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1 Introduction

Three-dimensional gravity has proven to be an excellent laboratory for testing holographic

dualities. For example, the study of asymptotically Anti-de Sitter (AdS) spacetimes was

an early precursor of the AdS/CFT conjecture when Brown and Henneaux found that

the group of symmetries at infinity correspond to the two-dimensional conformal group [1].

Furthermore, it was proved that Einstein-Hilbert action in presence of negative cosmological

constant can be reduced to Liouville theory [2], which is known to be conformally invariant.

In this sense, Liouville theory can be regarded as a classical dual of 3D Einstein gravity

with negative cosmological constant.

Recently, the interaction of higher spin fields with gravity has received a lot of atten-

tion. In particular, it has been noticed that AdS3 asymptotics encodes not only conformal

symmetry, but also the infinite dimensional W -algebra, which involves excitations of higher

spin fields [3, 4]. In addition, as argued in [3], three-dimensional higher spin gravity can

be reduced to Toda theory, a generalization of Liouville model possessing higher spin con-

served charges [5, 6]. This is a well-known fact due to prior work of [7, 8] (for a review see
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e.g., [9]), where it was established that Toda (Liouville) theory is obtained as a Hamiltonian

reduction of Wess-Zumino-Witten (WZW) model.

When the cosmological term is absent, it is possible to find similar features as in the

AdS3 case. In fact, three-dimensional asymptotically flat spacetimes contain an infinite set

of transformations which preserves the conformal structure of null infinity [10, 11], which

gives rise to the so-called bms3 algebra, whose representation through Poisson brackets

picks up a central term [10]. These set of transformations are in correspondence to the AdS

case when one takes a suitable vanishing cosmological constant limit [12]. Related recent

work using this approach, following the holographic renormalization program, appeared

in [13, 14]. In [15], a map between flat and AdS3 geometries was developed by introducing

Grassmann variables. In the context of non-relativistic two-dimensional systems, it has

been shown that bms3 algebra is isomorphic to Galilean Conformal Algebra, gca2 [16, 17].

Interestingly enough, higher spin gravity in three dimensions on a flat background can

be formulated in terms of a Chern-Simons action [18]. In this setup, higher spin fields

can be consistently truncated to a finite set. Moreover, a set of asymptotic conditions can

be devised in order to accommodate a higher spin generalization of bms3 algebra [19, 20].

These results were re-obtained from the ones found for asymptotically AdS spacetimes by

using a gauge choice that allows to take the flat spacetime limit.

In this note we use the asymptotic conditions presented in [19, 20] in order to reduce

Chern-Simons action down to a first order Lagrangian involving scalar fields. This model

is a generalization of the bms3-invariant theory found in [21] and it can be related to a flat

spacetime limit of sl(3,R) Toda theory. Furthermore, this reduction will also be studied

at the level of the conserved quantities present in the theory and their algebra.

The paper is organized as follows. In the next section, specific sets of the asymptotic

conditions are selected from the on-shell gauge field. It is also explained how they will be

used to reduce the theory.

Section 3 is devoted to the construction of a well defined Chern-Simons action prin-

ciple. With this at hand, we solve the constraints inside of this regularized action, pro-

ducing a two-dimensional theory, analog to a WZW model [22] based on a contraction

of sl(3,R)× sl(3,R).

In section 4, the symmetries of this latter model are reviewed. It is shown to possess

two types of conserved currents, whose Poisson brackets give rise to a Kac-Moody algebra.

In section 5, we build charge densities as bilinear and cubic invariants of the currents.

These cubic quantities are suitable generalizations of the Sugawara construction.1 The

algebra of these densities produces a spin-three extension of bms3 algebra without central

extensions.

Part of the boundary conditions discussed in section 2 will impose constraints on the

conserved currents of the WZW model. In section 6 these conditions will be first used

to further reduce the theory at the level of the action. There, we make use of the Gauss

decomposition for the group element and conveniently rewrite the constraints in order to

impose them directly inside of the Lagrangian. The outcome of this procedure is a theory

1In the conformal case, cubic invariants were developed in [23].
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which can be regarded as the classical dual of asymptotically flat gravity coupled to spin-

three fields.2 Moreover, as shown in section 7, a sector of this reduced theory is related

by a field redefinition with a flat limit of Toda theory written in Hamiltonian form. In the

second part of section 6, we implement further conditions on the currents which enables

to define Dirac brackets of the reduced theory. Under these brackets, linear and central

terms are added to the Poisson algebra computed in the previous section. As expected,

this result coincides exactly with the previous analysis done in [19, 20].

Finally, in section 8, we comment on the generalization of these results to higher

rank algebras.

2 Boundary conditions

Our starting point is the Chern-Simons formulation in (2+1)-dimensions. For simplicitly,

we will work with the spin-three case, closely following the conventions of [19]. In particular,

we consider a gauge field A,

A = ωaJa + eaPa +W abJab + EabPab , (2.1)

where Ja and Pa comprise the Poincaré algebra whereas Jab and Pab are new symmetric

and traceless generators.3 All of them satisfy the following commutation relations,

[Ja, Jb] = εabcJ
c, [Pa, Jb] = εabcP

c, [Pa, Pb] = 0,

[Ja, Jbc] = εma(bJc)m, [Ja, Pbc] = εma(bPc)m, [Pa, Pbc] = 0,

[Jab, Jcd]= −
(
ηa(cεd)bm + ηb(cεd)am

)
Jm,

[Jab, Pcd]= −
(
ηa(cεd)bm + ηb(cεd)am

)
Pm, [Pab, Pcd] = 0,

(2.2)

This algebra has been obtained as a Wigner-Inönü contraction of sl(3,R) × sl(3,R). See

appendix A for conventions.

As it was shown in [19, 20], it is possible to find a class of solutions to the equations

of motions which possess the following form:

A =

(
1

2
Mdu− dr +

(
J +

u

2
∂φM

)
dφ

)
P0 + duP1 + rdφP2 +

1

2
MdφJ0 + dφJ1

+ (Wdu+ (V + u∂φW) dφ)P00 +WdφJ00, (2.3)

where r is a radial coordinate, φ is an angle and u is a null coordinate playing the role of

time. HereM, J ,W and V stand for arbitrary functions of φ. Under bms3 transformations

M, J transform as spin-two generators, while W, V do as spin-three.

The above solution encodes all the necessary information to reduce CS action to a

theory defined on the boundary of the spacetime. We will take into account some features

of (2.3) in an off-shell formulation. In particular, it will be important to consider:

2For recent works on flat space holography, see [24–29].
3In the sense that ηabJab = ηabPab = 0.
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(i) In order to define a differentiable action principle (in the sense of the Regge-Teitelboim

approach, [30]) we will implement,

ωau = 0, eau = ωaφ, W ab
u = 0, Eabu = W ab

φ ,

as boundary conditions. This allows to reduce Chern-Simon action down to a flat

version of WZW model.

(ii) The following set of conditions will impose first class constraints on certain compo-

nents of the conserved currents associated to the flat WZW model. In turn, they

further reduce the model obtained using condition (i). They are given by

e1
φ = 0, ω1

φ = 1, E11
φ = E12

φ = W 11
φ = W 12

φ = 0.

(iii) When constructing Dirac brackets, we will impose extra constraints in order to com-

pletely fix the gauge freedom. These constraints can be read off from

e2
φ = r, ω2

φ = 0, E01
φ = E02

φ = W 01
φ = W 02

φ = 0.

In the forthcoming sections we will use each of these conditions to perform every step of the

reduction. The analysis considers a boundary at future null infinity, r →∞ and u = const.

Also, we do not take into account either contributions of localized sources or global aspect

such as holonomies.

3 From CS to WZW

To begin with, let us consider Chern-Simons theory in three dimensions, in presence of a

boundary ∂M,

I[A] =
k

4π

∫
M

〈
AdA+

2

3
A3

〉
, (3.1)

where the manifold M is considered to be the real line times the disc. The bracket 〈· · ·〉
in (3.1) stands for a non-degenerate invariant bilinear product (see [19] for details). The

Newton constant is related to k by

k =
1

4G
. (3.2)

Due to its topological nature, it has been realized that this theory can be defined as

an action over ∂M [31, 32]. In order to show this fact for Chern-Simons based on Lie-

algebra (2.2), it will be convenient to express action (3.1) in terms of generalized driebein

and spin connection

E = eaJa + EabJab, (3.3)

Ω = ωaJa +W abJab, (3.4)
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where Ja and Jab form a representation of sl(3,R)

[Ja, Jb] = εabcJ
c, (3.5a)

[Ja, Jbc] = εma(bJc)m, (3.5b)

[Jab, Jcd] = −
(
ηa(cεd)bm + ηb(cεd)am

)
Jm. (3.5c)

These variables transform action (3.1) into an equivalent Einstein-Hilbert form

I =
k

π

∫
Tr
[
E(dΩ + Ω2)

]
, (3.6)

where the non-vanishing traces are given by

Tr[JaJb] =
1

2
ηab, (3.7a)

Tr[JabJcd] =
1

2
(ηacηbd + ηadηcb −

2

3
ηabηcd). (3.7b)

Reducing (3.6) to a boundary theory must be done in two steps. First, a well-defined

action principle is in order, in which the classical set of solutions (2.3) constitute a true

extremum, in the sense that

δIon−shell = 0. (3.8)

This is accomplished by adding boundary terms to the action such that the asymptotic

behavior of the fields (2.3) fulfills (3.8). Secondly, the constraints must be solved. Both

steps can be easily done in the Hamiltonian formulation. By performing a decomposition

in time and space, i.e. E = Eudu+Eidxi and Ω = Ωudu+Ωidx
i, one can see that the action

is already written in Hamiltonian form after discarding boundary terms

I =
k

π

∫
d3x εijTr

[
EiΩ̇j + Eu(∂iΩj + ΩiΩj) + Ωu(∂iEj + ΩiEj + EiΩj)

]
. (3.9)

If we the take the variation of I, we obtain

δI = “Bulk piece” +
k

π

∫
r=∞

dudφ Tr [EuδΩφ + ΩuδΩφ] , (3.10)

Note that when evaluated on-shell, the bulk piece vanishes. The remaining boundary term

becomes integrable when the boundary conditions (i) are taken into account. In terms of

E and Ω variables, these conditions read

Ωu = 0, Eu = Ωφ, (3.11)

with which one can define a new action principle given by,

Ĩ = I − k

2π

∫
dudφ Tr

[
Ω2
φ

]
, (3.12)
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that satisfy (3.8). Now we are able to solve the constraint and use them inside of Ĩ. The

constraints are

εij(∂iΩj + ΩiΩj) = 0, (3.13)

εij(∂iEj + ΩiEj + EiΩj) = 0, (3.14)

and can be locally solved, yielding4

Ωi = Λ−1∂iΛ, (3.15)

Ei = Λ−1∂iaΛ. (3.16)

where Λ is an element of SL(3,R) and a lives on its algebra. The idea now, is to use these

fields in order to construct an action principle entirely defined at the boundary. However,

the field content depends on variables located not only at the boundary, but also at the

bulk (r coordinate). In order to parameterize this r-dependence, we will first impose partial

gauge-fixing conditions, which in this case will be given by

Er = f(r), Ωr = 0, (3.17)

where f is a Lie algebra valued function. It is important to note that these conditions are

compatible with the on-shell solution (2.3) but they differ from the one used in [33]. Also,

they imply that Λ and a can be written as

Λ = λ(u, φ), (3.18)

a = α(u, φ) + λ(u, φ)β(r)λ−1(u, φ), (3.19)

where β is defined through the relation ∂rβ = f . Hence, these relations lead to modified

expressions for the generalized spin connection and dreibein,

Ωi = λ−1∂iλ, (3.20)

Ei = λ−1∂iαλ+ ∂iβ + [λ−1∂iλ, β]. (3.21)

By replacing these expressions back in (3.12), we obtain the following action principle,

Ĩ[λ, α] =
k

π

∫
dudφ Tr

[
λ̇λ−1α′ − 1

2
(λ−1λ′)2

]
. (3.22)

Note that this model was first obtained in the iso(2, 1) case, when analog boundary condi-

tions were taken into account [33]. There, it was shown that this theory can be obtained as

a flat limit of the sum of two chiral WZW actions. For this reason, we will refer to (3.22)

as “Flat WZW model”. A similar action was also found in [34] for boundary conditions

not related to asymptotically flat spacetimes at null infinity.

4To obtain (3.16), note that using Ω = Λ−1dΛ, the torsion constraint becomes d(ΛEΛ−1) = 0, which is

easily solved.
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4 Symmetries of flat WZW action

In what follows we consider action (3.22) where λ is an element of SL(3,R) and α belongs

to its Lie algebra. For simplicity, we will refer to the Ja and Jab matrices simply as TA,

where capital latin indexes runs from 1 to 8. In this notation, the Killing metric and the

structure constants can be computed as

gAB = 2Tr(TATB), fABC = 2Tr([TA, TB]TC). (4.1)

Algebra indexes will be raised and lowered with gAB and gAB respectively. Note that, both

gAB and fABC can be extracted from relations (3.7) and (3.5).

Let us now review general features of this model. As with chiral WZW [32, 35], this

action contains a first class constraint which gives rise to gauge transformations

δλ = ε(u)λ δα = [ε(u), α]. (4.2)

Besides from this time-dependent transformation, this action is invariant under two global

symmetries. We will show that the symmetry algebra of the associated currents corresponds

to an affine extension of (2.2).

The first transformation is given by,

δλ = 0, (4.3)

δα = λσλ−1, (4.4)

where σ is a Lie algebra valued function depending only on φ. By means of Noether theo-

rem, the components of the conserved current ∂µPµ = 0 generated by this symmetry, are

Pu = σAPA, PA =
k

2π
[λ−1λ′]A, (4.5a)

Pφ = 0. (4.5b)

The second symmetry correspond to

δλ = −λθ, (4.6)

δα = −uλθ′λ−1, (4.7)

the parameter θ is some Lie algebra element depending only on the angular coordinate. Its

associated conserved current ∂µJ µ = 0 can be cast into

J u = θAJ A, J A = − k

2π
[λ−1α′λ− u(λ−1λ′)′]A, (4.8a)

J φ = 0. (4.8b)

For the iso(2, 1) case, the algebra of these currents was worked out in [33] after a lengthy

Hamiltonian analysis. Here we will adopt the approach of [36], where it was shown that for

– 7 –
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a given current JX , where X stands for the parameter of the transformation, the Poisson

bracket {JX1 , JX2} can be read from,

δX2JX1 = J[X1,X2] +KX1,X2 , (4.9)

where δX2JX1 is the variation of JX1 with respect to the symmetry X2, [X1, X2] represents

the Lie bracket and KX1,X2 is a potentially non-vanishing central extension. In order to

apply this procedure, we will define the smeared currents,

P(σ) =

∫
dφσAPA, J (θ) =

∫
dφθAJA. (4.10)

Then, by a direct application of (4.9) we obtain,

{P(θ),P(σ)} = 0, (4.11)

{J (θ),J (σ)} = J ([θ, σ]), (4.12)

{J (θ),P(σ)} = P([θ, σ]) +
k

2π

∫
dφθ′AσA, (4.13)

where [θ, σ]A = fABCθ
BσC . If we write the Poisson brackets relations in terms of JA and

PA, they become

{PA(φ),PB(φ′)} = 0, (4.14a)

{JA(φ),JB(φ′)} = f C
AB JC(φ)δ(φ− φ′), (4.14b)

{JA(φ),PB(φ′)} = f C
AB PC(φ)δ(φ− φ′)− k

2π
gAB∂φδ(φ− φ′), (4.14c)

which is the affine extension of algebra (2.2). In the next section we will show that the

higher spin extended bms3 algebra can be obtained from this algebra through a general-

ization of Sugawara construction including higher spin charges.

5 Extended Sugawara construction

The chiral WZW flat model (3.22) based on sl(3,R) Lie algebra contains a generalization

of the bms3 algebra involving generators with spin s = 2, 3. Indeed, the spin-two densities

are constructed as quadratic invariants of the currents,

M =
π

k
gABPAPB, J = −2π

k
gABPAJ B. (5.1)

Using (4.14), the algebra of these densities gives

{M(φ),M(φ′)} = 0,

{M(φ),J (φ′)} = (M(φ) +M(φ′))∂φδ(φ− φ′),
{J (φ),J (φ′)} = (J (φ) + J (φ′))∂φδ(φ− φ′),

(5.2)

– 8 –
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which is recognized as bms3 algebra without central extensions. Unlike the sl(2,R) case,

the greater rank algebra which we are working with allows to define cubic invariants5

W =
4π2

3k2
dABCPAPBPC , V = −4π2

k2
dABCPAPBJ C , (5.3)

where dABC is an invariant sl(3,R) tensor constructed as

dABC = 2Tr([TA, TB]+TC), (5.4)

with [ , ]+ representing the anti-commutator. Note that, by definition, this tensor is

completely symmetric.

The Poisson brackets between the quadratic and the cubic generator read,

{M(φ),W(φ′)} = 0,

{J (φ),W(φ′)} = (W(φ) + 2W(φ′))∂φδ(φ− φ′),
{M(φ),V(φ′)} = (W(φ) + 2W(φ′))∂φδ(φ− φ′),
{J (φ),V(φ′)} = (V(φ) + 2V(φ′))∂φδ(φ− φ′),

(5.5)

and finally, by using relation (A.6), we obtain

{W(φ),W(φ′)} = 0,

{W(φ),V(φ′)} =
32π

3k
(M(φ)2 +M(φ′)2)∂φδ(φ− φ′),

{V(φ),V(φ′)} =
16π

3k
(M(φ)J (φ) +M(φ′)J (φ′))∂φδ(φ− φ′).

(5.6)

Algebra (5.2), (5.5), (5.6) can be regarded as a spin-3 extension of bms3. The main dif-

ference of this algebra with the one found in [19, 20] is the central term. In order to

incorporate central extensions we have to take into account boundary conditions (ii). This

requires the introduction of gauge fixing conditions (iii) in such a way that the complete

system of reduction conditions become second class. This will be discussed in section 6.2.

6 Reduced flat WZW model

In this section, we implement the remaining conditions in the flat WZW model. The

purpose is twofold: first, in section 6.1, a reduced theory will be obtained when solving the

condition (ii) inside of the action. On the other hand, in section 6.2, conditions (ii), (iii) will

be used to implement Dirac brackets of densities (5.1), (5.3) defined in the previous section.

5One could also consider quantities such as

gABJ AJB , dABCJ AJBJ C , or dABCJ AJBPC ,

but we will not use them since they vanish when (ii) and (iii) are implemented.

– 9 –
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Both conditions (ii) and (iii) can be translated into a fixation of some components of

the conserved currents (4.5) and (4.8). Indeed, conditions (ii) can be written as6

ψ1 = P2 − k

2π
, ψ2 = J 2, ψ3 = P7, ψ4 = J 7, ψ5 = P8, ψ6 = J 8. (6.1)

Under current algebra (4.14), this set is shown to be first class. Furthermore, conditions (iii)

in terms of the current components become

χ1 = P3, χ2 = J 3, χ3 = P5, χ4 = J 5, χ5 = P6, χ6 = J 6. (6.2)

6.1 Reduction of the action

We will perform the reduction at the level of the action (3.22). The outcome of this

procedure will be a theory possessing the higher-spin-extended bms3 as a global symmetry.

To accomplish this task, it is better to decompose the group element λ as,

λ = ABC,

A = exp

(∑
a

σaE−a

)
B = exp

(
−1

2

∑
i

ϕiHi

)
, C = exp

(∑
a

τaE+
a

)
,

(6.3)

where we have made use of the Gauss decomposition, using the Cartan basis for sl(3,R).

This representation consists of two commuting generators Hi and six generators E±a labeled

by roots a (See appendix A for details on conventions and the relation with basis (3.5)).

Fields σa, ϕi, τa are arbitrary scalars.

The basis Hi, E
±
a can always be chosen to fulfill the following trace relations

Tr[HiHj ] = Kij , Tr[E±a E
∓
b ] = δab, Tr[E±a E

±
b ] = 0, Tr[E±a Hi] = 0, (6.4)

where Kij corresponds to the Cartan matrix of sl(3,R). Also, it will be of particular

importance to identify the generators E±a labeled by simple roots, which will be denoted as,7

E±ai ≡ E
±
i when ai is a simple root. (6.5)

Note that there are as many simple roots as generators Hi.

Reduction conditions (6.1) can be translated in terms of the Cartan basis. First, those

which involve components of P, i.e., ψ1, ψ3 and ψ5, can be expressed as

(λ−1λ′)(−) =
∑
i

µiE−i , (6.6)

where the superscript (−) denotes the components along the Lie algebra element E−a and

the sum is taken over the negative simple roots. The coefficients µi are given by

µ1 = µ2 =
1√
2
.

6Recall that capital latin indexes runs from 1 to 8, such that

{T1, T2, T3, T4, T5, T6, T7, T8} = {J0, J1, J2, J00, J01, J02, J11, J12} .
7Note that ai refers to the i-th root, not to the i-th component of the root a.
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It is convenient to rewrite condition (6.6) in terms of the Gauss decomposition of λ.

This can be accomplished by making use of the trace relations (6.4) and the commutation

relations (A.8), (A.9) given in appendix A. Using this, we find

A−1A′ =
∑
i

µie
1
2

∑
j Kijϕ

j

E−i . (6.7)

On the other hand, reductions conditions involving components of J , i.e., ψ2, ψ4 and

ψ6, imply

(λ−1α′λ)(−) = 0, (6.8)

which, in terms of Gauss decomposition, can be simplified to

(B−1A−1α′AB)(−) = 0. (6.9)

With reduction conditions (6.7) and (6.9) at hand, we are ready to apply them inside

of the action. The flat WZW action (3.22) can be expressed as

Ĩ[ABC,α] =
k

π

∫
dudφTr

[
− (A−1A′)�A−1αA+ ḂB−1A−1α′A+ ĊC−1(B−1A−1α′AB)

− 1

2
(A−1A′)2 − 1

2
(B−1B′)2 − 1

2
(C−1C ′)2

−A−1A′B′B−1 −B−1B′C ′C−1 − (B−1A−1A′B)C ′C−1

]
, (6.10)

where we have discarded boundary terms in order to impose directly relations (6.7)

and (6.9). In fact, by using relations (6.4), one obtains

ĨR[ξi, ϕ
i] =

k

4π

∫
dudφ

∑
i

(ξi)
′ϕ̇i − 1

2

∑
i,j

Kij(ϕ
i)′(ϕj)′

 , (6.11)

where ξi = −2Tr[HiA
−1αA]. Action (6.11) is the natural generalization to sl(3,R) of the

results found in [33].

Note that, apart from the global symmetry transformations, this model also inherits

the zero mode transformations (4.2) present in the flat WZW action

δϕi = f i(u), δξi = gi(u), (6.12)

where f i and gi are arbitrary functions. In section 7, it will be shown that action (6.11) is

related to a suitable limit of sl(3,R) Toda theory. However, this latter theory is devoid of

transformations (6.12).

6.2 Dirac charge algebra

The next step is to determine the Poisson structure associated to the charges of the re-

duced action (6.11). To do so, we must implement first class conditions (6.1) inside of

algebra (5.2), (5.5), (5.6). This is achieved by imposing gauge fixing conditions (6.2) and

constructing Dirac brackets.
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If we denote as Φ = {ψ, χ} the set of all constraints, the Dirac bracket between any

quantities A and B read,

{A(φ), B(φ′)}∗ = {A(φ), B(φ′)}

−
∫
dφ1dφ2{A(φ),Φα(φ1)}

[
Cαβ(φ1, φ2)

]−1
{Φβ(φ2), B(φ′)}, (6.13)

where Cαβ(φ, φ′) = {Φα(φ),Φβ(φ′)} is the constraint Poisson bracket matrix. By a straight-

forward, albeit tedious computation, one is able to find the bracket of densitiesM, J , W,

V on the surface defined by constraints Φ, leading to

{M(φ),M(φ′)}∗ = 0,

{M(φ),J (φ′)}∗ = (M(φ) +M(φ′))∂φδ(φ− φ′)−
k

2π
∂3
φδ(φ− φ′),

{J (φ),J (φ′)}∗ = (J (φ) + J (φ′))∂φδ(φ− φ′).

(6.14)

This is the standard bms3 algebra of pure General Relativity in three dimensions [10].

Furthermore, generators W and V still transform with spin-three

{M(φ),W(φ′)}∗ = 0,

{M(φ),V(φ′)}∗ = (W(φ) + 2W(φ′))∂φδ(φ− φ′),
{J (φ),W(φ′)}∗ = (W(φ) + 2W(φ′))∂φδ(φ− φ′),
{J (φ),V(φ′)}∗ = (V(φ) + 2V(φ′))∂φδ(φ− φ′),

(6.15)

however, the algebra among the spin-three generators get modified by linear and cen-

tral terms,

{W(φ),W(φ′)}∗ = 0,

{W(φ),V(φ′)}∗ =
16π

3k
(M(φ)2 +M(φ′)2)∂φδ(φ− φ′)

− 1

3

[
2∂3

φM(φ)δ(φ− φ′) + 9∂2
φM(φ)∂φδ(φ− φ′)

+ 15∂φM(φ)∂2
φδ(φ− φ′) + 10M(φ)∂3

φδ(φ− φ′)−
k

2π
∂5
φδ(φ− φ′)

]
,

{V(φ),V(φ′)}∗ =
32π

3k
(M(φ)J (φ) +M(φ′)J (φ′))∂φδ(φ− φ′)

− 1

3

[
2∂3

φJ (φ)δ(φ− φ′) + 9∂2
φJ (φ)∂φδ(φ− φ′)

+ 15∂φJ (φ)∂2
φδ(φ− φ′) + 10J (φ)∂3

φδ(φ− φ′)
]
. (6.16)

When expressing in Fourier modes, one obtains the same result as in [19].

Indeed, definitions

Pn =

∫ 2π

0
dφ einφM, Jn =

∫ 2π

0
dφ einφJ , Wn =

∫ 2π

0
dφ einφW, Vn =

∫ 2π

0
dφ einφV,

(6.17)
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lead to the higher spin extension of bms3 with central charge

c = 12k =
3

G
. (6.18)

The explicit form of the constraint matrix, some intermediate expressions needed to eval-

uate (6.13) and the above algebra expressed in modes will be presented in appendix B.

7 Connection with flat limit of Toda theories

We will prove that action (6.11) can be regarded as a suitable flat limit of sl(3,R) Toda

theory. In order to demostrate this assertion, let us specify an appropriate limit.

In its Hamiltonian form, Toda theory on a cylinder of radius l is defined by,

IToda[πi, ϕ
i] =

∫
dudφ

(∑
i

πiϕ̇
i −
∑
i,j

1

2

[
Gijπiπj +

1

l2
Kij(ϕ

i)′(ϕj)′
]

−
∑
i

M ie
1
2
γ
∑

j Kijϕ
j

)
, (7.1)

where Gij is the inverse of the Cartan matrix, fields ϕi and πi are canonical pairs, whereas

γ and M i are coupling constants. This theory is known to be invariant under two copies

of W -symmetry [5, 6, 8].

The flat limit of (7.1) consists in taking l → ∞. However, as it occurs with Liouville

theory [21], by simply taking the limit, the resulting theory possesses a charge algebra

which does not include central terms, hindering the connection with asymptotically flat

spacetimes in three dimensions. Therefore, along the lines of [21], we first rescale the

fields as

πi =
Πi

l
ϕi = lΦi, (7.2)

and then take l→∞, keeping M i and β = γl fixed, obtaining

Iflat-Toda[Πi,Φ
i] =

∫
dudφ

∑
i

ΠiΦ̇
i −
∑
i,j

1

2
Kij(Φ

i)′(Φj)′ −
∑
i

M ie
1
2
β
∑

j KijΦj

 . (7.3)

It is important to stress that this is a first order action which does not have a second order

counterpart.

The interesting observation is that flat-Toda action can be related to (6.11) by a field

redefinition. In fact, by defining

Πi =

√
2

β
(ξi)
′ − βu

2

∑
k

MkKkie
1√
2

∑
j Kkjϕ

j

,

Φi =

√
2

β
ϕi,

(7.4)

and replacing back in (7.3), we obtain action (6.11) (up to a boundary term),

provided β2 = 8π
k .
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A few comments on (7.4) are in order. A similar kind of transformation has been

previously used to obtain the bms3 invariant Liouville theory from the corresponding

model (6.11) [33]. Nonetheless, transformation (7.4) differs since it is explicitly time depen-

dent. However, in both cases, zero modes (6.12) are dropped by these field redefinitions.

The origin of this exclusion can be traced back to the identification of Πi with (ξi)
′, which

is not invertible in the zero mode sector. This feature has been previously observed when

two chiral bosons are combined giving rise to Liouville theory [37].

8 Comments on higher rank groups

Results presented in the previous sections are easily generalized beyond the sl(3,R) case. If

we consider the model (3.22) for λ ∈ SL(n,R) and α ∈ sl(n,R), we can construct densities

with spin s, where 3 ≤ s ≤ n. Indeed, they can be written as

Ws =
1

s

(
2π

k

)s
dA1···AsPA1 · · · PAs , Vs = −

(
2π

k

)s
dA1···AsPA1 · · · PAs−1J As , (8.1)

where dA1···As are symmetric invariant tensors of sl(n,R). The commutation relations of

these quantities with M and J become

{M(φ),Ws(φ
′)} = 0,

{J (φ),Ws(φ
′)} =

[
Ws(φ) + (s− 1)Ws(φ

′)
]
∂φδ(φ− φ′),

{M(φ),Vs(φ′)} =
[
Ws(φ) + (s− 1)Ws(φ

′)
]
∂φδ(φ− φ′),

{J (φ),Vs(φ′)} =
[
Vs(φ) + (s− 1)Vs(φ′)

]
∂φδ(φ− φ′).

(8.2)

The above expressions show that Vs and Ws transform as spin-s generators. Hence,

we expect that the whole set {M,J ,W3,V3 . . .Wn,Vn} spans the spin-n extension of

bms3 algebra.

Note that for the sl(n,R) case, the asymptotic form of the connection A was given

in [19]

A =

(
1

2
Mdu− dr +

(
J +

u

2
∂φM

)
dφ

)
P0 + duP1 + rdφP2 +

1

2
MdφJ0 + dφJ1

+ (W3du+ (V3 + u∂φW3) dφ)P00 +W3dφJ00 (8.3)

+ (W4du+ (V4 + u∂φW4) dφ)P000 +W4dφJ000

+ . . .

These generalized boundary conditions does not alter significantly the form of the

reduction relations (ii) and (iii), leaving (i) unchanged. As a result, the procedure carried

out in section 6 is still true for higher order groups. In this case, (ii) is translated into

conditions on the components of the currents along the negative simple roots of the Cartan

basis. Accordingly, the reduced model acquires the same form as in (6.11) provided Kij

being the Cartan matrix of sl(n,R).

The full spin-n extension of bms3 algebra, along with the Dirac bracket computation,

will be presented elsewhere.
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9 Conclusions

We have built the two-dimensional action principle invariant under a spin-three extension

of BMS3 group, which at classical level corresponds to the dual of asymptotically flat

gravity coupled to spin-three fields. The charges associated to this theory span an algebra

which coincides with the previous analysis [19, 20]. We have shown that this latter theory

is related to a flat spacetime limit of Toda theory.

The importance of these results is twofold. From the point of view of holography, these

reduced models are appropriate candidates to understand a quantum duality of higher

spin gravity on asymptotically flat geometries. On the other hand, the properties of these

nonlinear algebras can be better understood, in particular, in its relation with W -algebras.

In this sense, this work supports the fact that asymptotically flat spacetimes have structures

as rich as spaces with AdS3 asymptotics.
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We thank G. Barnich, M. Bañados, A. Campoleoni, R. Canto, J. Gamboa, J. Matulich,

P. Salgado-Rebolledo, C. Troessaert and R. Troncoso for useful discussions and comments.

H.G. is supported in part by IISN-Belgium, and by “Communauté française de Belgique
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A Conventions

Throughout this work, the following conventions on Lie algebras were used.

The sl(3,R) invariants tensors are defined as

gAB = 2Tr[TA, TB], (A.1)

fABC = 2Tr[[TA, TB]TC ], (A.2)

dABC = 2Tr[[TA, TB]+TC ]. (A.3)

From the above definitions, fABC and dABC must fulfill Jacobi identities

fBIAf
A
CE + fEIAf

A
BC + fCIAf

A
EB = 0, (A.4)

fBIAd
A
CE + fEIAd

A
BC + fCIAd

A
EB = 0. (A.5)

A relation among the above quantities, used in section 5

gCHdABCdHDE =
4

3
(gADgBE + gADgBE − gABgDE)− 1

3
gCH(fADCfHDE + fAECfHBD).

(A.6)
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We have used two different basis for sl(3,R). First, the Ja, Jab basis, fulfilling commu-

tations relations (3.5), corresponds to

J0 =

0
√

2 0

0 0
√

2

0 0 0

 , J1 =

 0 0 0
1√
2

0 0

0 1√
2

0

 , J2 =

1 0 0

0 0 0

0 0 −1

 ,

J00 =

0 0 −4

0 0 0

0 0 0

 , J01 =

1
3 0 0

0 −2
3 0

0 0 1
3

 , J02 =

0 −
√

2 0

0 0
√

2

0 0 0

 ,

J11 =

 0 0 0

0 0 0

−1 0 0

 , J12 =

 0 0 0

− 1√
2

0 0

0 1√
2

0

 .

(A.7)

We assume a non-diagonal Minkowski metric in tangent space, whose only non vanishing

components are given by η01 = η10 = η22 = 1, and the Levi-Civita symbol fulfills ε012 = 1.

In section 6, we have made use of Chevalley basis. The algebra spanned by generators

Hi and E±i takes the form

[Hi, Hj ] = 0, [Hi, E
±
j ] = ±KjiE

±
j , [E+

i , E
−
j ] = δijHj . (A.8)

The rest of the algebra can be obtained by repeated commutations of E±i . It gives

[E±i , E
±
3 ] = 0, [E+

3 , E
−
3 ] = H1 +H2, [Hi, E

±
3 ] = ±E±3 ,

[E±1 , E
±
2 ] = ±E±3 , [E±1 , E

∓
3 ] = ∓E∓2 , [E±2 , E

∓
3 ] = ∓E∓1 .

(A.9)

The explicit matrices are given by,

H1 =

1 0 0

0 −1 0

0 0 0

 , H2 =

0 0 0

0 1 0

0 0 −1

 ,

E+
1 =

0 1 0

0 0 0

0 0 0

 , E+
2 =

0 0 0

0 0 1

0 0 0

 , E+
3 =

0 0 1

0 0 0

0 0 0

 ,

E−1 =

0 0 0

1 0 0

0 0 0

 , E−2 =

0 0 0

0 0 0

0 1 0

 , E−3 =

0 0 0

0 0 0

1 0 0

 .

(A.10)

The relation between the Chevalley basis and the Ja, Jab reads

H1 =
1

2
(J2 + 3J01), H2 =

1

2
(J2 − 3J01),

E+
1 =

√
2

4
(J0 − J02), E+

2 =

√
2

4
(J0 + J02), E+

3 = −1

4
J00,

E−1 =

√
2

2
(J1 − J12), E−2 =

√
2

2
(J1 + J12), E−3 = −J11.

(A.11)
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B Dirac bracket computation

Here we display useful formulae for the computation of Dirac brackets. The Poisson brack-

ets matrix of the constraints (6.1) and (6.2), Cαβ(φ, φ′) = {Φα(φ),Φβ(φ′)}, turns out be

Cαβ =



ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 χ1 χ2 χ3 χ4 χ5 χ6

ψ1 0 0 0 0 0 0 0 − k
2π δ 0 0 0 0

ψ2 0 0 0 0 0 0 − k
2π δ 0 0 0 0 0

ψ3 0 0 0 0 0 0 0 0 0 0 0 − k
2π δ

ψ4 0 0 0 0 0 0 0 0 0 0 − k
2π δ 0

ψ5 0 0 0 0 0 0 0 0 0 3k
2π δ 0 − k

2π δ
′

ψ6 0 0 0 0 0 0 0 0 3k
2π δ 0 − k

2π δ
′ 0

χ1 0 k
2π δ 0 0 0 0 0 − k

2π δ
′ 0 0 0 0

χ2
k

2π δ 0 0 0 0 0 − k
2π δ
′ 0 0 0 0 0

χ3 0 0 0 0 0 − 3k
2π δ 0 0 0 − 3k

2π δ
′ 0 3P1δ

χ4 0 0 0 0 − 3k
2π δ 0 0 0 − 3k

2π δ
′ 0 3P1δ 3J 1δ

χ5 0 0 0 k
2π δ 0 − k

2π δ
′ 0 0 0 −3P1δ 0 0

χ6 0 0 k
2π δ 0 − k

2π δ
′ 0 0 0 −3P1δ −3J 1δ 0 0



where δ ≡ δ(φ−φ′) and δ′ ≡ ∂φδ(φ−φ′). We look for the inverse of Cαβ, in such a way that

∫ 2π

0
dφ′′C−1 αγ(φ, φ′′)Cγβ(φ′′, φ′) = δαβ δ(φ− φ′), (B.1)

where

[
Cαβ

]−1
=



0 −2π
k δ
′ 0 0 0 0 0 2π

k δ 0 0 0 0

−2π
k δ
′ 0 0 0 0 0 2π

k δ 0 0 0 0 0

0 0 [C33]−1 [C34]−1 4π2

k2
J 1δ [C36]−1 0 0 0 −2π

3k δ
′ 0 2π

k δ

0 0 [C43]−1 0 [C45]−1 0 0 0 −2π
3k δ
′ 0 2π

k δ 0

0 0 −4π2

k2
J 1δ [C54]−1 0 −2π

3k δ
′ 0 0 0 −2π

3k δ 0 0

0 0 [C63]−1 0 −2π
3k δ
′ 0 0 0 −2π

3k δ 0 0 0

0 −2π
k δ 0 0 0 0 0 0 0 0 0 0

−2π
k δ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −2π
3k δ
′ 0 2π

3k δ 0 0 0 0 0 0

0 0 −2π
3k δ
′ 0 2π

3k δ 0 0 0 0 0 0 0

0 0 0 −2π
k δ 0 0 0 0 0 0 0 0

0 0 −2π
k δ 0 0 0 0 0 0 0 0 0



.
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with

[C33]−1 = −4π2

k2
[(J 1)′δ + 2J 1δ′],

[C34]−1 = [C43]−1 =
2π

3k
δ′′′ − 4π2

k2
[(P1)′δ + 2P1δ′],

[C36]−1 = −[C63]−1 = [C45]−1 = −[C54]−1 = −2π

3k
δ′′ +

4π2

k2
P1δ.

Furthermore, in order to compute the brackets of the densities with the constraints Φ, the

following relations are useful

{M(φ),PA(φ′)} = 0, (B.2)

{M(φ),J A(φ′)} = −PA(φ)∂φδ(φ− φ′), (B.3)

{J (φ),PA(φ′)} = PA(φ)∂φδ(φ− φ′), (B.4)

{J (φ),J A(φ′)} = J A(φ)∂φδ(φ− φ′), (B.5)

{W(φ),PA(φ′)} = 0, (B.6)

{W(φ),J A(φ′)} = −2π

k
dABCPB(φ)PC(φ)∂φδ(φ− φ′), (B.7)

{V(φ),PA(φ′)} =
2π

k
dABCPB(φ)PC(φ)∂φδ(φ− φ′), (B.8)

{V(φ),J A(φ′)} =
4π

k
dABCPB(φ)J C(φ)∂φδ(φ− φ′). (B.9)

Finally, bms3 algebra (6.14) in terms of modes (6.17) gives,

i{Pn, Pm}∗ = 0,

i{Jn, Jm}∗ = (n−m)Jn+m,

i{Jn, Pm}∗ = (n−m)Pn+m + kn3δm+n,

(B.10)

relations (6.15) become

i{Pn,Wm}∗ = 0,

i{Jn,Wm}∗ = (2n−m)Wn+m,

i{Pn, Vm}∗ = (2n−m)Wn+m,

i{Jn, Vm}∗ = (2n−m)Vn+m.

(B.11)
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and (6.16) is expressed as

i{Wn,Wm}∗ = 0,

i{Wn, Vm}∗ =
1

3

[
8

k
(n−m)

∞∑
j=−∞

PjPn+m−j

+ (n−m)(2n2 + 2m2 −mn)Pm+n + kn5δm+n

]
,

i{Vn, Vm}∗ =
1

3

[
16

k
(n−m)

∞∑
j=−∞

PjJn+m−j + (n−m)(2n2 + 2m2 −mn)Jm+n

]
.

(B.12)

Although algebra (B.10), (B.11) and (B.12) is not, strictly speaking, a Lie algebra, it does

fulfill Jacobi identity.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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