1.2) as an inclusion
(1.4).

The definition of the nonlinear resolvent operator leads to a detailed study of J .
The advantage of (1.2) is that it permits to monitor closely behavior of facets. It says
that the regularity propagates. That is, if v is such that vx belongs to the BV space and
the number of connected components of the properly understood set {x : vx (x) = 0}
is finite, then ux has the same property for sufficiently large λ. It is well-known that
the nonlinear resolvent leads to Yosida approximation, which is the key object in the
construction of the nonlinear semigroup in the Komura theory. Namely, we set

Aλu = λ(u − R(λ, A)(λu)). (1.5)
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Our observation is that a maximal monotone multivalued operator like sgn taking val-
ues in [−1, 1] may be composed with a multifunction properly generalizing a function
of bounded total variation. We shall describe here this composition denoted by ◦̄, see
Sect. 2. We introduced such an operation in [30], see also [31]. We also point to an
essential difficulty here, which is the problem of composition of two multivalued oper-
ators. Even if both of them are maximal monotone, the result need not be monotone nor
single valued. If the outer of the two operators we compose is a subdifferential, then
we expect that the result is closely related to the minimal section of the subdifferential.

One of our main results says that Aλu defined by (1.5) indeed converges to
− ∂

∂x sgn ◦̄ ux . Moreover, we have an error estimate, see Theorem 3.1, formula (3.4).
We recall that in if A is maximal monotone and u ∈ D(A), then the Yosida approxi-
mation Aλu converges to the minimal section Aou of A, see [15, Proposition 2.6 (iii)].
In this way we justify correctness of the new notion. Due to the “explicit” nature of ◦̄,
we may better describe the regularity of solutions to (1.2).

Once we have constructed the Yosida approximation, we show existence of solution
to the approximating problem uλ

t = −Aλ(uλ) on short time intervals, where uλ(t0) is
given. This is done in Lemma 4.1. In fact, the method is close in spirit to the construc-
tion of the nonlinear semigroup, see [17]. Convergence of the approximate solutions
is shown at the end of Sect. 4. Here, we use the Yosida approximation to capture the
finite number of time instances when the solution u(t) is just right differentiable with
respect to time; otherwise, the derivative exists. The point is that we control the dis-
tance to the original problem (1.1), so that we monitor the time instances when facets
merge.

Let us tell few words about the approach of proving our result. First, we define a
space of admissible functions giving regularity of constructed solutions. Furthermore,
we state main results together with an explanation of the meaning of almost classical
solutions. In Sect. 3, we study the Yosida approximation for our system, concentrating
on qualitative analysis of solutions. Proofs in this part are based on a direct construc-
tion which is possible due to the fine properties of chosen regularity. Subsequently,
we prove the main results concerning existence and regularity. Finally, we study the
asymptotics of solutions and present an example of an explicit solution. We conclude
our paper with numerical simulations. They are based upon the semidiscretization.
Since they present a series of time snapshots, these pictures contain only the round-off
error. At each time step, there is no discretization error. The examples in Sect. 5 present
the typical behavior, for which each solution becomes a monotone function in finite
time.

2. The composition ◦̄ and the main result

Our main goal is to present a new approach to solvability of systems of type (1.1).
The total variation flow is a good example for such experiment, since we know pre-
cisely the solution. The first step is to define the basic regularity class of functions.
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For the sake of definiteness, but without loss of generality, we assume that the domain
[a, b] = [0, 1].

DEFINITION 2.1. (cf. [38, Chapter 5]) We say that a real valued function u, defined
over a closed interval [0, 1], belongs to BV [0, 1], provided that ‖Du‖ ≡ ∫ 1

0 |Du| <

∞, where |Du| is the total variation of the measure Du. We recall that

‖u‖BV [0,1] = ‖Du‖ + ‖u‖1.

Additionally, we treat BV functions as multi-valued function. This is easy for func-
tions which are derivatives, ux ∈ BV [0, 1]. This is very useful in the regularity study
of solution to (1.1). Indeed, if u and ux belong to BV [0, 1], then u is Lipschitz con-
tinuous. Hence, d+u

dx
and d−u

dx
exist everywhere and they differ on at most countable

set. Thus, we may set

∂x u(s) = {τu−
x + (1 − τ)u+

x : τ ∈ [0, 1]}. (2.1)

Under our assumptions on u, the set ∂x u(x) is the Clarke differential of u and equality
holds in (2.1) due to [16, Section 2, Ex. 1]. If u is convex, then ∂x u is the well-known
subdifferential of u. As a result, if ux ∈ BV , then for each x0 ∈ (0, 1), we have
∂x u(x0) = [limx→x−

0
ux (x), limx→x+

0
ux (x)]or , where [a, b]or = [a, b] for a ≤ b

and [a, b]or = [b, a] for b > a.
However, the description of solutions as functions whose derivatives belong to BV

is not sufficient. We have to restrict our attention to its subclass. There is a need to
control the facets, which we shall explain momentarily. A facet of u, F is a closed,
connected piece of graph of u with zero slope, that is, F = F(ξ−, ξ+) = {(x, y) :
y = const = u([ξ−, ξ+]), x ∈ [ξ−, ξ+]}, which is maximal with respect to inclu-
sion of sets. The interval [ξ−, ξ+] will be called the set of parameters or preimage of
facet F .

Let us recall that zero is the only point, where the absolute value, | · |, the integrand
in the definition of J , fails to be differentiable. Thus, the special role of the zero slope
and facets.

We shall also distinguish a subclass of facets. We shall say that a facet F(ξ−, ξ+)

has zero curvature, if and only if there is such ε > 0, that function u restricted to
[ξ− − ε, ξ+ + ε] is monotone. In the case the function under consideration is increas-
ing, this means that u(ξ− − ε) < u(ξ−) = u(ξ+) < u(ξ+ + ε). We shall see that zero
curvature facets do not move at all. There may be even an infinite number of them.
They have no influence on the evolution of the system. For that reason, we introduce
the following objects, capturing the essential phenomena. We shall say that a facet
F(ζ−, ζ+) of u is an essential facet and it will be denoted by Fess(ζ

−, ζ+), provided
that there exists ε > 0 such that either

u is decreasing on (ζ− − ε, ζ−) and u(t) > u(ζ−) for t ∈ (ζ− − ε, ζ−)

and u is increasing on (ζ+, ζ+ + ε) and u(t)>u(ζ+) for t ∈(ζ+, ζ+ + ε)

(then we call such a facet convex); moreover, we set

sgn κ[ζ−,ζ+] = 1 (2.2)
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or

u is increasing on (ζ− −ε, ζ−) and u(t) < u(ζ−) for t ∈ (ζ−−ε, ζ−) and
u is decreasing on (ζ+, ζ+ + ε) and u(t) < u(ζ+) for t ∈ (ζ+, ζ+ + ε)

(then we call such facet concave); moreover, we set

sgn κ[ζ−,ζ+] = −1. (2.3)

It may happen that ζ− = ζ+ =: ζ , then we shall call F(ζ, ζ ) a degenerate essential
facet. In this case u has a strict local minimum or a strict maximum at point ζ .

We will call sgn κ[ζ−,ζ+] the transition number of facet F(ζ−, ζ+). For the sake
of consistency, we set the transition number sgn κ[ζ−,ζ+] to zero for a zero curvature
facet F(ζ−, ζ+). In addition, if ζ− = 0 or ζ+ = 1, then we set to zero the transition
number of F(ζ−, ζ+).

The union of parameter sets of all essential facets is denoted by 	ess(w) and Kess(w)

is the number of essential facets, including degenerate facets.

DEFINITION 2.2. Let us suppose that w = ∂x u ∈ BV [0, 1], where u is absolutely
continuous and ∂x u is the Clarke differential of u. Let	(w) = {x ∈ [0, 1] : 0 ∈ w(x)}.
We say that w as above is J-regular or shorter w ∈ J-R iff the set 	ess(w) ⊂ 	(w)

consists of a finite number of components, that is,

	ess(w) = [a1, b1] ∪ · · · ∪ [aKess (w), bKess (w)] where ai ≤ bi (2.4)

and each interval [ai , bi ] is an argument set of an essential (nondegenerate or degen-
erate) facet F(ai , bi ). In particular, components of 	(w)\	ess(w) consist only of
arguments of zero curvature facets of u. Our definition in particular excludes functions
with fast oscillations like x2 sin 1

x . We distinguished above a subset of BV functions.
Since degenerate facets will be treated as pathology, for given w ∈ J-R, we define

L(w) = min{b − a : [a, b] is a connected component of 	ess(w)}. (2.5)

Note that L(w) = 0 iff there exists a degenerate facet of u.
The name J-regular refers to the regularity of the integrand in the functional J ,

which has singular point at p = 0. J -regularity of w = ∂ux means that function u
can be split into finite number of subdomains where it is monotone. We also define
the following quantity,

‖w‖J-R[0,1] = ‖w‖BV [0,1] + Kess(w), (2.6)

where Kess(w) is the number of connected parts of 	ess(w); however, this is not a
norm.

We start with the definition of a useful class of admissible functions.

DEFINITION 2.3. We shall say that a function a is admissible, for short a ∈
AF[0, 1], iff a : [0, 1] → R, ∂x a ∈ J-R and a(0) = ab, a(1) = ae, where ab, ae are
given numbers. Here, ∂x a denotes the set-valued Clarke differential of a.



Vol. 13 (2013) Almost classical solutions to the total variation flow 27

In [22, Definition 2.2], a similar notion of ‘faceted functions’ appeared. The main
difference is that here we admit degenerate facets, while there they were explicitly
excluded from considerations.

We note that the above definition restricts the behavior of admissible function at
the boundary of the domain. Namely, if a ∈ AF , then a is monotone on an interval
[0, x0) for some x0 ∈ (0, 1) and either

a(x0) > a(0) or a(x0) < a(0).

By the same token, a is monotone on an interval (x0, 1] for some x0 ∈ (0, 1) and
either

a(x0) > a(1) or a(x0) < a(1).

Thus, the Dirichlet boundary condition makes immobile any facet touching the bound-
ary. Hence, such facets behave as if they had zero curvature.

A composition of multivalued operators requires proper preparations. Due to the
needs of our paper, we restrict ourselves to a definition of

sgn ◦̄ α

for a suitable class of multivalued operators α. It is most important to define this
composition in the interior of the domain we work with. See also [30,31]. Let us also
notice that sgn ◦̄ α is a special selection of sgn ◦ α. Any of those selections is called
a Cahn-Hoffman vector field.

DEFINITION 2.4. Let us suppose that β is admissible and ∂xβ = α ∈ J-R[0, 1].
The definition of sgn ◦̄ α is pointwise. Let us first consider x ∈ [0, 1]\	ess(α). Then,
there exists an interval (a, b) containing x and such that either β is increasing on (a, b)

or decreasing. In the first case, we set

sgn ◦̄ α(x) = 1; (2.7)

if β is decreasing on (a, b), then we set

sgn ◦̄ α(x) = −1. (2.8)

We note that the set [0, 1]\	ess(α) is a finite sum of open intervals, on each of them
function β is monotone. Furthermore, the end points of [0, 1] cannot belong to 	ess(α).

Now, let us consider x ∈ 	ess(α), then there is [p, q] a connected component of
	ess(α) containing x . If F(p, q) is a convex facet of β, then we set,

sgn ◦̄ α(x) = 2

q − p
x − 2p

q − p
− 1 for x ∈ [p, q]. (2.9)

If F(p, q) is a concave facet of α, then we set,

sgn ◦̄ α(x) = − 2

q − p
x + 2p

q − p
+ 1 for x ∈ [p, q]. (2.10)
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Now, we are in a position to state main results being also a justification of the notion
of almost classical solutions to our system.

THEOREM 2.1. Let u0 ∈ AF[0, 1], L(u0,x ) > 0 with u0(0) = ab and u0(1) = ae,
then the system (1.1) admits unique solution in the sense specified by (3.15) and such
that

ux ∈ L∞(0, T ; J-R[0, 1]). (2.11)

Moreover, u is an almost classical solution, that is, it fulfills (1.1) in the following
sense

ut − ∂x sgn ◦̄ ux = 0 in [0, 1] × (0, T ),

u(0, t) = ab, u(1, t) = ae for t ∈ [0, T ),

u|t=0 = u0 on [0, 1],
(2.12)

where the time derivative in (2.12) exists for all time instances, except for at most
a finite number of exceptions, the x derivative exists for at most a finite number of
exceptions. Additionally, u(·, t) ∈ AF[0, 1] for t ∈ [0, T ].

We study a second order parabolic equation with the goal of establishing existence
of almost classical solutions. This is why we do not consider general data in L2, but
those which are more natural for this problem, where the jumps in ux and their num-
ber matter most. This is why we look for u, which not only belongs to BV , that is,
u(·, t) ∈ BV , but also u(·, t) ∈ AF . In addition, the necessity of introducing essential
facets will be explained.

An improvement of the above result, showing a regularization effects, is the
following.

THEOREM 2.2. Let u0 be as in Theorem above, but L(u0,x ) = 0. Then, there
exists a unique mild solution to (1.1), which is almost classical and it fulfills (2.12).
Furthermore, L(ux (t)) > 0 for t > 0.

The second theorem shows that the class of functions with nondegenerate facets
is typical, and each initially degenerate essential facet momentarily evolves into an
nontrivial interval. Furthermore, creation of such a singularity is impossible. In order
to explain this phenomena, let us analyze the following very important example related
to analysis of nonlinear elliptic operator defined by subdifferential of (1.3).

We first recall the basic definition. We say that w ∈ ∂J (u) iff w ∈ L2(a, b) and
for all h ∈ L2(a, b) the inequality holds,

J (u + h) − J (u) ≥ (w, h)2. (2.13)

Here ( f, g)2 stands for the regular inner product in L2(a, b). We also say that v ∈
D(∂J ), that is, v belongs to the domain of ∂J iff ∂J (v) �= ∅.

We state here our fundamental example. We recall (1.3) and for the sake of conve-
nience, for a while, we set (a, b) = (−1, 1). Then, we make the following observation.
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LEMMA 2.1. Function 1
2 x2 does not belong to D(∂J ).

Proof. If 1
2 x2 ∈ D(∂J ), then there existed w ∈ L2(−1, 1) such that for all φ ∈

C∞
0 (−1, 1) and t ∈ R∫

(−1,1)

(|x + tφx | − |x |)dx ≥ t
∫

(−1,1)

wφdx . (2.14)

We restrict ourselves to φ such that φ ∈ C∞
0 (−δ, δ) and supp φx [−δ,−δ/2]∪[δ/2, δ].

Additionally, φx (t) > 0 for t ∈ (−δ,−δ/2), φx (t) < 0 for t ∈ (δ/2,−δ) and
φ(−δ) = φ(δ) = 0, φ(t) = 1 for t ∈ (−δ/2, δ/2). Next, let us observe that
|x + tφx (x)|− |x | = tφx (x)sgn x for |tφx (x)| ≤ δ/2; we keep in mind that φx (t) = 0
for t ∈ (−δ/2, δ/2).

Thus, for such φ and t the r.h.s. of (2.14) equals∫
(−δ/2,δ/2)

(|x + tφx (x)| − |x |)dx =
∫

(−δ,−δ/2)

tφx · (−1)dx

+
∫

(δ/2,δ)

tφx · (1)dx = −2t. (2.15)

Hence, we get −2t ≥ t
∫
(−δ,δ)

wφdx, what implies for t > 0

2 ≤ −
∫

(−δ,δ)

wφdx ≤
∫

(−δ,δ)

|w|dx → 0, (2.16)

since w ∈ L2(−1, 1). Thus, we have reached a contradiction. Hence, 1
2 x2 cannot

belong to D(∂J ). �

A description of the domain of the subdifferential ∂J of (1.3) is presented below in
Proposition 2.1, as well as the characterization of the lower semicontinuous envelope
of J . The analysis is based on the Legendre-Fenchel transform. The authors of [20,25]
studied important aspects of this issue, but they did not solve it completely. On the
other hand, the analysis similar to ours is in [13] and [14]. There is a description of
D(J ) for the multidimensional version of the problem we consider, see for example,
[6]. It is based on Anzellotti’s formula for integration by parts [8].

PROPOSITION 2.1. (a) The lower semicontinuous envelope of J is given by J ∗∗,
where

J ∗∗(u) =
{∫ b

a |Du| + |ab − u(a)| + |ae − u(b)| if u ∈ BV [a, b],
+∞ otherwise.

(2.17)

(b) If u ∈ D(J ), then

∂J (u) = {w = −φ′ : φ ∈ H1((a, b); [−1, 1]), D+u({φ < 1}) = 0

= D−u({φ > −1}). (2.18)

Here, D+u (resp. D−u) denotes the positive (resp. negative) part of measure Du.
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Proof. We begin by recalling the Legendre-Fenchel transform. If J : L2(a, b) →
(−∞,+∞] is a proper functional, then for w ∈ L2(a, b) we set (see [35])

J ∗(w) = sup
u∈L2(a,b)

(w, u)2 − J (u).

It is a well-know fact that J ∗ is convex and lower semicontinuous, in addition J ∗∗ is
the lower semicontinuous envelope of J . Thus, we shall calculate J ∗ and J ∗∗. Let
us suppose that w ∈ L2(a, b), then there is φ ∈ H1(a, b) such that w = −φ′. We
also notice that if u ∈ BV [a, b], then for such φ, we have the following integration
by parts formula,

∫ b

a
φDu +

∫ b

a
φ′u dx =

∫ b

a
D(uφ) = (uφ)(b) − (uφ)(a). (2.19)

In order to calculate J ∗(w), it is sufficient to consider only u ∈ D(J ) in the formula
below, ∫ b

a
wu dx −

∫ b

a
|Du| = −

∫ b

a
φ′u dx −

∫ b

a
|Du|

=
∫ b

a
φDu −

∫ b

a
|Du| + abφ(a) − aeφ(b). (2.20)

Let us first suppose that w is such that φ may be so chosen that, for all x ∈ [a, b], we
have φ(x) ∈ [−1, 1]. We claim that (2.20) implies that

J ∗(w) = abφ(a) − aeφ(b). (2.21)

Indeed, for this choice of φ, we notice that

∫ b

a
φD+u −

∫ b

a
D+u −

∫ b

a
φD−u −

∫ b

a
D−u ≤ 0.

Moreover, the equality holds for any u ∈ D(J ) such that D−u({φ > −1}) =
0, D+u({φ < 1}) = 0. Hence, (2.21) holds. If on the other hand φ ≥ −1 and
the set {φ(x) > 1} has positive measure (or φ ≤ 1 and the set {φ(x) < −1} has
positive measure), then it is easy to deduce that J ∗(w) = +∞.

Since we can choose φ up to a constant, we infer that

J ∗(w) =
{

abφ(a) − aeφ(b) if w = −φ′, φ ∈ H1((a, b); [−1, 1]),
+∞ otherwise.

(2.22)

Let us calculate J ∗∗; for this purpose, we take any u ∈ L2(a, b) and w ∈ D(J ∗) and
we consider

(u, w)2 − J ∗(w) = −
∫ b

a
uφ′ dx − (abφ(a) − aeφ(b)). (2.23)
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Taking supremum with respect to w implies that J ∗∗(u) is finite if and only if u ∈
BV [a, b]. Hence, integration by parts in (2.23) yields,

(u, w)2 − J ∗(w) =
∫ b

a
φDu − (u(b)φ(b) − u(a)φ(a)) − (abφ(a) − φ(b)).

It is now easy to see that J ∗∗ is given by formula (2.17). We notice that J ∗∗ and J
coincide on the domain of J . Hence, (a) follows.

In order to establish (b), we use a well-know equivalence, see [35],

w ∈ ∂J ∗∗(u) ⇔ u ∈ ∂J ∗(w) ⇔
∫ b

a
wu dx = J ∗∗(u) + J ∗(w).

As a result, we conclude that for u ∈ D(J ) formula (2.18) is valid. Our claim follows.
�

At the end, we mention a result describing the asymptotics of solutions, proved in
the last section.

THEOREM 2.3. There is finite text > 0 such that the solution u reaches a steady
state at text , that is, u(t) = u(text ) for t > text . Moreover, we have an explicit estimate
for text in terms of u0, see (5.1).

Analysis for piecewise constant data in [25] also lead to observation of the finite
extinction time, but without estimating it.

The above result shows that the limit of any solution, as time goes to infinity, is
always a monotone function, and this will be proved and illustrated in Sect. 5. Similar
results has been proved in [25], but with no estimate of the stopping time. There we
present numerical simulations based on the analysis of system (1.1). It is interesting
to note that in comparison with [19] who deals with the multidimensional case, our
computations do not contain any discretization error. A rich possibility of stationary
states is allowed thanks to Dirichlet boundary conditions, see also [27].

Note that such picture is impossible for Neumann boundary constraints, for which
there are only trivial/constant equilibria.

3. Yosida approximation

The central object for our considerations is the Yosida approximation to −∂x sgn ∂x .
First, we introduce an auxiliary notion of a nonlinear resolvent operator to the following
problem,

λu − d

dx
sgn (ux ) = λv on [0, 1], u = v at ∂[0, 1], (3.1)

where v is a given element of L2(0, 1).
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DEFINITION 3.1. An operator assigning to v ∈ J-R a unique solution, u ∈ J-R,
to (3.1) will be called the resolvent of A = −∂x sgn ∂x and we denote it by u =
R(λ, A)v.

Now, we may introduce the Yosida approximation to A.

DEFINITION 3.2. Let us assume that A = −∂x sgn ∂x is as above and λ > 0. An
operator Aλ : J-R → J-R given by Aλu = λ(u − R(λ, A)(λu)) is called the Yosida
approximation of A.

Since the notion of Yosida approximation seems well-understood, we will use it to
explain the meaning of A. For this purpose, we will fix w ∈ J-R and λ > 0. We set
uλ := R(λ, A)w. We will look more closely at Aλ(uλ).

THEOREM 3.1. Let us assume that w ∈ AF[0, 1], that is, wx ∈ J-R, then there
exists a unique solution to

λu + A(u) = λw in (0, 1), u(0) = w(0), u(1) = w(1), (3.2)

denoted by uλ, fulfilling

‖uλ
x‖BV [0,1] ≤ ‖wx‖BV [0,1]. (3.3)

Moreover, there is λ0 > 0 such that Kess(uλ
x ) = Kess(wx ) for λ > λ0 with ‖uλ

x‖J-R ≤
‖wx‖J-R. Furthermore, if L(wx ) = d > 0, equation (3.2) can be restated as follows

λuλ − ∂x sgn ◦̄uλ
x = λw + V (λ, x), (3.4)

where V (λ, x) → 0 in Lq for all q < ∞ as λ → ∞. In addition

Aλ(u
λ) → −∂x sgn ◦̄wx in Lq(0, 1) with q < ∞.

Proof. We would like to present an independent proof of existence of solutions to
system (3.2). For this purpose, we restrict ourselves to w ∈ AF and for sufficiently
large λ. A simple construction of uλ for a given w based upon Lemma 3.1 is presented
below.

Our assumptions give us

	ess(wx ) =
Kess (wx )⋃

i=1

[ai∗, bi∗] (3.5)

with ai∗ ≤ bi∗. Moreover, a1∗ > 0 and bKess (wx )∗ < 1.
Below, we present a construction of uλ. Namely, we consider system (3.2) in a

neighborhood of preimage of an essential facet [ai∗, bi∗] of w (it may be degenerate),
and we prescribe the evolution of this facet. If λ is sufficiently large, then we keep the
number Kess constant. �
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LEMMA 3.1. Let us suppose that w satisfies the assumptions of Theorem 3.1.
Then, for sufficiently large λ, and for each i = 1, . . . , Kess(wx ), there exist monotone
functions λ �→ ai (λ) and λ �→ bi (λ), which are solutions to the following problem,

(bi (λ) − ai (λ))w(ai (λ)) =
∫ bi (λ)

ai (λ)

w + 2
1

λ
sgn κ[ai∗,bi∗], w(bi (λ)) = w(ai (λ)).

(3.6)

These solutions are defined locally, that is, in a neighborhood of [ai∗, bi∗].
We recall that, the transition numbers sgn κ[ai∗,bi∗] were defined in (2.2), (2.3). Addi-

tionally, we require

a1(λ) > 0, bKess (wx )(λ) < 1 and bi (λ) < ai+1(λ)

for i = 1, . . . , Kess(wx ) − 1. (3.7)

However, if λ0 is the greatest lower bound of λ as above, then one of the three possi-
bilities occurs,

a1(λ0) = 0 or bK (wx )(λ0) = 1 or ai (λ0) = bi+1(λ0). (3.8)

It is worthwhile to underline that the lemma holds if L(wx ) = 0, too.

Proof. Fix i in {1, . . . , Kess(wx )}. Problem (3.6) comes from integration of (3.2)
over a neighborhood of facet [ai∗, bi∗]. For τ ∈ R in a neighborhood of zero, such that
τ sgn κ[ai∗,bi∗] > 0, we set

āi (τ ) = min(w|[bi−1∗ ,ai∗])
−1(w(ai∗) + τ),

b̄i (τ ) = max(w|[bi∗,ai+1∗ ])
−1(w(bi∗) + τ). (3.9)

These quantities are well defined, because functions w|[bi−1∗ ,ai∗] and w|[bi∗,ai+1∗ ] are

monotone. If these functions are strictly monotone, then w−1(w(bi∗) + τ) is strictly
monotone too, so the min/max are redundant. However, if there exists {α} �= [α, β] ⊂
	(w) and [α, β] ⊂ [bi−1∗ , ai∗] (resp. [α, β] ⊂ [bi∗, ai+1∗ ], then (w|[bi−1∗ ,ai∗])

−1 (resp.

(w|[bi∗,ai+1∗ ])
−1) is a maximal monotone graph and min/max makes āi (·) (resp. b̄i (·))

single valued and discontinuous. However, the function

τ �→ (b̄i (τ ) − āi (τ ))w(āi (τ )) −
∫ b̄i (τ )

āi (τ )

w(s) ds =: Fi (τ ), i = 1, . . . , Kess(wx ),

is continuous. Indeed, if τ0 is a point, where āi and b̄i are continuous, then this state-
ment is clear. Let us suppose that at τ0 function āi has a jump (the argument for b̄i is
the same). Then, [āi (τ0), β] ⊂ 	(wx ), where āi (τ0) < β and for any x ∈ [āi (τ0), β]
we have

(b̄i (τ0) − āi (τ0))w(āi (τ0)) −
∫ b̄i (τ0)

āi (τ0)

w(s) ds

= (b̄i (τ0) − x)w(x) −
∫ b̄i (τ )

x
w(s) ds. (3.10)
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This is so, because we notice that w restricted to [āi (τ0), β] is constant and equal to
w(ai∗) + τ0. Moreover,∫ b̄i (τ0)

āi (τ0)

w(s) ds =
∫ x

āi (τ0)

w(s) ds +
∫ b̄i (τ0)

x
w(s) ds

= (x − āi (τ0))(w(ai∗) + τ0) +
∫ b̄i (τ0)

x
w(s) ds.

Hence, our claim follows, that is, continuity of Fi , i = 1, . . . , Kess(w). Indeed, let us
suppose that τn converges from one side to τ0 (the side, left or right, depends upon
sgn κ[ai∗,bi∗]) so that limn→∞ āi (τn) = γ , where γ = āi (τ0) or γ = β. Then, due to
(3.10) we deduce continuity of Fi .

If we take λ sufficiently large, then 2
λ

sgn κ[ai∗,bi∗] is in the range of Fi , that is, there

exists τi = τi (λ) such that Fi (τ (λ)) = 2
λ

sgn κ[ai∗,bi∗]. If we further make λ larger, then

we can make sure that for each i = 1, . . . , Kess(wx ) we have b̄i−1(τi (λ)) < āi (τi (λ))

and b̄i (τi (λ)) < āi+1(τi (λ)). Thus, we set ai (λ) := āi (τi (λ)), bi (λ) := b̄i (τi (λ)).

Let us define λ0 to be the inf of λ’s constructed above.
We see that for λ0 one of the inequalities a1(λ0) > 0, bi (λ0) < ai+1(λ0), i =

1, . . . , Kess(wx ) − 1, bKess (wx )(λ0) < 1 becomes equality. �

This lemma permits us to define the function u for λ ≥ λ0,

uλ =
{

w for x ∈ [0, 1]\ ⋃Kess (wx )
i=1 [ai (λ), bi (λ)],

w(ai ) for x ∈ [ai (λ), bi (λ)]. (3.11)

We notice that Kess(uλ
x ) = Kess(wx ) and 	ess(uλ

x ) = ⋃Kess (uλ
x )

i=1 [ai , bi ], provided that
λ > λ0.

Let us analyze what happens at λ = λ0. We know that one of the three possibilities
in (3.8) occurs. We notice that if a1(λ0) = 0 or bKess (wx )(λ0) = 1, then a facet of uλ

touches the boundary. Subsequently this facet becomes a zero curvature facet, for it
is immobile. This is a simple consequence of Dirichlet boundary conditions which do
not admit any evolution of facets touching the boundary.

Let us look at the case bi (λ0) = ai+1(λ0) for an index i . Thus, we obtain the
phenomenon of facet merging. In both cases the structure of the set 	ess(uλ

x ) will be
different from 	ess(wx ). As a result, we have

Kess(u
λ
x ) < Kess(wx ). (3.12)

It is worth stressing that at the moment λ = λ0 more than two facets may merge, so
we cannot control the decrease of number K . In this case we slightly modify (3.11),
since the structure of 	ess(uλ

x ) is different from 	ess(wx ). It is sufficient to notice that
the number of elements in the decomposition (3.5) has decreased.

It is clear that for λ ≥ λ0, we have Kess(uλ
x ) ≤ Kess(wx ) and by the construction,

(3.11) it is also obvious that (see Definition 2.1)

‖Duλ
x‖ ≤ ‖Dwx‖. (3.13)
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Note that the boundary conditions are given, so (3.13) controls the whole norm of uλ.
Once we constructed a solution uλ by (3.11), we shall discuss the question: in what

sense does it satisfy equation (1.2). One hint is given in the process of construction
ai (λ) and bi (λ). This is closely related to ideas in [29]. If we stick with differential
inclusions, then formula

u − w − 1

λ

d

dx
sgn ux � 0, (3.14)

leads to difficulties, because we did not provide any definition of the last term on the
left-hand-side (l.h.s. for short).

Here comes our meaning of a mild solution: for each x ∈ [0, 1], the following
inclusion must hold ∫ x

0
(u − w)dx ′ − 1

λ
sgn ux

∣∣∣∣
x

0
� 0. (3.15)

We shall keep in mind that at x = 0, we have u = w (for the sake of simplicity of
notation we shall suppress the superscript λ, when this does not lead into confusion).

In order to show that u fulfills (3.15), we will examine a neighborhood of the first
component of 	ess(ux ), that is, [a1, b1]. We take x ∈ [0, a1), then u = w on [0, x].
Thus, it is enough to check whether 1

λ
(sgn ux (0) − sgn ux (x)) � 0. We notice that

on [0, x] ⊂ [0, a1) function u is monotone. As a result, sgn ux (0) and sgn ux (x) may
equal 1 or [−1, 1], provided that u is increasing. If on the other hand, u is decreasing
on [0, x], then sgn ux (0) and sgn ux (x) are equal to −1 or [−1, 1]. If any of these
possibilities occurs, then (3.15) is fulfilled.

We shall continue after assuming for the sake of definiteness that facet F(a1, b1)

is convex. The argument for a concave facet is analogous.
Let us consider x ∈ [a1, b1]. We interpret sgn t as a multivalued function such that

sgn 0 = [−1, 1]. Then, we have for x ∈ [a1, b1]∫ x

0
(u − w)dx ′ − 1

λ
[−1, 1] + 1

λ
sgn ux |x ′=0 � 0. (3.16)

Since we assumed that the facet F(a1, b1) is convex, from (3.6) we find that 0 ≤∫ x
0 (u − w)dx ′ ≤ 2

λ
. By the assumption, we know that sgn ux |x ′=0 � −1. Hence,∫ x

0
(u − w)dx ′ − 1

λ
∈ 1

λ
[−1, 1]. (3.17)

This shows (3.15) again. In case F(a1, b1) is concave, the argument is analogous. Let
us now consider x ∈ (b1, a2], then we have∫ x

0
(u − w)dx ′ − 1

λ
sgn ux

∣∣∣∣
x

0
=

∫ a1

0
(u − w)dx ′ − 1

λ
sgn ux

∣∣∣∣
a1

0
+

∫ b1

a1
(u − w)dx ′

− 1

λ
sgn ux

∣∣∣∣
b1

a1
+

∫ x

b1
(u − w)dx ′ − 1

λ
sgn ux

∣∣∣∣
x

b1

= I1 + I2 + I3. (3.18)
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Here, we do have the freedom of choosing sgn ux at x = b1. Namely, we set
sgn ux (b1) = −1. We also know that sgn ux (a1) = 1.

We recall that by the very construction of a1 and b1, we have I2 = 0. Subsequently,
we notice that the argument performed for x ∈ [0, a1) applies also to x ∈ (b1, a2],
Thus,

I1 + I2 + I3 = −1

λ
(1 − sgn ux (0)) + 0 − 1

λ
(−1 + sgn ux (x))

= 1

λ
(−sgn ux (0) + sgn ux (x)) � 0,

that is, (3.15) holds again.
Repeating the above procedure for each subsequent facet, we prove that u given by

(3.11) fulfills (3.15). The case x ∈ [bKess , 1] is handled in the same way. Thus, we
proved the first part of Theorem 3.1 concerning existence.

We shall look more closely at the solutions when λ = λ0. We have then two basic
possibilities: The first facet F(a1, b1) or the last one F(ak, bk) touches the boundary,
that is, a1 = 0 or resp. bk = 1. If this happens, then F(0, b1), resp. F(ak, 1), has
zero curvature. Or two or more facets merge, that is, there are i, r > 0 such that
limλ→λ0 bi−1(λ) = bi−1(λ0) < ai (λ0) = limλ→λ0 ai (λ) and limλ→λ0 bi+ j (λ) =
limλ→λ0 ai+1+ j (λ), j = 0, 1, . . . , r−1, and limλ→λ0 bi+r−1(λ) < limλ→λ0 ai+r (λ).

We adopt the convention that b0 = 0 and ak+1 = 1.
When this happens, we have two further sub-options: an odd number of facets merge,

then F(ai (λ0), bi+r (λ0)) has zero curvature; or an even number of facets merge,
then [ai (λ0), bi+r (λ0)] ⊂ 	ess(ux ). Of course, it may happen that simultaneously a
number of events of these types occur.

First, let us observe that u = w away from the set {ux = 0}, so we con-
clude 	(wx ) ⊂ 	(ux ). More precisely, the equality holds on a larger set. Namely,
if F(ai , bi ) is a zero curvature facet and λ > λ0, then the very construction of
ai (λ), bi (λ) implies that u = w on [ai , bi ]. If u(a) = u(b) = w(a) = w(b), so
there must be a point c ∈ (a, b) such that 0 ∈ wx (c). Thus, we obtain for any λ > 0
that Kess(ux ) ≤ Kess(wx ).

Let L(wx ) = d > 0, then we consider

λu + Aλ(u) = λw for λ > λ0, (3.19)

where we suppressed the superscript λ over u.
As we have already seen, taking large λ, that is, λ > λ0, excludes the possibility of

facet merging or hitting the boundary, thus Kess(wx ) = Kess(ux ). Let us emphasize
that Kess(ux ) may decrease only a finite number of times.

Let us suppose that [a∗, b∗] is a connected component of 	ess(ux ), that is, a∗ =
ai0(λ), b∗ = bi0(λ) for an index i0. Without loss of generality, we may assume that
this facet is convex. So, integrating (3.19) over [a∗, b∗], we find∫ b∗

a∗
λu −

∫ b∗

a∗
λw = 2. (3.20)
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First, we want to find an answer to the following question. What we can say about
the behavior of the following quantity

∫ a
a∗ + ∫ b∗

b (λu−λw), where [a, b] is a connected
component of 	ess(wx ) contained in [a∗, b∗]. In fact we assume, that a = ai0 , b = bi0 .

Since d = L(wx ) is fixed and positive, we find from (3.20) that

2 =
∫ b∗

a∗
λ(u − w) ≥

∫ b

a
λ(u − w) ≥ dλ(u − w)|[a,b],

Because u − w is monotone on [a, b]. As a result,

λ(u − w)|[a,b] ≤ 2

d
. (3.21)

Then, we conclude that
∫ b∗

b λ(u − w) ≤ (b∗ − b)λ[w(b∗) − w(b)]. At the same time,
(3.21) yields w(b∗) − w(b) ≤ 2

dλ
. On the other hand, w is monotone on set (b, b∗).

Hence, (3.21) implies that

b∗ − b ≡ bi0(λ) − bi0 ≤ W −1
(

2

dλ

)
, (3.22)

where W −1(·) is a strictly monotone (possibly multivalued) function, equal w−1

(restricted to an interval of monotonicity) plus a constant such that limt→0+ W −1(t) =
0. Eventually, we get

∫ b∗

b
λ(u − w) ≤ W −1

(
2

dλ

)
2

d
→ 0 as λ → ∞. (3.23)

Since the analysis for (a∗, a) is the same, (3.22) and (3.23) imply that
∫ b∗

a∗ λ(u −w) =
2 + V (λ). Note that V (λ) depends only on w, so in Sect. 4, we will study the approx-
imation error V (λ) and we will show uniform bounds, provided that L(wx ) ≥ d > 0.

Integrating (3.19) gives

∫ b∗

a∗
λ(u − w) =

∫ b∗

a∗
−Aλ(u) = 2, (3.24)

but the pointwise information from the equation yields

λ(u − w)|[a,b] = −Aλ(u) = const. (3.25)

Thus, taking into account (3.24) and (3.25), we get −Aλ(u)|[a,b] → 2/(b − a) a.e.
as λ → ∞. Here, we used that a∗ = ai0(λ) → ai0 , b∗ = bi0(λ) → bi0 as λ goes to
infinity. But a, b depends only on w; additionally, we shall keep in mind that (3.21)
via (3.19) implies that |Aλ(u)| ≤ 2/d on whole [0, 1].

Clearly, by Definition 2.4 ∂x sgn ◦̄ux = 2
(b∗−a∗) for x ∈ [a∗, b∗], hence, we have

proved that

Aλ(u) = −∂x sgn ◦̄ux + V (λ, x), (3.26)
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where V (λ) = ∫ b∗
a∗ V (λ, x) dx and V (λ, x) → 0 in at least L1(I ). Here, we should

note clearly that all depend on λ, since a∗ = ai0(λ), b∗ = bi0(λ). We see that we
have already proved that |V (λ, x)| ≤ 2

d , and μ({supp V (λ, ·)}) → 0 which gives a
relatively strong convergence. Note that in (3.26), we are not able to obtain “pure”
discontinuity in the composition ◦̄, since we work with solutions only; hence, sgn ◦̄uλ

x
must be piecewise linear.

Next question is: whether ∂x sgn ◦̄uλ
x → ∂x sgn ◦̄wx and in which space?

Let us observe that (see Definition 2.1)

‖Duλ
x‖ ≤ ‖Dwx‖ and uλ

x → wx in measure on I. (3.27)

It follows that sgn ◦̄uλ
x |	(wx ) → sgn ◦̄wx |	(wx ) uniformly. We remember that sgn ◦̄uλ

x
and sgn ◦̄wx are piecewise linear functions and the set 	(wx ) is independent from λ,
but the case L(wx ) = d > 0 implies that

A(uλ) → − d

dx
sgn ◦̄wx in Lq(0, 1) q ∈ [1,∞). (3.28)

Theorem 3.1 is proved. �
In particular, as a result of our analysis, we get that the constructed solution to (3.2)

is variational.

LEMMA 3.2. Function uλ given by Theorem 3.1 is a variational solution to (3.2),
that is, uλ fulfills

(λuλ, φ) + (σ (x), φ′) = (λw, φ) for each φ ∈ C∞
0 (0, 1) (3.29)

and σ(x) ∈ sgn ◦ ux (x), where here ◦ denotes the standard composition.

Proof. From the inclusion (3.15), we are able to find such measurable σ that∫ x

0
(u − w) − 1

λ
σ(x) + 1

λ
σ(0) = 0. (3.30)

Then, testing it by φ′ with φ ∈ C∞
0 (0, 1), we get (3.29). In particular, we already have

shown that λR(λ, A)λ is a monotone operator in L2. �

The form of (3.14) allows to look at the system as on a semidiscretization in time
with step h = 1

λ
, see (1.4) too. Our next Lemma explains that h may be split into

smaller steps at will. This permits to perform additional analysis at the intermediate
steps.

LEMMA 3.3. Let us suppose that v is absolutely continuous and h1, h2 > 0,
the sets {vx > 0}, {vx < 0} are open, and they have a finite number of connected
components. If u1 is a minimizer of

Jh1,v(u) =
∫ 1

0
h1|ux | + 1

2
(u − v)2
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while u2 is a minimizer of

Jh2,u1(u) =
∫ 1

0
h2|ux | + 1

2
(u − u1)2,

then u2 is a minimizer of

Jh,v(u) =
∫ 1

0
h|ux | + 1

2
(u − v)2 with h = h1 + h2.

Proof. In fact due to our assumptions, we have solutions to the equations

h1
d

dx
σ 1 = u1 − v, h2

d

dx
σ 2 = u2 − u1. (3.31)

We note that the sequence of implications: u2
x is different from zero at x and then u1

x
has a sign there; hence, vx has a sign too. Moreover, if vx = 0 on an interval (α, β),
then u1

x , u2
x are zero (α, β) too.

We want to show that

h
d

dx
sgn u2

x = u2 − v (3.32)

has a solution. Let us add up the two equations above. This yields,

h
d

dx

(
h1

h
σ 1 + h2

h
σ 2

)
= u2 − v.

Of course σ := h1
h σ 1 + h2

h σ 2 ∈ [−1, 1]. If at x we have u2
x (x) > 0, then vx (x) > 0.

Hence,

σ(x) = h1

h
σ 1(x) + h2

h
σ 2(x) = h1

h
+ h2

h
= 1.

The situation is similar if u2
x (x) < 0. Let us suppose now that u2

x (x) = 0, then regard-
less of the sign of u1

x (x), we know that σ(x) ∈ [−1, 1] and, by the definition of σ ,
equation (3.32) is satisfied. In particular,

−2h = h
∫ ξ+

2

ξ−
2

σ(x) dx =
∫ ξ+

2

ξ−
2

(v(ξ−
2 ) − v(x)) dx =

∫ ξ+
2

ξ−
2

(u2(ξ−
2 ) − v(x)) dx .

�

The value of this result is that it permits us to split h. We may say that this shows
the semigroup property. This feature is effectively applied in numerical simulations in
Sect. 5.
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4. The construction of the flow

A key point of our construction is an approximation of the original problem based
on the Yosida approximation. Here, we meet techniques characteristic for the homo-
geneous Boltzmann equation [18,28]. For given λ, t0 and Aλ defined in (1.5), we
introduce the following equation for uλ,

uλ(t + t0) = uλ(t0) −
∫ t0+t

t0
Aλ(u

λ) ds,

uλ(0, t0 + t) = ab, uλ(1, t0 + t) = ae for t ∈ (0, T ). (4.1)

We stress that its solvability, established below, does not require that L(ux (t0)) > 0.

LEMMA 4.1. Let us suppose that uλ(t0) ∈ J-R(I ), where I = [0, 1], then there
exists a unique solution uλ to (4.1) on the time interval (t0, t0 + 1

3λ
) and

uλ ∈ C

(
t0, t0 + 1

3λ
; L2(I )

)
, moreover, sup

t∈(0, 1
3λ

)

‖uλ(t0 + t)‖J-R ≤ ‖uλ(t0)‖J-R.

(4.2)

Proof. We will first show the bounds. Let us suppose that uλ is a solution to (4.1), then
Definition 3.2 and the observation d

dt
[eλt uλ] = −eλt Aλ(uλ) + λeλt uλ imply that,

uλ(t0 + t) = e−λt uλ(t0) +
∫ t0+t

t0
e−λ(t0+t−s)λR(λ, A)λuλ(s)ds. (4.3)

In order to obtain the estimate in BV , we apply Theorem 3.1, inequality (3.3), getting

sup
t

‖uλ
x‖BV ≤ e−λt‖uλ

x (t0)‖BV + sup
t

‖R(λ, A)λuλ(t)‖BV

∫ t

0
λe−λsds

≤ e−λt‖uλ
x (t0)‖BV + sup

t

1

λ
‖λuλ

x (t)‖BV (1 − e−λt ).

So we get

sup
t

‖uλ
x‖BV ≤ ‖uλ

x (t0)‖BV . (4.4)

In order to prove existence, we fix λ (we will omit the index λ in the consider-
ations below) and we define a map � : C(0, T ; L2(I )) → C(0, T ; L2(I )) such that
v = �(w), where

v(t) = e−λtv0 +
∫ t

0
eλ(t−s)λR(λ, A)λwds. (4.5)

We notice that due to 	((λR(λ, A)λw)x ) ⊃ 	(wx ), we obtain 	(v0,x ) ⊂ 	(wx (t))
for t ∈ (0, T ), provided that w|t=t0 = v0. Combining this observation with w|t=t0 =
v0 again yields,

	(v0,x ) ⊂ 	(vx (t)) for t ∈ (0, T ). (4.6)
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We see that a fixed point of the above map yields a solution to (4.1) after a shift of
time. For the purpose of proving existence of a fixed point of �, we will check that � is a
contraction. We notice that if w, w̄ ∈ C(0, T ; L2(I )), then monotonicity of R(λ, A)λ

(thanks to Lemma 3.2) implies that ‖R(λ, A)λw − R(λ, A)λw̄‖L2 ≤ ‖w − w̄‖L2 .

Hence,

‖�(w) − �(w̄)‖L∞(0,T ;L2(I ))

≤
∫ t

0
λe−λ(t−s)ds‖R(λ, A)λw − R(λ, A)λw̄‖L∞(0,T ;L2(I ))

≤ (1 − e−T λ)‖w − w̄‖L∞(0,T ;L2(I )),

that is, � is a contraction provided that 0 < T ≤ 1
3λ

. Now, Banach fixed point theorem
implies immediately existence of uλ, a unique solution to (4.1) in C(0, T ; L2(I )).

An aspect is that the solution to (4.3) can be recovered as a limit of the follow-
ing iterative process vk+1 = �(vk). We have to show that the fixed point belongs
to a better space. For this purpose, we use estimate (4.4), which shows also that if
‖v0

x‖BV = M , then ‖vk
x‖BV ≤ M for all k ∈ N. Moreover, convergence in L2(I )

implies convergence in L1(I ) and lower semicontinuity of the total variation measure
(see [38, Theorem 5.2.1.]) yields uλ ∈ L∞(0, T ; BV (I )).

Finally, we show that

Kess

(
uλ

(
t0 + 1

3λ

))
≤ Kess(u(t0)). (4.7)

For this purpose, it is enough to prove that uλ(t0 + t) = uλ(t0 on I\	(uλ(t0 + t))
for all t ≤ 1

3λ
, but Theorem 3.1 implies R(λ, A)λuλ = λuλ on I\	(R(λ, A)λuλ),

namely Aλ(uλ) = 0 at I\	(R(λ, A)λuλ). Additionally (4.6) yields that 	(uλ(t0)) ⊂
	(uλ(t0 + 1

3λ
), what finishes the proof of (4.7).

Thus, the definition of the solution to (4.1) as the limit of the sequence vk together
with (4.7) implies (4.2). The Lemma is proved. �

LEMMA 4.2. Let us consider uλ(·) given by Lemma 4.1. If L(uλ(t0)) = 0, then
L(uλ(t0 + 1

3λ
)) > 0.

Proof. Let us assume a contrary, then there exists a degenerate facet F[ai , bi ] with
ai = bi such that all functions uλ(t0 + t) are convex in a neighborhood (p, q) of
point ai and they all have a minimum only in point ai . If functions uλ(t0 + t) are
concave, then the argument is analogous. Let us then integrate (4.1) over (a′, b′) such

that ai ∈ (a′, b′) ⊂ (p, q),
∫ b′

a′ uλ(t0 + t) = ∫ b′
a′ uλ(t0) − ∫ t0+t

t0

∫ b′
a′ Aλ(uλ)ds. But∫ b′

a′ Aλ(uλ) = ∫ b′
a′ λ(uλ − R(λ, A)λuλ) = −2, because uλ is convex on (a′, b′).

Hence, we find
∫ b′

a′ uλ(t0 + t) = ∫ b′
a′ uλ(t0) + 2t. But, if our assumption that ai = bi

were true, then we would be allowed to pass to the limits, a′ → ai − and b′ → ai −

concluding that 0 = 0 + 2t , which is impossible for positive t . Thus, uλ(t0 + 1
3λ

) does
not admit degenerate facets. �
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After these preparations, we finish the proofs of Theorems 2.1 and 2.2. We shall
construct an approximation of solution on a fixed time interval, say [0, 1]. Let us
assume that Uλ : [0, 1] × I → R is given as follows

Uλ = uλ
k for t ∈

[
k

3λ
,

k + 1

3λ

)
and 0 ≤ k < 3λ,

where functions {uλ
k } are given by the following relations

uλ
1(t) = u0 −

∫ t

0
Aλ(u

λ
1)ds for t ∈

(
0,

1

3λ

]
,

. . .

uλ
k+1(tk + t) = uk(tk) −

∫ tk+t

tk
Aλ(u

λ
k+1)ds for t ∈

(
0,

1

3λ

]
,

. . .

uλ
3λ(t3λ−1 + t) = uλ

3λ−1(t3λ−1) −
∫ t3λ−1+t

t3λ−1

Aλ(u
λ
3λ)ds for t ∈

(
0,

1

3λ

]

and tk = k
3λ

for 0 ≤ k < 3λ. By construction we have

‖Uλ‖L∞(0,T ;J-R) ≤ ‖u0‖J-R.

Now, we pass to the limit with λ. The estimates imply that ‖Uλ‖L∞(0,T ;L2(I )) ≤ M .
Thus, we can extract a subsequence such that Uλ ⇀∗ U∗ weakly*inL∞(0, 1; L2(I )).
Moreover, the lower semicontinuity of the total variation measure yields ‖Uλ(t)‖BV ≤
‖u(0)‖BV for a.e. t ∈ [0, 1]. Thus, we should look closer at the limit

U∗(t0 + t) = U∗(t0) − lim
λ→∞

∫ t0+t

t0
Aλ(U

λ(t0 + t)) ds.

Let us observe that for a fixed λ the function Kess(Uλ(t)), taking values in N, is
decreasing, so facet merging may occur just only a finite number of times.

Let K (u0) = k0, then for a given λ, we define T λ
1 as follows

Kess(U
λ(t)) = k0 for t ∈ [0, T λ

1 ) and Kess(U
λ(T λ

1 )) < k0. (4.8)

For a subsequence lim T λ
1 =: T1. Indeed, T λ

1 = T λ′
1 for all sufficiently large λ, λ′ see

Lemma 3.3, so we have here T1 > 0.
In a similar manner to (4.8), we define a sequence of time instances {Tk}m

k=1. By
the definitions, for any ε > 0 there exists λε , such that for λ > λε—up to possible
subsequence—we can split the time interval [0, 1] into following parts

[0, 1) = [0, T1 − ε) ∪ [T1 − ε, T2 + ε) ∪ [T2 + ε, T3 − ε] ∪ · · · ∪ [Tm + ε, 1)

and Kess(uλ(t)) = Kess(U∗(t)) for t ∈ [Tk +ε, Tk+1 −ε), so {Tk} is a finite sequence
of moments of time at which facets merge. In order to avoid unnecessary problems,
we restrict ourselves to a suitable subsequence guaranteeing the above properties.
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Now, Theorem 3.1 yields Aλ(Uλ) → A(U∗) = −∂x sgn ◦̄ U∗
x in Lq(0, 1) on time

intervals (Tk + ε, Tk+1 − ε), since by (3.26), we control this convergence uniformly
at whole intervals. So, we get

U∗(t0 + t) = U∗(t0) −
∫ t0+t

t0
A(U∗(s))ds,

because we consider one interval [Tk + ε, Tk+1 − ε). However, crossing Tk requires
some extra care.

In order to extend the result on the whole interval [0, 1], it is sufficient to prolong
the solution onto interval [Tk −ε, Tk +ε). For this purpose, we can use that uλ belongs
to C(0, 1; L1(I )), see Lemma 4.1. Continuity of the solution allows us to cross points
Tk . It follows that d

dt
U∗ exists except points {Tk} and by the properties of solutions on

intervals [Tk, Tk+1), we find that the right-hand-side time derivative exists everywhere,
including points {Tk}, d

dt+ U∗ exists everywhere on [0, 1]. Finally, we have shown that
U∗ fulfills

d

dt+
U∗ = − d

dx
sgn ◦̄ U∗ (4.9)

as an almost classical solution.
By construction U∗(t) ∈ AF , additionally Lemma 4.2 yields L(U∗(t)) > 0 for

t > 0, even as L(u0,x ) = 0. Moreover, the features of almost classical solutions imply
that they are variational, too. Hence, the monotonicity of sgn implies immediately
uniqueness to our problem. Theorems 2.1 and 2.2 are proved. �

5. Asymptotics and examples

Here, we present the proof of Theorem 2.3, an example of an explicit solution and
numerical results describing the time behavior of solutions.

5.1. A proof of Theorem 2.3

Here is the argument. There is a finite number N of facet merging events 0 = t0 <

t1 < · · · < tN < ∞, when u has no time derivative but only the right-time derivative.
Moreover, N ≤ Kess(u0,x ). We shall estimate maxi=0,...N−1{ti+1 − ti }. Let us set

B = max{ab, ae}, b = min{ab, ae}, �M = max u0(x) − B, �m = b − min u0(x),

and � = 1 is the length of I = [0, 1]. We notice that since our solution is almost
classical, ut exists except t ∈ {t0, t1, . . . , tN }. Moreover, ut is the vertical veloc-
ity of u. It is obvious from the definition of the composition ◦̄ that the abso-
lute value of (sgn ◦̄ux )x is bigger or equal 2/�. We notice that the distance each
essential facet travels in the vertical motion between collisions is no bigger than
A = max{�M ,�m, B − b}. Since we have a lower bound on the vertical velocity
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of u, we conclude that maxi=0,...N−1{ti+1 − ti } ≤ A · 2
�
. Thus, we have the following

estimate

text ≤ 2Kess(u0,x )A/�. (5.1)

Hence, Kess(ux (text )) = 0, then thus u(t) for t ≥ text is a monotone function being a
stationary state of the system.

5.2. An explicit solution

In order to illustrate the behavior of a particular solution, we take x2 as an initial
datum for (1.1). We consider this system on the interval (−1, 1),

ut − d

dx
sgn ux = 0 in (−1, 1) × (0, T ),

u(−1, t) = u(1, t) = 1 for t ∈ (0, T ),

u|t=0 = x2 for x ∈ (−1, 1).

(5.2)

The results we proved guarantee the following form of the solution to (5.2),

u(x, t) =
{

a2(t) for |x | ≤ a(t),
x2 for |x | ∈ (a(t), 1)

(5.3)

By Definition 2.4, we get that d
dx

sgn ◦̄ux |[−a(t),a(t)] = 1
a(t) . Thus, by (5.2) and (5.3),

we find the following equation for a(t),

∂t a
2(t) = 1

a(t)
. Hence a(t) = 3

√
3

2
t,

in agreement with the initial datum.

Summing up the length of the facet is 2a(t) = 2 3
√

3
2 t , the speed of it is ∂t a(t) ∼ t−2/3

and the extinction time of u ≡ 1 is Tstab = 2
3 . We are able to point out many such

examples, and construction of them is relatively easy and known, for example, [23,24].

5.3. Numerical simulations

Now, we are prepared to computer implementations of our results. Simulations were
done in Octave package. The main part of the program is a loop running until the graph
reaches its final shape. During one step all facets (i.e., points where 0 ∈ ∂ f ) are moved
until (if it is possible) each of them fills the area equal to 2h. In the pictures shown
below, we used h = 5. The reason why it may be not possible to fill the 2h area is that
the moving facet may reach the boundary of the interval that it is defined on or it may
reach the boundary of another facet after it filled the required area (whereas each of
them moved separately may fit its domain). When any of these interactions happens,
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Table 1. Examples 1, 2, 3 (respectively) used in the simulations

Domain v1 v2 v3

[−1.5,−1] x − 2 3x2 + 11x 3x2 + 11x
[−1, 0] −x2 + x + 2 −x2 + 5x + 1 −x2 + 5x + 1
[0, 1] x2 − 2x x − 2 0
[1, 2] −x2 + 5x + 1 2x − 7 2x − 7
[2, 3] x2 − 6x + 8 x2 − 6x + 8 1
[3, 4] 0 −x2 + x + 2 −x2 + x + 2
[4, 5] 2x − 7 x2 − 2x x − 2
[5, 5.5] 1 x2 + 15x x2 + 15x

we change the h value for a maximum reached value (let us call this new value hmin)
and move all facets so that they fill the area of 2hmin. We use hmin just in this one
step but for all facets and then get back to h value. After each step, we recalculate
domains and check whether we still use all functions (some of them may disappear,
as the x2 − 2x function defined on [0, 1] interval after the first step of the v1 example
from table 1).

In none of the presented examples, a facet fills the maximum area. We chose h big
enough to avoid unnecessary steps.

We calculate the time a step takes as 2hmin
2h . We do this using the following logic—we

make an assumption that one full step (i.e., area of 2h is filled) is our time unit, two
full steps count as t = 2, 1

3 h takes t = 1
3 to fill. In the pictures, accumulated time is

presented.

As an initial data in three presented examples, we use functions described in the
table below. The first column contains intervals which set the domain; the next three
columns contain formulas for respective examples:

To create the three examples, we use the same domain and permute functions to
obtain interesting shape. In some cases, we have to move parts defined on some inter-
vals vertically to obtain continuous result. Therefore, in some cases, the same function
used on the same interval has different values. What is more, we move the whole graph
vertically so that the smallest value is 1; it makes integration easier without changing
the shape of solutions.

We use polynomials as an approximation of a continuous function defined on closed
interval; in the examples mentioned, they are of degree 2, but the algorithm remains the
same for polynomials of higher degree. Functions defined on intervals model situation
of noncontinuous derivative.

Let us look at results of simulations presented on the figures (Figs. 1, 2, 3):

Observe that all degenerated facets disappear after the first step of evolution. The
number of regular facets that may appear is limited by their number, and the overall
number of regular facets decreases from the second step of evolution. The flat area
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Figure 1. The first example
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Figure 2. The second example

broadens with each step. All solutions remain continuous and their || · ||L∞ norm is
bounded by the norm of initial data.

We notice that similar looking computations were performed in [27] and [25]. How-
ever, they depended on a stability theorem, that is, the computations were done for a
smoothed out anisotropy function. No specifics about technicalities of the solver were
provided.
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Figure 3. The third example
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