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Abstract Endophytes are a large and diverse group of fungi
that colonize healthy plant tissues without causing any symp-
toms. The majority of studies have focused on angiosperm
and conifer hosts and few have examined the endophytes of
lycophytes. In the present study, we characterized culturable
endophytic fungi in two closely related Lycopodium species
(L. annotinum and L. clavatum) from pine, beech, oak and
spruce forests across Poland. More than 400 strains were
isolated but only 18 Ascomycete species were identified.
Members of the Dothideomycetes dominated the fungal en-
dophyte communities in Lycopodium. The most abundant taxa
cultured were Phoma brasiliensis (from L. clavatum) and
Paraconiothyrium lycopodinum (from L. annotinum). Five
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taxa were isolated exclusively from L. annotinum, but only
two of them (Paraconiothyrium lycopodinum and
Mycosphaerella sp.) were relatively abundant. Two taxa were
only found in L. clavatum, namely: Stagonospora
pseudovitensis and an unidentified Dothideomycete. The tax-
on assigned as Ascomycota 2 (SH219457.06FU) was isolated
only from strobili of both host species. Direct PCR and clon-
ing from L. annotinum shoots revealed a substantially greater
endophyte richness compared with the results from culturing.

Keywords Lycophyte - Endophyte - Fungi - Diversity

1 Introduction

Lycopodium (Lycopodiaceae, Lycopodiophyta, Plantae) is a
genus of flowerless, vascular, terrestrial plants that reproduce
sexually via homospores, and vegetatively from rhizomes. The
Lycopod lineage diversified early and was the dominant vege-
tation in Carboniferous period (Ranker and Haufler 2008).
Reports of fossils found in the Rhynie chert suggest that
arbuscular mycorrhizal fungi and Lycopods co-evolved from
the beginning (Remy et al. 1994; Taylor et al. 1999, 2004).
Endophytes form a large and phylogenetically diverse group
of fungi that colonize healthy plant tissues without causing symp-
toms (Wilson 1995). Endophytes sensu stricto differ from my-
corrhizal fungi by the fact that they reside entirely within plant
tissues (Stone et al. 2004). Four classes of endophytes have been
distinguished: 1) the clavicipitaceous endophytes, 2) the
nonclavicipitaceous endophytes that colonize the whole plant, 3)
the nonclavicipitaceous endophytes that colonize shoots, and 4)
the nonclavicipitaceous endophytes that colonize roots
(Rodriguez et al. 2009). All land plants studied to date, including
lycophytes, are colonized by class three endophytes which are
horizontally transmitted (Davis et al. 2003; Saikkonen et al.
1998). The representatives of this class occur in above-ground
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tissues, form localized infections and are remarkable for their high
diversity even within individual hosts (e.g. Amold 2007; Higgins
et al. 2007). Many studies have tried to determine whether
endophytes exhibit tissue- and host-specificity but the results are
contradictory (Amold et al. 2001; Higgins et al. 2007, 2011;
Joshee et al. 2009; Moricca et al. 2012; Sun et al. 2012; Wearn
et al. 2012), with indications of both host-specificity and host-
generalism (see review of older reports by Zhou and Hyde (2001).

Only few studies have been devoted to examining the endo-
phytic community of Lycopodiaceae (e.g. Budziszewska and
Szypula 2010; Chen et al. 2011; Wang et al. 2011), and two
have been driven by an interest in identifying possible novel
bioactive chemical compounds (e.g. Zhu et al. 2010; Xiang et al.
2013). Indeed, some endophytic fungi from lycophyte Huperzia
serrata that is used in chinese medicine are known to produce
bioactive metabolites such as huaspenones, (Xiang et al. 2013) or
huperzine (see Zhu et al. 2010; Zhang et al. 2011, and literature
therein). Only two studies, by Holm and Holm (1981) and by
Engelhardt (1987), have been dedicated studying the fungal
communities of above-ground organs of Lycopodiaceae.

Representatives of the Lycopodiaceae have been included in
broader comparative studies of fungal endophytic communities
in different plant groups (e.g. Higgins et al. 2007; U’Ren et al.
2012). Although the Lycopodiaceae have been studied for over
100 years, most researches have focused on the symbiotic
relationships between the prothalli and mycorrhizal fungi
(e.g. Bruchmann 1908; Freeberg 1962; Whittier 1977; Berch
and Kendrick 1982; Schmid and Oberwinkler 1993; Read et al.
2000; Lee et al. 2001; Wang and Qiu 2006; Leake et al. 2008;
Kessler et al. 2010a, b; Muthukumar and Prabha 2013). Even in
this respect, only about 17 species of Lycopodiaceae have been
studied (Wang and Qiu 2006). Non-mycorrhizal fungi (e.g.
pathogens or saprotrophs) from Lycopodiaceae have also been
examined in surveys (e.g. Hagen 1950; Holm and Holm 1984;
Jaklitsch and Voglmayr 2012) or when preparing monographs
of particular genera (e.g. Massarina by Aptroot 1998 or
Phaeosphaeria by Leuchtmann 1984).

The aim of the present study was to characterize the fungal
endophytic communities of two closely related Lycopodium
species. We addressed the following questions: 1) How di-
verse are endophytic fungi from Lycopodium in temperate
forest? 2) Is species community composition influenced by
host plant, plant organ, geographic location of the host, or host
habitat characteristics? 3) What is the taxonomic identity of
hypothetical species isolated as endophytes?

2 Materials and methods
2.1 Host plant collection and localization of sampling sites

Shoots (8 individuals), strobili (15 individuals) and whole
plants (shoots and strobili from the same individual; 13
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individuals) of L. annotinum from 36 sites, and 10 shoots,
15 strobili, 2 whole plants (shoots and strobili from the same
individual) of L. clavatum from 27 locations from temperate
forests in Poland were collected (a total of 63 locations, 63
individuals and 78 samples; Fig. 1; see supplementary
table S1). Sampling sites differed in terms of vegetation, with
majority located in pine forests (27 sites); others in mixed
forests (12 sites), acidophilic beech forests (1 site), acidophilic
oak forests (4 sites), bog pine forests (11 sites), or mountain
spruce forests (8 sites). Samples were further characterized by
site elevation: lowlands (6 sites, 10 samples), highlands (49
sites, 58 samples), and mountains (8 sites, 10 samples; see
supplementary table S1). Samples were collected in summer
and autumn 2011 (see supplementary table S1). Each speci-
men was wrapped in a paper towel moistened with sterile
water and placed in sterile plastic tube for transportation to
the laboratory.

2.2 Endophytes isolation and identification

Healthy shoots and strobili of L. annotinum and L. clavatum
were washed in tap water and surface-sterilized by subsequent
submersion of the plant tissue for 2 min in a 0.5 % sodium
hypochlorite and for 2 min in 70 % ethanol. Finally, samples
were rinse in sterile distilled water, as described by Davis et al.
(2003). This method eliminates epiphytic bacteria, yeasts, and
fast-growing Zygomycetes (Arnold et al. 2000). The absence
of epiphytic fungi was then verified by imprinting sterilized
plant fragments on control PDA plates (if no fungal growth
was observed, the plant fragment was considered to have been
effectively surface-sterilized). Subsequently, the samples of
lycophytes were cut in 2 mm pieces. Eight segments per organ
(shoot or strobili) per site were plated (624 segments in total)
on 4 % potato dextrose agar (PDA; without antibiotics). All
plates (control and samples) were incubated at room temper-
ature (ca. 18° C) for 10 weeks or until fungal growth was
observed. Using aseptic technique, emergent hyphae were
transferred and purified on sterile PDA plates. The endophytes
were grouped into morphotypes as described by Wang et al.
(2011). Identification of the isolated strains was done using
Domsch et al. (1993), Samson et al. (2004), and Watanabe
(2002). Ninety six morphotypes were distinguished.
Genomic DNA was extracted from pure cultures of a
representative isolate of each fungal morphotype using the
GeneMATRIX Plant & Fungi DNA Purification Kit (EURx
Ltd., Gdansk, Poland) following the manufacturer’s instruc-
tions. The complete ITS region was amplified using the prim-
er pair ITS1fand ITS4 (White et al. 1990). PCR products were
analyzed on a 1 % agarose gel stained with EtBr, and positive
amplicons were purified using the GeneMATRIX Agarose-
Out DNA Purification Kit (EURx Ltd). Purified DNA frag-
ments were sequenced in both directions using the BigDye®
Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems,
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Fig. 1 Distribution of sample
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Carlsbad, CA, USA). Sequencing was performed at the
Institute of Biochemistry and Biophysics, the Polish
Academy of Sciences. Forward and reversed sequences
were aligned into contigs and manually edited for errors
using the BioEdit Sequence Alignment Editor v. 7.0.0
(Hall 1999).

ITS sequences of all (96) morphotypes were grouped into
operational taxonomic units (OTUs) according to 98.5 %
similarity using BioEdit Sequence Alignment Editor v. 7.0.0
(Hall 1999). This 98.5 % cutoff was selected and used for the
hypothetical species assignment in the UNITE database
(Koljalg et al. 2013).

In order to estimate the fraction of unculturable endo-
phytes, total genomic DNA was extracted (as described
above) from sterilized L. annotinum shoot from site no. 30
(coordinates in supplement S1). The ITS and 5.8S rDNA
regions were amplified using fungal specific primer pair
ITS1-f and ITS4 (as described above). PCR products were
ligated into pGEM-T Easy Vector (Promega, Leiden, The
Netherlands) and cloned in E. coli IM109 competent cells
(Promega) following the manufacturer’s instructions. Colony
PCRs were performed using universal primer pair M13f and
M13r.

Representative vouchers specimens for each OTU were
deposited at the General Herbarium, University of Warsaw.
Their numbers as well as the GenBank accession numbers of
their sequences are presented in Table 1.
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2.3 Data analysis

ITS sequences representing each morphotype were queried
against the UNITE database using the massBLAST algorithm
(http://unite.ut.ce; Abarenkov et al. 2010; Kgjalg et al. 2005).
Species Hypothesis (SH) at 98.5 % of sequence similarity
were used to identify isolated morphotypes (Koljalg et al.
2013). If SH at 98.5 % of similarity was not proposed, the
results of BLASTn (Altschul et al. 1997) searches were used
to estimate taxonomic position of isolate and then detailed
explanation concerning each case were given in Table 1.

The colonization factor (CF%; called also isolation fre-
quency or colonization frequency) was calculated as the total
number of plant segments colonized by fungi divided by the
total number of all incubated segments, expressed as its per-
centage (Hata and Futai 1995). Relative abundance was cal-
culated as the number of all isolates of a given taxon divided
by the total number of isolates of all taxa. Frequency was
calculated as the number of host individuals of fungal taxon
isolated divided by the total number of all host individuals
(Sun et al. 2012). Species diversity was evaluated using
Shannon’s Diversity Index (Shannon 1948) and Fisher’s alpha
(Fisher et al. 1943). The species evenness was estimated with
Pielou’s evenness index (Pielou 1966). The similarity of en-
dophytic communities between different sampling sites (63)
was evaluated using the Jaccard similarity coefficient (Jaccard
1912). Sample-based species accumulation curves for
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Table 1 Hypothetical species assignment of isolated strains based on
massBLAST queries in UNITE database (for ITS sequences at 98.5 % of
similarities). If the taxon assignment was done in different way than it is

explained in footnotes. Isolates are presented in table according to their
higher level classification (classes and orders)

Species hypotheses (SH) name SH number Voucher herbarium GenBank accession Taxon name used further in this
number number paper
Dothideomycetes
Capnodiales
Davidiella tassiana (syn. Mycosphaerella SH196750.06FU WA19047 JX981454 Mycosphaerella tassiana
tassiana)
Mycosphaerella sp. SH195177.06FU WA19033 JX981499 Mycosphaerella sp.
Dothideales
Aureobasidium pullulans SH206629.06FU WA19043 JX981476 Aureobasidium pullulans
Pleosporales
Ascomycota SH224125.06FU WA19030 JX629111 Ascomycota 1
Dothideomycetes SH196053.06FU WA19143 JX981466 Dothideomycetes
Phoma brasiliensis SH202145.06FU WA19053 JX981489 Phoma brasiliensis
Pleosporales SH233951.06FU WA19052 JX981474 Pleosporales
Pyrenophora chaetomioides SH227032.06FU WA19141 JX981468 Pyrenophora chaetomioides
Stagonospora pseudovitensis SH199974.06FU WA19138 JX981472 Stagonospora pseudovitensis
no SH proposed® WA19040 JX981452 Alternaria sp.*
no SH proposed® WA19015 JX629096 Paraconiothyrium lycopodinum®
no SH proposed® WA19023 JX629104 Paraconiothyrium polonense®
no SH proposed? WA19031 JX629112 Paraphaeosphaeria sp.®
Leotiomycetes
Helotiales
Helotiales SH232201.06FU WA19148 JX981467 Helotiales
Phacidium lacerum SH108595.06FU WA19039 JX981469 Phacidium lacerum
Sordariomycetes
Hypocreales
Ascomycota SH219457.06FU WA19121 J1X981457 Ascomycota 2
Trichoderma viride (syn. Hypocrea rufa) SH222750.06FU WA19150 JX981461 Trichoderma viride
Xylariales
Leiosphaerella lycopodina SH230356.06FU WA19125 JX981475 Leiosphaerella lycopodina

*The closest sequences in blast queries are. Alternaria tenuissima (KJ082100; 100 % similarity) and Alternaria alternata (KJ082099; 100 % similarity)

thus the strain is identified as Alternaria sp.

® The strain was identified by authors based on morphology and was described recently as new species Paraconiothyrium lycopodinum (Sace. & Paol.) J.
Pawtowska, Wilk, Sliwinska-Wyrzychowska, Mgtrak & Wrzosek (Crous et al. 2013)

€ The strain was identified by authors based on morphology and was described recently as new species Paraconiothyrium polonense J. Pawtowska, Wilk,

Sliwir’lska-Wyrzychowska, Metrak & Wrzosek (Crous et al. 2013)

9 The closest sequences in blast queries are: Paraphaeosphaeria sporulosa (JX629112; 100 % similarity) and Paraphaeosphaeria neglecta (JX496204;

100 % similarity) thus the species is identified as Paraphaeosphaeria sp.

different hosts and organs were calculated and estimations of
total richness were compared using the Jackknife 1 extrapo-
lation algorithm. To correct for unequal sample sizes, the data
was reduced to the smallest, consistent sample size (N=12, for
shoots of Lycopodium clavatum). All indices were calculated
using EstimateS v.9.1.0. (Colwell 2006).

Statistical analyses were then performed in four differ-
ent variants in order to compare the influence of host
plant, type of plant organ, host geographical location,
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and host habitat characteristics: (1) comparison between
Lycopodium calavatum and Lycopodium annotinum; (2)
comparison between shoots and strobili; (3) comparison
between the samples coming from lowlands, highlands
and mountains; (4) comparison between the samples col-
lected from mixed pine, fresh pine, acidophilic oak,
mountain spruce, pine bog, and acidophilic beech forests.
To correct for inconsistent sample sizes in diversity and
richness comparisons between samples, the data was
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reduced to the smallest sample size (randomly selected
host individuals) as proposed by Davis and Shaw (2008).

In all the described variants, after the performance of the
Shapiro-Wilk tests for normality for each variant separately,
Kruskal-Wallis one-way analysis of variance was chosen as an
appropriate method of comparison (non-parametric test for
groups of unequal size) (Kruskal and Wallis 1952).

Variation in community composition was examined as a
function of host, organ, location and vegetation type using
three different ecological community similarity measures:
Jaccard’s similarity index, the Bray-Curtis coefficient and
Euclidean distance. Resulting matrices were represented using
non-metric multidimensional scale (NMDS) plots. To avoid
pseudoreplication, data from different tissues types of the
same host individual were pooled for NMDS analyses that
examine the effect of host, location, and vegetation type. The
Kruskal’s stress was used to decide which grouping of data is
the most accurate (commonly acceptable when lower than
0.2) (Ek-Ramos et al. 2013).

A

Fig. 2 a Species accumulation

Additionally, the correlation between Jaccard similarity
coefficient and geographic distance was tested for significance
using simple Mantel test. The geographical distances (in km)
based on coordinates of collection sites (WGS84 system) were
determined using own program written in C (assuming that
the earth is a perfect sphere and its radius is 6,378 km).

All statistical analyses were calculated using STATISTICA
v. 10 and PAST v. 2.16 software (Hammer et al. 2001).

3 Results

From 624 Lycopodium segments (representing a total of 63
locations, 63 individuals and 78 samples), a total of 458 isolates,
representing 96 morphotypes, 18 OTUs (hypothetical species
defined in UNITE database) (Table 1), which belong only to
the Ascomycota, were isolated during this study. Representatives
of Dothideomycetes were isolated the most frequently. However,
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only in the case of L. annotinum shoots did the accumulation
curve reach an asymptote. The Jacknife richness estimator did
not reach an asymptote which indicates that richness would
continue to increase with further sampling (Fig. 2). The most
abundant taxa were Phoma brasiliense in L. clavatum and
Paraconiothyrium lycopodinum in L. annotinum (Table 2). The
highest frequency was observed also for these two taxa (Fig. 3).

None of the isolated taxa was present in all samples. There
were 5 taxa isolated exclusively from L. annotinum, but only
two of them (Paraconiothyrium lycopodinum and
Mpycosphaerella sp.) were relatively abundant (more than 5
isolates). There were also two taxa that were exclusive for
L. clavatum, namely: Stagonospora pseudovitensis and un-
identified Dothideomycetes (SH196053.06FU). The taxon
assigned as Ascomycota 2 (SH219457.06FU) was isolated
only from strobili of both host species.

Although we analyzed many more segments of
L. annotinum than L. clavatum, the number of isolated species
as well as colonization factor and values of species diversity
indices for random 12 samples (the smallest sample size) were
very similar (Table 3).

There were no significant differences in total number of
fungal species (p=0.1872), total number of isolates (p=
0.1455), colonization factor (p=0.1455), Shannon diversity
(»=0.2263), Fisher’s alpha (p=0.0953) and evenness (p=
0.2206) between the two Lycopodium species.

The total number of fungal species (p=0.1623), total num-
ber of isolates (p=0.8355), colonization factor (p=0.8355),
Shannon diversity (p=0.1073), Fisher’s alpha (p=0.8020) and

evenness (p=0.1305) between different site locations (moun-
tain, highland, lowland) and vegetation type of sample site
(mixed, pine, oak, mountain spruce, pine bog, or beech for-
ests) (p values: 0.2438, 0.1183, 0.1183, 0.1947, 0.5178,
0.6572 respectively) also did not statistically differ.

Only the Shannon diversity index (p=0.0294) was signif-
icantly higher in shoots than in strobili for both Lycopodium
species (see also Table 3). This pattern is also visible in species
accumulation and in Jacknife 1 richness estimator curves
(Fig. 2).

Cluster analysis of endophytic community similarity mea-
sures presented in two-dimensional NMDS plots revealed that
these communities are neither lycophyte-host-related , nor
organ-related (even though differences is diversity between
organs are significant). Variation in endophytic community
structure could neither be explained by site vegetation type
nor by geographic region of host plant origin (Fig. 4). The use
of different ecological similarity measures did not significant-
ly affect the observed patterns (data not shown). In most cases
Kruskal’s stress values were too high (>0.2) to confidently
discern any pattern. However, the two samples of
L. annotinum from the lowland that had a very different
endophytic communy from samples collected from other
elevations.

The shoots of L. annotinum from site 30 (as described in
supplement S1) on PDA medium yielded only two species
Leiosphaerella lycopodina and Mycosphaerella sp., while in
the cloning experiment with the plant tissue, seven different
sequences were obtained (Table 4). The sequences of both

Table 2 Relative abundance (%)
of endophytic fungi isolated from
shoots and strobili of two

Lycopodium clavatum Lycopodium annotinum

Lycopodium species (the most Shoots Strobili Total Shoots Strobili Total

abundant taxa for each host are

shown in bold) Alternaria sp. 2.38 1.52 3.90 2.38 3.25 5.63
Ascomycota 1 0.65 0.00 0.65 0.00 0.22 0.22
Ascomycota 2 0.00 3.25 3.25 0.00 6.06 6.06
Aureobasidium pullulans 0.00 0.00 0.00 0.00 043 043
Dothideomycetes 0.00 1.08 1.08 0.00 0.00 0.00
Helotiales 0.00 0.00 0.00 0.87 0.43 1.30
Leiosphaerella lycopodina 0.00 0.00 0.00 0.87 0.00 0.87
Mpycosphaerella sp. 0.00 0.00 0.00 2.16 043 2.60
Mpycosphaerella tassiana 1.95 0.65 2.60 1.95 043 2.38
Paraconiothyrium lycopodinum 0.00 0.00 0.00 6.93 14.29 21.21
Paraconiothyrium polonense 2.60 2.38 4.98 1.73 1.52 3.25
Paraphaeosphaeria sp. 0.87 0.00 0.87 0.65 0.00 0.65
Phacidium lacerum 043 0.00 0.43 0.87 0.22 1.08
Phoma brasiliensis 4.55 7.36 1.9 6.49 9.09 15.58
Pleosporales 0.22 0.22 043 043 0.00 043
Pyrenophora chaetomioides 0.22 0.00 0.22 1.08 043 1.52
Stagonospora pseudovitensis 1.09 0.22 1.31 0.00 0.00 0.00
Trichoderma viride 1.73 1.73 3.46 1.73 0.00 1.73
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species isolated in culture were also present in cloned se-
quences and they were the most frequent ones. However, they
still constituted less than a half of all obtained sequences.

4 Discussion

Higgins et al. (2007) found a low diversity of endophytes in
Huperzia (Fisher’s alpha 1.27-3.98) while U’Ren et al. (2012)
found a very high diversity of endophytes in this genus in
samples from Alaska (Fisher’s alpha 15.64). These studies both
used a culture-based approach for characterization of the fungal

endophyte communities. This likely resulted in a serious under-
estimation of the fungal diversity. This is supported by our
species accumulation curve (Fig. 2) as well as by the results of
our cloning trial, where only less than half of all endophytic fungi
present in the sample appeared in culture (Table 4). Another
possibility is that species diversity may vary with environmental
factors at sample sites but more study is required.

Among the isolated taxa, five were found exclusively in
L. annotinum, of which only two (Paraconiothyrium
lycopodinum and Mycosphaerella sp.) were abundant (more
than 5 isolates). The isolate Ascomycota 2 (SH219457.06FU)
was restricted to the strobili, regardless of the host species

Table 3 Overall colonization factor (%), species richness, Shannon’s diversity index, Fisher’s alpha values and Pielou’s evenness index of endophytic

fungi isolated from shoots and strobili of two Lycopodium species

Lycopodium clavatum

Lycopodium annotinum

Strobili Shoots Strobili Shoots
Values  Values for 12 random Values for Values  Values for 12 random Values  Values for 12 random
forall  individuals (the smallest all (12) forall  individuals (the smallest forall individuals (the smallest
samples sample size) samples  samples sample size) samples sample size)

Number of host individuals 17 12 12 28 12 21 12

Number of segments 136 96 96 224 96 168 96

Total number of isolates 85 60 77 167 72 129 74

Colonization factor (%) 62.5 62.5 80.2 74.5 74.5 76.8 76.8

Total number of species 9 8 12 12 8 12 11

Shanon’s diversity index 1.75 1.24 2.1 1.67 0.72 2.14 1.22

Fisher’s alpha 2.54 1.79 3.98 2.96 1.27 323 1.85

Pielou’s evenness index 0.796  0.596 0.845 0.672  0.803 0.861 0.892
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Fig. 4 Non-metric multidimensional scale plots of Jaccard’s similarity
indexes representing effect of host, organ, location and vegetation type on
fungal endophytic communities of Lycopodium annotinum and

which suggests some level of tissue-preference, for this iso-
late. However, this might be a result of isolate rarity.

Cluster analysis of endophytic community similarity mea-
sures presented in two-dimensional NMDS plots revealed that
only two samples from L. annotinum from lowland have very
different endophytic community than all others. This pattern
could be explained by the relatively high abundance of
Mycosphaerella sp. and by the fact that both sites are relative-
ly close together (240 m apart). As lycophytes can reproduce
asexually, it is possible that the plants represent the same host
individual. The abundant presence of Mycosphaerella sp. at
these sites should be verified in further research.

Some of taxa isolated in our study are common and wide-
spread saprotrophic fungi, e.g. Hypocrea rufa and its
anamorph Trichoderma viride but they have been isolated as
endophytes previously (Jaklitsch et al. 2006), but not from
lycophytes. Among other taxa we isolated are well known
plant pathogens, e.g. Leiosphaerella lycopodina that has been

= bog pine forest
¥ mountain spruce forest

Lycopodium clavatum. Each point represents a single endophyte commu-
nity from a particular individual (a for 15 whole plants, b and ¢ for 63
individual each from different site). Kruskal’s stress values are indicated

recorded from Lycopodium annotinum several times (e.g.
Jaklitsch and Voglmayr 2012) but never described to date as
an endophyte.

One of the most abundant taxon in our study was
Paraconiothyrium lycopodinum that could be identified as
Coniothyrium lycopodinum Sacc. & Paol. that was previously
isolated as a possible pathogen from L. annotinum (Saccardo
1889). These two taxa were recently synonimized by
Pawlowska et al. (in Crous et al. 2013) as Paraconiothyrium
Iycopodinum (Sacc. & Paol.) J. Pawlowska, Wilk, Sliwinska-
Wyrzychowska, Mgtrak & Wrzosek, comb. nov. In spite of the
fact that several Paraconiothyrium species have been isolated
as endophytes from asymptomatic photosynthetic tissues of
plant species (e.g. Abreu et al. 2010), including lycophytes
(Budziszewska et al. 2011; Wang et al. 2011), in general they
are still regarded as plant pathogens (Damm et al. 2008).

It is interesting that some fungi isolated in our study are
known to be, or bear close affinities, to plant pathogens. This

Table 4 Comparison of SH proposed by UNITE for sequences that were received in culture based approach with ones from cloning experiment (from

L. annotinum sample from site 30 in Puszcza Augustowska)

SH name proposed in UNITE for the sequences number  SH name proposed in UNITE for the sequences ~ GB number of % of % of
received in culture based approach (SH number) of received in cloning based approach (SH number) closest similarity clones
isolates sequence

Leiosphaerella lycopodina (SH230356.06FU) 2 Leiosphaerella lycopodina (SH230356.06FU) JF440975 99 % 22 %

Mycosphaerella sp. (SH195177.06FU) 4 Moycosphaerella sp. (SH195177.06FU) EU167581 94 % 22 %
Pseudocercosporella sp. (SH195098.06FU) AY 805600 100% 6%
Botryosphaeria corticis (SH206853.06FU) HQ529751 99 % 21 %
Tubeufiaceae (SH230727.06FU) AY916453 99 % 6 %
Chalara dualis (SH208308.06FU) EF029209 98 % 17 %
Exobasidium japonicum (SH204828.06FU) EU692772 96 % 6 %
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is a common finding of studies on endophytic fungal commu-
nities (e.g. Moricca et al. 2012; Sun et al. 2012; Wearn et al.
2012 and references therein). This has led to the hypothesis
that endophytism is a common phase in the life cycle of many
fungal pathogens (e.g. Carroll 1988; Joshee et al. 2009;
Rodriguez and Redman 1997; Schulz and Boyle 2005).
Recently, Delaye et al. (2013) performed an analysis of the
evolutionary stability of biotropic, necrotrophic, and endo-
phytic lifestyles of 163 fungal strains. They suggest that while
biotrophy appears to be a stable trait, asymptomatic endo-
phytes can easily switch to necrotrophy, even at an ecological
timescale. Not only is this of paramount importance for un-
derstanding the mechanisms and factors underlying alterations
in fungal lifestyle, but it is also significant for studies on
endophytic fungal communities. A large number of fungal
species described in 19th century that often have no holotypes
and are in desperate need for revision using molecular ap-
proaches. These fungi are still found on lists of fungal taxa
recorded from a particular plant hosts (e.g. Farr and Rossman
2012). They were regarded as pathogens or saprotrophs, par-
tially because molecular identification of endophytes was
beyond the technical abilities at the time. Current investiga-
tions of endophytic fungal communities often exclusively
apply molecular methods (Rajala et al. 2013). However a
combination of these methods with culturing is best (e.g.
Arnold and Lutzoni 2007). A study of the endophytic com-
munity based on molecular identification and culturing with
direct observation of fungal communities on the plant
material, has been successfully applied by Chaverri and
Gazis (2011) and can shed more light on the question of the
‘endophytic continuum’. In this way it may also be possible to
link of fungal taxa described in inventories like those by
Engelhardt (1987) and by Holm and Holm (1981) with se-
quences of unidentified endophytes generated in numerous
molecular studies.

Finally, the possible roles of these endophytic fungi in
interactions with lycophytes are unknown. To date, no re-
search has been performed on whether such endophytes may
in any way enhance lycophyte fitness, make them more com-
petitive within their habitats, deter potential animal herbivores
or protect from pathogenic fungi or bacteria. There is clearly
much more research to be done.
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