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Abstract We construct analogues for the Brauer, BMW, partition, and Jones—Temperley—
Lieb algebras of the Murphy basis of the Hecke algebra of the symmetric group. The bases
are cellular bases indexed by paths on branching diagrams, and compatible with restriction
of cell modules. The Jucys—Murphy elements for each class of algebras act by triangular
matrices on the Murphy basis.
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1 Introduction

This paper develops analogues for the Brauer, BMW, partition, and Jones-Temperley-Lieb
algebras of the Murphy basis [33] of the Iwahori-Hecke algebras H, (¢>) of the symmetric
groups &,,.

The Murphy basis of H,(¢*) has many remarkable properties. First, it is a cellular basis
in the sense of Graham and Lehrer [16]. For cellular algebras (i.e. algebras with a cellular
basis) in general, one can define a family of modules known as cell modules. Then for any
specialization of the cellular algebra over a field, all simple modules appear as quotients
of the cell modules, and the algebra is semisimple exactly when all the cell modules are
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simple. The Murphy basis has a number of additional special properties. The Jucys—Murphy
elements of the Hecke algebra act in a triangular fashion on the Murphy basis; this action
allows the construction of the seminormal representations and the classification of simple
modules and blocks, see [28], Chapter 3. Moreover, the Murphy basis is well adapted to the
tower of Hecke algebras (H), (qz))nzo, as will be explained below.

Several papers in the literature have aimed at generalizations or axiomatizations of the
Murphy basis, the seminormal basis, and the set of Jucys—Murphy elements, for example
[9, 14, 29, 37]. The present paper is also a contribution to this theme.

In order to develop analogues of the Murphy basis for the Brauer algebras, etc., we first
develop a new interpretation of the Murphy basis of the Hecke algebras H, (). We begin
with observing that the Hecke algebras H, = H, (¢?) defined over the generic ground ring
Z[g*"], with ¢ an indeterminant, have the following properties:

e The Hecke algebras H,, are cyclic cellular algebras. This means that each cell module
is a cyclic H,—module.

e The cellular structures on the tower of algebras H,, are coherent. This means that a cell
module of H,,, restricted to the H,,_ or induced to H, | has a “cell filtration”, that is,
a filtration with cell modules as subquotients.

We therefore begin by studying coherent towers (A,),>0 of cyclic cellular algebras in
general. We first obtain some rather simple general results about cellular bases in such
towers, in Section 3. We observe that there exists a system of “branching factors” associated
to each edge of the generic branching diagram for the tower. In fact, there is a system of
“d-branching factors” related to the cell filtration of restricted cell modules, and a system
of “u—branching factors” related to the cell filtration of induced modules. Then we note that
an ordered product of d—branching factors along paths on the generic branching diagram
determine bases of each cell module of each A, as well as a cellular basis of each A,,.

In Section 4, we consider the tower of Hecke algebras H,(g2). Recalling that this is a
coherent tower of cyclic cellular algebras, we compute branching factors for reduced and
induced cell modules. We show that the bases obtained via ordered products of d—branching
factors coincide with the Murphy bases.

This construction could be regarded as a cellular analogue of the constructions in [34-36, 38].

Each of the examples that we want to study is a tower (A,),>0 of algebras that gener-
ically is obtained from another tower (Q,),>0 by repeated Jones basic constructions. For
the Brauer, BMW, or partition algebras, the tower (Q,),>¢ is a tower of Hecke algebras
or symmetric group algebras. For the Jones—Temperley—Lieb algebras defined over a ring
R, the tower (Q,),>0 is just the constant sequence R. Cellularity of such a tower (A,),>0
was previously studied in [13, 14]. Here we augment the framework of those papers by
the assumption that the algebras Q, are cyclic cellular. It follows easily from the previous
work in [13, 14] that the tower (A,),>0 is a coherent tower of cyclic cellular algebras. We
show here that branching factors, and therefore cellular bases for the tower (A,),>0 can be
obtained by explicit formulas from branching factors for the tower (Q,),>0. These are our
analogues of Murphy’s bases.

Finally, in Section 5, we apply our results to the Brauer algebras, Birman—-Murakami—
Wenzl (BMW) algebras, Jones—Temperley—Lieb algebras, and partition algebras, and obtain
explicit Murphy bases for each of these families of algebras.

A complication in our approach to the Murphy bases is that the results of [13, 14] do
not apply to Jones the basic construction algebras defined over their generic ground ring,
say Ry, but only to the algebras defined over Ro[87'], where § is the “loop parameter”; see
Section 5.1, where a mistake in [13, 14] is discussed and corrected. Therefore, the Murphy
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bases appear a priori to be bases only for the algebras defined over Ro[8~']. However, as the
bases are explicit, we can check for each of our examples that the Murphy basis is actually
a basis for the algebras defined over the generic ground ring Rg. A considerable portion of
the work in Section 5 is devoted to this final step. For the Jones—Temperley-Lieb algebras,
our Murphy basis turns out to be none other than the usual diagram basis.

Our Murphy bases are “families of path bases”, in the sense of Definition 3.8. It is known
that for each of our examples, the tower (A;),>0 has a family of Jucys—Murphy elements in
the sense of [14]. It follows from [14, Propositions 3.6 and 3.7] that the Jucys—Murphy ele-
ments act triangularly on our Murphy bases. Hence, Mathas’ theory of cellular algebras with
Jucys—Murphy elements and seminormal representations [29] can be applied. It is shown
in [1] that triangularity actually holds with respect to dominance order, strengthening the
triangularity statements of [13].

The Murphy bases for the partition algebras given in Theorem 6.26 have been used to
obtain an analogue of the Young seminormal form for partition algebras in [10]. In the cases
of the Brauer and BMW algebras, our results recover the Murphy type bases obtained in [9];
however, the construction here is simpler, and does not involve computations in the braid
group. Rui and Si [37] used the path bases from [9] to compute Gram determinants for cell
modules of the BMW algebras, and to obtain definitive semisimplicity results.

The Murphy bases of the (abstract) Brauer algebras are used in [2] to produce integral
cellular bases of Brauer’s centralizer algebras acting on symplectic or orthogonal tensor
space. The analogous result holds also for the walled Brauer algebras acting on mixed tensor
space [2, 38].

Murphy bases are used in [3] to construct skew cell modules of diagram algebras, which
are analogous the the skew Specht modules of the symmetric groups.

There are many other examples of coherent towers of cellular algebras obtained by
repeated Jones basic constructions, see [13]. Our method of obtaining explicit Murphy
type bases as ordered products of branching factors has been applied to the walled Brauer
algebras in [2] and should also apply to such examples as the cyclotomic BMW algebras.

2 Preliminaries

2.1 Cellular Algebras

Cellular algebras were defined by Graham and Lehrer [16]. In this paper we use a slightly
weaker version of cellularity which was introduced in [12, 13].

Definition 2.1 Let R be an integral domain. A cellular algebra is a tuple (A, *, Z, >, )
where

(1) A is aunital R—algebra and * : A — A is an algebra involution, that is an R-linear
anti—automorphism of A such that (x*)* = x for x € A;

2) (A D) is a finite partially ordered set, and A for A € A is a finite indexing set;

(3) The set

o ={ck|re Aands, te A\”},
is an R—basis for A, for which the following conditions hold:
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74 John Enyang

(a) Given A € Z, te Z{,\ and a € A, there exist coefficients ry(t,a) € R, forv € ;P‘
such that, for all s € A*,
cha= ) ro(t.a)k, mod AP, (2.1)
veAr
where A>* is the R—module generated by
{cky |ueZ,5,teZ“andu>A}.
(b) Ifr e Aands,te A*, then (c:)* = (c};) mod AP*.

The tuple (A, *, Z, >, &) is a cell datum for A.

If A is an algebra with cell datum (A, *, A , >, &) we will frequently omit reference to
the cell datum for A and simply refer to A as a cellular algebra. The basis <7 is called a
cellular basis of A.

From points 3(a) and 3(b) of the definition of cellularity, we have fora € A ands, t € ;\\*

Ao kY A >A
acgy = Z ro(s,a)cyy mod A",
veA*

An order ideal T' C A is a subset with the property thatif A € I and u > A, then u € I". It
follows from the axioms of a cellular algebra that for any order ideal I" in A,

Al = span{cét | rel,s te XA}
is a two sided ideal of A. In particular A>* and
AP* = gpan {c’;t ‘ u e A, s, te A* and,ulzk}

are two sided ideals.

Definition 2.2 Let A be a cellular algebra, and 1 € A. The cell module Af‘q is the right
A-module defined as follows. As an R—module, Af:‘ is free with basis indexed by A\‘ say
{c’t\ | te A\k}. The right A—action is given by

cta= )" ry(t.a),
veA
where the coefficients ry (t, @) are those of Eq. (2.1).
A*

Thus, for any s € A”, the map

s 2 >4
i Cg T A

is an injective A—module homomorphism of the cell module Al/\; into AB* /AP,

If A is an R—algebra with involution *, then * induces functors M — M* interchanging
left and right A—modules, and taking A—A bimodules to A—A bimodules. We identify M**
with M via x™* > x and for modules 4 M and N4 we have (M Qg N)* = N* Qpr M*, as
A-A bimodules, with the isomorphism determined by (m ® n)* — n* @ m*. For a right A—
module M4, using both of these isomorphisms, we identify (M™* @ M)* with M* ® M** =
M*® M, via (x* ® y)* — y* ® x. Now we apply these observations with A a cellular
algebra and A% a cell module. The assignment

a0 ek + AP s (D@ ()
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Cellular Bases 75

determines an A—A bimodule isomorphism from AZ*/ AP* to (A%)* @ A%. Moreover,

we have * o o) = &y, o *, which reflects the cellular algebra axiom (cﬁt)* = c%s mod AP*.
When it is necessary to identify the algebra we are working with, we will write o« /’\4 instead
of «;. The importance of the maps «; for the structure of cellular algebras was stressed by

Konig and Xi [23, 24].
2.2 Generic Ground Rings

The most important examples of cellular algebras are actually families AS of algebras
defined over various integral ground rings S, possibly containing distinguished elements
(parameters) which enter into the definition of the algebras. The prototypical example is
the Iwahori—Hecke algebra of the symmetric group Hy = Hx(g?), which can be defined
over any integral domain S with a distinguished invertible element ¢; see Section 4.2 for the
detailed description.

Again in the most important examples, there is a “generic ground ring” R for A with the
following properties:

(1) For any integral ground ring S there is a ring homomorphism from R to S, and the
algebra over S is the specialization of the algebra over R, that is AS = AR @ §.
Likewise, the cell modules of AS are specializations of those of AR that is A)AS =

A g ®r S,

(2) R has characteristic zero, and if F denotes the field of fractions of R, then A¥ is split
semisimple; and the cell modules Aﬁx » are the simple AT modules.

For example, the generic ground ring for the Iwahori-Hecke algebra is Z[q, ¢ '], where ¢
is an indeterminant over Z.

Indeed, the entire point of the theory of cellular algebras is to provide a setting for a
modular representation theory of important classes of algebras such as the Iwahori—Hecke
algebras, Brauer algebras, Birman Murakami Wenzl algebras, etc. The cell modules of AR
are integrally defined versions of the simple modules of A* which specialize to A¥*—modules
for any field k (with appropriate parameters). The simple A¥ modules are found as quotients
of the cell modules Azk. See [16, 28] for details.

2.3 Equivalent Cellular Bases

A cellular algebra A with cell datum (A, *, A , >, o) always admits different cellular bases
2. In fact, any choice of an R-basis in each cell module of A can be globalized to a cellular
basis of A, see Lemma 2.3. We say that a cellular basis

%= bk | e Aands, t e A*)

is equivalent to the original cellular basis .27 if it determines the same ideals AZ*

isomorphic cell modules.

and yields

Lemma 23 ([11], Lemma 23) Let A be a cellular algebra with cell datum
(A, %, A, >, o). For each ) € A, fix an A-A-bimodule isomorphism a;. : AR/ APA
(Aﬁ)*@R A; satisfying xoa; = o) ox. Foreach A € A, let{by | t € Aj‘} be an R-basis of
the cell module Af‘q. For each A € A and each 5, te ;ﬂ, let b;‘t be a lifting ofoz;1 b by)
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76 John Enyang

in AZ*. Then
B = {bédk egands,texla]

is a cellular basis of A equivalent to the original cellular basis < .
2.4 Extensions of Cellular Algebras

Definition 2.4 Suppose A is a unital R—algebra with involution *, and J is an x—invariant
ideal. Let us say that J is a cellular ideal in A 1f it satisfies the ax10ms for a cellular algebra
(except for being unital) with cellular basis {c? s | A€ 7 and 5, te J* } € J and we have,
as in point (3a) of the definition of cellularity,

céta = Zrn (t, a)céU mod JP* forall a € A, 2.2)
v

not only fora € J.

Lemma 2.5 (Extensions of cellular algebras) Let A be an algebra with involution over an
integral domain R. Suppose that J is a cellular ideal in A and A/J is a cellular algebra
with the involution induced from A. Then A is a cellular algebra.

Remark 2.6 Write H = A/J. Denote the cell datum of J by (J, *, >, J j ) and that
of H by (H, *,>, H, ). Letmw : A — A/J = H be the canonical map. The partially
ordered set in the cell datum of A is A = J U H with the original partial orders on J and
Handpur> ) forallp e Jand A € H. If%”manyhftmgof%”mA then o/ = /Uj’/
is a cellular basis of A.

For A € H the following statements hold: ADA = 7~ 1(HEZ"), and likewise AP* =

7~ 1(H™"). Consequently, J € A™* forall A € H. We have AZ*/A>* = HE*/HP* via
a+ AP > m(a) + H>*. The cell modules A% and A%, can be identified (by xa = x7(a)

forx € A% anda € A). The map o} : ADA/AD’\ — (Ax ) ®@g A% is
Aa+ AP s afl (m(a) + HP). (2.3)
For u € .'I\, the cell modules Aﬁ and A’j can be identified; this is because of condition
(2.2) in the definition of cellular ideals. We have AZ# = JB* C J, and similarly for AP#.
2.5 Cellular Algebras with Cyclic Cell Modules

Definition 2.7 A cellular algebra is said to be cyclic cellular if every cell module is cyclic.

Remark 2.8 For examples of cyclic cellular algebras, see Section 6. Cyclic cellularity
was also introduced in [11], and some additional examples, beyond those studied here are
presented in that paper.

Lemmg\ 29 ([11], Lemma 2.5) Let A be a cellular algebra with cell datum
(A, *, A, >, 7). The following are equivalent:

(1) Aiscyclic cellular
(2) Foreach i € A there exists an element c;, € AZ* with the properties:

(@) ¢, =cf mod AP,
(b) AB* = Ac) A + APA,
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(©) (crA+ APMJAP* = A% as right A-modules.

For a cyclic cellular algebra A and A € A, , we let 82 denote a generator of the cell module

A’f\ . The element c; in Lemma 2.9 can be taken to be any lifting to AB* of ¢! ((82)* ®8f§1).

When it is necessary to identify the algebra we are working in, we write cf.

We record a version of Lemma 2.3 that is adapted to the context of cyclic cellular
algebras:

Lemn/l\a 2.10 Let A be a cyclic cellular algebra with cell datum (A, *, X, >, ). For each
re A let{by | te ;P‘} be an R-basis of Af:r For t € ;P‘ choose wy € A such that

by = SQw{. Fors,te ;\7‘, let
bl = (ws) crw.

Then $B = {bét | A € A and s5,te X)‘} is a cellular basis of A equivalent to the original
cellular basis < .

Proof Foreach A € A and s, t € A*, b is alifting in AZ* of & ! (b% ® by), so this follows
immediately from Lemma 2.3. O

Remark 2.11 (Extensions of cyclic cellular algebras) Let A be an algebra with involution
over R, let J be a cellular ideal in A and suppose that H = A/J is cellular. If both J and
H are cyclic cellular, then so is A. This is evident from Lemma 2.5 and Remark 2.6.

Letw : A— A/J = H denote the quotient map. For each X € H, let 8}1 be a generator
of the cell module A’}J = qu. Let cf e HZ* satisfy af (cf +HPY = (81’}1)* ® 8;‘1. Then

c/{‘ can be taken to be any element of 71 (cf ).

3 Bases in Towers of Cellular Algebras

In this section we obtain some elementary results on bases in towers of cellular algebras.
The main results can be summarized as follows. Consider an increasing sequence of cellular
algebras (H,),>0 over an integral domain R with field of fractions F. Suppose that

(1) Hy=R,and HnF = H, ®g F is split semisimple for all n.

(2) For each n > 0 and each cell module A of H,, the H,—module ResZZ+1 (A) has an
order preserving cell filtration, see Definition 3.1

(3) H, is cyclic cellular for all n.

Then one can associate to each edge A — p in the branching diagram H for the tower
(H /6 )n>0 of split semisimple algebras a “branching factor” d;,_, ;.. The ordered product of
these branching factors along paths in H determines a basis of each cell module of each
algebra H,. The collection of these bases is a “family of path bases,” which means that the
bases behave well with respect to restriction to smaller algebras in the tower, see Definition
3.8. The existence of these special bases of the cell modules depends on the existence of

n+1

cell filtrations for the restricted modules ResZﬂ (A); conversely, any family of path bases

determines cell filtrations of each restricted module Resz:’rl (A).

@ Springer



78 John Enyang

3.1 Coherence Conditions for Towers of Cellular Algebras

If A is a cellular algebra over R, A € X and N € M is an inclusion of right A—modules,

A
write N € M if M/N = A% as right A-modules.

Definition 3.1 Let A be a cellular algebra with cell datum (A, *, &>, A , /). If M is aright
A-module, a cell filtration of M is a filtration by right A—modules

A 2@ A
Ob=My'c My'C...'c M, =M,

with subquotients isomorphic to cell modules. Say that the filtration is order preserving if
A8 > A® in A whenever s < t.

Observe that all the modules occurring in a cell filtration are necessarily free as R—
modules. Evidently, a given cell module occurs at most once as a subquotient in an order
preserving cell filtration.

Here and in the remainder of the paper, we will consider increasing sequences

HyCH CH---

of cellular algebras over an integral domain R. Whenever we have such a sequence of alge-
bras, we assume that all the inclusions are unital and that the involutions are consistent; that
is the involution on H; 1, restricted to H;, agrees with the involution on H;.

Definition 3.2 ([13, 14]) The tower of cellular algebras (H;);>¢ is coherent if the following
conditions are satisfied:

(1) Foreachi > 0 and each cell module A of H;, the induced module IndZ::+1 (A) has cell
filtration.

(2) Foreachi > 0 and each cell module A of H; the restricted module ResZﬁ+1 (A) has
a cell filtration.

The tower is called strongly coherent if the cell filtrations can be chosen to be order
preserving.

In the examples of interest to us, we will also have uniqueness of the multiplicities of
the cell modules appearing as subquotients of the cell filtrations, and Frobenius reciprocity
connecting the multiplicities in the two types of filtrations, see Corollary 3.5.

Only the filtrations of restricted modules ResZﬁ+1 (A) play a role in this section, but the
filtrations of induced modules IndeJrl (A) also play an essential role in the study of towers

of algebras with a Jones basic construction in Sections 5 and 6.
3.2 Inclusions Matrices, Branching Diagrams, and Cell Filtrations

We recall the notion of an inclusion matrix for an inclusion of split semisimple algebras over
afield. Suppose A C B are finite dimensional split semisimple algebras over a field F' (with
the same identity element). Let {V, | A € A}, be the set of isomorphism classes of simple
A-modules and L Wyl e B } the set of isomorphism classes of simple B—modules. We
associate a B x A inclusion matrix o to the inclusion A C B, as follows.
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Cellular Bases 79

For each p € B and ) € A, define w(u, A) to be the multiplicity of V, in a direct
sum decomposition of Resﬁ (W,,). Say that the inclusion A C B is multiplicity—free if the
inclusion matrix has entries in {0, 1}.

Now consider an increasing sequence (By),>0 of split semisimple algebras over a field
F'. Suppose that all the inclusions B, < By are multiplicity—free. (This suffices for the
examples we want to treat). The branching diagram B of the sequence (Bj),>0 is a graph
with vertex set ]_[n>0 B,,, where B,, indexes the set of isomorphism classes 51mple B,—

moduks. Fix n > 0 and let w, denote the inclusion matrix of B, € Bj. For A € Bn and
W € By, the branching diagram has a unique edge connecting A and p if w, (1, A) # 0.
In this case, we write A — . In our examples we have By = F, so that By is a singleton.

Notation 3.3 Let R be an integral domain with field of fractions F. Let A be a cellular
algebra over R and A an A—module. Write AF for AQ®g F and AT for A Qg F.

Let A be a cellular algebra over an integral domain R with field of fractions F, and
suppose A” is split semisimple. Then {(A%)F | A € A} is a complete family of simple
AF —modules.

Lemma 3.4 ([13, Lemma 2.22] and [14, Sect. 2.5]) Let R be an integral domain with field

of fractions F. Suppose that A C B are cellular algebras over R and that AY and BF are

split semisimple. Let w denote the inclusion matrix for A € BF.

1. Forany A € A and n e B and any cell filtration of ResA (A ), the number of
subquotients of the filtration isomorphic to A%, “4iso(u, L),

2. Likewise, for any A € A and ne § and any cell filtration oflndg(A)}i ), the number of
subquotients of the filtration isomorphic to A’g is w(u, A).

Corollary 3.5 Let R be an integral domain with field of fractions F. Let (Hy)y>0 be a
strongly coherent tower of cellular algebras over R, and suppose that H, Fis spltt semisim-
ple for all n. Then for all n and for ) € Hn and n € H,,_H, the multlpllctty ofA F, inany

cell filtration of Resy Hni1 (AZHI) equals the multiplicity of AZnH in any cell filtration of

IndH"+1 (A}f!n)' The multiplicities are independent of the choice of the filtrations.

3.3 Path Bases and Cell Filtrations

We consider an increasing sequence (H,),>¢ of cellular algebras over an integral domain
R with field of fractions F. We assume the following conditions are satisfied:

(1) Hyp=R,and HnF is split semisimple for all n.
(2) The branching diagram H for the tower (H”F )n>0 1s multiplicity free.

We let (H,,, *, >, ﬁ,,, ;) denote a cell datum for H,. Denote the unique element of ﬁo
by 4.

Definition 3.6 A path on H from A € FI; tou € ﬁm (I < m) is a sequence

o= 2D 2D =

with A@ € H; and 2D — A0+D for all i. A path s from A to  and a path t from p to
v can be concatenated in the obvious way; denote the concatenation by s o t. If t = (J =
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2@ 2@ A™ =) isapath from ¥ to A € Hy,and 0 < k < I < n, write t(k) = A%,
t(x,1) for the path AW aD), and write ¢ for t0,n—1]-

Since foralln > Oand all u € ﬁn, the rank of the cell module A’,f,n equals the dimension
over F of (A’,f,n)F , and the latter is the number of paths on the branching diagram H from

# to ., we can take ﬁ# to be the set of /s\uch paths.
We define a total order on paths on H as follows:

Definition 3.7 Let s = (WO, 2D, . a0y and t = (u@, D, .. 1) be two
paths from Hj to H,,. Say that s precedes t in reverse lexicographic order (denoted s < 1)
if 5 = t, or if for the last index j such that A(/) # ), we have A0 < uU) in H;.

Definition 3.8 ([14]) For each n > 0 and each A € H,, let b} | te I/-I\,f‘} be a basis of
the cell module A’},ﬂ. The family of bases is called a family of path bases if the following

condition holds: Let A € ﬁ,, andlett e ItI\,;\ Fix k < n and write t; = tjo x], and t2 = {[ »],
and p1 = t(k). Let x € Hy, and let by x = }_  r(x; s, t1)bs . Then

bix =Y r(xis, t)bloy,.

S

modulo span{b® | g .n) > tx.ay)-

Lemma 3.9

(1)  Suppose that for alln > 1 and for all u € fln, RGSZZ,I (AZn) has an order preserving
cell filtration. Then the cell modules of the tower (Hy),>0 have a family of path bases.
(2) Conversely, suppose we are given a family of path bases of the cell modules of the
tower (Hy)y>0. Then for alln > 1 and for all n € Hn, ResH (A” ) has a cell filtra-

tion. Moreover, if {\ € Hn_1 | A — w}istotally ordered in H,,_], then ReSH,,,. (A’,f]n)
has an order preserving cell filtration.

Proof The first statement is proved in [14, Proposition 2.18]; we will give more concrete
construction of path bases in Section 3.5, in the case that all the algebras H, are cyclic
cellular.

For the converse, suppose we are given a family of path bases {b¢ | t € H, “} forn >0
and for u € Hn Forn > land u € H,, let AV, ... 1) bealistof {A € Hn 1| A— ul,
ordered so that i < j if A .0, Let

N; = span {bt | te ﬁ,ﬁ‘ and t(n — 1) = 1D for some i < j} .

It follows from the definition of a path basis that N; is an H,_; submodule of
Resg’iil (A’,f,ﬂ), and that N;/N; | = A’};jil. If{x e ﬁ,,_l | A — pu} is totally ordered,
then clearly this cell filtration is order preserving. O

3.4 Cyclic Cellularity and Branching Factors

Suppose that A C B are cyclic cellular algebras over an integral domain R. We have the
following observations regarding cell filtrations of restricted and induced modules:
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Cellular Bases 81

(1) Letue B and suppose that Res? A (A ) has a cell filtration:

A 2@ A
{0} =My C M, 'C --.'C M, =ResB(AM). 3.1

Let 8 be a generator of the B-module A%. Since M;/M;_; = A);‘(j) is a cyclic

A module, there exists an element d/w) € B such that §% dﬁj) +M; jisa
generator of M;/M;_;.
(2) Leth € Aand suppose IndB (A ) has a cell filtration:
u® u® WP
{0)=No € Ny C --- C N, =Ind5(A%). (3.2)

Let 8 be a generator of the A—module A’ then 8% ®1 is a generator of the B—module

IndB(A ). Since Nj/N;j_1 = A” is a cyclic B-module, there exists an element

f ) € B such that 8)‘ ® u ) + N;_1 is a generator of Nj/N;_i.

We call the elements df . and uB i branching factors. They are not canonical, but
in the examples in Sections 4 and 6, it will be possible to make natural choices for these
elements.

3.5 Bases of Cell Modules in Towers of Cyclic Cellular Algebras

Consider a tower (Hy),>0 of cellular algebras over an integral domain R with field of
fractions F, satisfying conditions (3)—(3) listed at the beginning of Section 3 We let
(Hy, *, >, H,,, ) denote a cell datum for H,. Denote by @ the unique element of Ho
Because of assumptions (3)—(3), and Lemma 3.4, there is a multiplicity—free branchmg
diagram H associated with the tower, namely the branching diagram for the tower (H, )n>0
of split semisimple algebras over F'. The edges in the branching diagram are determmed as
follows: For A € H, and n e H,,+ 1, A = pif and only if A)‘, appears as a subquotient in

a cell filtration of Res ;" N~ Hot)-
Fix once and for all an order preserving cell filtration of Res et (A’;IHI) foreachn > 0

and each u € H,,H.

0] 2@ 0

{0)=My € M; C --- € M, =Res "“(M ). (3.3)

n+l
Let SZHI be a generator of A’Ifl Following observation (1) in Section 3.4, for each edge

- -+ (n+1)
A — uin H, fix an element d)\ € H, 1 such that 8H +1d/\’lf)—>u

of Mj/M;_. Note that the cell modules of H; have rank 1, and we can choose all the

+ M;_ is a generator

1 =
elements d@%u for u € Hytobe 1.

Now fixn > land A € H,.Foreachpatht = (% = 2@ A a0 =) e H,
define
o) -1 o

d -d

dt =d A=2) 3= T Gy ).

A=) _5 ()

3.4)

Proposition 3.10 Let n > 1 and let u € I’-\In. Consider our chosen cell filtration of
Hy, "
ResHH (AHn ),

A A2 A I
{0)=My € My C --- € M, =Resy’ (A’,;n). (3.5)
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(1) For1<j<r,
{8’;,”dt |te HY and tn — 1) € {)\(1)!)\(2)’.__!)\(1')}}
is a basis of M ;.

(2) In particular, {Szn de | te ﬁ,f} is a basis of A‘;{n.

Proof Evidently, statement (1) implies statement (2). We prove both statements by induc-
tion on n, the case n = 1 being evident. Fix n > 1 and suppose the statements hold for cell
modules of Hy for 1 < k < n — 1. For each i we have an isomorphism of H,_j—modules

Y
i SHndA.(i)*)[J.

h+ Mi_y > 8% h
from M;/M;_; to A},‘_;;l]. By the induction hypothesis, {Sﬁiilds | 5 € I/-I\r’l\f)l} is a basis of

the cell module A’},:ll . Pulling back this basis via ¢;, we get that

) ' ~ 0
{SHndA(”—n/,ds +Mi— | 5€ anl

is a basis of M;/M;_. It follows that for each j,
o . 0!
o, a0 do | 1 i< jand s e B2 )
is a basis of M. But this basis is equal to

{agndt |te HY and tin — 1) € AV, 2®, .. _,Am}} _

This proves statement (1), and statement (2) follows. O

Corollary 3.11 For each n and ) € ﬁn, let ¢, be a lifting in Hnlz)” ofaxl((S},:,n)* ® 5;\-1,, ).
Then

{d;“ckdt } A€ Hy,ands, te IEI\,;\}

is a cellular basis of H,, which is equivalent to the original cellular basis 7.

Proof Follows from Proposition 3.10 and Lemma 2.10. O

Lemma 3.12 The family of bases {5)[11” de | te Itl\,i“} of the cell modules A)IL-I,, is a family of
path bases.

Proof This is a special case of [14, Proposition 2.18]. O

4 Example: The Iwahori-Hecke Algebra of the Symmetric Groups

In this section, we apply the theory of Section 3 to the Iwahori—-Hecke algebra of the
symmetric groups. In particular, we recall that the sequence of Hecke algebras is a coher-
ent tower of cyclic cellular algebras, and we compute the branching factors for reduced
and induced cell modules. We show that the path bases obtained via ordered products of
branching factors coincide with the Murphy bases.
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4.1 Combinatorics

Let n denote a non—negative integer and G,, be the symmetric group acting on {1, ..., n}
on the right. For i an integer, 1 < i < n, let s; denote the transposition (i,i + 1).
Then G, is presented as a Coxeter group by generators s1, 52, . . . , $,—1, with the relations

s?=1, fori=1,....,n—1,

5iSj = S;jsi, for |i — j| > 1.

SiSi18i = Si418iSi+1, fori=1,...,n—2.

A product w = sj, 5, - - - 5;; in which j is minimal is called a reduced expression for w and
j = l(w) is the length of w.

We will assume familiarity with the usual combinatorics associated with the symmetric
groups: compositions and partitions, and their diagrams, tableaux, dominance order, etc. We
will follow the terminology and notations of [28], especially Section 3.1. Our convention
regarding diagrams is illustrated by the example: for the partition A = (3, 2), its diagram is

=[]

The notation A - n indicates that A is a partition of n. The diagram of a partition is
commonly called a Young diagram. We denote the set of Young diagrams of size n by ),
For a composition A of size n, let 7 (1) denote the set of all A-tableaux (possibly with
repeated entries) and 7o(1) the set of A—tableaux in which each number 1,2, ..., n appears
exactly once. For a partition A, write TS()) for the set of standard A—tableaux. If t € To())
and 1 < k < n, we write node¢ (k) for the node in A containing the entry k, row(k) for the
row coordinate of k in t and col(k) for the column coordinate of & in t.

The symmetric group S, acts freely and transitively on 7o()), on the right, by acting on
the integer labels of the nodes of [A]. For example,

2%2,4)3,6,5) =[3131°
19

[o[=]=

Let t* denote the standard A—tableau in which 1,2, ..., n are entered in increasing order
from left to right along the rows of [A]. Thus in the previous example where n = 6 and
A=(3,2,1),

T
6]

4.1)

For each t € Tp(1), let w(t) denote the unique permutation such that t = *w(t). The Young
subgroup &, is defined to be the row stabilizer of t* in &,,. For instance, when n = 6 and
A =(3,2,1),asin (4.1), then &, = (s1, 52, 54).

Let A - n and let t € Tp(A). Let a be an addable node of A. Then we write t U « for
the tableau of shape A U « which agrees with t on the nodes of A and which has the entry
n + 1 in node «. If tis a standard A—tableau, then the node of t containing the entry n is a
removable node B of L. Write ' = t |,,_1 for the standard tableau of shape A \ B obtained
by removing the node 8.

4.2 Iwahori-Hecke Algebras of the Symmetric Group

Let R be an integral domain and ¢ be a unit in R. Let H,, = H,(¢%) denote the Iwahori—
Hecke algebra of the symmetric group, which is presented by the generators 71, ..., T,—1,
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and the relations

T, =T,T;, ifli —jl>1,
LiTinT =TinT; Ty, fori=1,...,n-2,
(T —q)(T; +q~H =0, fori=1,...,n—1.

If we need to refer explicitly to the ground ring R, we write H, (R; ¢%). If v € &,,, and
v = §;,Si, - - - §i; is areduced expression for vin &,, then T, = T;, T;, - - - T;, is well defined
in H, (qz) and {T, | v € &,} freely generates H, (qz) as an R—module. It follows from this
that H,, embeds in H,4; for all n > 0. The R—module map * : T, — T,-1 is an algebra
anti—automorphism of H, (¢%). Ifi, j = 1,...,n,let

T:

o { TiTiyvy---Tj—y, if j >,
ij =

T,'_lT,'_z---Tj, ifi > j

If R is a field of characteristic zero and ¢ is not a proper root of unity, then it is known
that each of the algebras H,, is split semisimple with simple modules labeled by the set V),
of Young diagrams of size n; moreover the branching diagram H of the tower (H,),>0 is
Young’s lattice; namely for Young diagrams A and p with || = |A| + 1, we have A — p if
and only if p is obtained from A by adjoining one node.

If u € Hy, define ’H“ to be the set of paths (1@ =@, u™@, ..., u®™ = 1) on Young’s
lattice 7 from # to w. There is an evident bijection between the set of such paths and
standard tableaux of shape A.

If € H,, let

= q¢VT. 42)

veS,

In the following statement, recall that for A € ’;Z,' and t € TSY9()), w(t) denotes the
unique permutation in &; such that t*w(t) = t.

Theorem 4.1 (Murphy [33]) Fori > 1,
I = [ My, = =T (5)m;\Tw(t) |5 te TStd()\) A€ H }
is an R-basis for H;, and (H;, *, ﬁ,-, >, J4) is a cell datum for H;.

Remark 4.2 The basis elements defined here actually differ by a power of g from those
defined by Murphy. Murphy and other authors use generators (call them 7;) for H,, satisfy-
ing (T; — ¢®)(T; + 1) = 0. These are related to our generators by 7; = ¢7; Thus Murphy’s
basis elements would be g/(®)+ (t)mst

We let {m’t\ | te T59(0)} denote the basis of the cell module A;\{n derived from the
Murphy basis. Then we have m’t\ = mft\k T (¢ In particular, we see that the Hecke algebra is
a cyclic cellular algebra, with A%n generated by m)‘k The bimodule isomorphism
ay THEHP — (AL, )*®A)‘ isoy mt +HPH T*(s)(mt,\) ®mtATw(t) In particu-
lar m;, is aliftin HE2* ofot Y((m tA) ®m{l) so plays the role of the element c;, in Section 2.5.

We record this as a corollary

Corollary 4.3 The Hecke algebras H,, are cyclic cellular algebras.
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4.3 Cell Filtrations and Branching Factors

Our next task is to recall that the sequence of Hecke algebras (#,),>0 is a strongly coherent
tower of cellular algebras, and to determine the branching factors dl(:i , and uf:’l) , When

n — M. First we discuss the cell filtrations of restrictions of cell modules and the branching
factors df:i 5

Theorem 4.4 (Jost, Murphy) Letn > 1 and A € 7/-2,1. Let Aé_[” be the corresponding cell

module of Hy. Then ResHZ_1 (A%n) has an order preserving filtration by cell modules of
Hp—1.

Jost [22] has shown, using the Dipper—James description of Specht modules of the Hecke
algebras [5], that the restriction of a Specht module has a filtration by Specht modules.
Together with Murphy’s result that the cell modules of the Hecke algebras can be identified
with the Specht modules [33, Theorem 5.3], this shows that the restriction of a cell module
has a cell filtration. A direct proof of Theorem 4.4 using Murphy’s description of the cellular
structure is given in [15].

We now give a more precise description of the cell filtration in Theorem 4.4. Let
ai, ..., o, be the list of removable nodes of A, listed from bottom to top and let M(j ) =
A\ a;. Thusi < jifand only if u® > ;). Let Ng = (0) and for 1 < j < p,let N; be the
R-submodule of A;‘_[” spanned by by the basis elements m’t\ such that the node containing
nintisoneof oy, ..., aj. Then we have

(0) =No S Ni--- S Np =Res;" (Af).
The explicit form of the assertion of Theorem 4.4 is that the N; are H,_j—submodules of
o)
Res," (A, )and Nj/N;j_| = A’;_[:il for 1 < j < p. The isomorphism is determined by

)
my = miy, + Nj-1. 4.3)

We can now determine the branching factors d l(f_)) X

n)

Corollary 4.5 The branching factors d[i _,; can be chosen as follows: Let ) € 7/-2,, and

n e ’;{Zn,1 with p — A. Let o = A\ . Then

A, = Tywia)- (4.4)
More explicitly, let a(a) be the entry of t* in the node a. Then w(t* Ua) = (n,n —
1,...,a(w)), so

dlan_))k = T(n,nfl ,,,,, a(a)) = Ta(a),n' (45)

. . G G
Proof Under the isomorphism A%}H — Nj/Nj_1, the generator m’; () 1s sent to

+ N Zmi‘-ATw )+Nj_1.

a
m i j
9 Uy, AUy

(n)y  _
n—>r
wtUe) = (n,n—1,....a(@),sothatd\” , = Tn_i....at) = Tate.n- O

.....

This means that we can chose d Tw(tua)- Now it is straightforward to check that
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LetA € H, and let t be a standard A—tableau. We identify t with a path on the branching
diagram 7—[ t=@ =20 .. . 1AW =)). Define

dy =d™ arh —dW (4.6)

A=D 0m Cp=2) 5 1) 20 (M-

Lemma 4.6 Let A be a partition of n, let a be a removable node of A, and let © = A \ «.
Let a(a) be the entry of t* in the node a. Let s € 76(#,) be a u—tableau. Then

wsUa)=(n,n — a(w) ws),

and
Tw(sue) = Tnn—1,...a@) Twis) = Ta@).nTw(s)-

Proof We have
sUa={"Ua)w) =@, n—1,...,a@) ws).
Therefore,
wsUa)=((n,n— a)w(s).
Now one can check that (n,n — 1,...,a(x))isa dlstmgulshed left coset representative of
S,,_1 in 6,,. Therefore,
Tw(sUa) = T(n,n—l ..... a(a))Tw(s) = Ta(a),nTw(s)-

O

Lemma 4.7 Let A be a partition of n and let t be a standard A—tableau. Then T, = dy.

Proof Let « be the node of A containing the entry n in t and let 4 = A \ «. Let t’ be the
standard p tableau obtained from ¢ by removing the node «. Let a(«) be the entry of t* in
the node . Then t = ' U «, so by the previous lemma and Corollary 4.5,

Tw(t) = Ta(oz).nTw(t’) = dl(Ln_)»LTw(t’)'

By induction, we obtain the desired formula Ty,y) = d. O

Corollary 4.8 The bases of the cell modules and the cellular basis of the Hecke algebra
H,, given in Proposition 3.10 and Corollary 3.11 coincide with the Murphy bases:
my = ml, dy, and — mt, =d}m; dy. 4.7

Next we turn to the cell filtration of induced cell modules and the branching factors
(n)

Uplsy.
Theorem 4.9 (Dipper—James, Murphy, Mathas) Letr yu € ﬁn and let Ain be the corre-

sponding cell module of H,,. Then IndH"“
modules of Hy+1.

(A%n) has an order preserving filtration by cell

Corollary 4.10 The sequence of Hecke algebras (Hp)n>0 is a strongly coherent tower of
cyclic cellular algebras.

Proof Combine Theorem 4.4, Theorem 4.9 and Corollary 4.3. O

@ Springer



Cellular Bases 87

Let_oz =oap,0,...,a, = o be the list of addable r_10des of W, listed from top to bottom.
Let v¥) = p U ;. Note that i < j if and only if v® > v, The cell modules of H, 1

occurring as subquotients in the cell filtration of IndH”“ (A ) are A;_L)H forl <i < p.
One proof of Theorem 4.9 is obtained by combmmg [5 "Sect. 7] with [33, Theorem
5.3]. A different proof was recently given by Mathas [30]; this proof is based on Murphy’s

Theorem 4.12 on the existence of a cell filtration of permutation modules of H,. We are

going to sketch Mathas’ proof in order to point out how the branching factors u,(filv) can be

extracted from it.

Definition 4.11 Let A, u Fnand T : » — N be a A—tableau. Then:

(1) Tisatableau of type pifforalli > 1, u; = ti{a € A | T(a) = i}.
(2) Tis semistandard if the entries of T are weakly increasing along each row from left to
right and strictly increasing along each column from top to bottom.

Let ’7;58“1 () be the set of semistandard A-tableaux of type p and IESStd (7:2,1) =
U, 7, 7';’5“1 (1) be the set of all semistandard tableaux of type w.

Let A, u b nandt € 754()). Define (%) to be the tableau obtained from t by replacing
each entry j in t with the row index of the entry j in t*. If 7;55“' (X) # @, then L &> . Note

that there is a unique element T* € 77?5“1 (), namely T* = p(t").
If S € T554(%) and t € TSU(), let

mse= Y q'ml, (4.8)

seTS4()
n(s)=8

Letu € ﬁn. Define the permutation module
MY =myH,.

Theorem 4.12 (See [33, Theorem 7.2]) If u € 7/-[\,1, then:

(1) M*" is free as an R-module, with basis
{msi |8 e 75540, te T5UG) for i e T

(2) Suppose that 7;SStd(7:[\n) ={Sy, ..., Sk} isordered so thati < j whenever A) >\
where \) = Shape(S;). Let M; be the R-submodule of M* spanned by the elements
{ms;¢ | j <iandt € TS9MD)). Then

Pl L@ 3(m)

{0}=My € My € -+ C My =M" 4.9)
is a cell module filtration of M". The isomorphism M;/M;_| = A%-Z;) is determined
by

msyi+Mj_y > m}”, for te TG, (4.10)

Remark 4.13 In Theorem 4.12, we have S, = T# and A(™ = p.

Since H,,+1 is free of rank n+1 as a left {,—module, it follows that the induction functor
IndH'”l (__ )= __ ®, Hnt1 is exact. We will write Ind for this functor in the following
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discussion. Because of exactness, we have

Ind(M;)/Ind(M;_1) = Ind(M;/M;_) = Ind(A},). @.11)

In particular
Ind(M*)/Ind(M,—1) = Ind(A’;[n). (4.12)

Mathas’ proof of Theorem 4.9 proceeds by exhibiting a cell filtration of
Ind(M*)/ Ind(M;,—1).

Another consequence of the freeness of H,,+; as a left H,—module is the following: if
M is aright ideal in H,,, then

Ind(M) = M ®7, Hpy1 = MHpi1, (4.13)

viax ® h +— xh. We will simply identify Ind(M) with M7H,,+1. Recall that w denotes the
lowest addable node of p, and note that m, = m,u. Hence,

Ind(M*) = M"Hypi1 = myHos1 = muvoHar1 = MH2. 4.14)

To proceed, we need to relate semistandard tableaux of size n and type p and semistan-
dard tableaux of size n 4+ 1 and type u U w. Let [ denote the number of non—zero parts of
W, sothat o = (I + 1, 1). If S is a semistandard tableau of shape A and type p, and B is an
addable node of A, then we define the semistandard tableau S U g8 of shape A U  and type
nUwby SUB(x) = S(x) if x € [\] and S(B) = I + 1. We write T,351(S) for the set of
semistandard tableaux SU B as § ranges over addable nodes of A. It is easy to see that every
Ue ﬁjf(?—twl) is obtained as S U 8 for some S and some f.

Recall that Sy, ..., S, = T*" is the list of all semistandard tableaux of size n and type
i, listed so that Shape(S;) > Shape(S;) implies i < j. Mathas defines the following R-

submodules of MHY:

N; = span{muyy | U € T55(S)), v € T5(Shape(V)) for 1 < j < i} (4.15)
Lemma 4.14 ([30, Lemma 3.5]) Ler S € T25(1), U € TS59(S), and v = Shape(U).
Then myy € mgp. Hpt1.

Proposition 4.15 ([30, Theorem 3.6]) N,,,—1 = Ind(M,,—1).

Remark 4.16 The proof of this result in the published version of [30] has a gap, but this
was repaired in the version posted to the arxiv.

By applying Theorem 4.12 to M*Y*, we see that MY /N,,_; is free with basis

{mus + Ny | U € TS, 0 € TS (Shape(u)) |
(4.16)

= {mTuUﬁ,n + Np—1 | B is an addable node of w, v € TStd(u U ,8)} .

We can now exhibit an order preserving cell filtration of M#*Y® /N, | = Ind(A%n ). In the
following, we write N = N,,1. Recall that @ = o, a2, ..., o) = w is the list of addable
nodes of p listed from top to bottom and () = mwUaj. Let JY=(0)andforl <i < D,
define JI € M"Y /N by

J' = span [mT;LUaj,U +N|j<iandv e 'TStd(/L Uocj)] .
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Theorem 4.17 ([30, Corollary 3.7]) Each Jiisan Hps1 submodule ofM“U“’/N,

©=J0cJ'c...cJ”=M""N, (4.17)

®

el
and J' ) J'TH = At

This completes the sketch of Mathas’ proof of Theorem 4.9. It remains to see how the cell
filtration (4.17) carries over to Ind(A%n ), and to identify the branching factors uffi L) . The
isomorphism ¢ : M*Y® /N — Ind(Asftn) is the composite of the isomorphism M*Y® /N =
Ind(M*/M,,—1), given by

myh+ N+ (my, + Mp_1) ®h,
and the isomorphism Ind(M* /M,,,_1) = Ind(A%n) given by
(mruge + Mypy—1) @ h > mly @ h.
Since myug = my,, the composite isomorphism is given by
@ :muh+ N+ mpy, @h. (4.18)

We need to examine how this isomorphism acts on the basis (4.16) of M*Y* /N
Let 8 be an addable node of u and let v = p U B. Suppose that 8 is in row r, and let

.....

T,'_1 T,'_z s T, Define
>
D)= ¢ Tuus
k=0 (4.19)
=1l+qTs—1+ qz To1 Ty 4 q" Ty 1Ty - Ta—y,-
In particular, D(w) = 1.

The following lemma can be extracted from [30].

Lemma 4.18

() my =T, muTui1.aDB).

2) wtup)=m+1,n,...,a). Thus m‘t)V,tMUﬁ =my(Trt1.0)*.
(3) mmupe =q" " my Ty D(B).

(4) The isomorphism ¢ : MM /N — Ind(A’;Ln) satisfies

@(mreupg,w + N) =mi ® ¢" 7' T, p1.4 D(B).

Proof If B = w, then T,,41, = D(B) = 1, and all the statements are evident. Sup-

pose that 8 # w. Let V' be the composition v/ = (1, ..., iy, 1, rt1, ..., 7). One has
Tnjrll’uTj Thi1,a = Tjy1if a < j < n — 1. This follows from the identity in the braid
group:

-1 -1
(6, -0, )oj(0on--04) =0jt1,
fora < j <n — 1, where the elements o; are the Artin generators of the braid group. From
this, we obtain:

my = Tn+1,amuTn+l,a~

Note that S,y C &, and D(B) = Y ql(")Tx, as where the sum is over the distinguished
right coset representatives of &,/ in &,,. Hence m,, = m,» D(8), and part (1) follows. The
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first assertion in part (2) is evident and the second statement follows because 7{; 41
Ta,n+l = (Tn+l,a)*-

For part (3), mtuyg,vv = Zs ql(s)(Td(s))*mv, where the sum is over standard tableaux
5 of shape v such that (u U w)(s) = T* U B, according to the definition (4.8). But

..... a) =

there is only one such standard tableau, namely s = t* U B. Applying parts (1)
and (2),
mrnoge = q" T Ty o my

=q"""""my Tyy1,0 D(B)-
Part (4) follows from part (3) together with the description of ¢ in Eq. (4.18). O
Corollary 4.19 The branching factors u,(fi},) can be chosen as follows: Let u € ﬁn and
v € Hpt1 with u — v. Let B = v \ u. Suppose that B is in row r and let a = Z;zl v;.
Then:

MHr MHr
uf ) =To1aDB) = Tutra Y 4" Taak =Y ¢ Tuira i (4.20)
k=0 k=0

Proof In Theorem 4.7, we have for j > 1,

J/ = (mT,anj,tm + N)Hpg1 + 771
Set I/ = ¢(J/). Then I/ /17! = A;’_Z)H and

U= PN, w0 T N g1 + Eany

Hence, the statement follows from Lemma 4.18, part (4). O

5 Algebras with Jones Basic Construction
5.1 Cellularity and the Jones Basic Construction: A Correction

In [13, 14], Goodman and Graber developed a theory of cellularity for algebras with a
Jones basic construction. Examples of such algebras include the Birman—Murakami—Wenzl,
Brauer, partition, and Jones—Temperley—Lieb algebras, among others. There was, however,
a mistake in the proof in [13] that these algebras constitute coherent towers of cellular
algebras. In this section, we will review the setting of [13, 14], describe the error, and explain
what needs to be done to correct it.

The setting in [13], as modified in [14] is the following. First recall that an essential
idempotent in an algebra A over a ring R is an element e such that > = e for some non—
zero 6 € R. Let R be an integral domain with field of fractions F and consider two towers
of algebras with common multiplicative identity,

AgC A CAC--- and HyCH CH,C---. (5.1
It is assumed that the two towers satisfy the following list of axioms:

(1) There is an algebra involution % on U, A, such that (A,)* = A,, and likewise, there is
an algebra involution * on U, H,, such that (H,)* = H,.
(2) Ap = Hp = R and A = H; (as algebras with involution).
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(3) Forn > 2, A, contains an essential idempotent e, 1 such that e; | = e, and
An/(Anen—1A,) = H, as algebras with involution.

(4) Forn > 1, e, commutes with A,,_; and e, A,,e, C A, _1¢y.

(5) Forn>1,A,+1e, = Aye,, and the map x — xe, is injective from A, to A,e,.

(6) Forn>2,e,1 € ApyienAnyi-

(7) Foralln, Al :== A, ®g F is split semisimple.

(8)  (Hyp)n>0 is a strongly coherent tower of cellular algebras.

Under these hypotheses, it is claimed in [13, 14] that (A,), >0 is a strongly coherent tower
of cellular algebras. The strategy of the proof is to show by induction that the following
statements hold for all n > 0:

A, is a cellular algebra.
For2 <n, J, = A,e,—1A, is a cellular ideal in A,,.
For 2 < n, the cell modules of J, are of the form A = A’ ®4,_, en—1A,, where A’ is
a cell module of A,,_».
e The finite tower (Ax)o<k<n 1S strongly coherent.

For n < 1 these statements are evident. Assuming the statements hold for some fixed n > 1,
one first proves that J, 11 is a cellular ideal in A, 41 with cell modules of the form A =
A'®4,_, enAnt1, where A’ is a cell module of A,_;. It follows from Lemma 2.5 that A,
is cellular.

It then remains to show that for each cell module A of A, 41, the restriction of A to A,
has an order preserving cell filtration, and that for each cell module A of A,, the induction
of A to A,4+1 has an order preserving cell filtration. In fact, we will go over the details of
the proof of these last two steps below in Theorem 5.6. For now, we note that in the proof
of the statement about induced modules, it was falsely claimed in [13], in the last paragraph
on page 335, that if A is a cell module of J, then AJ, = A. In fact, this does not follow
from the axioms (1)—(8) listed above, so it is necessary to add an additional axiom to our
framework, as follows:

(9) Forn>2, e, 1Anen_1A, = ey—1A,.

From this, it follows that for a cell module A = A’ ®4,_, en—1A, of J,, we have
AJ, = A, and the proof in [13] can proceed as before.

Let us now consider the applicability of the augmented framework axioms (1)—(9) to the
principal examples considered in [13, 14]. In fact, in each example, a stronger version of
axiom (6) holds, namely

en—1enen—1 =e,—1 and epe,—1e, = e, for n>2.
Thus for n > 3,
enflAnenflAn 2 €n—1€p—2€n, An = enflAn-
Therefore, Axiom (6) reduces to the statement
e1Are1Ar = el Aj.
When A, is the n—th BMW, Brauer, partition, or Jones—Temperley-Lieb algebra defined
over an integral ground ring R, we have A = H; = R. Let § be the non—zero element of
R such that e% = §ej. Then we have
e1Are1 Ay = ejAje1Ay = e%Az = e Ay,
where we have used e; Ay = e¢j A1 = Rej. In each of these examples, e] A is free as an R—
module, and hence Axiom (9) holds if and only if § is invertible in R. It follows that Axiom
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(9) does not hold when R is the generic ground ring, but it does hold when R is the generic
ground ring with §~! adjoined.

In fact, for these algebras, it is false that (A,),>0 is a coherent tower of cellular algebras,
over the generic ground ring, but, by [13], as corrected above, it is true over the generic
ground ring with 8! adjoined. This is illustrated by the example of the Jones—Temperley—
Lieb algebras in the following section.

5.2 An example: The Jones—Temperley—Lieb Algebras

We first state an elementary result about the commutativity of specialization and induction.

Let A be an algebra over an integral domain R and let ¢ : R — k be a ring homomor-
phism from R to a field k. Write A¥ for A ®p k, and for a right A—module M, write MF* for
the right A*—module M ®p k.

Lemma 5.1 Let A C B be algebras over an integral domain R, let ¢ : R — k be a ring
homomorphism from R to a field k, and let M be a right A—module. Then
Ind% (M) ®r k = Ind%, (M),

as right B¥~modules.

Corollary 5.2 [f, in the situation of the lemma, Indﬁ (M) is free as an R—module, then
dimy (Indﬁﬁ (M%) is independent of the choice of k and of the homomorphism ¢ : R — k.

Now we consider the Jones—Temperley—Lieb algebras A, = A, (Ro; ) defined over the
generic ground ring Ry = Z[8], where § is an indeterminant. For the definition of these
algebras and a description of their cellular structure, see Section 6.4 of this paper, and further
references there.

The algebra A, has two cell modules, each of rank 1. They are Ag = €1A2k = Rej

and A, = Ay/Re;. When k = Q(8), Ind::%(Ag) is two dimensional and Indzg(A’{) is
three dimensional, as one sees by examining the generic branching diagram for the tower
(Aﬁ)nzo. However, when k = Q and § = 0, A’é = A’{, so also Ind::g(A’(‘)) = Indjé (A’f). It
follows from this and Corollary 5.2 that at least one of Ind(Ap) or Ind(A ) fails to be free as

an R-module, and in particular one of these induced modules does not have a cell filtration.

Corollary 5.3 The tower of Jones—Temperley—Lieb algebras (A,(Ro; 8))n>0 over the
generic ground ring Ry = 7Z[8] is not a coherent tower of cellular algebras.

5.3 Standing Assumptions

For the remainder of the paper we will work in the setting described by axioms (1)—(9) of
Section 5.1, and assume in addition that

(10) Each H, is a cyclic cellular algebra.
5.4 Cellularity of the Algebras A,
Next we review some of the consequence of our axioms that were obtained in [13, 14], as

corrected above in Section 5.1. In the following let (H;, *, Fli, >, %) denote the cell datum
for H;.
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(1) Each A, is a cellular algebra. In fact, this is demonstrated by showing that J, =
Apen—14A, is acellular ideal of A,. Since the quotient algebra H,, = A,,/J, is assumed
to be cellular, it follows fr/(zm Lemma 2.5 that A,, is cellular.

(2) The partially ordered set A, in the cell datum for A, can be realized as

’\n:{()L 1)|0<1<Ln/2jandk€ﬁn 21}

with the partial order (A > (/L, m)ifl > morifl =m and A > u in H,, 2.
(3) The cell modules A( ) for ) € H,, are those such that A()‘ 0 J,=0.Letm, : A, —
A0

A, /Jy = Hy, denote the quotient map. The cell module can be identified with

A)IL-I,, via xa = xm,(a) for x € A)IL-I,, and a € A,, as in Remark 2.6. The cell modules

AX:I) for [ > 0 are the cell modules of the cellular ideal J,,. For [ > 0, we have

M) o~ A l—1 )»l 1
qun ) = Ai\nfz ) QRA,_s en—14, = A( ) QAp_r €n— 1An-1.

(4) The sequence (A,),>0 is a strongly coherent tower of cellular algebras. Since AL
and HnF are split semisimple for all n, the two towers have branching diagrams, by
Corollary 3.5.

(5) The branching dlagram A for the tower (An)n>0 is that “obtained by reﬂectlons from
the branching diagram H of the tower (Hp)n>0- That s, for (A, 1) € A and (u, m) €
An+1, we have (A,/) — (u,m) only if m € {l,1 + 1}; moreover, (A,l) — (u,l) if
and only if A — u in ﬁ, and (A,l) - (u,l + 1) ifand only if & — X in H.

Remark 5.4 The parameterization of Xn given here differs from that used in [13, 14].
Taking Axiom (10) into account, we obtain:
Theorem 5.5 The tower (Ap)n>0 is a strongly coherent tower of cyclic cellular algebras.

Proof From [13, 14], with the correction noted in Section 5.1, we have that the tower is
a strongly coherent tower of cellular algebras. It remains to show that each A, is cyclic
cellular. We prove this by induction on n. The statement is known forn = O and n = 1,
since Ag = R and A| = Hj. Fix n > 0 and assume the algebras A for k < n are cyclic
cellular. The cell modules AX\,,S are cell modules of H,1, so cyclic by axiom (9). For
[ > 0, we can take
A()Lni)l Ax\ijl) ®4,_ enAn+ti,

By the induction hypothesis, A( [1 Vs cyclic, say with generator 82;’51). It follows that

AX"H) is cyclic with generator 5(’\ l) 82"{1_1) ®A,_; €n- O

5.5 Data Associated with the Cell Modules A}

We suppose that generators 8 , of A* have been chosen for all n > 0 and for all A € H,.
We suppose also that H,,—H, blmodule isomorphisms a;, : He"/HP — — (A} )*®r A

have been chosen, satisfying * o &y = «; o *. Finally, we suppose that elements ¢, € Hnlz}‘
have been chosen with «; (c;, + Hnw‘) = (81’}{”)* ® 8%{".
Now we want to do the following:

(1) establish models of cell modules Afjn'” of A, forall n and all (A, 1) € A,;
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(2) select generators SXL’” for each cell module;
(3) choose A,—A, bimodule isomorphisms

Al Al
a()h,l) . AE(}\,Z)/AD(}\,Z) N (Agn ))* ®R qun )

satisfying * o o(n,1) = Q(p]) O *;
(4) and finally choose elements c(; ;) € ABXD gych that

ALl Al
g plean + APHD) = @) @ 85"

When [ = 0, we identify AX\n’O) with A’}_,n, and we proceed according to the prescription
of Remark 2.6 and Remark 2.11. Namely, (SX;’O) = 81’}{”; ;0 ta+ A,,DO"O) — ay (m,(a) +
HP™); and c(;_ o) is any element of 7,7 (c3).

We continue by induction on n. For n < 1 there is nothing to do, since Ag = R and

A1 = H,. Fix n > 2 and suppose that all the desired data has been chosen for all kK < n
and all (u, m) € Ay. We have to consider (A,]) € A, 41 with [ > 0. As a model of the cell

module A()‘J) we can take AO‘”’E]) ®a4,_,; enAnt1, and for the generator of the cell module

we can take S(Af 8(“ b ®4,_; €n-
Next we define o, 1) Accordlng to [13, Sect. 4],

>l >, l-1
Az = App a0

n+1 enAnt1

~ >(a,l1—1)
= Apgien RA,_ An—] RA,_ enAnii,

as Ay4+1—A,+1 bimodules, with the isomorphism determined by ajxe,az — aje, @ x ®
enar. Similarly

> (A1 >(A,l—-1
AT = A AT G0

n+1 enAnt

I>(Al 1
= Appien ®a,_, A, O,y enAntl-
Moreover, we have an isomorphism

D Al W) > )\. -1 Ad—1
n+(1 )/A,liil ) Antien ®a,_, (A ( )/A,li(l )) ®A,_1 enAn+l,

determined by

p(aixeyay + Ar'if’} l)) =aie; @ (x + AD(A = D) @ enan.

We identify (e, Aj41)* with A, +1e, (as A, +1—A,—1 bimodules). Thus
1l rl—1 rl—1
AGDY =AYV @4,y enAni))” = Angien ®a,_, (AGTTD)".
We define

ap,ny = (da, e, @ 1-1) @ ide,4,,,) © @.
Thus

AZOD 40 Al—1 ai—1
g - ,,Jfl )/A,Hfl ) Augien A (A( 1 MY A(AH )®AH enAntl

(/\ D .0
(A ) ® A n+1
Now one can check that x o a(, ;) = a1y 0 *.
D(A =D, <« AB®D
n =

el and

Note that ¢, —1ye, € A,

agn(coi-nen + AL ) = @ LT @ 6V @ en) = (5 @ 5!

n+1 Apy1?

so we can take ¢y, ;) = ¢ 1—1)€n.
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Let us restate this last observation, replacing n+1 by n. We have shown that if (1, /) € A,
and [ > 0, then (we can take)

Crl) = €, l-1)€n—1 5.2)
By induction, we have
C(x,l) = C(A,0)€n—20+1€n—20+3 " * - €n—1. (5.3)

Expressions of this form will appear again, so we establish the notation

1 ifl=0
- oisi-eny ifl=1,...,|n/2], and
r(ll)l _ ] én-20+1€n—2i43 """ Cn—1 1 ln/2], an (5.4)
[ factors
0 if I > |n/2].

With this notation, we have
Chl) = C, 0)6’,(1) 1 5.5)

5.6 Branching Factors

We continue to work with a pair of towers of algebras (5.1) satisfying the standing
assumptions of Section 5.3.

We know already that both of the towers (H,),>0 and (A,),>0 are strongly coherent
towers of cyclic cellular algebras, with Hf and A split semisimple for all n. Therefore,
the analysis of Section 3.5, concerning branching factors and path bases, is applicable to
both towers. We will show that the branching factors and path bases for the tower (A,),>0
can be computed by explicit formulas from those for the tower (H,),>0.

We suppose that we have chosen once and for all the following data for the tower
(Hp)n>0, following observations (1) and (2), in Section 3.4:

(1) A generator 8 of the cell module A’\ for each n and each A € H,,
(2) Order preservmg cell filtrations of Res ”“ (A” ) and of IndH"+1 (A’}in) for all n and
forall A € H,L and u € H,,+1,

A 2@ A

{0}=My € My € --- C M, =Res ”*'(AHH) (5.6)
and
u® u® o
{0}=Ny € N € -+ € Np=Ind ”*'(A ) (5.7)
(3) Branching factors d;(:il,l and u(;:> in Hy,41, for each n and for each A € Hn and

uE ﬁn+l such that A — p in H, with the property that

In (n+1) A
8Hn+1dx<f>—>u + Mj_; is a generator of M;/M;_| = Ay,
and
A (n+l) H(I)
3 ®u o + N;_1 is a generator of N;/N;_1 = AHn+1
(n+1) =(n+1) (n+1)

(4) Foreachn, A and p, arbitrary liftings ﬁ)t_m € ”n+1 (”A—m) dd/\—m n+1 (dk_m)

Since (A;)n>0 is a strongly coherent tower of cyclic cellular algebras with each A”F

split semisimple, we know that there exist order preserving cell filtrations of Resﬁﬁ“ A)

for each cell module A of A, and of Indﬁj*' (A) for each cell module A of A,, and
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there exist branching factors d(A l)ﬁ (wm) and ”((Tl))»( m) in A, associated to each edge

(A,I) = (u,m) in the branching diagram A, with properties analogous to those listed
above.

Neither the cell filtrations nor the branching factors are canonical. However, it was shown
in [13] that cell filtrations of the induced and restricted modules for the tower (A,) can be
obtained recursively, based on the cell filtrations of induced and restricted modules for the
tower (H,). We will show here that the branching factors for the tower (A,) can also be
chosen to satisfy recursive relations, so that they are determined completely by the liftings
_(H]) and d; NI ll of the branching factors for the tower (H,).

Each of the statements in the following theorem should be interpreted as applying when-

ever they make sense. For example in statement (2) the branching factor d(x ,)_) (m+1)

makes sense when n> 1, (A1) e A,,, (w,m+1) §An+1, and (A, ) > (u,m +A1) in the
branching diagram A. This implies that (u, m) € A,_; and (u, m) — (A,1) in A, so that

the branching factor u(( "

)= Oul) also makes sense.

Theorem 5.6 The branching factors for the tower (A,)n>0 can be chosen to satisfy:
(1) ~(n+1)

M d<x,9§—><u,0> d»\—m)

(2) d(n+ (n

D= qum+) = Y my— D
3 (n+l) D)
B U 0o =l
(n+1) (n)
@ UG umsty = Dgmy— oo e

Proof To prove this result, we have to look into, and add some detail to, the proof in
[13, 14] that the tower (A,) is strongly coherent.
First we consider branching factors for reduced modules. The argument is an elaboration

of the proof of [13, Proposition 4.10]. Let n > 0. Consider a cell module AXfl‘fl) of A,41. We

identify AXi +01) with the cell module Al;i,,ﬂ of Hy1, and we identify the chosen generators

Resi“"’rl (A(“ ’0))1,, = 0. Therefore, Resi“"’rl (A(” ‘0)) is an H, module and can be identified

of these modules, ‘SXT, +01) with (SZnH. It follows from Axiom (6) that J, < J,+; and hence

with ResH”+1 (A“ )- Consider the chosen cell filtration of Res Hns (A’,flnﬂ)
(O)CM CM C---CM, = ResH"“(AH )
with M;/M; | = A)I‘_X) for each j. The isomorphism M-/Mj 1 — A)I‘im maps
0 ; ; 0 )
o+ M 10 83 But we identify A% with A% and 8%, with 55",
so the isomorphism sends S(Mf])d;'(;i +Mj_ =8 Hoos ;:r): +Mj_;to SE{\n "0 Thys
we can choose ") tobed o . This proves point (1).

A ,0)— (11,0) A0 —
Next, let n > 1 and consider a cell module

s 1
A=Al = AP @y, e,

n—1

of A,41. The restricted module Resﬁz+1 (A) is A;’:’i’f) ®a,_, enAy regarded as a right A,
module. But e, A, = A, as an A,_1—A, module, so we have an isomorphism

i) k] A)I i)
0 AX‘HT ®a,_, enAy — Ai{ij’f) ®a, , An = IndAH(Aﬁ(jlf)),
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defined by ¢(x ® e,a) = x ® a. We suppose we already have a chosen cell filtration of
Indy"_ (A"™),

{0} S NI SNy C-- C N, =Indy"_ (AY™),

()L(j),lj)

o . ()

with isomorphisms N;/N;_1 — A, , as well as branching factors u ()= (0LL) such
. . ()x( 1) (p,m) (n)

that the isomorphism N;/N;_| — AA,Z ’” takes SAn_l ®a,_, u(ﬂ,lﬂ)—)(}x(j),lj) + Nj_to

Wy,
81(;\” i ). Pulling all this data back via ¢, we have a cell filtration of Resﬁ}:‘“ (A),

{0} S NJ S Ny C--- C Ny =Res(A),

0.9,15) )

s : N J : (n,m)
with isomorphisms ¢; : N /N L~ AA,, taking (SA”_I ®a4,_, e"”(;t,m)—»(w),lj) +
NONE .
Nj"il to 81(4'1 ? But Bg’i’_":) ®a4,_, en is the generator 8;‘:’:’:4_1) of A. Thus
L eumEl) @ a1
Pi0AL Mmooy T Nji 8y,
This means that we can choose u"" ford"" This proves point (2).

()= ),15) (D 1) (u.m+1)"
Next we turn to the branching factors for mduced modules. Statement (3) is evident when
n = 0since Ag = Hy = R and A; = H;. Statement (4) only makes sense when n > 1, so
it remains to verify both statements (3) and (4) for n > 1. The argument is an elaboration of
the proof of Proposition 4.14 in [13].
Letn > 1 and let A be a cell module of A,,. According to [13, Proposition 4.14], A ® 4,

Jn+1 embeds in Ind, Antt (A) and the quotient Ind, Antl (A)/(A ®a, Jn+1) is isomorphic to
A Qa, Hyy1. Moreover both of the An+1—modules A ®a, Jny1 and A @4, H,y1 have
cell filtrations; one obtains a cell filtration of Ind, Antl (A) by gluing the cell filtrations of the
submodule and the quotient module. The cell modules of A,41 appearing as subquotients
of the cell filtration of A ®4, Jy41 are of the form A(“ 1") with m > 0; that is, they are
cell modules of the cellular ideal J,,4 1. The cell modules appearing as subquotients of the
cell filtration of A ® 4, H,41 are of the form A(M )
quotient algebra H, 1.

; that is, they are cell modules of the

(*,0)

Now consider in particular a cell module A" of A, for n > 1. According to the

previous paragraph, to find the branching factors u(g(])))ﬁ (1,0) with u € ﬁn+1, we have
only to construct a particular cell filtration of A(”\ 0 ®a, Hyt1. We identify A()‘ 9 with the
cell module A)h of H,, and A()‘ 0 ®a, Hut1 w1th A ®n, Hyt1 = Indy Hv1 (A)“ ) The
remainder of the proof of statement (3) proceeds by cons1dermg the chosen cell filtration of

IndZZ+1 (A’},ﬂ) and the associated branching factors u;: W the proof is similar to the proof
of statement (1).
Finally, let n > 1 and consider a cell module A = A()"l) of A,. Write Res(A) for

Resﬁ“”i1 (A). To find the branching factors u((;l); 1) We have to construct a particular

cell filtration of A ®4, J,,+1. By axiom (7) and [13 Corollary 4.6], we have

Juy1 = Apen Ay =Aye, QAp_ enAy,
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as A,—A,4+1 bimodules, the isomorphism being given by aje,a> — aje, ®a, , enar. We
have A, e, = A, as an A,,—A,,_; bimodule, so

A R4, Jut1 =A ®a, Aney RA,_ enAy
=A ®a, Ay RA,_ enAy
= Res(A) ®a,_, enly.

The composite isomorphism ¢ : A ®a, Joy1 — Res(A) ®a, , enA, is given by
p(x a4, a1e4a2) = xa1 @a,_, epaz. In particular, ¢ (x ®a, €,) = x ®a,_, €,. We assume
that we have a chosen cell filtration of Res(A),

{0} S M S M, C--- C M, =Res(A),

S . (9 mj)
with isomorphisms M;/M; | — Ay,

» and we have chosen branching fac-

(n)
(W), m )= (D)

Q) W9 mj)
8( A ) D m )= () +Mj_1t05, 77.By [13,Lemma4.12], M;_1 ®4,_, ex An embeds

in Mj ®a,_, en Ay for each j, and the quotient is isomorphic to

)
such that the isomorphism M;/M; | — A(M lm’) takes

tors d

W mjt1)
n+1

)
MMy @, endn ZAY " @p | endy = A

-1

Writing Mj = M; ®a,_, enAyu, we obtain a cell filtration of Res(A) ®4,_, e An,

{0} S M{ S M), C---C M, =Res(A) ®a,_, enAn,

DomitD) okin g60"a"

/
with 1som0rphlsms M; /M, . 1)) Ol

—>A
Any

!
i1 ®a,_1ent+M;_,

W m (u¥ mj+1)

to 8 » ® Ag_i €n =04 " . Pulling back this data via the isomorphism ¢ : A ®4,
Jn+1 — Res(A) ®An . e,,A,,, we get a cell filtration of A ®4,, Jn+1,

M cM)C - S M =A®a4, Jut1,

9D mj+1)

ER : " " (n .
with isomorphisms M; /Mj_1 — AAn+| taking

50‘ ) ,m

(/\ )] )
A )y (ty BAn €n T+ j-1 =134

4
XA, 1D m )=, l)e" + Mj—l

1 mj+1)

t0d, . We conclude that we can take

n+l
(n+1) (n)

o= D mj+1) = Gl mj)— 1) €

which proves point (4), and completes the proof of the theorem. O

Next we apply the recursion of Theorem 5.6 to obtained closed formulas for the branch-
ing factors for the tower (A)p>0. Since the branching diagram A is obtained by reflections
from the branching diagram H, it follows that (A, ) — (u, m) only E m € {l, 1+ 1}; in par-
ticular, (A,1) — (u, 0) only if / = 0. Moreover, (A,[) — (u,/) in A ifand only if A — u
in H,and (\,1) — (i, [+ 1) in A if and only if x — [ in H.

Theorem 5.7 The branching factors for the tower (A,)n>0 can be chosen to satisfy:

(n+1) =(n+1-21) (1)
(1) d()» —(u,l) _dA—>u n—1°
(n+1) _(n+l 2 ()

@) UGty Ty -
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(n+1) _ —(n=20) (Z)
G oo iy T Uyl

(n+1) =2 (141)
@ o = dusren

Proof We suppose that the branching factors are determined by the recursive formulas of
Theorem 5.6.
For part (1), the formula is given by Theorem 5.6, part (1) if / = 0. Assume [ > 0 and

observe
(n+1) m (n—1)

Aol — () = Upui—1)—0ul) = D i—1)— (u1-1)€n—15
Repeating this a total of / times, we get
(n+1) (n+1-21) <(n+1-21) (]
doy= ) = A0y > uoyent1-2 - en—3en1 = dy €,y

The proof of part (2) is similar. For part (3), we have

d(n-H) . (n)

Oul)= (41 = (=00

and we apply part (2) to get the desired formula. For part (4),

(n+1) (n)

UG (it 1) = Dy Guyen-

Apply part (1) to get

(n+1) ) S (@ =2 g4y
UG i+t = gn—onen = dysseygen =d, ;e

6 Applications

We will apply our results to the following examples: the BMW algebras, the Brauer alge-
bras, the partition algebras, and the Jones—Temperley—Lieb algebras. For each example, let
Ro denote the generic ground ring and let R = Rg[b‘*l], where e% = de;. We show that
our results apply to the algebras defined over R, and we give explicit Murphy bases for the
algebras.

We are then able to check, by a computation specific to each algebra, that the Murphy
bases are, in fact, bases for the algebras defined over the generic ground ring Ry.

6.1 Preliminaries on Tangle Diagrams

Several of our examples involve tangle diagrams in the rectangle R = [0, 1] x [0, 1]. Fix
points a; € [0, 1],i > 1,with0 < a; <ap < ---. Writei = (a;, 1) and i = (a;, 0).

Recall that a knot diagram means a collection of piecewise smooth closed curves in the
plane which may have intersections and self-intersections, but only simple transverse inter-
sections. At each intersection or crossing, one of the two strands (curves) which intersect is
indicated as crossing over the other.

An (n, n)—tangle diagram is a piece of a knot diagram in R consisting of exactly n topo-
logical intervals and possibly some number of closed curves, such that: (1) the endpoints of
the intervals are the points 1, .. ., n, 1,..., 7, and these are the only points of intersection
of the family of curves with the boundary of the rectangle, and (2) each interval intersects
the boundary of the rectangle transversally.

An (n, n)-Brauer diagram is a “tangle” diagram containing no closed curves, in which
information about over and under crossings is ignored. Two Brauer diagrams are identified
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if the pairs of boundary points joined by curves is the same in the two diagrams. By conven-
tion, there is a unique (0, 0)—Brauer diagram, the empty diagram with no curves. Forn > 1,
the number of (n, n)-Brauer diagrams is 2n — )!! = 2n — 1)(2n — 3) --- 3)(1).

For any of these types of diagrams, we call P = {1, ..., n, 1,..., n} the set of vertices
of the diagram, P™ = {1, ..., n} the set of top vertices, and P~ = {1, ..., m) the set of
bottom vertices. A curve or strand in the diagram is called a vertical or through strand if
it connects a top vertex and a bottom vertex, and a horizontal strand if it connects two top
vertices or two bottom vertices.

6.2 Birman—-Murakami-Wenzl Algebras

The Birman—Murakami—Wenzl (BMW) algebras were introduced by Birman and Wenzl [1]
and independently by Murakami [32] . The version of the presentation given here follows
[31]. Cellularity of the BMW algebras was established in [8, 9, 43].

Definition 6.1 Let S be an integral domain with invertible elements z and g and an element
d satisfying 7 l—z= (g~' — ¢)(8 — 1). The Birman—Murakami—Wenzl algebra W, =
W, (S; z, ¢, ) is the unital S—algebra with generators g=' and ¢; (1 < i < n — 1) and
relations:

(1) (Inverses) gigfl = gflgi =1.

(3) (Essential idempotent relation) eiz = de;.

(4) (Braid relations) g;gi+18i = 8i+18i&i+1 and gigj = g;gi if |i — j| = 2.
(5) (Commutation relations) g;e; =e;g; and eje; = eje; if |i — j| > 2.

(6) (Tangle relations) e;e;+1e; = e;, gigi+1€; = ejx1¢;,and €;gi+18 = €;ej+].
(7) (Kauffman skein relation) g; — gi_1 =(q — q’l)(l —e).

(8) (Untwisting relations) gje; = e;g; = z e, and ejgir1e; = ze;.

Morton and Wassermann [31] give a realization of the BMW algebra as an algebra of
(n, n)—tangle diagrams modulo regular isotopy and the following Kauffiman skein relations:

A= X =) - )
(2) Untwisting relation:

N /
6 :Z_l\/ and b =z \/

(3) Freelooprelation: T U O =68 T, where T U O means the union of a tangle diagram
T and a closed loop having no crossings with 7'.

(1) Crossing relation:

In the tangle picture, the generators g; and e; are represented by the diagrams

sl ] K] e w=]] ]

«
ioi+l ioi+l

There is evidently a unital algebra homomorphism from W, to W, taking generators to
generators; from the tangle realization, one can see that this homomorphism is injective, so
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W, is a subalgebra of W, 1. The symmetry of the defining relations for W, ensures that the

assignments
g = &i, ef =e.
determine an involutory algebra anti-automorphism of W,. In the tangle picture, the
involution = acts on tangles by flipping them over a horizontal line.
Ifve G,andv = s;8, 5 ; is a reduced expression then the element g, =
8i18ir " &ij depends only on v. Fori, j = 1,2,... let

g = 8i&i+1 - &j—1, if j =1,
n gi-18i—2---8j, ifi > j.
Let J,, denote the ideal W, e,_; W,,; in the tangle picture, this is the ideal spanned by tan-
gle diagrams with at least one horizontal strand. The map W,,/J, — H, = H,(S, qz)
determined by g, + J,, = T, for v € &,,, is an algebra isomorphism.

6.2.1 The Murphy Basis

The generic ground ring for the BMW algebras is
Ry =Z[z* . ™ 8)/iz” —z= (@ =G~ D).

where z, ¢, and § are indeterminants over Z. Ro is an integral domain whose field of
fractions is F = Q(z, q), with

_ 1 -1
s 2% 1+1=(z+q)2(qz )
q9—q9° z(g=— 1)

Let R = Ro[6~'], and write W, (R) for W,(R; z, g.8) and H, (R) for H,(R; ¢?). It is
observed in [13], Section 5.4, that the pair of towers (W, (R)),>0 and (H,,(R)),>0 satisfy
the framework axioms (1)—(7) of Section 5.1. Axiom (8) holds by Corollary 4.10. Axiom
(9) hold for W, (R), by the remarks at the end of Section 5.1. Finally, Axiom (10) holds by
Corollary 4.3. Therefore, by Theorem 5.5, the tower of algebras (W, (R)),>0 is a strongly
coherent tower of cyclic cellular algebras.

By the discussion in Section 5.4, the partially ordered set W, in the cell datum for W, (R)
can be realized as

6.1)

W, = [(“) |0<1<[n/2]and2 € ’ﬁnfzz]

with (A, 1) > (u,m) ifl > morif/ = mand A > @ in 7/{\4\_2[. The branching diagram W

of the tower (W), >0 is that obtained by reflections from H (= Young’s lattice). Thus, the

branching relation is (A,/) — (u,m) only if m € {I,1 + 1}; (A,1) — (u, ) if and only if

A — p in Young’s lattice, and (A, ) — (u,! + 1) if and only if © — A in Young’s lattice.
For each n > 0 and for each u € H,,, define

1
cuon =y, 4V

ve§,

tEus C(u,0) 18 a preimage in W, of m,, € H, (defined in Eq. (4.2)). Forn > 2 and (u, m) €
W, let

_ (m)
Cu,m) = C(u,0)€,_1>

where e is defined in Eq. (5.4).
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Leti > land A € H;_j and w € H;, with o — win H. If u = A U {(r, o)}, let
a= Z;zl wj, and define

Ar
0" =8ia) 0" 8aak and & =ga.. 6.2)
k=0

These are liftings in W; of the branching factors in the Hecke algebra #;, as determined in
Corollary 4.5 and Corollary 4.19.

For (A,1) € VT/i and (u,m) € Wi+1 with (A,l) — (u,m), determine the branching
factors dé’;ll))_)( L.m) according to the formulas of Theorem 5.7; for a path t € VT/,S”\‘I) , define
dy to be the ordered product of these branching factors along the path ¢, as in Eq. (3.4). From
Corollary 3.11 we obtain:

Proposition 6.2 Let Ry denote the generic ground ring for the BMW algebras and let R =
Ro[b‘*l]. Let W,,(R) = W, (R; z, q, 8) denote the BUW algebra over R. For n > 0, the set

Wy = {d:c(x,l)dt

s, te WD (D) € Wn} 6.3)

is an R-basis for W, (R), and (W, (R), *, Wn, >, #,) is a cell datum for W, (R).

In the remainder of this section, we will show that the Murphy bases %, are bases of
the BMW algebras defined over the generic ground ring Ry. First note that the elements
d}c(. ndy are actually defined over Rg and are linearly independent. The issue is to show
that %, spans the BMW algebra over Ry. To do this, we examine the transition matrix
between a Morton—Wassermann basis of the BMW algebra and #,.

6.2.2 Morton-Wassermann Tangle Bases

We begin by describing the Morton—Wassermann tangle bases of the BMW algebras. We
identify the BMW algebras with their tangle realizations, following [31].

To each (n,n)-tangle diagram 7, associate a Brauer diagram conn(7) by deleting
the closed strands in 7 and forgetting information about over and under crossings. Thus
conn(7") has a strand connecting two vertices if and only if 7 has a strand connecting the
same two vertices.

Order the vertices of a tangle or Brauer diagramby 1 <2.-- <n <% < --- < 1, that
is, in clockwise order around the boundary of R. The length £(D) of a Brauer diagram D is
the minimal number of crossings of strands in a physical drawing of the diagram, that is, the
number of 4—tuples of vertices (a, b, ¢, d) such thata < b < ¢ < d and (a, ¢) and (b, d)
are strands of D.

Definition 6.3 Say that an (n, n)—tangle diagram T is layered with respect to some total
ordering (f1, f2, . .., t) of its strands, if (1) whenever i < j, every crossing of #; with ¢; is
an over crossing, and (2) each individual strand of T is unknotted, i.e. ambient isotopic to
a strand with no self—crossings. Say that T is layered if it is layered with respect to some
total ordering of its strands. Say that a layered tangle diagram is simple if it has no closed
strands and no strand has self—crossings.

Note that any simple layered tangle diagram 7 is ambient isotopic to a simple layered

tangle diagram in which any two distinct strands have at most one crossing; the number of
crossings in such a representative of 7 is the length of conn(7').
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Theorem 6.4 ([31], Theorems 2.10 and 4.2) For each (n, n)-Brauer diagram D, chose a
simple layered (n, n)—tangle diagram T with conn(T) = D. Then the resulting collection
of tangle diagrams is a basis of the BMW algebra W, (Ry).

Call any such basis a Morton-Wassermann tangle basis.

Lemma 6.5 Let T and S be simple layered (n, n)—tangle diagrams with the same underly-
ing Brauer diagram, conn(T) = conn(S) = D. Then T — S is in the Z[q — q~']-span of
simple layered tangle diagrams with fewer than £(D) crossings.

Proof Assume without loss of generality that the number of crossings of 7" and of § is
the length of D. Suppose that S is layered with respect to an ordering (¢1, >, ..., t,) of
its strands and 7 is layered with respect to an ordering (fz(1), tz(2), - - . tz(n)) for some
permutation 7w of {1, 2, ..., n}. For brevity, say that T is layered with respect to w. The
permutation 7 may not be unique, so assume that 7 has been chosen with minimal length
for the given tangle diagram 7.

If 7 is the identity permutation, then 7" and S are ambient isotopic, so represent the same
element of W,,. Assume that 7 is not the identity and assume inductively that the assertion
holds when T is replaced by a simple layered tangle diagram 7’ with conn(7’) = D,
whenever T’ is layered with respect to a permutation 7w’ with £(x) < £(7r).

Since 7 is not the identity permutation, there exists i such that 7 (i) > 7 (i + 1). If
the strands 7, (;) and #;(;+1) do not cross, then T is also layered with respect to the shorter
permutation 7’ = (i,i + 1) o 7, contradicting the choice of 7 as having minimal length.
Therefore 75 (;) and t(;+1) have a (unique) crossing, with t ;) crossing over t(;+1). Because
T is layered with respect to 7 there is no third strand ¢ = #;) such that #;; has an over
crossing with # and ¢ has an over crossing with #;(;1). Let U be the tangle diagram obtained
by changing the crossing of ;) and #;(;+1), and let Ty and T, be the two tangle diagrams
obtained by smoothing this crossing. It follows that all three of these tangle diagrams are
simple and layered, Ty and 7, have fewer than £(D) crossings, and by the Kauffman skein
relation,

T=U+(q—q )T Tw).

Since U is layered with respect to 7/ = (i,i + 1) o 7, with £(zr’) = £(7) — 1, the
conclusion follows from the induction hypothesis. O

Proposition 6.6 Let B be a Morton—-Wassermann tangle basis of W, (Ry) and let T be a
simple layered (n, n)—tangle diagram. The the coefficients of T with respect to the basis B
are in Zlqg — q~'1. In fact, T is in the Z[q — q ' -span of basis elements with no more than
£(D) crossings, where D = conn(T).

Proof We can assume that the number of crossings of T is £(D), where D = conn(7"). We
proceed by induction on the number of crossings. If 7' has no crossings, then 7 is an element
of B, because up to ambient isotopy, there is a unique simple layered tangle diagram with
underlying Brauer diagram D. Assume that ¢(D) is positive and that the statement holds for
all simple layered tangle diagrams with fewer than £(D) crossings. There is a simple layered
tangle diagram S in B with conn(S) = D. By the previous lemma, T — Sisa Z[qg — ¢~ ']-
linear combination of simple layered tangle diagrams with fewer than £(D) crossings, and
thus the result follows from the induction hypothesis. O
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Corollary 6.7 The transition matrix between any two Morton—Wassermann tangle bases of
W, has entries in Z[q — q_l].

Lemma 6.8 Let B be a Morton—-Wassermann tangle basis of W,(Ro). The matrix with
respect to B of left or right multiplication by g; or g;l has entries in Z[z*', (g — g~ )]

Proof Let T be an element of 53; assume without loss of generality that the number of
crossings of T is £(D) where D denotes conn(7"). We have to show that T'g; is in the
Z[z*', (g — ¢~")]-span of 3. We proceed by induction on the number of crossings of T'. If
T has no crossings, then T'g; is simple and layered, so the assertion follows from Proposition
6.6.

Assume that £(D) > 0 and that the assertion holds when T is replaced by an ele-
ment of B with fewer crossings. If the vertices i and i + 1 of T are connected by
a strand, then Tg; = z 'T, so we are done. Otherwise, let s and ¢ denote the dis-
tinct strands of T incident on the vertices i and i + 1. Let S be a simple layered
tangle diagram such that conn(S) = D, S has ¢(D) crossings, and S is layered with
respect to an ordering (¢, s,...) of the strands. Then Sg; is simple and layered, so
is in the Z[g — g~ ']-span of B, by Proposition 6.6. Moreover (T — S)g; is in the
Z[z*', (g — g~ ")]-span of B, by combining Lemma 6.5, Proposition 6.6, and the induction
hypothesis.

The proof for right multiplication by g;~ ! or by left multiplication by g?El is similar. [J

Remark 6.9 Let T be a simple layered tangle diagram. From the proof of Lemma 6.5
and Proposition 6.6, one sees that all the elements of the Morton—Wassermann basis 53
that figure in the expansion of 7' with respect to 3 are obtained by changing or smoothing
various crossings of 7. Hence, if T has a strand s connecting two vertices v1, vz, such that
s has no crossings with any other strand, then all elements of 3 appearing in the expansion
of T also have a strand connecting v; and v,. Likewise, from the proof of Lemma 6.8, if
{i,i 41} N {v1, vz} = @, then all elements of 3 appearing in the expansion of T'g; have a
strand connecting v and v;.

6.2.3 The Transition Matrix from a Tangle Basis to the Murphy Basis
We examine the coefficients of the expansion of an element

diep el dy, (6.4)
of #; with respect to a Morton—Wassermann tangle basis 3 of W,,(Rp).

Definition 6.10 Let k < n and m < |k/2]. A tangle diagram T is of type (k, m) if T has
strands connecting the adjacent pairs of bottom vertices

k=2m+1,k=2m+2),...,k—1,k) (m strands). 6.5)

Lemma 6.11 If T is an element of B of type (k,m), and (\,1) — (u,m) is an edge in
W from level k — 1 to level k, then Td((l)(n),l)—>(,u,m) is a Z[qg*', 7]
elements of B of type (k — 1, 1).

—linear combination of

Proof There are two cases to consider.
CASE 1,/ = m and A C . Then for some a < k — 2m,
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\ O U
NN N N

C

N
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0 C

Fig. 1 Product Se,(c'i)z, where S is of type (k, m)

® (m)
d(}n,l)ﬁ(u,m) = 8a,k—2m€;_>-

By Lemma 6.8 and Remark 6.9, T g, —2m is a Z[qil , z¥!]-linear combination of elements
of B of type (k, m). But for any element S of B of type (k, m), Se,(:f)z is a simple layered
tangle diagram of type (k — 1, m), see Fig. 1. Therefore by Proposition 6.6 and Remark 6.9,
Se,(c'f)2 is a Z[q — ¢~ ']-linear combination of elements of 3 of type (k — 1, m). Taking into
account that / = m, this gives the result.

CASE 2,1 = m — 1 and & C A. Then d..

D= (u,m)
form qsgk+1_2m,ae,(("_’;1). But Tgk+1_2m,ae,?f; is a simple layered tangle diagram of
type (k — 1,m — 1), see Fig. 2. Therefore, again by Proposition 6.6 and Remark 6.9,
T gr+1 _zm,ae,(("_’;l) is a Z[q — g~ ']-linear combination of elements of 13 of type (k—1,m —
1). Since [ = m — 1, this proves the result. O

is a sum of terms of the

Proposition 6.12 djc(k,o)efllzldt is in the Z[g*", z=1—span of B.

Proof Taking into account Corollary 6.7, we can assume without loss of generality that

the elements g, effll

diagrams (with distinct underlying Brauer diagrams). Moreover, gver(,li | is of type (n,1).

1(1111 = ZveGA ql(”)gve,(llll is in the Z[g]-span of elements of B of type (n, [).

for v € 6,_» are elements of 13, as these are simple layered tangle

Thus ¢ 0)e
Let

5= (0, 6V, ..., ™, 1)),
where (W@, [p) = (8, 0) and (A", 1,,) = (&, ). Then

_ g (n=1) L
ds = d()»("")Jn—l)%(M”),l;z)d(l(’“’z),ln—z)ﬁ(k("’”,ln—l)

N2/
NN N
) NN
\\\\/\/\

Fig. 2 Product Tng,gm,ae,({'f;l), where T is of type (k, m)
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By repeated use of Lemma 6.11, C(A,O)e,(,lllds is in the Z[qil, zil]—span of elements of
(O]

B. But the expansion of (c(,\yo)e}(qlllds)* = dc(.0)e, ., involves only elements of B of

type (n,l). By repeated application of Lemma 6.11 once more, d; c(;ho)eflll 1dy is in the
Z[q*", z+"]-span of B. O

6.2.4 The Murphy Basis and the Generic Ground Ring

Let B denote the matrix of expansion coefficients of the elements of #; with respect to
some Morton—Wassermann tangle basis B of W, (Rg) (and some choice of ordering of #;,
and of 3). By Proposition 6.12, we know that the matrix B has entries in Z[z*!, g*'] C Ry.
On the other hand, since %, is a basis of the BMW algebra over R = R0[571], it follows
that B is invertible over R. We are going to show that B is invertible over Z[z*!, g*'] and
therefore #,, is a basis of W,, over Ry.

The Brauer algebra B, over Z[§] is the specialization of W,,(Rg) atg = 1 and z = 1. (See
the following Section 6.3 for details). Under the specialization, the Morton—Wassermann
basis of W, (Rg) specializes to the usual diagram basis of the Brauer algebra, and %, spe-
cializes to the corresponding collection of elements of the Brauer algebra, denoted %,.
Moreover, the evaluation of B at ¢ = 1 and z = 1, which we denote by Bz, is the matrix
of expansion coefficients of the elements of %, with respect to the diagram basis of the
Brauer algebra. Let d denote the determinant of B and d the determinant of By, which is
the evaluation of d at ¢ = 1 and z = 1. Since B is a matrix over Zlz+, qil], it follows that
By is a matrix over Z, and hence d is an integer.

Lemma 6.13 By is invertible over 7.

Proof Since B is invertible over R, it follows that Bz, is invertible over Z_[Sil]. Equivalently,
d = det(Byz) is a unit in Z[Si]]. But d is an integer, so it follows that d = £1 and thus Bz,
is invertible over Z. O

Lemma 6.14 B is invertible over Ry.

Proof Since B is invertible over R, d = det(B) is a unit in R. We can regard R as a subring
of
R=71z"¢" @-D"" @+ D+ " @z-D7'],
see Eq. (6.1). Since d is an element of Z[z*!, g*!] € Ry which is a unit in in R, it has the
form
d=+¢"2"(g - D@+ D'z +9 (gz - D*

for some integers a, b and some natural numbers c, e, f, g. But the specialization of d at
g = land z = 1 is equal to £1 and therefore we must have ¢ = ¢ = f = g = 0. Thus
d = +4¢“z" is a unit in Ry, so B is invertible over Ry. O

The invertibility of B over Ry together with Proposition 6.2 implies the following
theorem:

Theorem 6.15 Let W, denote the BMW algebra over the generic ground ring Ry. The set
W = {d:C(x,l)dt

ste WD (D) e vT/,,} (6.6)

is an Ro—basis of W,,, and (W,,, %, VT/H, >, #,) is a cell datum for W,.
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Remark 6.16 The basis (6.3) differs from the Murphy-type basis for the BMW algebras
given in [9] by a triangular transformation.

Corollary 6.17 For n > 0 and for A a cell module of W, 1, the restricted module

Resxzﬂ (A) has an order preserving cell filtration.

Proof For k > 0, (A,]) € Wk, and t € Wko"l), let m¢ = (e + ka(k’[))df. Then
{m¢:te W,ﬁx’“} is the basis of the cell module A%};l) derived from the cellular bases 7.
The collection of these bases, as k and (A, [) vary, is a family of path bases, because the path
basis condition holds over R = Ry [671], according to Lemma 3.12, and therefore it holds
over R as well. It follows from Lemma 3.9 that restrictions of cell modules have an order
preserving cell filtration. O

6.3 Brauer Algebras

The Brauer algebras were defined by Brauer [4]. Wenzl [40] showed that the Brauer algebras
are obtained from the group algebra of the symmetric group by the Jones basic construction,
and that the Brauer algebras over a field of characteristic zero are generically semisimple.
Cellularity of the Brauer algebras was established by Graham and Lehrer [16].

Let S be an integral domain with a distinguished element é. The Brauer algebra B, =
B, (S; d) is the free S—module with basis the set of (n, n)—Brauer diagrams. The product of
two Brauer diagrams is obtained by stacking them and then replacing each closed loop by a
factor of §; see [4] or [40] for details.

Definition 6.18 Let S be an integral domain and § € S. The Brauer algebra B,, = B, (S; )
is the free S—module with basis the set of (n, n)—Brauer diagrams, with bilinear product
determined by the multiplication of Brauer diagrams. By convention, By(S; §) = S.

The involution * on (n, n)-Brauer diagrams which reflects a diagram in the axis y =
1/2 extends linearly to an algebra involution of B, (S; §). Note that the Brauer diagrams
with only vertical strands are in bijection with permutations of {1, ..., n}, and that the
multiplication of two such diagrams coincides with the multiplication of permutations.
Thus the Brauer algebra contains the group algebra SG,, of the permutation group &,
as a unital subalgebra. The identity element of the Brauer algebra is the diagram cor-
responding to the trivial permutation. We will note below that S&, is also a quotient
of B, (S; d).

Let s; and ¢; denote the following (n, n)-Brauer diagrams:

s,-=I"'I >< II and e’:I"'I Z II

ioi+l ii+1
Itis easy to see that ey, ..., e,—1 and s, ..., 5,1 generate B, (S; §) as an algebra. We have
ei2 = Je;, so that e; is an essential idempotent if § # O and nilpotent otherwise. Note that

ef =e; and s} = s;.

The products ab and ba of two Brauer diagrams have at most as many through strands
as a. Consequently, the span of diagrams with fewer than n through strands is an ideal
Jy in B, (S;68). The ideal J, is generated by e,_1. We have B,(S;8)/J, = SG,, as
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algebras with involutions; in fact, the isomorphism is determined by v + J, — v, for
veG,.

Morton and Wassermann show [31] that B, (S; 8) is a specialization of the BMW alge-
bra W,(S;q¢,z,8) at ¢ = 1 and z = 1. Consequently, B, (S; §) has a presentation by
generators 5; and ¢; (1 < i < n — 1) and relations specializing those of the BMW
algebra.

6.3.1 The Murphy Basis

The generic ground ring for the Brauer algebras is Ry = Z[§], where § is an indeterminant.
Write R = Z[§*'], and write B,(R) = B, (R; §).

Forn > 0 write H, = RS,,. Specializing the cellular basis for #, (qzlgiven in Theorem
4.1 at ¢ = 1 gives a cellular basis for H,. As for the Hecke algebras, H,, is the set ), of
Young diagrams of size n, and the branching diagram for the tower (H,),>0 of symmetric
group algebras is Young’s lattice.

It is shown in [13, Sect. 5.2] that the pair of towers (B, (R)),>0 and (H,),>0 satisfy the
framework axioms (1)—(7) of Section 5.1. Axiom (8) holds by Corollary 4.10, and special-
ization from the Hecke algebras to the symmetric group algebras. Axiom (9) hold for B, (R),
by the remarks at the end of Section 5.1. Moreover, by Corollary 4.3, the symmetric group
algebras are cyclic cellular, so Axiom (10) is satisfied as well. Therefore, by Theorem 5.5,
the tower of algebras (B, (R))n>0 is a strongly coherent tower of cyclic cellular algebras.

By the discussion in Section 5.4, the partially ordered set B,, in the cell datum for B,, can
be realized as

B,={(,D]0<1<|n/2]and & € H,_n}.

The order relation on B,, and the branching rule for the branching diagram B for the tower
(Bn)n>0 are exactly the same as for the BMW algebras discussed in the previous section.
For each n > 0 and for each u € Hy, define c(,,0) = ZUEGM v; thus c¢(,,0) is a preimage

in B, of m;, € H, (defined in Eq. (4.2)). For n > 2 and (u,m) € §n, let cu,my =
C(M,o)e’(l"i)l , Where el('f} is defined in Eq. (5.4).
Forl <i < jlet

Sij=SiSigt - Sjo1 = j—1,...,0), (6.7)

and let s; ; =sl._jl.
Leti > landx € Hi_y and u € H;, with A — pin 2. If w = A U {(r, )}, let

a= Z;:l wj, and define

)"r
i), =5ia Saak and d" =sq;. (6.8)
k=0

These are liftings in B; of the branching factors in the symmetric group algebra H;, as
determined in Corollary 4.5 and Corollary 4.19.
For (A,l) € B; and (u,m) € Bj41 with (A,l) — (u,m), determine the branching

((;rll))_)( L) and u(&r?)_) (.m) according to the formulas of Theorem 5.7; for a path

te VT’,&A’I), define dy to be the ordered product of these branching factors along the path t,
as in Eq. (3.4). From Corollary 3.11 we obtain:

factors d
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Theorem 6.19 Let B, denote the Brauer algebra over the generic ground ring Ry = Z[§].
Forn > 0, the set

%n = {d:C()h[)d{

s,te BMD, (1) e ﬁn} , 6.9)

is an Ro—basis for By, and (B, *, §n, >, B,) is a cell datum for By,.

Proof LetR = Z[6jEl ]. From the preceding discussion and Corollary 3.11, we have that %,
is a cellular basis of B, (R; 8). In Section 6.2.4, we have shown that the transition matrix By,
from the diagram basis of the Brauer algebra to 8, is integer valued and invertible over Z.
It follows that 4, is a basis of the Brauer algebra B, over the generic ground ring Ry. [

Corollary 6.20 For n > 0 and for A a cell module of B+, the restricted module
Resg::“ (A) has an order preserving cell filtration.

Proof The proof is the same as that of Corollary 5.17. O
Remark 6.21 The basis (6.9) coincides with the Murphy—type basis for B, (8) given in [9].
6.4 Jones—Temperley-Lieb Algebras

The Jones—Temperley—Lieb algebras were defined by Jones [19], and were used to define
the Jones link invariant in [21]. The cellularity of Jones—Temperley—Lieb algebras was
established by Graham and Lehrer [16]. Harterich [18] has given Murphy bases for
generalized Temperley—Lieb algebras.

Let S be an integral domain and 6§ € S. The Jones—-Temperley—Lieb algebra A, =
A, (S; §) is the unital S—algebra presented by the generators ey, ..., e¢,—1 and the relations
eiej+1e; = e, ejej =eje; if [i — j| > 2, and ei2 = §e;. The Jones—Temperley—Lieb alge-
bra can also be realized as the subalgebra of the Brauer algebra, with parameter §, spanned
by Brauer diagrams without crossings. Because of the symmetry of the relations the assign-
ment e¢; — ¢; determines an involution * of A,. The span of diagrams with at least one
horizontal strand (that is, all diagrams other than the identity diagram) is an ideal J,; it is
the ideal generated by e,_;. The map A, /J, — S determined by 14, + J, > lgis an
isomorphism of algebras with involution.

The generic ground ring for the Jones—Temperley—Lieb algebras is Ry = Z[§], where §
is an indeterminant over Z. Set R = Z[§*!]. Write A, (R) = A,(R; 8), and H, = R for
n>0.

6.4.1 The Murphy Basis

It is shown in [13, Sect. 5.3] that the pair of towers (A, (R)),>0 and (Hy),>0 satisfies the
framework axioms (1)—(7) of Section 5.1. Axioms (8) and (10) are evident since H, = R
for all n. Axiom (9) hold for A, (R), by the remarks at the end of Section 5.1. Therefore,
by Theorem 5.5, the tower of algebras (A, (R)),>0 is a strongly coherent tower of cyclic
cellular algebras. R

For each n > 0, the partially ordered set H,, in the cell datum for H, is a singleton which
we label as {n}, and the branching diagram for the tower (H,);>0i8s0 =0—> 1 —> 2 —---.
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The branching diagram A for the tower (An)n>0 is that obtained by reflections from H.1t
can be realized as follows: For n > 0, let

Zn:{j|0§j§nandn—jiseven}

and order X,, by writing m &> [ if | > m as integers. The branching diagram A has an edge
connecting j on level n and k on level n + 1 if and only if |j — k| = 1.

Evidently, the algebra H,, = R has the cellular basis {1}. We can choose the element ¢,
(n)

(n—1)—n to

and ™

in H, (see Lemma 2.9) to be 1 and also all the branching factors d (n—1)—n

be 1. According to Eq. (5.5), for j € Xn, we can take

)

ci=e, |, where [ = (n — j)/2,

and e;ll | is defined in Eq. (5.4). By Theorem 5.7, the branching factors for the tower
(An)n>0 can be chosen as follows: If j € XI- and k € ;l\,'H with j — k, we take

49D — 0

)=l wherel= (i — j)/2.

For a path t € X,(,'\’l), define d¢ to be the ordered product of these branching factors along
the path t, as in Eq. (3.4). From Corollary 3.11 we obtain:

Proposition 6.22 Let R = Z[8* N and let A, (R) = A, (R; 8) denote the Jones—Temperley—
Lieb algebra over R. For n > 0, the set

oy = |dseide |5, t e Ay and1 € &, ],
is an R-basis for Ay, and (A, *, Zn, >, .o,) is a cell datum for A,,.
6.4.2 The Murphy Basis Coincides with the Diagram Basis

Next, we will show that the Murphy type cellular basis <7, of A, given in Proposition
6.22 actually coincides with the diagram basis, so is in particular a basis for the Jones—
Temperley—Lieb algebra over the generic ground ring Z[4§].

Let S be an integral domain and § € S. Let k and n be non-negative integers of the
same parity. A (k, n)-Temperley-Lieb diagram is a planar diagram with k upper vertices
and n lower vertices connected in pairs with no crossings. The product of a (k, n)-TL dia-
gram and an (n, m)-TL diagram is defined by the same rule as the product of two ordinary
TL diagrams of the same size; the result is a power of § times a (k, m)-TL diagram. The
Temperley-Lieb category is category whose objects are non—negative integers; if n—k is odd,
then Hom(k, n) = 0, and if n — k is even then Hom(k, n) is the free S—module on the basis
of (k, n)-TL diagrams. Composition of morphisms is the bilinear extension of the product
of diagrams described above. There is a map * from (k, n)-TL diagrams to (n, k)-TL dia-
grams defined by reflection in a horizontal line. The linear extension of * is a contravariant
functor from the TL category to itself with % o % = id. The rank of a (m, n)-TL diagram is
the number of its vertical strands.

Fix n > 0. A TL n—dangle of rank k is a (k, n)-TL diagram with k vertical strands and
(n —k)/2 horizontal strands. Any (n, n)-TL diagram T of rank k can be written uniquely as
T = y*x, where x and y are n—dangles of rank k. A Dyck sequence of length n and rank k
is a sequence (ay, ..., a,) such that a; € {1}, each partial sum Z{Zl a; is non—negative,
and )7, a; = k. There is a bijection between Dyck sequences of length n and rank k, and
n—dangles of rank k, given as follows. Given a Dyck sequence (a;) of length n and rank k,
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there is a unique n—dangle x of rank k with the following property: a vertex j is the right
endpoint of a horizontal strand of x if and only if a; = —1. Conversely, given an n—dangle
x of rank k, label the right endpoint of each horizontal strand with —1 and all other bottom
vertices with +1. Then the resulting sequence of labels in {#1}, read from left to right, is a
Dyck sequence of rank k. The two maps, from Dyck sequences to dangles and from dangles
to Dyck sequences, are inverses.

There is a bijection between paths on the generic branching diagram for the Temperley—
Lieb algebras, of length n, from ¢ to k, and Dyck sequences of length n and rank k. A path
is given by a sequence (0 = by, 1 = by, b2, ...,k =b,) withb; — b;_| = %1 for each j.
Then the sequence (b; — b;—1)}_, is a Dyck sequence of length n and rank k. Conversely,
given a Dyck sequence of length n and rank k, its sequence of partial sums defines a path
on the branching diagram, of length n, from @ to k. Evidently, the two maps, from paths to
Dyck sequences and from Dyck sequence to paths, are inverses.

Composing the two bijections described above, we have a bijection between paths on the
branching diagram and dangles. For a path t on the branching diagram, let x(t) denote the
corresponding dangle.

Theorem 6.23 Fix n and k < n with n — k even. Let s and t be elements ofXZ‘l Then

dicidy = x(8)*x(t).
Thus the Murphy type basis
oy = [af;‘ckdt |s,te AX andk e Xn},

is just the set of all Temperley—Lieb diagrams on 2n vertices, and in particular is a cellular
basis of the Jones—Temperley—Lieb algebra A, over the generic ground ring 7,[8].

Proof Recall that ci = ef |, where | = (n — k)/2. Let x| be the bottom half of [/,
namely the n-dangle of rank k with horizontal strands connectlng the adjacent pairs of

vertices

k+1,k+2),....,n—-1,n) (I strands).

Thus e = (x,_ ® )*x,illl. To prove the proposition it suffices to show that

O di = x(®). (6.10)

We do this by induction on n, the case n = 1 being evident. Assume that the assertion holds

for some fixed n, for all kK with k < n and n — k even, and for all t € Ak Lets € A | for
some j,

s =(ko, ki,....kn =k, kyy1 =17),
and let t be the truncation of s of length n,
t=(ko, k1,.... kn =k).

Write = (n — k)/2 and !’ = (n + 1 — j)/2. There are two cases:
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Casel. j=k+1,I’ =1 Inthis case, x(s) is obtained from x(t) by adding a vertical
strand at the new vertex n + 1. On the other hand,

' +1
e = a0

x0e® 4,
l 1
(1)(x()1)* " g

D@y x<t>,

using the induction hypothesis at the last step. Multiplication of an n—dangle of rank k on
the left by x(l) (x,- ® )" adds a vertical strand on the right, as shown in Fig. 3. Hence we have
5 dy = x(9).

Case2. j =k—1,I'" =1+ 1. In this case, x(s) is obtained from x(¢) by “closing”
the rightmost vertical strand; that is, if ; is the vertex adjacent to this strand, the strand is
replaced by a horizontal strand joining j and n + 1. On the other hand,

4 1
s = 0D

1
x,i’“)(x,iil) x(1),

by the same computation as in the previous case. But multiplication of an n—dangle of rank

k on the left by x(lH) (1) )* closes the rightmost vertical strand, as shown in Fig. 4. So

again we have x, )ds = x(s) and this completes the inductive proof. O

Corollary 6.24 Let A, denote the Jones—Temperley—Lieb algebra over the generic ground

ring Z[8]. For n > 0 and for A a cell module of A, 11, the restricted module Resgz+1 (A)
has an order preserving cell filtration.

/\/\/\/\
N
/N
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~— -

Fig.3 xx" )*x(t)
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Fig.4 x'™"" )*x)
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Proof One can either use the same proof as for Corollary 6.17, or one can check directly

using a diagrammatic model of the cell modules that Resﬁjfrl (A’;\Hl) has a filtration
0C N CR Apt1 Ak
=N =Res, (A%

),

with N = A% and Resy"*! (A )/N = akH, 0

n+l1

6.5 Partition Algebras

The partition algebras A, (k), for k, n € Zx,are a family of algebras defined in the work of
Martin and Jones in [20, 25-27] in connection with the Potts model and higher dimensional
statistical mechanics. Jones [20] showed that the even partition algebra A, (k) is in Schur—
Weyl duality with the symmetric group &y acting diagonally on the n—fold tensor product
V®" of its k—dimensional permutation representation V. In [25], Martin defined the odd
partition algebra A, (k) as the centralizer of the subgroup &;_; € & acting on V®”,
Including the algebras As, (k) in the tower

Ap(k) S Ar(k) S Az(k) € Az(k) S -+ (6.11)

allowed for the simultaneous analysis of the whole tower of algebras (6.11) using the Jones
basic construction, by Martin [25] and Halverson and Ram [17]. Cellularity of the partition
algebras was proved in [6, 41, 42].

Forn € Z>¢ let

P, = {set partitions of {1, 2, ..., n, 1,2, ..., ﬁ}} , and,
Pyu—1 = {d € Py, | n and 7 are in the same block of d} .

Any element p € P, may be represented as a graph with n vertices in the top row, labelled
from left to right, by 1,2, ..., n and n vertices in the bottom row, labelled, from left to
right by 1,2, ..., 72, with the connected components of the graph being the blocks of p. The
representation of a partition by a diagram is not unique; for example the partition

p:hLi&1§@¢zii4ia}

can be represented by the diagrams:

If p1, p2 € P2y, then the composition p; o py is the partition obtained by placing p; above
p2 and identifying each vertex in the bottom row of p; with the corresponding vertex in the
top row of pp and deleting any components of the resulting diagram which contains only
elements from the middle row.

Definition 6.25 Let S be a commutative unital ring and § € S. For n > 1, the partition
algebra A»,(S; §) is the free S—module with basis P»,, equipped with the product p1pr =
8! p1 o P2, for p1, p2 € Py, where [ is the number of blocks removed from the middle row
in constructing the composition p; o p2. By convention , Ag(S; ) = S. Let Az,—1(S; )
denote the subalgebra of A,,(S; §) spanned by P,,_1.

The Brauer algebra B, (S; §) embeds as a subalgebra of A, (S; §), spanned by partitions
with each block having two elements. In particular, A,,(S; §) has a subalgebra isomorphic
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to the symmetric group algebra SG,,, spanned by permutation diagrams. The permutation
subalgebra is generated by the transpositions

1 X I

i i+l

Si =

The multiplicative identity of Ay, (S; 8) is the trivial permutation. It is not hard to see that
the partition algebra Ay, (S; 8) is generated by the transpositions s; (1 < i < n — 1) and
elements ¢; (1 < j <2n — 1), where

wa  eum] ] -

O I

1 i n 1 i i+1 n

)

Halverson and Ram [17, Theorem 1.11] and East [7, Theorem 36] give a presentation for
Apy, in terms of the generators e; and s;. The algebras A, (S; §) and Az, —1(5) have an
algebra involution * which acts on diagrams by flipping them over the horizontal line y =
1/2. The generators s; and e are s—invariant

Azy—1(S; 6) is defined as a subalgebra of Aj,(S;4d), and Ay,(S;8) embeds in
A2,4+1(S; 8) as follows: define a map ¢ : P, — Py,41 by adding an additional block
{n + 1, n + 1}. The linear extension of ¢ is a monomorphism of algebras with involution.

Let d € Py,. Call a block of d a through block if the block has non—empty intersection
with both [r] and [r]. The number of through blocks of d is called the propagating number
of d, denoted pn(d). Clearly, pn(d) < n foralld € P,,. The only d € P,, with propagating
number equal to n are the permutation diagrams. If x, y € Py, and xy = 8"z, then pn(z) <
min{pn(x), pn(y)}. Hence the span of the set of d € P,, with pn(d) < n is an ideal J,, C
A2, (S; 8). Moreover, Jo,—1 := Jo, N Ag,y—1 is the span of d € Py,—1 with pn(d) < n. One
can check that for k > 2, Ji is the ideal of A (S; §) generated by e;_1. The ideal Ji is *—
invariant, and the span of permutation diagrams in Ay is a *—invariant linear complement
for Ji. It follows that A, (S;8)/Jon = SG,, and Az,—1(S; 8)/Jan—1 = SG,,—1 as algebras
with involution; the isomorphisms are determined by v + Jx + v, where v is a permutation
diagram.

6.5.1 The Murphy Basis

The generic ground ring for the partition algebras is Ry = Z[§], where § is an indetermi-
nant. Write R = Z[Si'l], and let F = Q(8) denote the field of fractions of R. Write A,, for
A, (R; 8) and write Hy; = Hp;+1 = RG; fori > 0. The tower (Hy,),>0 is a strongly coher-
ent tower of cyclic cellular algebras, and HnF is split semisimple. The branching diagram of
the tower (H,),>0 is the graph H with

(1) ﬁzt = ﬁ2i+l = theAset Y of Young diagrams of size i.
(2) anedgeA — pin H if

(@) A€ Hy_1, ;e HyandCp,or
(b) A e Hy,pue Hyppandd = p.

It is shown in [13, Sect. 5.7] that the pair of towers (A,),>0 and (H,),>0 satisfy the
framework axioms (1)—(7) of Section 5.1. Axiom (8) holds by Corollary 4.10. Axiom (9)
holds for the partition algebras, by the remarks at the end of Section 5.1. Finally, Axiom
(10) holds by Corollary 4.3. Therefore, by Theorem 5.5, the tower of algebras (A4,),>0 is a
strongly coherent tower of cyclic cellular algebras.
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vl

6 0 0 N H oo H ﬁ

Fig. 5 Branching diagram for the partition algebras.

By the discussion in Section 5.4, the partially ordered set A; in the cell datum for A; can
be realized as

A ={0D | r e Hiy, forl =0, 1,..., [i/2]}

ordered by (A, l) > (u, m)ifl > m,orif | = m and A > u as elements of fI, 2;. The branch-
ing diagram A for the tower (An)n>0 is that obtained by reflections from the branching
diagram H. Thus the branching rule is the following:

(1) Letibeevenand (X,[) € A-

(a) For (u,l) € A,+1, X, 1) — (u,D)in A if and only if A =
(b) For (.l +1) € Apr, 1) = (u, [ + l)mAlfandonlyu C A

(2) Letibeoddand (A,[) € Ai.

(@) For (u.) € A1, (h.1) — (u,1)in A if and only if & C .
(b) For (u,l+1)e Ajt1, (A1) = (u,l+1)inAifandonly A = p

The first few levels of A are given in Fig. 5.

Next, we determine the branchmg coefflclents for the two towers (Hp)n>0 and (Ap)n>0-
LetA € Hy_yand pu € Hy with A — pin H. If u = AU {(r, ur)}, leta = Z]_l,uj
Then the branching factors for the inclusion Hp;—1 € Hp; in the tower (H;);>¢ are given
by

)"r
2i 2
di_lfu = Sq,i and u(AQM =Sia Zsa,a,k, (6.12)

where the elements s; ; are defined in Eq. (6.7). The branching factors for the inclusion
Hs; € Hj; 1 in the tower (H;);>¢ are given by

2i+1 2i+1 . e~ =
dPD = P — 1 if A€ Hy = Hyg. (6.13)
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For A € ﬁk and u € ﬁk+1, define Jik_fli) and u(kH) by the same formulas, specifying

elements of the subalgebra of Ay spanned by permutatlon diagrams; these are liftings in
A1 of the branching factors in Hy1 specified above.

By Theorem 5.7, the branchmg factors for the tower (A )n>0 can be chosen as follows:
Let (A,]) € Az, 1. I (u, D) € A2, and (A,l) — (u,[)in A then A C u and

(2i) _ F@i-2 (l)
d()\. D—(u,l) — dk—)u €ri—2»

and, if (u,l+1) € Ag,- and (A, 1) = (u,l + 1) in A, then A = u and

(2i) @)
d(,\ D= (I+1) = €2i—2-

Similarly, if (A,1) € Azi and (u,l) € A2i+1 and (A,l) — (u,!), then . = p and

d(2z+1) (l)
D= = -1
and, if (u, !+ 1) € Az and (A, 1) — (u,l+ 1), then u C A and
d(21+1) —(21 20) ()
D= (u,l+1) = Uy €21+

The u—coefficients are determined by similar formulas by Theorem 5.7.

(/\ l)—m m)

Fixn > land (,1]) € A For a path tin A xD , define d; to be the ordered product of the
d-branching coefficients for the tower (Ay) along the path t, as in Eq. (3.4). Define c(;, ;) =
C(,\,o)ei(l_)l, where c(y,0) = ZUE@ v, and efl_)l is defined in Eq. (5.4). From Corollary 3.11

we obtain:

Proposition 6.26 Let R = Z[Sil] and let A, = A,(R; 8) be partition algebra defined
over R with parameter 8. For each n, the set
Ay = [d;c@,l)dt |s,te A%, (D) e Z,,} ,
is an R-basis for A,, and (A, *, An, >, ,) is a cell datum for A,,.
6.5.2 The Murphy Basis and the Generic Ground Ring

It remains to show that the set o7, is a basis for the partition algebra A, (Ry; 8) defined over
the generic ground ring Ry = Z[§]. Let B denote the diagram basis for A, (Ro; 8).

Definition 6.27 Let 1 < [ < k < j. A set partition g of P = {1,...,j,1,...,j}
is said to be of even type (k,l) if each element of the set of lower vertices
(k=1+1,k-1+2,..., E} lives in a block of size one; o is said to be of odd type (k, )
if all the lower vertices in the set {k — I,k — I + 1, ..., k} live in the same block of 0.

Lemma 6.28 Let o be a partition.

(1) Ifoisofoddtype (k + 1,m) and (A, 1) — (u, m) is an edge from level 2k to level
?}i{ ;; 1in A, then ng{([)‘__l))( ) is a Z-linear combination of partitions of even type
2) Ifois ofeven type (k m) and (A, 1) — (u, m) is an edge from level 2k — 1 to level

2k in A then Qd(k D (. m)lS a Z-linear combination of partitions of odd type (k,I).

Proof Assume thaAt o is of odd type (k+1, m) and (A,l) — (u, m) is an edge from level 2k
tolevel 2k+1in A. Thus g has lower verticesk —m + 1, ..., k 4+ 1 in one block. If I = m,
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k—1+1 k

Fig. 6 oel) |, where ¢ is of odd type (k + 1,1)

Qk+1) i k1) no.
then A = u, and d()\,l)%(u,l) eék) 1~ 1t follows that Qd(}\ D> (um) = Qeék)_l is equal to a

single partition of even type (k, [), and that no factor of § arises in the computation of the
product, as shown in Fig. 6. If m =1 + 1, then u C [ and

d(2k+l) _(2k-21) (1)
D= l+1) = Hpsa €p—1>

which is a sum of elements of the form s;_; jeék) | with j < k — 1. Tt follows that

Qd((ik;)l (Li+1) is equal to a sum of distinct partitions, each of even type (k, [), and again no

factor of § appears in the computation of the product, as shown in Fig. 7.

Assume now that Q. is of even type (k,m) and (A,l) — (u,m) is an edge from level
2k — 1 to level 2k in A. Thus the lower vertices k — m + 1, ..., k each constitute a block
of 0. If | = m, then A C w and

(2k) =(2k=21) (1)
Aoy = o €22
2k—21 . ..
B tdiﬁﬂ) = sj k- for some j < k — [, and ¢’ = @s; x—; is also a partition of even type

(k, ). Thus, we have to consider Qd((/\ ?)IL(M ) = 08jk- leélk) y = Q’egk) ,» Where ¢ is a

partition of even type (k, [). The product o’ eék) , 1s a single partition, of odd type (k, /), and

no power of § occurs in the computation of the product, as shown in Fig. 8.
Finally, if m = [ 4+ 1, then A = pu and d((ik)l)ﬂ(ﬂ Ity = egk) ,- Again the product

Qd((ikzi wh = Q€2k , 1s a single partition, of odd type (k, /), and no power of § occurs in

the computation of the product. The diagram for this case is similar to Fig. 8, except that
the lower vertex k — I of o is now an singleton block of g. O

Proposition 6.29 Let (A, 1) € A, and s,t € AY"D. Then dcq pdi = dcg el |dy lies
in the Z-span of B.

k—1+1 k

Fig. 7 st,l__,-eélk)_l, where o is of odd type (k + 1,7/ 4+ 1)
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k—1 k

Fig. 8 Q’e;lk)iz, where ¢’ is of even type (k, )

0]

n—1

Proof If n = 2k + 1 is odd, then c(; o)e

If n = 2k is even, then c(; o) effil is a sum of partitions of even type (k, /). The argument

proceeds as in the proof of Proposition 6.12, with Lemma 6.28 taking the place of Lemma
6.11. O

is a sum of partitions of odd type (k + 1,1[).

Theorem 6.30 The set <f, = {d*co.de | s.te Ay, (A1) € A).is a basis for the
partition algebra A, (Ro; 8) over the generic ground ring Ry = Z[8].

Proof The transition matrix B between the diagram basis of the partition algebra and the
set 7, has integer entries, according to Proposition 6.29, and in particular d = det(B) is
an integer. Since .7, is a basis for the partition algebra over R = Z[§*'], it follow that B
is invertible over R, so the integer d is a unit in R. It follows that d = %1 and hence B is
invertible over Z. Hence 47, is a basis of the partition algebra over Ry. (]

Corollary 6.31 Let A, denote the partition algebra over the generic ground ring Ry =
Z[8). For n > 0 and for A a cell module of Ay 41, the restricted module Res'::frl (A) has an
order preserving cell filtration.

Proof The proof is the same as that of Corollary 6.17. O
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Appendix A. A Formula for Murphy Basis Elements

In this appendix, we give an alternative formula for the Murphy basis of the Iwahori-Hecke
algebra H,,(¢%) and for the Murphy—type bases of the various algebras treated in Section 6.
The formula was pointed out to us by Chris Bowman for the case of the Hecke algebra,
and Bowman posed the question whether an analogous formula holds also for the BMW
algebras, etc.

Consider a tower (H},),>0 of cyclic cellular algebras satisfying the hypotheses of Section
3.5. As we will show, in all the examples of such towers treated in this paper, the elements

¢, and the branching factors d,L_w and u,(fi},) can be chosen to satisfy

) = @)y e, (A1)

foralln > Oand all u € ﬁn andv € FI,1+1 with © — v.

We define an ordered product of u—coefficients along paths, analogous to the elements
dy defined in Eq. (3.4).

Fixn>1land A € H For each path t = () = A0 @) = A) € ﬁ,;\, define

(1) 2) (n)

G r O _p@ " Wy m- (A.2)

ugr=1u

Lemma A.1 Let (Hy)n>0 be a tower of cyclic cellular algebras satisfying the hypotheses
of Section 3.5. Suppose that Eq. (A.1) holds for alln > 0 and all p € H andv € Hn+1
with @ — v. Then for alln > 0, all . € Hn and all t € H’\ one has

dic). = uy. (A.3)
Consequently, the cellular basis of H, given in Corollary 3.11 can be written as

{usdt ’ L€ ﬁn and s, t € ﬁyf\}

Proof The formula (A.3) is evident for n= = 0, 1. Fix n > 1 and suppose that (A.3) holds
for all A € H, and all t € H*. Letv € Hyyp and t = (9, A, A = w, AT =)
be an element of H V1- Write ' = t[o ). Then, using the 1nduct10n hypothesis as well as
Eq. (A.1), we have

(n+1) (n+1) 1
Ug=ugu, ., = dt’cl‘«ultﬂv = d (d;(tniv))*cv = d;kcv'
The statement now follows by induction. O

M%v and u;:il)v for the tower of Iwahori-Hecke
algebras of the symmetric groups, as determined in 4.5 and Corollary 4.19, satisfy

Lemma A.2 The branching factors d"

(n+1) (n+1)

m#“,u,—)v (dp,—w) Vo

for all n > 0 and all partitions | of size n and v of size n + 1 with u — v.

Proof This is immediate from Lemma 4.18, part (1). O

Corollary A.3 The Murphy basis of the Iwahori—Hecke algebra H,,(q?) is given by
m’;t = ugdy

for A a partition of n and s, t standard A—tableaux.
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Proof This follows from Eq. (4.7) and Lemma A.1 and Lemma A.2. O

Our next goal is to obtain similar formulas for the Murphy type bases of the various
algebras treated in Section 6.

Proposition A.4 Let A, denote the n—th BMW, Brauer, partition or Jones—Temperley—Lieb
algebra. The Murphy type basis of A,, established in Section 6 can be written in the form
{ugdt | S Zn ands, t € Zﬁ} .

Sketch of proof. We need to show that if x € Xn and y € Zn+1 with x — y in the
branching diagram A, then

(n+1) (n+1)
Cxtyyy = (dy, ) ey, (A4)
(n+1) (n+1)

d

where the elements ¢, € A, and cy, Uy ysdysy € A4 are as specified in Section 6.
The result will then follow from Lemma A.1. For the Temperley—Lieb algebras, Eq. (A.4) is
evident from the formulas in Section 6.4 for the elements c, and for the branching factors.

For the BMW, Brauer and partition algebras, (A.4) can be established in two steps. The
first step is to show that (A.4) holds when x = (4,0) € Xn and y = (,0) € Zn+1- For
the Brauer and partition algebras this special case of (A.4) follows from Lemma 4.18, part
(1), as all the elements involved lie in a copy of the symmetric group algebra contained in
Ap+1. For the BMW algebras, it is necessary to establish an analogue of Lemma 4.18, part
(1) which is valid in the algebra of the braid group.

The second step in the proof of (A.4) is to establish the general case from
the special case. This involves a straightforward computation using the formulas of
Theorem 5.7.
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