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Abstract

Background: When study data are clustered, standard regression analysis is considered inappropriate and analytical
techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is
on the patient level, random effect regression models are probably preferred over standard regression analysis. It is
well known that the random effect parameter estimates and the standard logistic regression parameter estimates
are different. Here, we compared random effect and standard logistic regression models for their ability to provide
accurate predictions.

Methods: Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were
treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random
intercept logistic regression. External validity of these models was assessed in new patients from other
anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%,
15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated.

Results: The model developed with random effect analysis showed better discrimination than the standard approach,
if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set,
both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these
results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used
performance measure assumed the same data structure as the model development method: standard calibration
measures showed good calibration for the standard developed model, calibration measures adapting the clustered
data structure showed good calibration for the prediction model with random intercept.

Conclusion: The models with random intercept discriminate better than the standard model only if the cluster effect
is used for predictions. The prediction model with random intercept had good calibration within clusters.

Keywords: Logistic regression analysis, Prediction model with random intercept, Validation
Background
Many clinical prediction models are being developed. Diag-
nostic prediction models combine patient characteristics
and test results to predict the presence or absence of a
certain diagnosis. Prognostic prediction models predict the
future occurrence of outcomes [1].
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Study data that are used for model development are
frequently clustered within e.g. centers or treating phys-
ician [2]. For instance, patients treated in a particular
center may be more alike compared to patients treated
in another center due to differences in treatment po-
licies. As a result, patients treated in the same center are
dependent (clustered), rather than independent. Regres-
sion techniques that take clustering into account [3-6]
are frequently used in cluster randomized trials and in
etiologic research with subjects clustered within e.g.
neighborhoods or countries. Surprisingly, such regression
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models were hardly used in research aimed at developing
prediction models [2].
Notably from the domains of therapeutic and causal stud-

ies, it has been shown that regression methods that take
the clustering into account yield different estimates of the
regression coefficients than standard regression techniques
neglecting the clustered data structure [5,7,8]. However, in
the domain of prediction studies, it is yet unknown to what
extent regression methods for clustered data need to be
used in the presence of clustered data. Two types of models
can be used for analyzing clustered data: marginal models
and conditional models [9]. Marginal models, such as the
Generalized Estimation Equation (GEE) method, adjust for
the clustering nature of data and estimate the standard
error of the estimated parameters correctly. The interpret-
ation of GEE results is on the higher cluster level and there-
fore not suitable for predictions in individual patients [10].
Conditional models estimate predictor effects for patients
in the specific clusters. Conditioning on cluster is often
done with random effects to save degrees of freedom.
Thereby, conditional models allow for predictions of
outcomes on the lowest clustering level (here, the patient).
Accurate predictions are not necessarily achieved with a
random effects model (having different regression
parameters compared to a standard model), because the
random effects are not readily applicable in new data with
new clusters and the clustering in the data may be weak
resulting in minor differences between the models.
We explore the effect of including a random intercept

in a conditional prediction model compared to standard
regression. We use empirical and simulated clustered
data to assess the performance of the prediction models.
We show that model calibration is suboptimal, particu-
larly when applied in new subjects, if clustering is not
accounted for in the prediction model development.

Methods
Prediction of postoperative nausea and vomiting
A frequently occurring side effect of surgery is postoperative
nausea and vomiting (PONV). To prevent or treat PONV, a
risk model was developed to predict PONV within 24 hours
after surgery [11]. We used a cohort of 1642 consecutive
surgical patients (development sample) that were treated in
the UMC Utrecht to develop prediction models. Patients
were clustered within 19 treating anesthesiologists [12].
Predictors for the occurrence of PONV included gender,
age, history of PONV or motion sickness, current smoking,
abdominal or middle ear surgery versus other type of sur-
gery and the use of volatile anesthetics during surgery [13].
Data of 1458 patients from the same center were used
to study the validity of the prediction models. Patients
included in the validation sample were treated by 19 other
anesthesiologists than the patients from the development
sample.
Model development and risk calculation
The prediction models included all before mentioned
predictors and were fitted with standard logistic regression
or with a random intercept logistic regression model (also
known as partial multilevel model). The standard model
was fitted with a generalized linear model, including a
logit link function. The intercept and predictors were
included as fixed effects (i.e. not varying by cluster). The
random effect models thus included fixed effects for the
predictors plus a random intercept for the effects of
clusters (anesthesiologists or centers in the simulation
study). The random intercept was assumed to be normally
distributed with mean zero, and variance σ2u0 [14].
The predicted risks of PONV for individual patients

were calculated with the log-odds transformation of the
linear predictor. The risk based on the standard logistic
regression model was:

PðYi ¼ 1jXiÞ ¼ 1

1þ exp � α̂standard þ
X

m∈1;...;6

xim⋅β̂standard;m

" # !

where P(Yi = 1) is the predicted risk that a patient i will
get PONV, given patients’ predictor values X. The linear
predictor consist of âstandard which equals the estimated

intercept of the standard model, and
X

xim⋅β̂standard;m

which is the sumproduct of the six predictor values of
patient i and the six regression coefficients.
From the random intercept logistic regression model,

predicted risks were calculated in two ways. The first
risk calculation was based on only the fixed effects of
the random intercept logistic regression model (called
marginal risk calculation):

PðYi ¼ 1jXiÞ ¼ 1

1þ exp � α̂RE þ
X

m∈1;...;6

xim⋅β̂RE;m

" # !

where âRE equals the fixed intercept and
X

xim⋅β̂RE;m is

the sumproduct of the six predictor values of patient i
and the corresponding fixed regression coefficients of
the random effects model. However, the cluster effects
were not used for the risk calculation [15]. We explicitly
studied this risk calculation since cluster effects are un-
known for patients in clusters that are not included in
the development data.
The second risk calculation used the fixed and random

effects of the random intercept logistic regression model
(called conditional risk calculation):

PðYij ¼ 1jXijÞ ¼ 1

1þ exp � α̂RE þ
X

m∈1;...;6

xim⋅β̂RE;m þ u0j

" # !
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This risk calculation included the same predictor
effects as the marginal risk calculation, plus the random
intercept u0j (i.e. the effect of anesthesiologist j). This
risk calculation cannot be used in new data of patients
treated by new anesthesiologists, since the random effect
of the new anesthesiologist is unknown.

Model evaluation
Apparent and test performance of the prediction models
were assessed. Apparent performance is the performance
of the prediction model in the development data. Test
performance was assessed in a cohort of 1458 new
patients treated by 19 other anesthesiologists than the
patients from the development sample.
The predictive performance of each of the risk cal-

culations was assessed with the concordance index
(c-index) [16], the calibration slope and calibration in the
large [17,18]. The calibration slope was estimated with
standard logistic regression analysis, modeling the out-
come of interest as dependent variable and the linear pre-
dictor as independent variable. Calibration in the large
was assessed as the intercept of a logistic regression model
with the linear predictor as offset variable. The ideal values
of the calibration in the large and calibration slope are re-
spectively 0 and 1. Since, standard performance measures
ignore the clustered data structure, they can be considered
as overall measures. To take clustering into account in the
model evaluation, we assessed the predictive performance
in individual anesthesiologists (within cluster perform-
ance). The within cluster c-index was estimated as the
average of the c-indices of the clusters, as described by
van Oirbeek [19]. Within cluster calibration was assessed
with mixed effect models, with random effects for the
intercept and linear predictor (calibration slope) or only
for the intercept (calibration in the large).

Simulation study
We generated a source population which included 100
centers. The number of patients per center was Poisson
distributed, with a mean and variance varying per center
according to the exponential function of a normal distri-
bution (N(5.7, 0.3)). This resulted in a total of 30,556
patients and a median of 301 patients per center (range
155–552). The dichotomous outcome Y was predicted
with 3 continuous (X1-X3) and 3 dichotomous variables
(X4-X6). The three continuous predictors were inde-
pendently drawn from a normal distribution, with a
mean of 0 and standard deviations of 0.2, 0.4, and 1. The
three dichotomous predictors were independently drawn
from binomial distributions with incidences 0.2, 0.3, and
0.4. The regression coefficients of all predictors were 1.
To introduce clustering of events, we generated a latent
random effect from a normal distribution with mean 0
and variance 0.17. This corresponded to an intraclass
correlation coefficient (ICC) of 5%, which was calculated
as σ2u0/(σ

2
u0 + ((π ^ 2)/3). The σ2u0 equals the second level

variance estimated with a random intercept logistic re-
gression model [6]. Based on the six predictors and the
latent random effect, the linear predictor lp was
calculated for each patient. The linear predictor was nor-
mally distributed with mean −1.06 and standard devi-
ation 1.41. The linear predictor was transformed to
probabilities for the outcome using the formula P(Y) = 1/
(1 + exp(−lp)). The outcome value Y (1 or 0) was then
generated by comparing P(Y) with an independently
generated variable u having a uniform distribution from
0 to 1. We used the rule Y = 1 if P(Y) ≤ u, and Y = 0
otherwise. The incidence of the outcome (P(Y = 1)) was
30% in all source populations, except for the situation
with low number of events (incidence = 3%). Further, we
varied several parameters in the source population as
described above. We studied ICC values of 5%, 15% and
30%; Pearson correlation coefficient values between pre-
dictor X1 and the random intercept were 0.0 or 0.4.
Study samples were drawn according to the practice of

data collection in a multicenter setting [20,21]. We ran-
domly drew study samples from the source population
in two stages. First we sampled 20 centers, and then we
sampled in total 1000 patients from the included centers
(two-stage sampling). We also studied the performance
in study samples with 5 or 50 centers (including respect-
ively 100 and 1000 patients in total). Standard and ran-
dom intercept logistic regression models were fitted in
the study sample, and evaluated in that study sample
(apparent performance) and in the whole source popula-
tion (test performance). The whole process (sampling
from source population, model development and evalu-
ation) was repeated 100 times.
Calculations were performed with R version 2.11.1

[22]. We used the lmer function from the lme4 library
to perform mixed effect regression analyses [23]. The
lrm function of the Design package was used to fit the
standard model and estimate overall performance
measures [24].

Results
Prediction of postoperative nausea and vomiting
The incidence of PONV was 37.5% (616/1642) in the
development cohort (Table 1). 19 anesthesiologists trea-
ted on average 82 surgical patients (median 64, range
1–460). The incidence of PONV per anesthesiologist var-
ied (interquartile range 29% – 47%), with an ICC of 3.2%.
The corresponding variance of the random intercept
(0.15) was significantly different from 0 (confidence inter-
val 0.07 – 0.33).
When the clustering by anesthesiologist was taken into

account (random intercept model), the predictive effect
of type of anesthetics use (volatile yes/no) was different



Table 1 Distribution of predictor values and outcome, and predictor effects in multivariable logistic regression models

Distribution Interquartile range Standard model Random intercept model

(N = 1642) per anesthesiologist * Beta (95% CI) † Beta (95% CI) †

Fixed effect

Female gender 882 (54%) 46%-63% 0.75 (0.53 – 0.97) 0.78 (0.54 – 1.01)

Age, years ‡ 49 (16.5) 46-51 -0.008 (-0.014 – -0.001) -0.009 (-0.016 – -0.003)

History of PONV or motion sickness 530 (32%) 30%-36% 0.41 (0.19 – 0.64) 0.42 (0.18 – 0.65)

Current smoking 510 (31%) 20%-33% -0.43 (-0.66 – -0.19) -0.45 (-0.69 – -0.20)

Abdominal or middle ear surgery 209 (13%) 4%-16% 0.62 (0.32 – 0.93) 0.57 (0.24 – 0.89)

Volatile anesthetics 844 (51%) 33%-74% -0.03 (-0.24 – 0.18) 0.19 (-0.09 – 0.46)

Intercept 616 (38%) § 29%-47% § -0.65 (-1.05 – -0.25) -0.68 (-1.16 – -0.19)

Random effect

Intercept variance †† - - - 0.15 (0.07 – 0.33)

* interquartile ranges of the predictor distributions per anesthesiologist.
† logistic regression coefficients with 95 percent confidence intervals. Intervals of the random intercept model were based on the t-distribution.
‡ mean (standard deviation).
§ number (percentage) of patients with PONV, rather than the intercept is reported.
PONV = post operative nausea and vomiting.
†† non-parametric confidence interval of the random intercept variance was obtained from a cluster bootstrap procedure.
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compared with the standard multivariable model (Table 1).
If predictor distributions varied among anesthesiologists,
as indicated by a wide interquartile range (Table 1),
differences in predictor effects were found between the
standard and random intercept model. The variance of
the random intercept was 0.15, when the six predictors
were included in the model. Consequently, random
intercepts ranged from −0.49 to 0.50. Figure 1 shows the
variation in predicted risks by the three risk calculations.
Applying the three risk calculations for the prediction of
PONV resulted in different predicted risks for the individ-
ual patients.
The risk calculation that included fixed and random

effects (the conditional risk calculation) showed the best
overall discriminative ability in the development data
(Table 2, c-index 0.69). The discriminative ability of the
standard model was similar to the discriminative ability
of risks that were only based on the fixed effects of the
random intercept model (the marginal risk calculation)
(c-index both 0.66). The difference in discriminative abil-
ity among the standard model and marginal and condi-
tional risk calculations disappeared when the c-index was
estimated within each anesthesiologist, because the ran-
dom anesthesiologist effects included in the conditional
risk calculation only contributes to discrimination of
patients treated by different anesthesiologist.
The standard model showed excellent apparent cali-

bration in the large, when estimated with the overall per-
formance estimates (Table 2). Apparent calibration in
the large (overall) for the marginal risk calculation was
almost optimal. However, calibration in the large
assessed within clusters showed that predicted and
observed incidences differed for some anesthesiologist.
The standard deviations of calibration in the large within
clusters were 0.329 and 0.385 for respectively the stand-
ard model and the marginal risk calculation (Table 2).
The differences in predicted and observed incidences
within some anesthesiologists were slightly smaller for
the standard model compared to the marginal risk cal-
culation, because predictors included in the marginal
risk calculation did not contain information of the anes-
thesiologist specific intercept as these predictors were
adjusted for the random anesthesiologist effects. For the
conditional risk calculation, the calibration in the large
within clusters and corresponding standard deviation were
close to 0, which means that the observed and predicted
incidences were similar among all anesthesiologists. This
is due to the inclusion of the random anesthesiologist
effects in the risk calculation, which comprises an estimate
of the cluster specific incidence.
The calibration slope assesses the correlation between

predicted and observed risks for all patients (overall
performance), or for patients treated by a particular
anesthesiologist (within cluster performance). The over-
all and within cluster calibration slopes of the marginal
risk calculation were slightly smaller compared to the
calibration slopes of the standard model. The overall
and within cluster calibration slopes of the conditional
risk calculation were >1 in the development data (i.e.
predicted risks lower than observed risks), because the
anesthesiologist effects were shrunken to the average
effect by the random intercept model. The standard
deviations of the calibration slopes within clusters were
limited for all models, indicating that the observed and
predicted risks differed similarly among the anes-
thesiologists (Table 2).
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Figure 1 A-C Predicted probabilities from the standard model and from the risk calculations based on the random intercept model.
The predicted risks differed among the models. The diagonal indicates the line of identity (predicted probabilities of the two models are equal).
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Table 2 Apparent and test performance of the PONV models described in Table 1

Apparent performance Test performance

Standard
model

Marginal risk
calculation

Conditional risk
calculation

Standard
model

Marginal risk
calculation

Harrell’s C-index † 0.66 (0.014) 0.66 (0.014) 0.69 (0.013) 0.68 (0.014) 0.67 (0.014)

C-index within clusters ‡ 0.63 (0.089) 0.62 (0.097) 0.62 (0.097) 0.72 (0.129) 0.70 (0.127)

Calibration intercept* 0.00 0.01 0.00 0.13 0.14

Calibration intercept* within
clusters ‡

0.01 (0.329) -0.00 (0.385) 0.00 (0.000) 0.10 (0.339) 0.11 (0.380)

Calibration slope 1 0.95 1.08 1.08 0.99

Calibration slope within clusters ‡ 0.97 (0.189) 0.94 (0.251) 1.08 (0.000) 1.06 (0.060) 1.00 (0.027)

† overall performance (standard error).
‡ within anesthesiologist performance (standard deviation).
* With calibration slope equal to 1 (i.e. calibration in the large).

Bouwmeester et al. BMC Medical Research Methodology 2013, 13:19 Page 6 of 10
http://www.biomedcentral.com/1471-2288/13/19
The standard and the marginal risk calculation had
similar test performance, which was estimated in pa-
tients treated by 19 other anesthesiologists (overall
c-index resp. 0.68 and 0.67) (Table 2). The test perform-
ance as evaluated with the overall and within cluster
c-indexes was even higher than in the apparent perform-
ance. Possible reasons are stronger true predictor effects
in the test data, differences in case-mix and randomness
[25]. (The models were not re-calibrated in the external
data). The overall and within cluster calibration in the
large were too high for both models in the external data,
indicating that the predicted risks were lower than the
observed proportions of PONV. The calibration slopes
from the standard model were larger than slopes from
the random intercept model, as was also shown in the
apparent validation.

Simulation study
The simulation study also showed similar overall dis-
criminative ability for the standard model and the mar-
ginal risk calculation (apparent performance, c-index
both 0.79, for ICC = 5%, Table 3). Discrimination of the
conditional risk calculation was slightly better compared
to the standard model and the marginal risk calculation
(c-index 0.82, 2.5 and 97.5 percentiles 0.79; 0.84). The
apparent calibration intercept and slope were ideal for
standard model when assessing the overall performance,
and ideal for the marginal risk calculation when
assessing the within cluster performance. As in the em-
pirical data, the overall and within cluster calibration
slopes were too high for the conditional risk calculation
due to shrinkage of the random center effects. Variation
in the calibration in the large estimates within centers
was lowest for the conditional risk calculation (calibra-
tion in the large and corresponding standard deviation
both 0) (Table 3). The test performance of the standard
model and the marginal risk calculation, as assessed in
the source population, showed that the performance of
these models was similar (Table 3). The difference
between the apparent and test performance may be can
be interpreted as optimism in model performance. Opti-
mism in overall and within cluster performance was
similar for the standard model and the marginal risk cal-
culation. For instance, the difference in apparent and
test calibration slopes (overall) was 0.04 for both models
(Table 3). The risks for patients clustered within differ-
ent centers was similar in these data (ICC 5%), which
means that including center effects in the prediction
model (i.e. random intercept model) cannot improve
predictive performance considerably. Consequently, the
performance of the models was similar, in the data with
small differences in risks among centers.
The similarity in performance among the models

disappeared when the ICC was 15% or 30% (Table 4,
Additional file 1: Table S3). The discriminative ability of
the conditional risk calculation was more accurate
compared to the standard model and the marginal risk
calculation. The apparent overall c-indexes and cor-
responding 2.5%; 97.5% range were respectively 0.85
(0.82; 0.87), 0.77 (0.74; 0.80) and 0.77 (0.73; 0.80)
(Table 4). Assessment of the apparent performance of
the standard model and the marginal risk calculation
showed that the c-indexes remained similar in data
with a higher ICC, however, the calibration parameters
differed. The standard calibration in the large and cali-
bration slope were equal to the line of identity for the
standard model, but not for the marginal risk calcula-
tion. However, the calibration parameters assessed
within clusters were on average more accurate for the
marginal risk calculation (−0.00 and 1.00), compared to
the standard model (−0.18 and 1.18). The evaluation of
the standard model and the marginal risk calculation in
the source population (test performance) showed similar
results compared to the evaluation in the study sample
(apparent performance) (Table 4).
Further, the apparent and test performance showed

that, in data with an ICC of 15% or 30%, the standard
deviations of the calibration in the large within clusters



Table 3 Simulation results in a domain with ICC = 5%, Pearson correlation X1 and random effect 0.0

Apparent performance Test performance

Standard model Marginal risk
calculation

Conditional risk
calculation

Standard model Marginal risk
calculation

Harrell’s C-index † 0.79 (0.766; 0.816) 0.79 (0.766; 0.816) 0.82 (0.788; 0.839) 0.78 (0.780; 0.785) 0.78 (0.780; 0.785)

C-index within clusters ‡ 0.80 (0.077) 0.80 (0.077) 0.80 (0.077) 0.79 (0.031) 0.79 (0.031)

Calibration intercept* 0.00 0.02 0.00 0.04 0.07

Calibration intercept*
within clusters ‡

-0.02 (0.442) -0.00 (0.453) 0.00 (0.000) 0.01 (0.494) 0.05 (0.500)

Calibration slope 1.00 0.97 1.05 0.96 0.92

Calibration slope within
clusters ‡

1.05 (0.090) 1.01 (0.092) 1.06 (0.000) 1.00 (0.022) 0.96 (0.021)

* With calibration slope equal to 1 (i.e. calibration in the large).
† overall performance (2.5 and 97.5 percentiles).
‡ median of overall performance from 100 simulations (median of within cluster performances).
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for the standard model and the marginal risk calculation
were higher (e.g. respectively 0.94 and 1.01), compared
to the standard deviations in data with an ICC of 5%
(respectively 0.44 and 0.45) (Tables 4 and 3). So, when
predictions were based on models neglecting center spe-
cific effects, the correlation between the observed and
predicted incidences within centers differed among
centers, especially in data with a high ICC. The (stand-
ard deviations of the) c-indexes within clusters were not
influenced by a higher ICC.
Tables 5 and 6 show the results of simulations investi-

gating the influence of the number of centers on model
performance. Especially when the number of centers is
low – e.g. 5 centers –, it is more difficult to estimate ac-
curate random intercepts and corresponding center
effects. This potentially affects the performance of the
random intercept logistic regression model. However, as
in Table 3, the performance of the standard model and
the marginal risk calculation were similar, and the condi-
tional risk calculation had the most accurate performance.
The differences in performance between standard and

random intercept models were smaller, when the
clustering (i.e. the center effect) was associated with one
Table 4 Simulation results in a domain with ICC = 15%, Pears

Apparent perform

Standard model Marginal risk
calculation

Harrell’s C-index † 0.77 (0.735; 0.802) 0.77 (0.734; 0.801)

C-index within clusters ‡ 0.80 (0.085) 0.80 (0.086)

Calibration intercept* 0.00 0.19

Calibration intercept* within
clusters ‡

-0.18 (0.941) -0.00 (1.005)

Calibration slope 1.00 0.85

Calibration slope within clusters ‡ 1.18 (0.096) 1.00 (0.082)

* With calibration slope equal to 1 (i.e. calibration in the large).
† overall performance (2.5 and 97.5 percentiles).
‡ median of overall performance from 100 simulations (median of within cluster pe
of the predictors (Additional file 1: Tables S1, S2, and S4).
For ICC values of 15% or 30%, the model performance of the
standard model and the marginal risk calculation was bet-
ter compared to model performance in datasets without
associations between the clustering and a predictor. Finally,
we compared the standard and random intercept model in
data with a low incidence of the outcome Y (3%) (Add-
itional file 1: Table S5). We sampled in total 1000 patients
clustered in 20 centers. The performance of the models
was similar. Only the calibration intercept of the marginal
risk calculation showed an underestimation of the outcome
incidence (intercept 0.14). The calibration intercept within
clusters of the conditional risk calculation had a lower vari-
ance (0.00) compared to the other models.

Discussion
We compared standard logistic regression with random
intercept logistic regression for the development of clin-
ical prediction models in clustered data. Our example
with empirical data showed similar overall discriminative
ability of the standard model and the random intercept
model, if the cluster specific effects (estimated by a ran-
dom intercept) were not used in the risk calculation. If
on correlation X1 and random effect 0.0

ance Test performance

Conditional risk
calculation

Standard model Marginal risk
calculation

0.85 (0.818; 0.873) 0.77 (0.762; 0.769) 0.77 (0.763; 0.769)

0.80 (0.086) 0.80 (0.037) 0.80 (0.037)

0.00 -0.00 0.20

0.00 (0.000) -0.19 (0.967) 0.01 (1.024)

1.07 0.97 0.83

1.07 (0.000) 1.15 (0.011) 0.99 (0.008)

rformances).



Table 5 Simulation results in a domain with ICC = 5%, Pearson correlation X1 and random effect 0.0, number of
patients 100, number of centers 5

Apparent performance Test performance

Standard model Marginal risk
calculation

Conditional risk
calculation

Standard model Marginal risk
calculation

Harrell’s C-index † 0.82 (0.742; 0.889) 0.82 (0.743; 0.888) 0.84 (0.752; 0.913) 0.77 (0.718; 0.779) 0.77 (0.719; 0.779)

C-index within clusters ‡ 0.82 (0.100) 0.82 (0.096) 0.82 (0.096) 0.77 (0.032) 0.77 (0.032)

Calibration intercept* -0.00 0.00 0.01 0.02 0.06

Calibration intercept*
within clusters ‡

-0.00 (0.295) -0.00 (0.319) 0.01 (0.000) -0.01 (0.537) 0.03 (0.545)

Calibration slope (overall) 1.00 0.99 1.05 0.71 0.69

Calibration slope within
clusters ‡

1.06 (0.100) 1.01 (0.108) 1.07 (0.000) 0.74 (0.017) 0.72 (0.018)

* With calibration slope equal to 1 (i.e. calibration in the large).
† overall performance (2.5 and 97.5 percentiles).
‡ median of overall performance from 100 simulations (median of within cluster performances).
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the cluster specific effects of the random intercept
model could be used for predictions, the overall discrim-
ination and calibration in the large within clusters im-
proved. This was confirmed in the simulation studies.
The quality of model calibration depended on how the
calibration was estimated. Standard developed prediction
models showed better overall calibration than random
intercept prediction models using the average of cluster
effect, but the latter showed better calibration within
clusters than standard developed models.
Predicted risks from the random intercept model were

calculated using only the fixed predictor effects (the
marginal risk calculation), or both fixed predictor effects
and random cluster effects (the conditional risk calcula-
tion). The conditional risk calculation, including the
same fixed predictor effects as the marginal risk calcula-
tion, showed the highest overall discrimination, appar-
ently due to inclusion of the cluster specific information
in the prediction model. The conditional risk calculation
could only be applied and evaluated in the development
Table 6 Simulation results in a domain with ICC = 5%, Pearso
patients 1000, number of centers 50

Apparent performan

Standard model Marginal risk
calculation

Harrell’s C-index † 0.79 (0.762; 0.819) 0.79 (0.762; 0.819)

C-index within clusters ‡ 0.80 (0.123) 0.80 (0.123)

Calibration intercept* 0.00 0.03

Calibration intercept*
within clusters ‡

-0.03 (0.455) -0.00 (0.468)

Calibration slope (overall) 1.00 0.96

Calibration slope within
clusters ‡

1.05 (0.095) 1.00 (0.096)

* With calibration slope equal to 1 (i.e. calibration in the large).
† overall performance (2.5 and 97.5 percentiles).
‡ median of overall performance from 100 simulations (median of within cluster pe
data. To evaluate this risk calculation in subjects from
new clusters, the new cluster effects should be known.
The differences that we found in calibration parameters

between the standard model and random intercept logistic
regression model (either used with the marginal or condi-
tional risk calculation) slightly disappeared when the cluster
effect was correlated with one of the predictors (Pearson
correlation coefficient between cluster and X1 = 0.4, see
Additional file 1: Table S1, S2 and S4). Especially the stand-
ard deviations of the calibration in the large within clusters
were lower in data with correlation (e.g. 0.110 for the ap-
parent performance of the standard model, ICC 5%) as
compared to simulated data without correlation between
the cluster effect and predictor X1 (standard deviation
0.444). So, the predicted and observed incidences within
several clusters were better in agreement in data with the
correlation. Due to the correlation of predictor and cluster,
the predictor X1 contained information of the cluster and
was able to predict (partly) the cluster specific incidence,
hence improving the calibration in the large within clusters.
n correlation X1 and random effect 0.0, number of

ce Test performance

Conditional risk
calculation

Standard model Marginal risk
calculation

0.82 (0.787; 0.847) 0.78 (0.779; 0.785) 0.78 (0.779; 0.785)

0.80 (0.123) 0.79 (0.031) 0.79 (0.031)

0.01 -0.01 0.03

0.01 (0.000) -0.03 (0.492) 0.00 (0.501)

1.09 0.96 0.92

1.10 (0.000) 1.00 (0.027) 0.96 (0.026)

rformances).
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Until now, random effects models are mainly used to
obtain correct estimates of intervention effects in cluster
randomized trials [5,26], or causal effects in multilevel
etiologic studies [27,28] and more recently in meta-
analysis with individual patient data. The focus in such
studies is on the effect estimate of one main factor, usu-
ally the intervention or exposure, which may be adjusted
for confounding factors. In prediction studies, the focus
is on all estimated predictor effects. All effects combined
in the linear predictor results in an absolute risk esti-
mate. Indeed, we found in our data, that the predictor
effects for PONV were different in the random intercept
logistic regression model compared to the standard model
(Table 1). The different predictor effects, however, did not
result in clear improvements in model performance (dis-
crimination and calibration) between the marginal risk
calculation and the standard model. This may be the re-
sult of relatively low clustering (ICC = 3.2%) in our empir-
ical data. The simulations showed that particularly model
calibration within clusters was better for the random
intercept logistic regression models than the standard
model, if the data were stronger clustered (ICC = 15%).
The differences in overall and within cluster performance

measures – both discrimination and calibration measures –
raise the question what estimates are preferable in the pres-
ence of clustered data. Measures that assess the within clus-
ter performance – i.e. performance per cluster – will be
probably more informative than overall measures, since pre-
diction models are to be used by individual clinicians or
treatment centers. Reporting the variability of the within
cluster performance measures found in the original develop-
ment data set, indicates future users whether the model per-
formance will differ widely among centers. Wide differences
would implicate that the model may need updating for indi-
vidual centers with center specific information.

Conclusion
In summary, we compared prediction models that were
developed with random intercept or standard logistic
regression analysis in clustered data. Adding the cluster ef-
fect in a prediction model increases the amount of predict-
ive information, resulting in improved overall
discriminative ability and calibration in the large within
clusters. Particularly if cluster effects are relatively strong
(ICC larger than 5%), prediction modeling with inclusion of
the cluster effect in the model will result in better perform-
ance than models not including cluster specific effects.

Additional file

Additional file 1: Table S1. Simulation results in a domain with ICC= 5%,
Pearson correlation X1 and random effect 0.4. Apparent performance. Table S2
Simulation results in a domain with ICC = 15%, Pearson correlation X1 and
random effect 0.4. Table S3 Simulation results in a domain with ICC= 30%,
Pearson correlation X1 and random effect 0.0. Table S4 Simulation results in a
domain with ICC= 30%, Pearson correlation X1 and random effect 0.4. Table
S5 Simulation results in a domain with ICC= 5%, Pearson correlation X1 and
random effect 0.0, outcome incidence 3% in 1000 patients.
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