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Abstract We construct analogues for the Brauer, BMW, partition, and Jones–Temperley–
Lieb algebras of the Murphy basis of the Hecke algebra of the symmetric group. The bases
are cellular bases indexed by paths on branching diagrams, and compatible with restriction
of cell modules. The Jucys–Murphy elements for each class of algebras act by triangular
matrices on the Murphy basis.
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1 Introduction

This paper develops analogues for the Brauer, BMW, partition, and Jones-Temperley-Lieb
algebras of the Murphy basis [33] of the Iwahori-Hecke algebras Hn(q

2) of the symmetric
groups Sn.

The Murphy basis of Hn(q
2) has many remarkable properties. First, it is a cellular basis

in the sense of Graham and Lehrer [16]. For cellular algebras (i.e. algebras with a cellular
basis) in general, one can define a family of modules known as cell modules. Then for any
specialization of the cellular algebra over a field, all simple modules appear as quotients
of the cell modules, and the algebra is semisimple exactly when all the cell modules are
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simple. The Murphy basis has a number of additional special properties. The Jucys–Murphy
elements of the Hecke algebra act in a triangular fashion on the Murphy basis; this action
allows the construction of the seminormal representations and the classification of simple
modules and blocks, see [28], Chapter 3. Moreover, the Murphy basis is well adapted to the
tower of Hecke algebras (Hn(q

2))n≥0, as will be explained below.
Several papers in the literature have aimed at generalizations or axiomatizations of the

Murphy basis, the seminormal basis, and the set of Jucys–Murphy elements, for example
[9, 14, 29, 37]. The present paper is also a contribution to this theme.

In order to develop analogues of the Murphy basis for the Brauer algebras, etc., we first
develop a new interpretation of the Murphy basis of the Hecke algebras Hn(q

2). We begin
with observing that the Hecke algebras Hn = Hn(q

2) defined over the generic ground ring
Z[q±1], with q an indeterminant, have the following properties:

• The Hecke algebras Hn are cyclic cellular algebras. This means that each cell module
is a cyclic Hn–module.

• The cellular structures on the tower of algebras Hn are coherent. This means that a cell
module of Hn, restricted to the Hn−1 or induced to Hn+1 has a “cell filtration”, that is,
a filtration with cell modules as subquotients.

We therefore begin by studying coherent towers (An)n≥0 of cyclic cellular algebras in
general. We first obtain some rather simple general results about cellular bases in such
towers, in Section 3. We observe that there exists a system of “branching factors” associated
to each edge of the generic branching diagram for the tower. In fact, there is a system of
“d–branching factors” related to the cell filtration of restricted cell modules, and a system
of “u–branching factors” related to the cell filtration of induced modules. Then we note that
an ordered product of d–branching factors along paths on the generic branching diagram
determine bases of each cell module of each An as well as a cellular basis of each An.

In Section 4, we consider the tower of Hecke algebras Hn(q
2). Recalling that this is a

coherent tower of cyclic cellular algebras, we compute branching factors for reduced and
induced cell modules. We show that the bases obtained via ordered products of d–branching
factors coincide with the Murphy bases.

This construction could be regarded as a cellular analogue of the constructions in [34–36, 38].
Each of the examples that we want to study is a tower (An)n≥0 of algebras that gener-

ically is obtained from another tower (Qn)n≥0 by repeated Jones basic constructions. For
the Brauer, BMW, or partition algebras, the tower (Qn)n≥0 is a tower of Hecke algebras
or symmetric group algebras. For the Jones–Temperley–Lieb algebras defined over a ring
R, the tower (Qn)n≥0 is just the constant sequence R. Cellularity of such a tower (An)n≥0
was previously studied in [13, 14]. Here we augment the framework of those papers by
the assumption that the algebras Qn are cyclic cellular. It follows easily from the previous
work in [13, 14] that the tower (An)n≥0 is a coherent tower of cyclic cellular algebras. We
show here that branching factors, and therefore cellular bases for the tower (An)n≥0 can be
obtained by explicit formulas from branching factors for the tower (Qn)n≥0. These are our
analogues of Murphy’s bases.

Finally, in Section 5, we apply our results to the Brauer algebras, Birman–Murakami–
Wenzl (BMW) algebras, Jones–Temperley–Lieb algebras, and partition algebras, and obtain
explicit Murphy bases for each of these families of algebras.

A complication in our approach to the Murphy bases is that the results of [13, 14] do
not apply to Jones the basic construction algebras defined over their generic ground ring,
say R0, but only to the algebras defined over R0[δ−1], where δ is the “loop parameter”; see
Section 5.1, where a mistake in [13, 14] is discussed and corrected. Therefore, the Murphy
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bases appear a priori to be bases only for the algebras defined overR0[δ−1]. However, as the
bases are explicit, we can check for each of our examples that the Murphy basis is actually
a basis for the algebras defined over the generic ground ring R0. A considerable portion of
the work in Section 5 is devoted to this final step. For the Jones–Temperley–Lieb algebras,
our Murphy basis turns out to be none other than the usual diagram basis.

Our Murphy bases are “families of path bases”, in the sense of Definition 3.8. It is known
that for each of our examples, the tower (An)n≥0 has a family of Jucys–Murphy elements in
the sense of [14]. It follows from [14, Propositions 3.6 and 3.7] that the Jucys–Murphy ele-
ments act triangularly on our Murphy bases. Hence, Mathas’ theory of cellular algebras with
Jucys–Murphy elements and seminormal representations [29] can be applied. It is shown
in [1] that triangularity actually holds with respect to dominance order, strengthening the
triangularity statements of [13].

The Murphy bases for the partition algebras given in Theorem 6.26 have been used to
obtain an analogue of the Young seminormal form for partition algebras in [10]. In the cases
of the Brauer and BMW algebras, our results recover the Murphy type bases obtained in [9];
however, the construction here is simpler, and does not involve computations in the braid
group. Rui and Si [37] used the path bases from [9] to compute Gram determinants for cell
modules of the BMW algebras, and to obtain definitive semisimplicity results.

The Murphy bases of the (abstract) Brauer algebras are used in [2] to produce integral
cellular bases of Brauer’s centralizer algebras acting on symplectic or orthogonal tensor
space. The analogous result holds also for the walled Brauer algebras acting on mixed tensor
space [2, 38].

Murphy bases are used in [3] to construct skew cell modules of diagram algebras, which
are analogous the the skew Specht modules of the symmetric groups.

There are many other examples of coherent towers of cellular algebras obtained by
repeated Jones basic constructions, see [13]. Our method of obtaining explicit Murphy
type bases as ordered products of branching factors has been applied to the walled Brauer
algebras in [2] and should also apply to such examples as the cyclotomic BMW algebras.

2 Preliminaries

2.1 Cellular Algebras

Cellular algebras were defined by Graham and Lehrer [16]. In this paper we use a slightly
weaker version of cellularity which was introduced in [12, 13].

Definition 2.1 Let R be an integral domain. A cellular algebra is a tuple (A, ∗, ̂A,�,A )

where

(1) A is a unital R–algebra and ∗ : A → A is an algebra involution, that is an R–linear
anti–automorphism of A such that (x∗)∗ = x for x ∈ A;

(2) (̂A,�) is a finite partially ordered set, and ̂Aλ, for λ ∈ ̂A, is a finite indexing set;
(3) The set

A = {

cλ
st

∣

∣ λ ∈ ̂A and s, t ∈ ̂Aλ
}

,

is an R–basis for A, for which the following conditions hold:
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(a) Given λ ∈ ̂A, t ∈ ̂Aλ, and a ∈ A, there exist coefficients rv(t, a) ∈ R, for v ∈ ̂Aλ,
such that, for all s ∈ ̂Aλ,

cλ
sta ≡

∑

v∈̂Aλ

rv(t, a)cλ
sv mod A�λ, (2.1)

where A�λ is the R–module generated by
{

c
μ
st

∣

∣ μ ∈ ̂A, s, t ∈ ̂Aμ and μ � λ
}

.

(b) If λ ∈ ̂A and s, t ∈ ̂Aλ, then (cλ
st)

∗ ≡ (cλ
ts) mod A�λ.

The tuple (A, ∗, ̂A,�,A ) is a cell datum for A.

If A is an algebra with cell datum (A, ∗, ̂A,�,A ) we will frequently omit reference to
the cell datum for A and simply refer to A as a cellular algebra. The basis A is called a
cellular basis of A.

From points 3(a) and 3(b) of the definition of cellularity, we have for a ∈ A and s, t ∈ ̂Aλ,

acλ
st ≡

∑

v∈̂Aλ

rv(s, a∗)cλ
vt mod A�λ.

An order ideal � ⊂ ̂A is a subset with the property that if λ ∈ � and μ � λ, then μ ∈ �. It
follows from the axioms of a cellular algebra that for any order ideal � in ̂A,

A� = span
{

cλ
st

∣

∣ λ ∈ �, s, t ∈ ̂Aλ
}

is a two sided ideal of A. In particular A�λ and

A�λ = span
{

c
μ
st

∣

∣ μ ∈ ̂A, s, t ∈ ̂Aμ and μ � λ
}

are two sided ideals.

Definition 2.2 Let A be a cellular algebra, and λ ∈ ̂A. The cell module �λ
A is the right

A–module defined as follows. As an R–module, �λ
A is free with basis indexed by ̂Aλ, say

{cλ
t | t ∈ ̂Aλ}. The right A–action is given by

cλ
t a =

∑

v∈̂Aλ

rv(t, a)cλ
v,

where the coefficients rv(t, a) are those of Eq. (2.1).

Thus, for any s ∈ ̂Aλ, the map

cλ
t �→ cλ

st + A�λ

is an injective A–module homomorphism of the cell module �λ
A into A�λ/A�λ.

If A is an R–algebra with involution ∗, then ∗ induces functors M → M∗ interchanging
left and right A–modules, and taking A–A bimodules to A–A bimodules. We identify M∗∗
with M via x∗∗ �→ x and for modules AM and NA we have (M ⊗R N)∗ ∼= N∗ ⊗R M∗, as
A–A bimodules, with the isomorphism determined by (m⊗n)∗ �→ n∗ ⊗m∗. For a right A–
module MA, using both of these isomorphisms, we identify (M∗ ⊗ M)∗ with M∗ ⊗ M∗∗ =
M∗ ⊗ M , via (x∗ ⊗ y)∗ �→ y∗ ⊗ x. Now we apply these observations with A a cellular
algebra and �λ

A a cell module. The assignment

αλ : cλ
st + A�λ �→ (cλ

s)
∗ ⊗ (cλ

t )
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determines an A–A bimodule isomorphism from A�λ/A�λ to (�λ
A)∗ ⊗R �λ

A . Moreover,

we have ∗ ◦αλ = αλ ◦ ∗, which reflects the cellular algebra axiom (cλ
st)

∗ ≡ cλ
ts mod A�λ.

When it is necessary to identify the algebra we are working with, we will write αA
λ instead

of αλ. The importance of the maps αλ for the structure of cellular algebras was stressed by
König and Xi [23, 24].

2.2 Generic Ground Rings

The most important examples of cellular algebras are actually families AS of algebras
defined over various integral ground rings S, possibly containing distinguished elements
(parameters) which enter into the definition of the algebras. The prototypical example is
the Iwahori–Hecke algebra of the symmetric group Hk = Hk(q

2), which can be defined
over any integral domain S with a distinguished invertible element q; see Section 4.2 for the
detailed description.

Again in the most important examples, there is a “generic ground ring” R for A with the
following properties:

(1) For any integral ground ring S there is a ring homomorphism from R to S, and the
algebra over S is the specialization of the algebra over R, that is AS ∼= AR ⊗R S.
Likewise, the cell modules of AS are specializations of those of AR , that is �λ

AS
∼=

�λ
AR ⊗R S.

(2) R has characteristic zero, and if F denotes the field of fractions of R, then AF is split
semisimple; and the cell modules �λ

AF are the simple AF modules.

For example, the generic ground ring for the Iwahori–Hecke algebra is Z[q, q−1], where q

is an indeterminant over Z.
Indeed, the entire point of the theory of cellular algebras is to provide a setting for a

modular representation theory of important classes of algebras such as the Iwahori–Hecke
algebras, Brauer algebras, Birman Murakami Wenzl algebras, etc. The cell modules of AR

are integrally defined versions of the simple modules ofAF which specialize toAk–modules
for any field k (with appropriate parameters). The simple Ak modules are found as quotients
of the cell modules �λ

Ak . See [16, 28] for details.

2.3 Equivalent Cellular Bases

A cellular algebra A with cell datum (A, ∗, ̂A,�,A ) always admits different cellular bases
B. In fact, any choice of an R–basis in each cell module of A can be globalized to a cellular
basis of A, see Lemma 2.3. We say that a cellular basis

B = {

bλ
st

∣

∣ λ ∈ ̂A and s, t ∈ ̂Aλ
}

is equivalent to the original cellular basis A if it determines the same ideals A�λ and yields
isomorphic cell modules.

Lemma 2.3 ([11], Lemma 2.3) Let A be a cellular algebra with cell datum
(A, ∗, ̂A,�,A ). For each λ ∈ ̂A, fix an A–A–bimodule isomorphism αλ : A�λ/A�λ →
(�λ

A)∗⊗R �λ
A satisfying ∗◦αλ = αλ◦∗. For each λ ∈ ̂A, let {bt | t ∈ ̂Aλ} be an R–basis of

the cell module �λ
A . For each λ ∈ ̂A and each s, t ∈ ̂Aλ, let bλ

st be a lifting of α
−1
λ (b∗

s ⊗ bt)
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in A�λ. Then

B =
{

bλ
st

∣

∣ λ ∈ ̂A and s, t ∈ ̂Ala
}

is a cellular basis of A equivalent to the original cellular basis A .

2.4 Extensions of Cellular Algebras

Definition 2.4 Suppose A is a unital R–algebra with involution ∗, and J is an ∗–invariant
ideal. Let us say that J is a cellular ideal in A if it satisfies the axioms for a cellular algebra
(except for being unital) with cellular basis {cλ

st | λ ∈ ̂J and s, t ∈ ̂Jλ} ⊆ J and we have,
as in point (3a) of the definition of cellularity,

cλ
sta ≡

∑

v

rv(t, a)cλ
sv mod J�λ for all a ∈ A, (2.2)

not only for a ∈ J .

Lemma 2.5 (Extensions of cellular algebras) Let A be an algebra with involution over an
integral domain R. Suppose that J is a cellular ideal in A and A/J is a cellular algebra
with the involution induced from A. Then A is a cellular algebra.

Remark 2.6 Write H = A/J . Denote the cell datum of J by (J, ∗,�, ̂J ,J ) and that
of H by (H, ∗,�, ̂H,H ). Let π : A → A/J = H be the canonical map. The partially
ordered set in the cell datum of A is ̂A = ̂J ∪ ̂H , with the original partial orders on ̂J and
̂H and μ� λ for all μ ∈ ̂J and λ ∈ ̂H . If ˜H is any lifting of H in A, then A = J ∪ ˜H
is a cellular basis of A.

For λ ∈ ̂H , the following statements hold: A�λ = π−1(H�λ), and likewise A�λ =
π−1(H�λ). Consequently, J ⊆ A�λ for all λ ∈ ̂H . We have A�λ/A�λ ∼= H�λ/H�λ via
a +A�λ �→ π(a)+H�λ. The cell modules �λ

A and �λ
H can be identified (by xa = xπ(a)

for x ∈ �λ
H and a ∈ A). The map αA

λ : A�λ/A�λ → (�λ
A)∗ ⊗R �λ

A is

αA
λ : a + A�λ �→ αH

λ (π(a) + H�λ). (2.3)

For μ ∈ ̂J , the cell modules �
μ
A and �

μ
J can be identified; this is because of condition

(2.2) in the definition of cellular ideals. We have A�μ = J�μ ⊆ J , and similarly for A�μ.

2.5 Cellular Algebras with Cyclic Cell Modules

Definition 2.7 A cellular algebra is said to be cyclic cellular if every cell module is cyclic.

Remark 2.8 For examples of cyclic cellular algebras, see Section 6. Cyclic cellularity
was also introduced in [11], and some additional examples, beyond those studied here are
presented in that paper.

Lemma 2.9 ([11], Lemma 2.5) Let A be a cellular algebra with cell datum
(A, ∗, ̂A,�,A ). The following are equivalent:

(1) A is cyclic cellular.
(2) For each λ ∈ ̂A, there exists an element cλ ∈ A�λ with the properties:

(a) cλ ≡ c∗
λ mod A�λ.

(b) A�λ = AcλA + A�λ.
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(c) (cλA + A�λ)/A�λ ∼= �λ
A , as right A–modules.

For a cyclic cellular algebra A and λ ∈ ̂A, we let δλ
A denote a generator of the cell module

�λ
A . The element cλ in Lemma 2.9 can be taken to be any lifting to A�λ of α−1((δλ

A)∗⊗δλ
A).

When it is necessary to identify the algebra we are working in, we write cA
λ .

We record a version of Lemma 2.3 that is adapted to the context of cyclic cellular
algebras:

Lemma 2.10 Let A be a cyclic cellular algebra with cell datum (A, ∗, ̂A,�,A ). For each
λ ∈ ̂A, let {bt | t ∈ ̂Aλ} be an R–basis of �λ

A . For t ∈ ̂Aλ, choose wt ∈ A such that

bt = δλ
Awt. For s, t ∈ ̂Aλ, let

bλ
st = (ws)

∗cλwt.

Then B = {bλ
st | λ ∈ ̂A and s, t ∈ ̂Aλ} is a cellular basis of A equivalent to the original

cellular basis A .

Proof For each λ ∈ ̂A and s, t ∈ ̂Aλ, bλ
st is a lifting in A�λ of α−1

λ (b∗
s ⊗bt), so this follows

immediately from Lemma 2.3.

Remark 2.11 (Extensions of cyclic cellular algebras) Let A be an algebra with involution
over R, let J be a cellular ideal in A and suppose that H = A/J is cellular. If both J and
H are cyclic cellular, then so is A. This is evident from Lemma 2.5 and Remark 2.6.

Let π : A → A/J = H denote the quotient map. For each λ ∈ ̂H , let δλ
H be a generator

of the cell module �λ
H = �λ

A . Let c
H
λ ∈ H�λ satisfy αH

λ (cH
λ + H�λ) = (δλ

H )∗ ⊗ δλ
H . Then

cA
λ can be taken to be any element of π−1(cH

λ ).

3 Bases in Towers of Cellular Algebras

In this section we obtain some elementary results on bases in towers of cellular algebras.
The main results can be summarized as follows. Consider an increasing sequence of cellular
algebras (Hn)n≥0 over an integral domain R with field of fractions F . Suppose that

(1) H0 = R, and HF
n = Hn ⊗R F is split semisimple for all n.

(2) For each n ≥ 0 and each cell module � of Hn+1, the Hn–module ResHn+1
Hn

(�) has an
order preserving cell filtration, see Definition 3.1

(3) Hn is cyclic cellular for all n.

Then one can associate to each edge λ → μ in the branching diagram ̂H for the tower
(HF

N )n≥0 of split semisimple algebras a “branching factor” dλ→μ. The ordered product of
these branching factors along paths in ̂H determines a basis of each cell module of each
algebra Hn. The collection of these bases is a “family of path bases,” which means that the
bases behave well with respect to restriction to smaller algebras in the tower, see Definition
3.8. The existence of these special bases of the cell modules depends on the existence of
cell filtrations for the restricted modules ResHn+1

Hn
(�); conversely, any family of path bases

determines cell filtrations of each restricted module ResHn+1
Hn

(�).
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3.1 Coherence Conditions for Towers of Cellular Algebras

If A is a cellular algebra over R, λ ∈ ̂A, and N ⊆ M is an inclusion of right A–modules,

write N
λ⊆ M if M/N ∼= �λ

A as right A–modules.

Definition 3.1 Let A be a cellular algebra with cell datum (A, ∗,�, ̂A,A ). If M is a right
A–module, a cell filtration of M is a filtration by right A–modules

{0} = M0
λ(1)

⊆ M1
λ(2)

⊆ · · · λ(r)

⊆ Mr = M,

with subquotients isomorphic to cell modules. Say that the filtration is order preserving if
λ(s) � λ(t) in ̂A whenever s < t .

Observe that all the modules occurring in a cell filtration are necessarily free as R–
modules. Evidently, a given cell module occurs at most once as a subquotient in an order
preserving cell filtration.

Here and in the remainder of the paper, we will consider increasing sequences

H0 ⊆ H1 ⊆ H2 · · ·
of cellular algebras over an integral domain R. Whenever we have such a sequence of alge-
bras, we assume that all the inclusions are unital and that the involutions are consistent; that
is the involution on Hi+1, restricted to Hi , agrees with the involution on Hi .

Definition 3.2 ([13, 14]) The tower of cellular algebras (Hi)i≥0 is coherent if the following
conditions are satisfied:

(1) For each i ≥ 0 and each cell module � of Hi , the induced module IndHi+1
Hi

(�) has cell
filtration.

(2) For each i ≥ 0 and each cell module � of Hi+1 the restricted module ResHi+1
Hi

(�) has
a cell filtration.

The tower is called strongly coherent if the cell filtrations can be chosen to be order
preserving.

In the examples of interest to us, we will also have uniqueness of the multiplicities of
the cell modules appearing as subquotients of the cell filtrations, and Frobenius reciprocity
connecting the multiplicities in the two types of filtrations, see Corollary 3.5.

Only the filtrations of restricted modules ResHi+1
Hi

(�) play a role in this section, but the

filtrations of induced modules IndHi+1
Hi

(�) also play an essential role in the study of towers
of algebras with a Jones basic construction in Sections 5 and 6.

3.2 Inclusions Matrices, Branching Diagrams, and Cell Filtrations

We recall the notion of an inclusion matrix for an inclusion of split semisimple algebras over
a field. Suppose A ⊆ B are finite dimensional split semisimple algebras over a field F (with
the same identity element). Let {Vλ | λ ∈ ̂A}, be the set of isomorphism classes of simple
A–modules and {Wμ | μ ∈ ̂B} the set of isomorphism classes of simple B–modules. We
associate a ̂B × ̂A inclusion matrix ω to the inclusion A ⊆ B, as follows.
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For each μ ∈ ̂B and λ ∈ ̂A, define ω(μ, λ) to be the multiplicity of Vλ in a direct
sum decomposition of ResBA(Wμ). Say that the inclusion A ⊆ B is multiplicity–free if the
inclusion matrix has entries in {0, 1}.

Now consider an increasing sequence (Bn)n≥0 of split semisimple algebras over a field
F . Suppose that all the inclusions Bn ⊆ Bn+1 are multiplicity–free. (This suffices for the
examples we want to treat). The branching diagram ̂B of the sequence (Bn)n≥0 is a graph
with vertex set

∐

n≥0
̂Bn, where ̂Bn indexes the set of isomorphism classes simple Bn–

modules. Fix n ≥ 0 and let ωn denote the inclusion matrix of Bn ⊆ Bn+1. For λ ∈ ̂Bn and
μ ∈ ̂Bn+1, the branching diagram has a unique edge connecting λ and μ if ωn(μ, λ) �= 0.
In this case, we write λ → μ. In our examples we have B0 = F , so that ̂B0 is a singleton.

Notation 3.3 Let R be an integral domain with field of fractions F . Let A be a cellular
algebra over R and � an A–module. Write AF for A ⊗R F and �F for � ⊗R F .

Let A be a cellular algebra over an integral domain R with field of fractions F , and
suppose AF is split semisimple. Then {(�λ

A)F | λ ∈ ̂A} is a complete family of simple
AF –modules.

Lemma 3.4 ([13, Lemma 2.22] and [14, Sect. 2.5]) Let R be an integral domain with field
of fractions F . Suppose that A ⊆ B are cellular algebras over R and that AF and BF are
split semisimple. Let ω denote the inclusion matrix for AF ⊆ BF .

1. For any λ ∈ ̂A and μ ∈ ̂B, and any cell filtration of ResBA(�
μ
B), the number of

subquotients of the filtration isomorphic to �λ
A is ω(μ, λ).

2. Likewise, for any λ ∈ ̂A and μ ∈ ̂B, and any cell filtration of IndB
A(�λ

A), the number of

subquotients of the filtration isomorphic to �
μ
B is ω(μ, λ).

Corollary 3.5 Let R be an integral domain with field of fractions F . Let (Hn)n≥0 be a
strongly coherent tower of cellular algebras over R, and suppose that HF

n is split semisim-
ple for all n. Then for all n and for λ ∈ ̂Hn and μ ∈ ̂Hn+1, the multiplicity of �λ

Hn
in any

cell filtration of ResHn+1
Hn

(�
μ
Hn+1

) equals the multiplicity of �
μ
Hn+1

in any cell filtration of

IndHn+1
Hn

(�λ
Hn

). The multiplicities are independent of the choice of the filtrations.

3.3 Path Bases and Cell Filtrations

We consider an increasing sequence (Hn)n≥0 of cellular algebras over an integral domain
R with field of fractions F . We assume the following conditions are satisfied:

(1) H0 = R, and HF
n is split semisimple for all n.

(2) The branching diagram ̂H for the tower (HF
n )n≥0 is multiplicity free.

We let (Hn, ∗,�, ̂Hn,Hn) denote a cell datum for Hn. Denote the unique element of ̂H0
by ∅.

Definition 3.6 A path on ̂H from λ ∈ ̂Hl to μ ∈ ̂Hm (l < m) is a sequence

(λ = λ(l), λ(l+1), . . . , λ(m) = μ)

with λ(i) ∈ ̂Hi and λ(i) → λ(i+1) for all i. A path s from λ to μ and a path t from μ to
ν can be concatenated in the obvious way; denote the concatenation by s ◦ t. If t = (∅ =
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λ(0), λ(1), . . . , λ(n) = λ) is a path from ∅ to λ ∈ ̂Hn, and 0 ≤ k < l ≤ n, write t(k) = λ(k),
t[k,l] for the path (λ(k), . . . , λ(l)), and write t′ for t[0,n−1].

Since for all n ≥ 0 and all μ ∈ ̂Hn, the rank of the cell module �
μ
Hn

equals the dimension

over F of (�
μ
Hn

)F , and the latter is the number of paths on the branching diagram ̂H from

∅ to μ, we can take ̂H
μ
n to be the set of such paths.

We define a total order on paths on ̂H as follows:

Definition 3.7 Let s = (λ(l), λ(l+1), . . . , λ(m)) and t = (μ(l), μ(l+1), . . . , μ(m)) be two
paths from ̂Hl to ̂Hm. Say that s precedes t in reverse lexicographic order (denoted s � t)
if s = t, or if for the last index j such that λ(j) �= μ(j), we have λ(j) < μ(j) in ̂Hj .

Definition 3.8 ([14]) For each n ≥ 0 and each λ ∈ ̂Hn, let {bλ
t | t ∈ ̂Hλ

n } be a basis of
the cell module �λ

Hn
. The family of bases is called a family of path bases if the following

condition holds: Let λ ∈ ̂Hn and let t ∈ ̂Hλ
n . Fix k < n and write t1 = t[0,k], and t2 = t[k,n],

and μ = t(k). Let x ∈ Hk , and let b
μ
t1

x = ∑

s r(x; s, t1)bμ
s . Then

bλ
t x ≡

∑

s

r(x; s, t1)bλ
s◦t2 ,

modulo span{bλ
v | v[k,n] � t[k,n]}.

Lemma 3.9

(1) Suppose that for all n ≥ 1 and for all μ ∈ ̂Hn, Res
Hn

Hn−1
(�

μ
Hn

) has an order preserving
cell filtration. Then the cell modules of the tower (Hn)n≥0 have a family of path bases.

(2) Conversely, suppose we are given a family of path bases of the cell modules of the
tower (Hn)n≥0. Then for all n ≥ 1 and for all μ ∈ ̂Hn, Res

Hn

Hn−1
(�

μ
Hn

) has a cell filtra-

tion. Moreover, if {λ ∈ ̂Hn−1 | λ → μ} is totally ordered in ̂Hn−1, thenRes
Hn

Hn−1
(�

μ
Hn

)

has an order preserving cell filtration.

Proof The first statement is proved in [14, Proposition 2.18]; we will give more concrete
construction of path bases in Section 3.5, in the case that all the algebras Hn are cyclic
cellular.

For the converse, suppose we are given a family of path bases {bt | t ∈ ̂H
μ
n } for n ≥ 0

and for μ ∈ ̂Hn. For n ≥ 1 and μ ∈ ̂Hn, let λ(1), . . . , λ(s) be a list of {λ ∈ ̂Hn−1 | λ → μ},
ordered so that i < j if λ(i) � λ(j). Let

Nj = span
{

bt
∣

∣ t ∈ ̂Hμ
n and t(n − 1) = λ(i) for some i ≤ j

}

.

It follows from the definition of a path basis that Nj is an Hn−1 submodule of

ResHn

Hn−1
(�

μ
Hn

), and that Nj/Nj−1 ∼= �λ(j)

Hn−1
. If {λ ∈ ̂Hn−1 | λ → μ} is totally ordered,

then clearly this cell filtration is order preserving.

3.4 Cyclic Cellularity and Branching Factors

Suppose that A ⊆ B are cyclic cellular algebras over an integral domain R. We have the
following observations regarding cell filtrations of restricted and induced modules:
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(1) Let μ ∈ ̂B and suppose that ResBA(�
μ
B) has a cell filtration:

{0} = M0
λ(1)

⊆ M1
λ(2)

⊆ · · · λ(r)

⊆ Mr = ResBA(�
μ
B). (3.1)

Let δ
μ
B be a generator of the B–module �

μ
B . Since Mj/Mj−1 ∼= �λ(j)

A is a cyclic

A module, there exists an element dB
λ(j)→μ

∈ B such that δ
μ
BdB

λ(j)→μ
+ Mj−1 is a

generator of Mj/Mj−1.
(2) Let λ ∈ ̂A and suppose IndB

A(�λ
A) has a cell filtration:

{0} = N0
μ(1)

⊆ N1
μ(2)

⊆ · · · μ(p)

⊆ Np = IndB
A(�λ

A). (3.2)

Let δλ
A be a generator of theA–module�λ

A ; then δλ
A⊗1 is a generator of the B–module

IndB
A(�λ

A). Since Nj/Nj−1 ∼= �
μ(j)

B is a cyclic B–module, there exists an element

uB
λ→μ(j) ∈ B such that δλ

A ⊗ uB
λ→μ(j) + Nj−1 is a generator of Nj/Nj−1.

We call the elements dB
λ→μ and uB

λ→μ branching factors. They are not canonical, but
in the examples in Sections 4 and 6, it will be possible to make natural choices for these
elements.

3.5 Bases of Cell Modules in Towers of Cyclic Cellular Algebras

Consider a tower (Hn)n≥0 of cellular algebras over an integral domain R with field of
fractions F, satisfying conditions (3)–(3) listed at the beginning of Section 3 We let
(Hn, ∗,�, ̂Hn,Hn) denote a cell datum for Hn. Denote by ∅ the unique element of ̂H0.

Because of assumptions (3)–(3), and Lemma 3.4, there is a multiplicity–free branching
diagram ̂H associated with the tower, namely the branching diagram for the tower (HF

n )n≥0
of split semisimple algebras over F . The edges in the branching diagram are determined as
follows: For λ ∈ ̂Hn and μ ∈ ̂Hn+1, λ → μ if and only if �λ

Hn
appears as a subquotient in

a cell filtration of ResHn+1
Hn

(�
μ
Hn+1

).

Fix once and for all an order preserving cell filtration of ResHn+1
Hn

(�
μ
Hn+1

) for each n ≥ 0

and each μ ∈ ̂Hn+1:

{0} = M0
λ(1)

⊆ M1
λ(2)

⊆ · · · λ(r)

⊆ Mr = ResHn+1
Hn

(�
μ
Hn+1

). (3.3)

Let δ
μ
Hn+1

be a generator of �
μ
Hn+1

. Following observation (1) in Section 3.4, for each edge

λ → μ in ̂H , fix an element d
(n+1)

λ→μ ∈ Hn+1 such that δ
μ
Hn+1

d
(n+1)

λ(j)→μ
+ Mj−1 is a generator

of Mj/Mj−1. Note that the cell modules of H1 have rank 1, and we can choose all the

elements d
(1)

∅→μ
for μ ∈ ̂H1 to be 1.

Now fix n ≥ 1 and λ ∈ ̂Hn. For each path t = (∅ = λ(0), λ(1), . . . , λ(n) = λ) ∈ ̂Hλ
n ,

define

dt = d
(n)

λ(n−1)→λ(n) d
(n−1)

λ(n−2)→λ(n−1) · · · d(1)

∅→λ(1) . (3.4)

Proposition 3.10 Let n ≥ 1 and let μ ∈ ̂Hn. Consider our chosen cell filtration of
ResHn

Hn−1
(�

μ
Hn

),

{0} = M0
λ(1)

⊆ M1
λ(2)

⊆ · · · λ(r)

⊆ Mr = ResHn

Hn−1
(�

μ
Hn

). (3.5)
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(1) For 1 ≤ j ≤ r ,
{

δ
μ
Hn

dt
∣

∣ t ∈ ̂Hμ
n and t(n − 1) ∈ {λ(1), λ(2), . . . , λ(j)}

}

is a basis of Mj .
(2) In particular, {δμ

Hn
dt | t ∈ ̂H

μ
n } is a basis of �μ

Hn
.

Proof Evidently, statement (1) implies statement (2). We prove both statements by induc-
tion on n, the case n = 1 being evident. Fix n > 1 and suppose the statements hold for cell
modules of Hk for 1 ≤ k ≤ n − 1. For each i we have an isomorphism of Hn−1–modules

ϕi : δ
μ
Hn

d
(n)

λ(i)→μ
h + Mi−1 �→ δλ(i)

Hn−1
h

from Mi/Mi−1 to �λ(i)

Hn−1
. By the induction hypothesis, {δλ(i)

Hn−1
ds | s ∈ ̂Hλ(i)

n−1} is a basis of
the cell module �λ(i)

Hn−1
. Pulling back this basis via ϕi , we get that

{

δ
μ
Hn

d
(n)

λ(i)→μ
ds + Mi−1

∣

∣ s ∈ ̂Hλ(i)

n−1

}

is a basis of Mi/Mi−1. It follows that for each j ,
{

δ
μ
Hn

d
(n)

λ(i)→μ
ds

∣

∣ 1 ≤ i ≤ j and s ∈ ̂Hλ(i)

n−1

}

is a basis of Mj . But this basis is equal to
{

δ
μ
Hn

dt
∣

∣ t ∈ ̂Hμ
n and t(n − 1) ∈ {

λ(1), λ(2), . . . , λ(j)
}

}

.

This proves statement (1), and statement (2) follows.

Corollary 3.11 For each n and λ ∈ ̂Hn, let cλ be a lifting in H
�λ
n of α−1

λ ((δλ
Hn

)∗ ⊗ δλ
Hn

).
Then

{

d∗
scλdt

∣

∣ λ ∈ ̂Hn and s, t ∈ ̂Hλ
n

}

is a cellular basis of Hn which is equivalent to the original cellular basis Hn.

Proof Follows from Proposition 3.10 and Lemma 2.10.

Lemma 3.12 The family of bases {δλ
Hn

dt | t ∈ ̂Hλ
n } of the cell modules �λ

Hn
is a family of

path bases.

Proof This is a special case of [14, Proposition 2.18].

4 Example: The Iwahori–Hecke Algebra of the Symmetric Groups

In this section, we apply the theory of Section 3 to the Iwahori–Hecke algebra of the
symmetric groups. In particular, we recall that the sequence of Hecke algebras is a coher-
ent tower of cyclic cellular algebras, and we compute the branching factors for reduced
and induced cell modules. We show that the path bases obtained via ordered products of
branching factors coincide with the Murphy bases.
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4.1 Combinatorics

Let n denote a non–negative integer and Sn be the symmetric group acting on {1, . . . , n}
on the right. For i an integer, 1 ≤ i < n, let si denote the transposition (i, i + 1).
Then Sn is presented as a Coxeter group by generators s1, s2, . . . , sn−1, with the relations

s2i = 1, for i = 1, . . . , n − 1,
sisj = sj si , for |i − j | > 1.
sisi+1si = si+1sisi+1, for i = 1, . . . , n − 2.

A product w = si1si2 · · · sij in which j is minimal is called a reduced expression for w and
j = l(w) is the length of w.

We will assume familiarity with the usual combinatorics associated with the symmetric
groups: compositions and partitions, and their diagrams, tableaux, dominance order, etc. We
will follow the terminology and notations of [28], especially Section 3.1. Our convention
regarding diagrams is illustrated by the example: for the partition λ = (3, 2), its diagram is

[λ] =
The notation λ � n indicates that λ is a partition of n. The diagram of a partition is

commonly called a Young diagram. We denote the set of Young diagrams of size n by Yn

For a composition λ of size n, let T (λ) denote the set of all λ–tableaux (possibly with
repeated entries) and T0(λ) the set of λ–tableaux in which each number 1, 2, . . . , n appears
exactly once. For a partition λ, write T Std(λ) for the set of standard λ–tableaux. If t ∈ T0(λ)

and 1 ≤ k ≤ n, we write nodet(k) for the node in λ containing the entry k, rowt(k) for the
row coordinate of k in t and colt(k) for the column coordinate of k in t.

The symmetric groupSn acts freely and transitively on T0(λ), on the right, by acting on
the integer labels of the nodes of [λ]. For example,

Let tλ denote the standard λ–tableau in which 1, 2, . . . , n are entered in increasing order
from left to right along the rows of [λ]. Thus in the previous example where n = 6 and
λ = (3, 2, 1),

(4.1)

For each t ∈ T0(λ), let w(t) denote the unique permutation such that t = tλw(t). The Young
subgroup Sλ is defined to be the row stabilizer of tλ in Sn. For instance, when n = 6 and
λ = (3, 2, 1), as in (4.1), then Sλ = 〈s1, s2, s4〉.

Let λ � n and let t ∈ T0(λ). Let α be an addable node of λ. Then we write t ∪ α for
the tableau of shape λ ∪ α which agrees with t on the nodes of λ and which has the entry
n + 1 in node α. If t is a standard λ–tableau, then the node of t containing the entry n is a
removable node β of λ. Write t′ = t ↓n−1 for the standard tableau of shape λ \ β obtained
by removing the node β.

4.2 Iwahori–Hecke Algebras of the Symmetric Group

Let R be an integral domain and q be a unit in R. Let Hn = Hn(q
2) denote the Iwahori–

Hecke algebra of the symmetric group, which is presented by the generators T1, . . . , Tn−1,
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and the relations

TiTj = TjTi, if |i − j | > 1,
TiTi+1Ti = Ti+1TiTi+1, for i = 1, . . . , n − 2,
(Ti − q)(Ti + q−1) = 0, for i = 1, . . . , n − 1.

If we need to refer explicitly to the ground ring R, we write Hn(R; q2). If v ∈ Sn, and
v = si1si2 · · · sil is a reduced expression for v inSn, then Tv = Ti1Ti2 · · · Til is well defined
inHn(q

2) and {Tv | v ∈ Sn} freely generatesHn(q
2) as an R–module. It follows from this

that Hn embeds in Hn+1 for all n ≥ 0. The R–module map ∗ : Tv �→ Tv−1 is an algebra
anti–automorphism ofHn(q

2). If i, j = 1, . . . , n,let

Ti,j =
{

TiTi+1 · · · Tj−1, if j ≥ i,
Ti−1Ti−2 · · · Tj , if i > j .

If R is a field of characteristic zero and q is not a proper root of unity, then it is known
that each of the algebras Hn is split semisimple with simple modules labeled by the set Yn

of Young diagrams of size n; moreover the branching diagram ̂H of the tower (Hn)n≥0 is
Young’s lattice; namely for Young diagrams λ and μ with |μ| = |λ| + 1, we have λ → μ if
and only if μ is obtained from λ by adjoining one node.

If μ ∈ ̂Hn, define ̂Hμ
n to be the set of paths (μ(0) = ∅, μ(1), . . . , μ(n) = μ) on Young’s

lattice ̂H from ∅ to μ. There is an evident bijection between the set of such paths and
standard tableaux of shape λ.

If μ ∈ ̂Hn, let

mμ =
∑

v∈Sμ

ql(v)Tv. (4.2)

In the following statement, recall that for λ ∈ ̂Hi and t ∈ T Std(λ), w(t) denotes the
unique permutation in Si such that tλw(t) = t.

Theorem 4.1 (Murphy [33]) For i ≥ 1,

Hi =
{

mλ
st = T ∗

w(s)mλTw(t)

∣

∣ s, t ∈ T Std(λ), λ ∈ ̂Hi

}

is an R–basis forHi , and (Hi , ∗, ̂Hi ,�,Hi ) is a cell datum forHi .

Remark 4.2 The basis elements defined here actually differ by a power of q from those
defined by Murphy. Murphy and other authors use generators (call them T̃i) forHn satisfy-
ing (T̃i − q2)(T̃i + 1) = 0. These are related to our generators by T̃i = qTi Thus Murphy’s
basis elements would be ql(s)+l(t)mλ

st.

We let {mλ
t | t ∈ T Std(λ)} denote the basis of the cell module �λ

Hn
derived from the

Murphy basis. Then we have mλ
t = mλ

tλ
Tw(t). In particular, we see that the Hecke algebra is

a cyclic cellular algebra, with �λ
Hn

generated by mλ
tλ
. The bimodule isomorphism

αλ :H�λ/H�λ → (�λ
Hn

)∗⊗�λ
Hn

is αλ :mλ
st+H�λ �→ T ∗

w(s)(m
λ
tλ

)∗⊗mλ
tλ

Tw(t). In particu-

larmλ is a lift inH�λ ofα−1
λ ((mλ

tλ
)∗⊗mλ

tλ
), so plays the role of the element cλ in Section 2.5.

We record this as a corollary:

Corollary 4.3 The Hecke algebrasHn are cyclic cellular algebras.
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4.3 Cell Filtrations and Branching Factors

Our next task is to recall that the sequence of Hecke algebras (Hn)n≥0 is a strongly coherent
tower of cellular algebras, and to determine the branching factors d

(n)
μ→λ and u

(n)
μ→λ when

μ → λ. First we discuss the cell filtrations of restrictions of cell modules and the branching
factors d

(n)
μ→λ.

Theorem 4.4 (Jost, Murphy) Let n ≥ 1 and λ ∈ ̂Hn. Let �λ
Hn

be the corresponding cell

module of Hn. Then ResHn

Hn−1
(�λ

Hn
) has an order preserving filtration by cell modules of

Hn−1.

Jost [22] has shown, using the Dipper–James description of Specht modules of the Hecke
algebras [5], that the restriction of a Specht module has a filtration by Specht modules.
Together with Murphy’s result that the cell modules of the Hecke algebras can be identified
with the Specht modules [33, Theorem 5.3], this shows that the restriction of a cell module
has a cell filtration. A direct proof of Theorem 4.4 usingMurphy’s description of the cellular
structure is given in [15].

We now give a more precise description of the cell filtration in Theorem 4.4. Let
α1, . . . , αp be the list of removable nodes of λ, listed from bottom to top and let μ(j) =
λ \ αj . Thus i ≤ j if and only if μ(i) �μ(j). Let N0 = (0) and for 1 ≤ j ≤ p, let Nj be the
R–submodule of �λ

Hn
spanned by by the basis elements mλ

t such that the node containing
n in t is one of α1, . . . , αj . Then we have

(0) = N0 ⊆ N1 · · · ⊆ Np = ResHn

Hn−1
(�λ

Hn
).

The explicit form of the assertion of Theorem 4.4 is that the Nj are Hn−1–submodules of

ResHn

Hn−1
(�λ

Hn
) and Nj/Nj−1 ∼= �

μ(j)

Hn−1
for 1 ≤ j ≤ p. The isomorphism is determined by

m
μ(j)

s �→ mλ
s∪αj

+ Nj−1. (4.3)

We can now determine the branching factors d
(n)
μ→λ:

Corollary 4.5 The branching factors d
(n)
μ→λ can be chosen as follows: Let λ ∈ ̂Hn and

μ ∈ ̂Hn−1 with μ → λ. Let α = λ \ μ. Then

d
(n)
μ→λ = Tw(tμ∪α). (4.4)

More explicitly, let a(α) be the entry of tλ in the node α. Then w(tμ ∪ α) = (n, n −
1, . . . , a(α)), so

d
(n)
μ→λ = T(n,n−1,...,a(α)) = Ta(α),n. (4.5)

Proof Under the isomorphism �
μ(j)

Hn−1
→ Nj/Nj−1, the generator m

μ(j)

tμ
(j) is sent to

mλ

tμ
(j)∪αj

+ Nj−1 = mλ
tλ

T
w(tμ

(j)∪αj )
+ Nj−1.

This means that we can chose d
(n)
μ→λ = Tw(tμ∪α). Now it is straightforward to check that

w(tμ ∪ α) = (n, n − 1, . . . , a(α)), so that d(n)
μ→λ = T(n,n−1,...,a(α)) = Ta(α),n.
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Let λ ∈ ̂Hn and let t be a standard λ–tableau. We identify t with a path on the branching
diagram ̂H, t = (∅ = λ(0), . . . , λ(n) = λ). Define

dt = d
(n)

λ(n−1)→λ(n)d
(n−1)
λ(n−2)→λ(n−1) · · · d(1)

λ(0)→λ(1) . (4.6)

Lemma 4.6 Let λ be a partition of n, let α be a removable node of λ, and let μ = λ \ α.
Let a(α) be the entry of tλ in the node α. Let s ∈ T0(μ) be a μ–tableau. Then

w(s ∪ α) = (n, n − 1, . . . , a(α))w(s),

and
Tw(s∪α) = T(n,n−1,...,a(α))Tw(s) = Ta(α),nTw(s).

Proof We have

s ∪ α = (tμ ∪ α)w(s) = tλ(n, n − 1, . . . , a(α)) w(s).

Therefore,
w(s ∪ α) = (n, n − 1, . . . , a(α))w(s).

Now one can check that (n, n − 1, . . . , a(α)) is a distinguished left coset representative of
Sn−1 in Sn. Therefore,

Tw(s∪α) = T(n,n−1,...,a(α))Tw(s) = Ta(α),nTw(s).

Lemma 4.7 Let λ be a partition of n and let t be a standard λ–tableau. Then Tw(t) = dt.

Proof Let α be the node of λ containing the entry n in t and let μ = λ \ α. Let t′ be the
standard μ tableau obtained from t by removing the node α. Let a(α) be the entry of tλ in
the node α. Then t = t′ ∪ α, so by the previous lemma and Corollary 4.5,

Tw(t) = Ta(α),nTw(t′) = d
(n)
μ→λTw(t′).

By induction, we obtain the desired formula Tw(t) = dt.

Corollary 4.8 The bases of the cell modules and the cellular basis of the Hecke algebra
Hn given in Proposition 3.10 and Corollary 3.11 coincide with the Murphy bases:

mλ
t = mλ

tλ
dt, and mλ

st = d∗
s mλ dt. (4.7)

Next we turn to the cell filtration of induced cell modules and the branching factors
u

(n)
μ→ν .

Theorem 4.9 (Dipper–James, Murphy, Mathas) Let μ ∈ ̂Hn and let �
μ
Hn

be the corre-

sponding cell module ofHn. Then IndHn+1
Hn

(�
μ
Hn

) has an order preserving filtration by cell
modules ofHn+1.

Corollary 4.10 The sequence of Hecke algebras (Hn)n≥0 is a strongly coherent tower of
cyclic cellular algebras.

Proof Combine Theorem 4.4, Theorem 4.9 and Corollary 4.3.
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Let α = α1, α2, . . . , αp = ω be the list of addable nodes of μ, listed from top to bottom.
Let ν(i) = μ ∪ αi . Note that i ≤ j if and only if ν(i) � ν(j). The cell modules of Hn+1

occurring as subquotients in the cell filtration of IndHn+1
Hn

(�
μ
Hn

) are �ν(i)

Hn+1
for 1 ≤ i ≤ p.

One proof of Theorem 4.9 is obtained by combining [5, Sect. 7] with [33, Theorem
5.3]. A different proof was recently given by Mathas [30]; this proof is based on Murphy’s
Theorem 4.12 on the existence of a cell filtration of permutation modules of Hn. We are
going to sketch Mathas’ proof in order to point out how the branching factors u

(n+1)
μ→ν can be

extracted from it.

Definition 4.11 Let λ, μ � n and T : λ → N be a λ–tableau. Then:

(1) T is a tableau of type μ if for all i ≥ 1, μi = �{a ∈ λ | T(a) = i}.
(2) T is semistandard if the entries of T are weakly increasing along each row from left to

right and strictly increasing along each column from top to bottom.

Let T SStd
μ (λ) be the set of semistandard λ-tableaux of type μ and T SStd

μ ( ̂Hn) =
⋃

λ∈ ̂Hn
T SStd

μ (λ) be the set of all semistandard tableaux of type μ.

Let λ, μ � n and t ∈ T Std(λ). Define μ(t) to be the tableau obtained from t by replacing
each entry j in t with the row index of the entry j in tμ. If T SStd

μ (λ) �= ∅, then λ � μ. Note

that there is a unique element Tμ ∈ T SStd
μ (μ), namely Tμ = μ(tμ).

If S ∈ T SStd
μ (λ) and t ∈ T Std(λ), let

mSt =
∑

s∈T Std(λ)
μ(s)=S

ql(w(s))mλ
st (4.8)

Let μ ∈ ̂Hn. Define the permutation module

Mμ = mμHn.

Theorem 4.12 (See [33, Theorem 7.2]) If μ ∈ ̂Hn, then:

(1) Mμ is free as an R-module, with basis
{

mSt

∣

∣ S ∈ T SStd
μ (λ), t ∈ T Std(λ) for λ ∈ ̂Hn

}

.

(2) Suppose that T SStd
μ ( ̂Hn) = {S1, . . . ,Sk} is ordered so that i ≤ j whenever λ(i)�λ(j),

where λ(i) = Shape(Si ). Let Mi be the R-submodule of Mμ spanned by the elements
{mSj t | j ≤ i andt ∈ T Std(λ(j))}. Then

{0} = M0
λ(1)

⊆ M1
λ(2)

⊆ · · · λ(m)

⊆ Mm = Mμ (4.9)

is a cell module filtration of Mμ. The isomorphism Mj/Mj−1 ∼= �λ(j)

Hn
is determined

by

mSj t + Mj−1 �→ mλ(j)

t , for t ∈ T Std(λ(j)). (4.10)

Remark 4.13 In Theorem 4.12, we have Sm = Tμ and λ(m) = μ.

SinceHn+1 is free of rank n+1 as a leftHn–module, it follows that the induction functor
IndHn+1

Hn
( ) = ⊗Hn Hn+1 is exact. We will write Ind for this functor in the following
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discussion. Because of exactness, we have

Ind(Mj )/ Ind(Mj−1) ∼= Ind(Mj/Mj−1) ∼= Ind(�λ(j)

Hn
). (4.11)

In particular

Ind(Mμ)/ Ind(Mm−1) ∼= Ind(�μ
Hn

). (4.12)

Mathas’ proof of Theorem 4.9 proceeds by exhibiting a cell filtration of
Ind(Mμ)/ Ind(Mm−1).

Another consequence of the freeness of Hn+1 as a left Hn–module is the following: if
M is a right ideal inHn, then

Ind(M) = M ⊗Hn Hn+1 ∼= MHn+1, (4.13)

via x ⊗ h �→ xh. We will simply identify Ind(M) with MHn+1. Recall that ω denotes the
lowest addable node of μ, and note that mμ = mμ∪ω. Hence,

Ind(Mμ) = MμHn+1 = mμHn+1 = mμ∪ωHn+1 = Mμ∪ω. (4.14)

To proceed, we need to relate semistandard tableaux of size n and type μ and semistan-
dard tableaux of size n + 1 and type μ ∪ ω. Let l denote the number of non–zero parts of
μ, so that ω = (l + 1, 1). If S is a semistandard tableau of shape λ and type μ, and β is an
addable node of λ, then we define the semistandard tableau S ∪ β of shape λ ∪ β and type
μ ∪ ω by S ∪ β(x) = S(x) if x ∈ [λ] and S(β) = l + 1. We write T SStd

μ∪ω (S) for the set of
semistandard tableaux S ∪β as β ranges over addable nodes of λ. It is easy to see that every
U ∈ T SStd

μ∪ω ( ̂Hn+1) is obtained as S ∪ β for some S and some β.
Recall that S1, . . . , Sm = T μ is the list of all semistandard tableaux of size n and type

μ, listed so that Shape(Si) � Shape(Sj ) implies i ≤ j . Mathas defines the following R–
submodules of Mμ∪ω:

Ni = span{mUv

∣

∣ U ∈ T SStd
μ∪ω (Sj ), v ∈ T Std(Shape(U)) for 1 ≤ j ≤ i} (4.15)

Lemma 4.14 ([30, Lemma 3.5]) Let S ∈ T SStd
μ (λ), U ∈ T SStd

μ∪ω (S), and ν = Shape(U).
Then mUtν ∈ mStλHn+1.

Proposition 4.15 ([30, Theorem 3.6]) Nm−1 = Ind(Mm−1).

Remark 4.16 The proof of this result in the published version of [30] has a gap, but this
was repaired in the version posted to the arxiv.

By applying Theorem 4.12 to Mμ∪ω, we see that Mμ∪ω/Nm−1 is free with basis
{

mUv + Nm−1
∣

∣ U ∈ T SStd
μ∪ω (Tμ), v ∈ T Std(Shape(U))

}

=
{

mTμ∪β,v + Nm−1
∣

∣ β is an addable node of μ, v ∈ T Std(μ ∪ β)
}

.
(4.16)

We can now exhibit an order preserving cell filtration of Mμ∪ω/Nm−1 ∼= Ind(�μ
Hn

). In the
following, we write N = Nm−1. Recall that α = α1, α2, . . . , αp = ω is the list of addable
nodes of μ listed from top to bottom and ν(j) = μ ∪ αj . Let J 0 = (0) and for 1 ≤ i ≤ p,
define J i ⊆ Mμ∪ω/N by

J i = span
{

mTμ∪αj ,v + N
∣

∣ j ≤ i and v ∈ T Std(μ ∪ αj )
}

.
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Theorem 4.17 ([30, Corollary 3.7]) Each J i is anHn+1 submodule of Mμ∪ω/N ,

(0) = J 0 ⊆ J 1 ⊆ · · · ⊆ Jp = Mμ∪ω/N, (4.17)

and J i/J i−1 ∼= �ν(i)

Hn+1
.

This completes the sketch of Mathas’ proof of Theorem 4.9. It remains to see how the cell
filtration (4.17) carries over to Ind(�μ

Hn
), and to identify the branching factors u

(n+1)
μ→ν . The

isomorphism ϕ : Mμ∪ω/N → Ind(�μ
Hn

) is the composite of the isomorphism Mμ∪ω/N ∼=
Ind(Mμ/Mm−1), given by

mμh + N �→ (mμ + Mm−1) ⊗ h,

and the isomorphism Ind(Mμ/Mm−1) ∼= Ind(�μ
Hn

) given by

(mTμtμ + Mm−1) ⊗ h �→ m
μ
tμ ⊗ h.

Since mTμtμ = mμ, the composite isomorphism is given by

ϕ : mμh + N �→ m
μ
tμ ⊗ h. (4.18)

We need to examine how this isomorphism acts on the basis (4.16) of Mμ∪ω/N .
Let β be an addable node of μ and let ν = μ ∪ β. Suppose that β is in row r , and let

a = ∑r
j=1 νj = 1+ ∑r

j=1 μj . Recall that Ti,i = 1 and if i > j , then Ti,j = T(j,j+1,...,i) =
Ti−1Ti−2 · · · Tj . Define

D(β) =
μr
∑

k=0

qkTa,a−k

= 1 + q Ta−1 + q2 Ta−1Ta−2 + · · · + qμr Ta−1Ta−2 · · · Ta−μr .

(4.19)

In particular, D(ω) = 1.
The following lemma can be extracted from [30].

Lemma 4.18

(1) mν = T −1
n+1,amμTn+1,aD(β).

(2) w(tμ ∪ β) = (n + 1, n, . . . , a). Thus mν
tν ,tμ∪β = mν(Tn+1,a)

∗.
(3) mTμ∪β,tν = qn+1−a mμ Tn+1,aD(β).
(4) The isomorphism ϕ : Mμ∪ω/N → Ind(�μ

Hn
) satisfies

ϕ(mTμ∪β,tν + N) = m
μ
tμ ⊗ qn+1−a Tn+1,a D(β).

Proof If β = ω, then Tn+1,a = D(β) = 1, and all the statements are evident. Sup-
pose that β �= ω. Let ν′ be the composition ν′ = (μ1, . . . , μr , 1, μr+1, . . . , μl). One has
T −1

n+1,aTjTn+1,a = Tj+1 if a ≤ j ≤ n − 1. This follows from the identity in the braid
group:

(σ−1
a · · · σ−1

n )σj (σn · · · σa) = σj+1,

for a ≤ j ≤ n − 1, where the elements σi are the Artin generators of the braid group. From
this, we obtain:

mν′ = T −1
n+1,amμTn+1,a.

Note that Sν′ ⊂ Sν and D(β) = ∑

ql(x)Tx , as where the sum is over the distinguished
right coset representatives of Sν′ in Sν . Hence mν = mν′D(β), and part (1) follows. The
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first assertion in part (2) is evident and the second statement follows because T(n+1,...,a) =
Ta,n+1 = (Tn+1,a)

∗.
For part (3), mTμ∪β,tν = ∑

s ql(s)(Td(s))
∗mν , where the sum is over standard tableaux

s of shape ν such that (μ ∪ ω)(s) = Tμ ∪ β, according to the definition (4.8). But
there is only one such standard tableau, namely s = tμ ∪ β. Applying parts (1)
and (2),

mTμ∪β,tν = qn+1−a Tn+1,a mν

= qn+1−a mμ Tn+1,a D(β).

Part (4) follows from part (3) together with the description of ϕ in Eq. (4.18).

Corollary 4.19 The branching factors u
(n+1)
μ→ν can be chosen as follows: Let μ ∈ ̂Hn and

ν ∈ ̂Hn+1 with μ → ν. Let β = ν \ μ. Suppose that β is in row r and let a = ∑r
j=1 νj .

Then:

u(n+1)
μ→ν = Tn+1,aD(β) = Tn+1,a

μr
∑

k=0

qkTa,a−k =
μr
∑

k=0

qkTn+1,a−k (4.20)

Proof In Theorem 4.7, we have for j ≥ 1,

J j = (m
Tμ∪αj ,tν

(j) + N)Hn+1 + J j−1.

Set I j = ϕ(J j ). Then I j /I j−1 ∼= �ν(j)

Hn+1
and

I j = ϕ(m
Tμ∪αj ,tν

(j) + N)Hn+1 + I j−1.

Hence, the statement follows from Lemma 4.18, part (4).

5 Algebras with Jones Basic Construction

5.1 Cellularity and the Jones Basic Construction: A Correction

In [13, 14], Goodman and Graber developed a theory of cellularity for algebras with a
Jones basic construction. Examples of such algebras include the Birman–Murakami–Wenzl,
Brauer, partition, and Jones–Temperley–Lieb algebras, among others. There was, however,
a mistake in the proof in [13] that these algebras constitute coherent towers of cellular
algebras. In this section, we will review the setting of [13, 14], describe the error, and explain
what needs to be done to correct it.

The setting in [13], as modified in [14] is the following. First recall that an essential
idempotent in an algebra A over a ring R is an element e such that e2 = δe for some non–
zero δ ∈ R. Let R be an integral domain with field of fractions F and consider two towers
of algebras with common multiplicative identity,

A0 ⊆ A1 ⊆ A2 ⊆ · · · and H0 ⊆ H1 ⊆ H2 ⊆ · · · . (5.1)

It is assumed that the two towers satisfy the following list of axioms:

(1) There is an algebra involution ∗ on ∪nAn such that (An)
∗ = An, and likewise, there is

an algebra involution ∗ on ∪nHn such that (Hn)
∗ = Hn.

(2) A0 = H0 = R and A1 = H1 (as algebras with involution).
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(3) For n ≥ 2, An contains an essential idempotent en−1 such that e∗
n−1 = en−1 and

An/(Anen−1An) ∼= Hn as algebras with involution.
(4) For n ≥ 1, en commutes with An−1 and enAnen ⊆ An−1en.
(5) For n ≥ 1, An+1en = Anen, and the map x �→ xen is injective from An to Anen.
(6) For n ≥ 2, en−1 ∈ An+1enAn+1.
(7) For all n, AF

n := An ⊗R F is split semisimple.
(8) (Hn)n≥0 is a strongly coherent tower of cellular algebras.

Under these hypotheses, it is claimed in [13, 14] that (An)n≥0 is a strongly coherent tower
of cellular algebras. The strategy of the proof is to show by induction that the following
statements hold for all n ≥ 0:

• An is a cellular algebra.
• For 2 ≤ n, Jn = Anen−1An is a cellular ideal in An.
• For 2 ≤ n, the cell modules of Jn are of the form � = �′ ⊗An−2 en−1An, where �′ is

a cell module of An−2.
• The finite tower (Ak)0≤k≤n is strongly coherent.

For n ≤ 1 these statements are evident. Assuming the statements hold for some fixed n ≥ 1,
one first proves that Jn+1 is a cellular ideal in An+1 with cell modules of the form � =
�′ ⊗An−1 enAn+1, where �′ is a cell module of An−1. It follows from Lemma 2.5 that An+1
is cellular.

It then remains to show that for each cell module � of An+1, the restriction of � to An

has an order preserving cell filtration, and that for each cell module � of An, the induction
of � to An+1 has an order preserving cell filtration. In fact, we will go over the details of
the proof of these last two steps below in Theorem 5.6. For now, we note that in the proof
of the statement about induced modules, it was falsely claimed in [13], in the last paragraph
on page 335, that if � is a cell module of Jn then �Jn = �. In fact, this does not follow
from the axioms (1)–(8) listed above, so it is necessary to add an additional axiom to our
framework, as follows:

(9) For n ≥ 2, en−1Anen−1An = en−1An.

From this, it follows that for a cell module � = �′ ⊗An−2 en−1An of Jn, we have
�Jn = �, and the proof in [13] can proceed as before.

Let us now consider the applicability of the augmented framework axioms (1)–(9) to the
principal examples considered in [13, 14]. In fact, in each example, a stronger version of
axiom (6) holds, namely

en−1enen−1 = en−1 and enen−1en = en for n ≥ 2.

Thus for n ≥ 3,
en−1Anen−1An ⊇ en−1en−2en1An = en−1An.

Therefore, Axiom (6) reduces to the statement

e1A2e1A2 = e1A2.

When An is the n–th BMW, Brauer, partition, or Jones–Temperley–Lieb algebra defined
over an integral ground ring R, we have A1 = H1 = R. Let δ be the non–zero element of
R such that e21 = δe1. Then we have

e1A2e1A2 = e1A1e1A2 = e21A2 = δe1A2,

where we have used e1A2 = e1A1 = Re1. In each of these examples, e1A2 is free as an R–
module, and hence Axiom (9) holds if and only if δ is invertible in R. It follows that Axiom
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(9) does not hold when R is the generic ground ring, but it does hold when R is the generic
ground ring with δ−1 adjoined.

In fact, for these algebras, it is false that (An)n≥0 is a coherent tower of cellular algebras,
over the generic ground ring, but, by [13], as corrected above, it is true over the generic
ground ring with δ−1 adjoined. This is illustrated by the example of the Jones–Temperley–
Lieb algebras in the following section.

5.2 An example: The Jones–Temperley–Lieb Algebras

We first state an elementary result about the commutativity of specialization and induction.
Let A be an algebra over an integral domain R and let ϕ : R → k be a ring homomor-

phism from R to a field k. Write Ak for A ⊗R k, and for a right A–module M , write Mk for
the right Ak–module M ⊗R k.

Lemma 5.1 Let A ⊆ B be algebras over an integral domain R, let ϕ : R → k be a ring
homomorphism from R to a field k, and let M be a right A–module. Then

IndB
A(M) ⊗R k ∼= IndBk

Ak (M
k),

as right Bk–modules.

Corollary 5.2 If, in the situation of the lemma, IndB
A(M) is free as an R–module, then

dimk(IndBk

Ak (M
k)) is independent of the choice of k and of the homomorphism ϕ : R → k.

Now we consider the Jones–Temperley–Lieb algebras An = An(R0; δ) defined over the
generic ground ring R0 = Z[δ], where δ is an indeterminant. For the definition of these
algebras and a description of their cellular structure, see Section 6.4 of this paper, and further
references there.

The algebra A2 has two cell modules, each of rank 1. They are �0 = e1A2 = Re1

and �1 = A2/Re1. When k = Q(δ), Ind
Ak
3

Ak
2
(�k

0) is two dimensional and Ind
Ak
3

Ak
2
(�k

1) is

three dimensional, as one sees by examining the generic branching diagram for the tower

(Ak
n)n≥0. However, when k = Q and δ = 0, �k

0
∼= �k

1, so also Ind
Ak
3

Ak
2
(�k

0)
∼= Ind

Ak
3

Ak
2
(�k

1). It

follows from this and Corollary 5.2 that at least one of Ind(�0) or Ind(�1) fails to be free as
an R–module, and in particular one of these induced modules does not have a cell filtration.

Corollary 5.3 The tower of Jones–Temperley–Lieb algebras (An(R0; δ))n≥0 over the
generic ground ring R0 = Z[δ] is not a coherent tower of cellular algebras.

5.3 Standing Assumptions

For the remainder of the paper we will work in the setting described by axioms (1)–(9) of
Section 5.1, and assume in addition that

(10) Each Hn is a cyclic cellular algebra.

5.4 Cellularity of the Algebras An

Next we review some of the consequence of our axioms that were obtained in [13, 14], as
corrected above in Section 5.1. In the following let (Hi, ∗, ̂Hi,�,Hi ) denote the cell datum
for Hi .
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(1) Each An is a cellular algebra. In fact, this is demonstrated by showing that Jn =
Anen−1An is a cellular ideal ofAn. Since the quotient algebraHn = An/Jn is assumed
to be cellular, it follows from Lemma 2.5 that An is cellular.

(2) The partially ordered set ̂An in the cell datum for An can be realized as

̂An = {

(λ, l)
∣

∣ 0 ≤ l ≤ �n/2� and λ ∈ ̂Hn−2l
}

,

with the partial order (λ, l) � (μ,m) if l > m or if l = m and λ � μ in ̂Hn−2l .
(3) The cell modules �

(λ,0)
An

for λ ∈ ̂Hn are those such that �(λ,0)
An

Jn = 0. Let πn : An →
An/Jn = Hn denote the quotient map. The cell module �

(λ,0)
An

can be identified with

�λ
Hn

via xa = xπn(a) for x ∈ �λ
Hn

and a ∈ An, as in Remark 2.6. The cell modules

�
(λ,l)
An

for l > 0 are the cell modules of the cellular ideal Jn. For l > 0, we have

�
(λ,l)
An

∼= �
(λ,l−1)
An−2

⊗An−2 en−1An = �
(λ,l−1)
An−2

⊗An−2 en−1An−1.

(4) The sequence (An)n≥0 is a strongly coherent tower of cellular algebras. Since AF
n

and HF
n are split semisimple for all n, the two towers have branching diagrams, by

Corollary 3.5.
(5) The branching diagram ̂A for the tower (An)n≥0 is that “obtained by reflections” from

the branching diagram ̂H of the tower (Hn)n≥0. That is, for (λ, l) ∈ ̂An and (μ,m) ∈
̂An+1, we have (λ, l) → (μ,m) only if m ∈ {l, l + 1}; moreover, (λ, l) → (μ, l) if
and only if λ → μ in ̂H , and (λ, l) → (μ, l + 1) if and only if μ → λ in ̂H .

Remark 5.4 The parameterization of ̂An given here differs from that used in [13, 14].

Taking Axiom (10) into account, we obtain:

Theorem 5.5 The tower (An)n≥0 is a strongly coherent tower of cyclic cellular algebras.

Proof From [13, 14], with the correction noted in Section 5.1, we have that the tower is
a strongly coherent tower of cellular algebras. It remains to show that each An is cyclic
cellular. We prove this by induction on n. The statement is known for n = 0 and n = 1,
since A0 = R and A1 = H1. Fix n ≥ 0 and assume the algebras Ak for k ≤ n are cyclic
cellular. The cell modules �

(λ,0)
An+1

are cell modules of Hn+1, so cyclic by axiom (9). For
l > 0, we can take

�
(λ,l)
An+1

= �
(λ,l−1)
An−1

⊗An−1 enAn+1,

By the induction hypothesis, �
(λ,l−1)
An−1

is cyclic, say with generator δ
(λ,l−1)
An−1

. It follows that

�
(λ,l)
An+1

is cyclic with generator δ
(λ,l)
An+1

= δ
(λ,l−1)
An−1

⊗An−1 en.

5.5 Data Associated with the Cell Modules �
(λ,l)
An

We suppose that generators δλ
Hn

of �λ
Hn

have been chosen for all n ≥ 0 and for all λ ∈ ̂Hn.

We suppose also that Hn–Hn bimodule isomorphisms αλ : H
�λ
n /H�λ

n → (�λ
Hn

)∗ ⊗R �λ
Hn

have been chosen, satisfying ∗ ◦ αλ = αλ ◦ ∗. Finally, we suppose that elements cλ ∈ H
�λ
n

have been chosen with αλ(cλ + H�λ
n ) = (δλ

Hn
)∗ ⊗ δλ

Hn
.

Now we want to do the following:

(1) establish models of cell modules �
(λ,l)
An

of An for all n and all (λ, l) ∈ ̂An;
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(2) select generators δ
(λ,l)
An

for each cell module;
(3) choose An–An bimodule isomorphisms

α(λ,l) : A�(λ,l)/A�(λ,l) → (�
(λ,l)
An

)∗ ⊗R �
(λ,l)
An

satisfying ∗ ◦ α(λ,l) = α(λ,l) ◦ ∗;
(4) and finally choose elements c(λ,l) ∈ A�(λ,l) such that

α(λ,l)(c(λ,l) + A�(λ,l)) = (δ
(λ,l)
An

)∗ ⊗ δ
(λ,l)
An

.

When l = 0, we identify �
(λ,0)
An

with �λ
Hn

, and we proceed according to the prescription

of Remark 2.6 and Remark 2.11. Namely, δ(λ,0)
An

= δλ
Hn

; α(λ,0) : a +A
�(λ,0)
n �→ αλ(πn(a)+

H�λ
n ); and c(λ,0) is any element of π−1

n (cλ).
We continue by induction on n. For n ≤ 1 there is nothing to do, since A0 = R and

A1 = H1. Fix n ≥ 2 and suppose that all the desired data has been chosen for all k ≤ n

and all (μ,m) ∈ ̂Ak . We have to consider (λ, l) ∈ ̂An+1 with l > 0. As a model of the cell
module �

(λ,l)
An+1

we can take �
(λ,l−1)
An−1

⊗An−1 enAn+1, and for the generator of the cell module

we can take δ
(λ,l)
An+1

= δ
(λ,l−1)
An−1

⊗An−1 en.
Next we define α(λ,l). According to [13, Sect. 4],

A
�(λ,l)
n+1 = An+1A

�(λ,l−1)
n−1 enAn+1

∼= An+1en ⊗An−1 A
�(λ,l−1)
n−1 ⊗An−1 enAn+1,

as An+1–An+1 bimodules, with the isomorphism determined by a1xena2 �→ a1en ⊗ x ⊗
ena2. Similarly

A
�(λ,l)
n+1 = An+1A

�(λ,l−1)
n−1 enAn+1

∼= An+1en ⊗An−1 A
�(λ,l−1)
n−1 ⊗An−1 enAn+1.

Moreover, we have an isomorphism

ϕ : A
�(λ,l)
n+1 /A

�(λ,l)
n+1 → An+1en ⊗An−1 (A

�(λ,l−1)
n−1 /A

�(λ,l−1)
n−1 ) ⊗An−1 enAn+1,

determined by

ϕ(a1xena2 + A
�(λ,l)
n+1 ) = a1en ⊗ (x + A

�(λ,l−1)
n−1 ) ⊗ ena2.

We identify (enAn+1)
∗ with An+1en (as An+1–An−1 bimodules). Thus

(�
(λ,l)
An+1

)∗ = (�
(λ,l−1)
An−1

⊗An−1 enAn+1)
∗ = An+1en ⊗An−1 (�

(λ,l−1)
An−1

)∗.
We define

α(λ,l) = (idAn+1en ⊗α(λ,l−1) ⊗ idenAn+1) ◦ ϕ.

Thus

α(λ,l) : A
�(λ,l)
n+1 /A

�(λ,l)
n+1 → An+1en ⊗An−1 (�

(λ,l−1)
An−1

)∗ ⊗R �
(λ,l−1)
An−1

⊗An−1 enAn+1

= (�
(λ,l)
An+1

)∗ ⊗R �
(λ,l)
An+1

.

Now one can check that ∗ ◦ α(λ,l) = α(λ,l) ◦ ∗.
Note that c(λ,l−1)en ∈ A

�(λ,l−1)
n−1 en ⊆ A

�(λ,l)
n+1 and

α(λ,l)(c(λ,l−1)en + A
�(λ,l)
n+1 ) = (en ⊗ (δ

(λ,l−1)
An−1

)∗) ⊗ (δ
(λ,l−1)
An−1

⊗ en) = (δ
(λ,l)
An+1

)∗ ⊗ δ
(λ,l)
An+1

,

so we can take c(λ,l) = c(λ,l−1)en.



Cellular Bases 95

Let us restate this last observation, replacing n+1 by n. We have shown that if (λ, l) ∈ ̂An

and l > 0, then (we can take)
c(λ,l) = c(λ,l−1)en−1 (5.2)

By induction, we have

c(λ,l) = c(λ,0)en−2l+1en−2l+3 · · · en−1. (5.3)

Expressions of this form will appear again, so we establish the notation

e
(l)
n−1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if l = 0
en−2l+1en−2l+3 · · · en−1
︸ ︷︷ ︸

l factors

if l = 1, . . . , �n/2�, and

0 if l > �n/2�.
(5.4)

With this notation, we have
c(λ,l) = c(λ,0)e

(l)
n−1. (5.5)

5.6 Branching Factors

We continue to work with a pair of towers of algebras (5.1) satisfying the standing
assumptions of Section 5.3.

We know already that both of the towers (Hn)n≥0 and (An)n≥0 are strongly coherent
towers of cyclic cellular algebras, with HF

n and AF
n split semisimple for all n. Therefore,

the analysis of Section 3.5, concerning branching factors and path bases, is applicable to
both towers. We will show that the branching factors and path bases for the tower (An)n≥0
can be computed by explicit formulas from those for the tower (Hn)n≥0.

We suppose that we have chosen once and for all the following data for the tower
(Hn)n≥0, following observations (1) and (2), in Section 3.4:

(1) A generator δλ
Hn

of the cell module �λ
Hn

for each n and each λ ∈ ̂Hn.

(2) Order preserving cell filtrations of ResHn+1
Hn

(�
μ
Hn+1

) and of IndHn+1
Hn

(�λ
Hn

) for all n and

for all λ ∈ ̂Hn and μ ∈ ̂Hn+1,

{0} = M0
λ(1)

⊆ M1
λ(2)

⊆ · · · λ(r)

⊆ Mr = ResHn+1
Hn

(�
μ
Hn+1

), (5.6)

and

{0} = N0
μ(1)

⊆ N1
μ(2)

⊆ · · · μ(p)

⊆ Np = IndHn+1
Hn

(�λ
Hn

). (5.7)

(3) Branching factors d
(n+1)

λ→μ and u
(n+1)

λ→μ in Hn+1, for each n and for each λ ∈ ̂Hn and

μ ∈ ̂Hn+1 such that λ → μ in ̂H , with the property that

δ
μ
Hn+1

d
(n+1)

λ(j)→μ
+ Mj−1 is a generator of Mj/Mj−1 ∼= �λ(j)

Hn
,

and

δλ
Hn

⊗ u
(n+1)

λ→μ(i) + Ni−1 is a generator of Ni/Ni−1 ∼= �
μ(i)

Hn+1
.

(4) For each n, λ andμ, arbitrary liftings ū
(n+1)

λ→μ ∈ π−1
n+1(u

(n+1)

λ→μ) and d̄
(n+1)

λ→μ ∈ π−1
n+1(d

(n+1)

λ→μ).

Since (An)n≥0 is a strongly coherent tower of cyclic cellular algebras with each AF
n

split semisimple, we know that there exist order preserving cell filtrations of ResAn+1
An

(�)

for each cell module � of An+1 and of IndAn+1
An

(�) for each cell module � of An, and
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there exist branching factors d
(n+1)

(λ,l)→(μ,m) and u
(n+1)

(λ,l)→(μ,m) in An+1 associated to each edge

(λ, l) → (μ,m) in the branching diagram ̂A, with properties analogous to those listed
above.

Neither the cell filtrations nor the branching factors are canonical. However, it was shown
in [13] that cell filtrations of the induced and restricted modules for the tower (An) can be
obtained recursively, based on the cell filtrations of induced and restricted modules for the
tower (Hn). We will show here that the branching factors for the tower (An) can also be
chosen to satisfy recursive relations, so that they are determined completely by the liftings
ū

(n+1)

λ→μ and d̄
(n+1)

λ→μ of the branching factors for the tower (Hn).
Each of the statements in the following theorem should be interpreted as applying when-

ever they make sense. For example, in statement (2), the branching factor d
(n+1)

(λ,l)→(μ,m+1)

makes sense when n ≥ 1, (λ, l) ∈ ̂An, (μ,m + 1) ∈ ̂An+1, and (λ, l) → (μ,m + 1) in the
branching diagram ̂A. This implies that (μ,m) ∈ ̂An−1 and (μ,m) → (λ, l) in ̂A, so that
the branching factor u

(n)

(μ,m)→(λ,l) also makes sense.

Theorem 5.6 The branching factors for the tower (An)n≥0 can be chosen to satisfy:

(1) d
(n+1)

(λ,0)→(μ,0) = d̄
(n+1)

λ→μ.

(2) d
(n+1)

(λ,l)→(μ,m+1) = u
(n)

(μ,m)→(λ,l).

(3) u
(n+1)

(λ,0)→(μ,0) = ū
(n+1)

λ→μ.

(4) u
(n+1)

(λ,l)→(μ,m+1) = d
(n)

(μ,m)→(λ,l) en.

Proof To prove this result, we have to look into, and add some detail to, the proof in
[13, 14] that the tower (An) is strongly coherent.

First we consider branching factors for reduced modules. The argument is an elaboration
of the proof of [13, Proposition 4.10]. Let n ≥ 0. Consider a cell module�

(μ,0)
An+1

ofAn+1. We

identify �
(μ,0)
An+1

with the cell module �
μ
Hn+1

of Hn+1, and we identify the chosen generators

of these modules, δ
(μ,0)
An+1

with δ
μ
Hn+1

. It follows from Axiom (6) that Jn ⊆ Jn+1 and hence

ResAn+1
An

(�
(μ,0)
An+1

)Jn = 0. Therefore, ResAn+1
An

(�
(μ,0)
An+1

) is an Hn module and can be identified

with ResHn+1
Hn

(�
μ
Hn+1

). Consider the chosen cell filtration of ResHn+1
Hn

(�
μ
Hn+1

)

{0} ⊆ M1 ⊆ M1 ⊆ · · · ⊆ Mr = ResHn+1
Hn

(�
μ
Hn+1

),

with Mj/Mj−1 ∼= �λ(j)

Hn
for each j . The isomorphism Mj/Mj−1 → �λ(j)

Hn
maps

δ
μ
Hn+1

d
(n+1)

λ(j)→μ
+ Mj−1 to δλ(j)

Hn
. But we identify �λ(j)

Hn
with �

(λ(j),0)
An

and δλ(j)

Hn
with δ

(λ(j),0)
An

,

so the isomorphism sends δ
(μ,0)
An+1

d̄
(n+1)

λ(j)→μ
+ Mj−1 = δ

μ
Hn+1

d
(n+1)

λ(j)→μ
+ Mj−1 to δ

(λ(j),0)
An

. Thus

we can choose d
(n+1)

(λ(j),0)→(μ,0)
to be d̄

(n+1)

λ(j)→μ
. This proves point (1).

Next, let n ≥ 1 and consider a cell module

� = �
(μ,m+1)
An+1

= �
(μ,m)
An−1

⊗An−1 enAn

of An+1. The restricted module ResAn+1
An

(�) is �
(μ,m)
An−1

⊗An−1 enAn regarded as a right An

module. But enAn
∼= An as an An−1–An module, so we have an isomorphism

ϕ : �
(μ,m)
An−1

⊗An−1 enAn → �
(μ,m)
An−1

⊗An−1 An = IndAn

An−1
(�

(μ,m)
An−1

),
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defined by ϕ(x ⊗ ena) = x ⊗ a. We suppose we already have a chosen cell filtration of
IndAn

An−1
(�

(μ,m)
An−1

),

{0} ⊆ N1 ⊆ N2 ⊆ · · · ⊆ Ns = IndAn

An−1
(�

(μ,m)
An−1

),

with isomorphismsNj/Nj−1 → �
(λ(j),lj )

An
, as well as branching factors u

(n)

(μ,m)→(λ(j),lj )
such

that the isomorphism Nj/Nj−1 → �
(λ(j),lj )

An
takes δ

(μ,m)
An−1

⊗An−1 u
(n)

(μ,m)→(λ(j),lj )
+ Nj−1 to

δ
(λ(j),lj )

An
. Pulling all this data back via ϕ, we have a cell filtration of ResAn+1

An
(�),

{0} ⊆ N ′
1 ⊆ N ′

2 ⊆ · · · ⊆ N ′
s = Res(�),

with isomorphisms ϕj : N ′
j /N

′
j−1 → �

(λ(j),lj )

An
taking δ

(μ,m)
An−1

⊗An−1 enu
(n)

(μ,m)→(λ(j),lj )
+

N ′
j−1 to δ

(λ(j),lj )

An
. But δ(μ,m)

An−1
⊗An−1 en is the generator δ

(μ,m+1)
An+1

of �. Thus

ϕj : δ
(μ,m+1)
An+1

u
(n)

(μ,m)→(λ(j),lj )
+ N ′

j−1 �→ δ
(λ(j),lj )

An
.

This means that we can choose u
(n)

(μ,m)→(λ(j),lj )
for d

(n+1)

(λ(j),lj )→(μ,m+1)
. This proves point (2).

Next we turn to the branching factors for induced modules. Statement (3) is evident when
n = 0 since A0 = H0 = R and A1 = H1. Statement (4) only makes sense when n ≥ 1, so
it remains to verify both statements (3) and (4) for n ≥ 1. The argument is an elaboration of
the proof of Proposition 4.14 in [13].

Let n ≥ 1 and let � be a cell module of An. According to [13, Proposition 4.14], � ⊗An

Jn+1 embeds in IndAn+1
An

(�) and the quotient IndAn+1
An

(�)/(� ⊗An Jn+1) is isomorphic to
� ⊗An Hn+1. Moreover, both of the An+1–modules � ⊗An Jn+1 and � ⊗An Hn+1 have

cell filtrations; one obtains a cell filtration of IndAn+1
An

(�) by gluing the cell filtrations of the
submodule and the quotient module. The cell modules of An+1 appearing as subquotients
of the cell filtration of � ⊗An Jn+1 are of the form �

(μ,m)
An+1

with m > 0; that is, they are
cell modules of the cellular ideal Jn+1. The cell modules appearing as subquotients of the
cell filtration of � ⊗An Hn+1 are of the form �

(μ,0)
An+1

; that is, they are cell modules of the
quotient algebra Hn+1.

Now consider in particular a cell module �
(λ,0)
An

of An for n ≥ 1. According to the

previous paragraph, to find the branching factors u
(n+1)

(λ,0)→(μ,0) with μ ∈ ̂Hn+1, we have

only to construct a particular cell filtration of �
(λ,0)
An

⊗An Hn+1. We identify �
(λ,0)
An

with the

cell module �λ
Hn

of Hn, and �
(λ,0)
An

⊗An Hn+1 with �λ
Hn

⊗Hn Hn+1 = IndHn+1
Hn

(�λ
Hn

). The
remainder of the proof of statement (3) proceeds by considering the chosen cell filtration of
IndHn+1

Hn
(�λ

Hn
) and the associated branching factors u

(n+1)

λ→μ; the proof is similar to the proof
of statement (1).

Finally, let n ≥ 1 and consider a cell module � = �
(λ,l)
An

of An. Write Res(�) for

ResAn

An−1
(�). To find the branching factors u

(n+1)

(λ,l)→(μ,m+1), we have to construct a particular
cell filtration of � ⊗An Jn+1. By axiom (7) and [13, Corollary 4.6], we have

Jn+1 = AnenAn
∼= Anen ⊗An−1 enAn,
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as An–An+1 bimodules, the isomorphism being given by a1ena2 �→ a1en ⊗An−1 ena2. We
have Anen

∼= An as an An–An−1 bimodule, so

� ⊗An Jn+1 ∼= � ⊗An Anen ⊗An−1 enAn

∼= � ⊗An An ⊗An−1 enAn

∼= Res(�) ⊗An−1 enAn.

The composite isomorphism ϕ : � ⊗An Jn+1 → Res(�) ⊗An−1 enAn is given by
ϕ(x ⊗An a1ena2) = xa1 ⊗An−1 ena2. In particular, ϕ(x ⊗An en) = x ⊗An−1 en. We assume
that we have a chosen cell filtration of Res(�),

{0} ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mt = Res(�),

with isomorphisms Mj/Mj−1 → �
(μ(j),mj )

An−1
and we have chosen branching fac-

tors d
(n)

(μ(j),mj )→(λ,l)
such that the isomorphism Mj/Mj−1 → �

(μ(j),mj )

An−1
takes

δ
(λ,l)
An

d
(n)

(μ(j),mj )→(λ,l)
+Mj−1 to δ

(μ(j),mj )

An−1
. By [13, Lemma 4.12], Mj−1 ⊗An−1 enAn embeds

in Mj ⊗An−1 enAn for each j , and the quotient is isomorphic to

Mj/Mj−1 ⊗An−1 enAn
∼= �

(μ(j),mj )

An−1
⊗An−1 enAn = �

(μ(j),mj +1)
An+1

.

Writing M ′
j = Mj ⊗An−1 enAn, we obtain a cell filtration of Res(�) ⊗An−1 enAn,

{0} ⊆ M ′
1 ⊆ M ′

2 ⊆ · · · ⊆ M ′
t = Res(�) ⊗An−1 enAn,

with isomorphismsM ′
j /M

′
j−1 → �

(μ(j),mj +1)
An+1

taking δ
(λ,l)
An

d
(n)

(μ(j),mj )→(λ,l)
⊗An−1 en+M ′

j−1

to δ
(μ(j),mj )

An−1
⊗An−1 en = δ

(μ(j),mj +1)
An+1

. Pulling back this data via the isomorphism ϕ : � ⊗An

Jn+1 → Res(�) ⊗An−1 enAn, we get a cell filtration of � ⊗An Jn+1,

{0} ⊆ M ′′
1 ⊆ M ′′

2 ⊆ · · · ⊆ M ′′
t = � ⊗An Jn+1,

with isomorphisms M ′′
j /M ′′

j−1 → �
(μ(j),mj +1)
An+1

taking

δ
(λ,l)
An

d
(n)

(μ(j),mj )→(λ,l)
⊗An en + M ′′

j−1 = δ
(λ,l)
An

⊗An d
(n)

(μ(j),mj )→(λ,l)
en + M ′′

j−1

to δ
(μ(j),mj +1)
An+1

. We conclude that we can take

u
(n+1)

(λ,l)→(μ(j),mj +1) = d
(n)

(μ(j),mj )→(λ,l)
en,

which proves point (4), and completes the proof of the theorem.

Next we apply the recursion of Theorem 5.6 to obtained closed formulas for the branch-
ing factors for the tower (An)n≥0. Since the branching diagram ̂A is obtained by reflections
from the branching diagram ̂H , it follows that (λ, l) → (μ,m) only if m ∈ {l, l+1}; in par-
ticular, (λ, l) → (μ, 0) only if l = 0. Moreover, (λ, l) → (μ, l) in ̂A if and only if λ → μ

in ̂H , and (λ, l) → (μ, l + 1) in ̂A if and only if μ → l in ̂H .

Theorem 5.7 The branching factors for the tower (An)n≥0 can be chosen to satisfy:

(1) d
(n+1)

(λ,l)→(μ,l) = d̄
(n+1−2l)

λ→μ e
(l)
n−1.

(2) u
(n+1)

(λ,l)→(μ,l) = ū
(n+1−2l)

λ→μ e
(l)
n .
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(3) d
(n+1)

(λ,l)→(μ,l+1) = ū
(n−2l)

μ→λe
(l)
n−1.

(4) u
(n+1)

(λ,l)→(μ,l+1) = d̄
(n−2l)

μ→λ e
(l+1)
n .

Proof We suppose that the branching factors are determined by the recursive formulas of
Theorem 5.6.

For part (1), the formula is given by Theorem 5.6, part (1) if l = 0. Assume l > 0 and
observe

d
(n+1)

(λ,l)→(μ,l) = u
(n)

(μ,l−1)→(λ,l) = d
(n−1)

(λ,l−1)→(μ,l−1)en−1;
Repeating this a total of l times, we get

d
(n+1)

(λ,l)→(μ,l) = d
(n+1−2l)

(λ,0)→(μ,0)en+1−2l · · · en−3en−1 = d̄
(n+1−2l)

λ→μ e
(l)
n−1.

The proof of part (2) is similar. For part (3), we have

d
(n+1)

(λ,l)→(μ,l+1) = u
(n)

(μ,l)→(λ,l),

and we apply part (2) to get the desired formula. For part (4),

u
(n+1)

(λ,l)→(μ,l+1) = d
(n)

(μ,l)→(λ,l)en.

Apply part (1) to get

u
(n+1)

(λ,l)→(μ,l+1) = d
(n)

(μ,l)→(λ,l)en = d̄
(n−2l)

μ→λ e
(l)
n−2en = d̄

(n−2l)

μ→λ e(l+1)
n .

6 Applications

We will apply our results to the following examples: the BMW algebras, the Brauer alge-
bras, the partition algebras, and the Jones–Temperley–Lieb algebras. For each example, let
R0 denote the generic ground ring and let R = R0[δ−1], where e21 = δe1. We show that
our results apply to the algebras defined over R, and we give explicit Murphy bases for the
algebras.

We are then able to check, by a computation specific to each algebra, that the Murphy
bases are, in fact, bases for the algebras defined over the generic ground ring R0.

6.1 Preliminaries on Tangle Diagrams

Several of our examples involve tangle diagrams in the rectangle R = [0, 1] × [0, 1]. Fix
points ai ∈ [0, 1], i ≥ 1, with 0 < a1 < a2 < · · · . Write i = (ai, 1) and i = (ai, 0).

Recall that a knot diagram means a collection of piecewise smooth closed curves in the
plane which may have intersections and self-intersections, but only simple transverse inter-
sections. At each intersection or crossing, one of the two strands (curves) which intersect is
indicated as crossing over the other.

An (n, n)–tangle diagram is a piece of a knot diagram inR consisting of exactly n topo-
logical intervals and possibly some number of closed curves, such that: (1) the endpoints of
the intervals are the points 1, . . . , n, 1, . . . , n, and these are the only points of intersection
of the family of curves with the boundary of the rectangle, and (2) each interval intersects
the boundary of the rectangle transversally.

An (n, n)–Brauer diagram is a “tangle” diagram containing no closed curves, in which
information about over and under crossings is ignored. Two Brauer diagrams are identified
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if the pairs of boundary points joined by curves is the same in the two diagrams. By conven-
tion, there is a unique (0, 0)–Brauer diagram, the empty diagram with no curves. For n ≥ 1,
the number of (n, n)–Brauer diagrams is (2n − 1)!! = (2n − 1)(2n − 3) · · · (3)(1).

For any of these types of diagrams, we call P = {1, . . . , n, 1, . . . , n} the set of vertices
of the diagram, P + = {1, . . . , n} the set of top vertices, and P − = {1, . . . , n} the set of
bottom vertices. A curve or strand in the diagram is called a vertical or through strand if
it connects a top vertex and a bottom vertex, and a horizontal strand if it connects two top
vertices or two bottom vertices.

6.2 Birman–Murakami–Wenzl Algebras

The Birman–Murakami–Wenzl (BMW) algebras were introduced by Birman and Wenzl [1]
and independently by Murakami [32] . The version of the presentation given here follows
[31]. Cellularity of the BMW algebras was established in [8, 9, 43].

Definition 6.1 Let S be an integral domain with invertible elements z and q and an element
δ satisfying z−1 − z = (q−1 − q)(δ − 1). The Birman–Murakami–Wenzl algebra Wn =
Wn(S; z, q, δ) is the unital S–algebra with generators g±1

i and ei (1 ≤ i ≤ n − 1) and
relations:

(1) (Inverses) gig
−1
i = g−1

i gi = 1.
(3) (Essential idempotent relation) e2i = δei .
(4) (Braid relations) gigi+1gi = gi+1gigi+1 and gigj = gjgi if |i − j | ≥ 2.
(5) (Commutation relations) giej = ej gi and eiej = ej ei if |i − j | ≥ 2.
(6) (Tangle relations) eiei±1ei = ei , gigi±1ei = ei±1ei , and eigi±1gi = eiei±1.
(7) (Kauffman skein relation) gi − g−1

i = (q − q−1)(1 − ei).
(8) (Untwisting relations) giei = eigi = z−1ei , and eigi±1ei = zei .

Morton and Wassermann [31] give a realization of the BMW algebra as an algebra of
(n, n)–tangle diagrams modulo regular isotopy and the following Kauffman skein relations:

(1) Crossing relation:

(2) Untwisting relation:

(3) Free loop relation: T ∪ © = δ T , where T ∪ © means the union of a tangle diagram
T and a closed loop having no crossings with T .

In the tangle picture, the generators gi and ei are represented by the diagrams

There is evidently a unital algebra homomorphism from Wn to Wn+1 taking generators to
generators; from the tangle realization, one can see that this homomorphism is injective, so
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Wn is a subalgebra of Wn+1. The symmetry of the defining relations for Wn ensures that the
assignments

g∗
i = gi, e∗

i = ei .

determine an involutory algebra anti-automorphism of Wn. In the tangle picture, the
involution ∗ acts on tangles by flipping them over a horizontal line.

If v ∈ Sn and v = si1si2 · · · sij is a reduced expression then the element gv =
gi1gi2 · · · gij depends only on v. For i, j = 1, 2, . . . ,let

gi,j =
{

gigi+1 · · · gj−1, if j ≥ i,
gi−1gi−2 · · · gj , if i > j .

Let Jn denote the ideal Wnen−1Wn; in the tangle picture, this is the ideal spanned by tan-
gle diagrams with at least one horizontal strand. The map Wn/Jn → Hn = Hn(S, q2)

determined by gv + Jn �→ Tv , for v ∈ Sn, is an algebra isomorphism.

6.2.1 The Murphy Basis

The generic ground ring for the BMW algebras is

R0 = Z[z±1, q±1, δ]/〈z−1 − z = (q−1 − q)(δ − 1)〉,
where z, q, and δ are indeterminants over Z. R0 is an integral domain whose field of
fractions is F ∼= Q(z, q), with

δ = z − z−1

q − q−1
+ 1 = (z + q)(qz − 1)

z(q2 − 1)
. (6.1)

Let R = R0[δ−1], and write Wn(R) for Wn(R; z, q, δ) and Hn(R) for Hn(R; q2). It is
observed in [13], Section 5.4, that the pair of towers (Wn(R))n≥0 and (Hn(R))n≥0 satisfy
the framework axioms (1)–(7) of Section 5.1. Axiom (8) holds by Corollary 4.10. Axiom
(9) hold for Wn(R), by the remarks at the end of Section 5.1. Finally, Axiom (10) holds by
Corollary 4.3. Therefore, by Theorem 5.5, the tower of algebras (Wn(R))n≥0 is a strongly
coherent tower of cyclic cellular algebras.

By the discussion in Section 5.4, the partially ordered set ̂Wn in the cell datum for Wn(R)

can be realized as

̂Wn =
{

(λ, l)
∣

∣ 0 ≤ l ≤ �n/2� and λ ∈ ̂Hn−2l

}

with (λ, l) � (μ,m) if l > m or if l = m and λ � μ in ̂Hn−2l . The branching diagram ̂W

of the tower (Wn)n≥0 is that obtained by reflections from ̂H (= Young’s lattice). Thus, the
branching relation is (λ, l) → (μ,m) only if m ∈ {l, l + 1}; (λ, l) → (μ, l) if and only if
λ → μ in Young’s lattice, and (λ, l) → (μ, l + 1) if and only if μ → λ in Young’s lattice.

For each n ≥ 0 and for each μ ∈ ̂Hn, define

c(μ,0) =
∑

v∈Sμ

ql(v)gv;

thus c(μ,0) is a preimage in Wn of mμ ∈ Hn (defined in Eq. (4.2)). For n ≥ 2 and (μ,m) ∈
̂Wn, let

c(μ,m) = c(μ,0)e
(m)
n−1,

where e
(m)
n−1 is defined in Eq. (5.4).
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Let i ≥ 1 and λ ∈ ̂Hi−1 and μ ∈ ̂Hi , with λ → μ in ̂H. If μ = λ ∪ {(r, μr)}, let
a = ∑r

j=1 μj , and define

ū
(i)
λ→μ = gi,a

λr
∑

k=0

qkga,a−k and d̄
(i)
λ→μ = ga,i . (6.2)

These are liftings in Wi of the branching factors in the Hecke algebra Hi , as determined in
Corollary 4.5 and Corollary 4.19.

For (λ, l) ∈ ̂Wi and (μ,m) ∈ ̂Wi+1 with (λ, l) → (μ,m), determine the branching
factors d

(i+1)

(λ,l)→(μ,m) according to the formulas of Theorem 5.7; for a path t ∈ ̂W
(λ,l)
n , define

dt to be the ordered product of these branching factors along the path t, as in Eq. (3.4). From
Corollary 3.11 we obtain:

Proposition 6.2 Let R0 denote the generic ground ring for the BMW algebras and let R =
R0[δ−1]. Let Wn(R) = Wn(R; z, q, δ) denote the BMW algebra over R. For n ≥ 0, the set

Wn =
{

d∗
sc(λ,l)dt

∣

∣ s, t ∈ ̂W(λ,l)
n , (λ, l) ∈ ̂Wn

}

(6.3)

is an R–basis for Wn(R), and (Wn(R), ∗, ̂Wn,�,Wn) is a cell datum for Wn(R).

In the remainder of this section, we will show that the Murphy bases Wn are bases of
the BMW algebras defined over the generic ground ring R0. First note that the elements
d∗
sc(λ,l)dt are actually defined over R0 and are linearly independent. The issue is to show

that Wn spans the BMW algebra over R0. To do this, we examine the transition matrix
between a Morton–Wassermann basis of the BMW algebra and Wn.

6.2.2 Morton-Wassermann Tangle Bases

We begin by describing the Morton–Wassermann tangle bases of the BMW algebras. We
identify the BMW algebras with their tangle realizations, following [31].

To each (n, n)–tangle diagram T , associate a Brauer diagram conn(T ) by deleting
the closed strands in T and forgetting information about over and under crossings. Thus
conn(T ) has a strand connecting two vertices if and only if T has a strand connecting the
same two vertices.

Order the vertices of a tangle or Brauer diagram by 1 < 2 · · · < n < n < · · · < 1, that
is, in clockwise order around the boundary ofR. The length �(D) of a Brauer diagram D is
the minimal number of crossings of strands in a physical drawing of the diagram, that is, the
number of 4–tuples of vertices (a, b, c, d) such that a < b < c < d and (a, c) and (b, d)

are strands of D.

Definition 6.3 Say that an (n, n)–tangle diagram T is layered with respect to some total
ordering (t1, t2, . . . , tk) of its strands, if (1) whenever i < j , every crossing of ti with tj is
an over crossing, and (2) each individual strand of T is unknotted, i.e. ambient isotopic to
a strand with no self–crossings. Say that T is layered if it is layered with respect to some
total ordering of its strands. Say that a layered tangle diagram is simple if it has no closed
strands and no strand has self–crossings.

Note that any simple layered tangle diagram T is ambient isotopic to a simple layered
tangle diagram in which any two distinct strands have at most one crossing; the number of
crossings in such a representative of T is the length of conn(T ).
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Theorem 6.4 ([31], Theorems 2.10 and 4.2) For each (n, n)–Brauer diagram D, chose a
simple layered (n, n)–tangle diagram T with conn(T ) = D. Then the resulting collection
of tangle diagrams is a basis of the BMW algebra Wn(R0).

Call any such basis aMorton-Wassermann tangle basis.

Lemma 6.5 Let T and S be simple layered (n, n)–tangle diagrams with the same underly-
ing Brauer diagram, conn(T ) = conn(S) = D. Then T − S is in the Z[q − q−1]–span of
simple layered tangle diagrams with fewer than �(D) crossings.

Proof Assume without loss of generality that the number of crossings of T and of S is
the length of D. Suppose that S is layered with respect to an ordering (t1, t2, . . . , tn) of
its strands and T is layered with respect to an ordering (tπ(1), tπ(2), . . . , tπ(n)) for some
permutation π of {1, 2, . . . , n}. For brevity, say that T is layered with respect to π . The
permutation π may not be unique, so assume that π has been chosen with minimal length
for the given tangle diagram T .

If π is the identity permutation, then T and S are ambient isotopic, so represent the same
element of Wn. Assume that π is not the identity and assume inductively that the assertion
holds when T is replaced by a simple layered tangle diagram T ′ with conn(T ′) = D,
whenever T ′ is layered with respect to a permutation π ′ with �(π ′) < �(π).

Since π is not the identity permutation, there exists i such that π(i) > π(i + 1). If
the strands tπ(i) and tπ(i+1) do not cross, then T is also layered with respect to the shorter
permutation π ′ = (i, i + 1) ◦ π , contradicting the choice of π as having minimal length.
Therefore tπ(i) and tπ(i+1) have a (unique) crossing, with tπ(i) crossing over tπ(i+1). Because
T is layered with respect to π there is no third strand t = tπ(k) such that tπ(i) has an over
crossing with t and t has an over crossing with tπ(i+1). Let U be the tangle diagram obtained
by changing the crossing of tπ(i) and tπ(i+1), and let T0 and T∞ be the two tangle diagrams
obtained by smoothing this crossing. It follows that all three of these tangle diagrams are
simple and layered, T0 and T∞ have fewer than �(D) crossings, and by the Kauffman skein
relation,

T = U + (q − q−1)(T0 − T∞).

Since U is layered with respect to π ′ = (i, i + 1) ◦ π , with �(π ′) = �(π) − 1, the
conclusion follows from the induction hypothesis.

Proposition 6.6 Let B be a Morton–Wassermann tangle basis of Wn(R0) and let T be a
simple layered (n, n)–tangle diagram. The the coefficients of T with respect to the basis B
are in Z[q −q−1]. In fact, T is in the Z[q −q−1]–span of basis elements with no more than
�(D) crossings, where D = conn(T ).

Proof We can assume that the number of crossings of T is �(D), where D = conn(T ). We
proceed by induction on the number of crossings. If T has no crossings, then T is an element
of B, because up to ambient isotopy, there is a unique simple layered tangle diagram with
underlying Brauer diagram D. Assume that �(D) is positive and that the statement holds for
all simple layered tangle diagrams with fewer than �(D) crossings. There is a simple layered
tangle diagram S in B with conn(S) = D. By the previous lemma, T − S is a Z[q − q−1]–
linear combination of simple layered tangle diagrams with fewer than �(D) crossings, and
thus the result follows from the induction hypothesis.
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Corollary 6.7 The transition matrix between any two Morton–Wassermann tangle bases of
Wn has entries in Z[q − q−1].

Lemma 6.8 Let B be a Morton–Wassermann tangle basis of Wn(R0). The matrix with
respect to B of left or right multiplication by gi or g−1

i has entries in Z[z±1, (q − q−1)].
Proof Let T be an element of B; assume without loss of generality that the number of
crossings of T is �(D) where D denotes conn(T ). We have to show that T gi is in the
Z[z±1, (q − q−1)]–span of B. We proceed by induction on the number of crossings of T . If
T has no crossings, then T gi is simple and layered, so the assertion follows from Proposition
6.6.

Assume that �(D) > 0 and that the assertion holds when T is replaced by an ele-
ment of B with fewer crossings. If the vertices i and i + 1 of T are connected by
a strand, then T gi = z−1T , so we are done. Otherwise, let s and t denote the dis-
tinct strands of T incident on the vertices i and i + 1. Let S be a simple layered
tangle diagram such that conn(S) = D, S has �(D) crossings, and S is layered with
respect to an ordering (t, s, . . . ) of the strands. Then Sgi is simple and layered, so
is in the Z[q − q−1]–span of B, by Proposition 6.6. Moreover (T − S)gi is in the
Z[z±1, (q −q−1)]–span of B, by combining Lemma 6.5, Proposition 6.6, and the induction
hypothesis.

The proof for right multiplication by g−1
i or by left multiplication by g±1

i is similar.

Remark 6.9 Let T be a simple layered tangle diagram. From the proof of Lemma 6.5
and Proposition 6.6, one sees that all the elements of the Morton–Wassermann basis B
that figure in the expansion of T with respect to B are obtained by changing or smoothing
various crossings of T . Hence, if T has a strand s connecting two vertices v1, v2, such that
s has no crossings with any other strand, then all elements of B appearing in the expansion
of T also have a strand connecting v1 and v2. Likewise, from the proof of Lemma 6.8, if
{i, i + 1} ∩ {v1, v2} = ∅, then all elements of B appearing in the expansion of T gi have a
strand connecting v1 and v2.

6.2.3 The Transition Matrix from a Tangle Basis to the Murphy Basis

We examine the coefficients of the expansion of an element

d∗
sc(λ,0)e

(l)
n−1dt, (6.4)

of Wn with respect to a Morton–Wassermann tangle basis B of Wn(R0).

Definition 6.10 Let k ≤ n and m ≤ �k/2�. A tangle diagram T is of type (k,m) if T has
strands connecting the adjacent pairs of bottom vertices

(k − 2m + 1, k − 2m + 2), . . . , (k − 1, k) (m strands). (6.5)

Lemma 6.11 If T is an element of B of type (k,m), and (λ, l) → (μ,m) is an edge in
̂W from level k − 1 to level k, then T d

(k)

(λ,l)→(μ,m) is a Z[q±1, z±1]–linear combination of
elements of B of type (k − 1, l).

Proof There are two cases to consider.
CASE 1, l = m and λ ⊂ μ. Then for some a ≤ k − 2m,
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Fig. 1 Product Se
(m)
k−2, where S is of type (k,m)

d
(k)

(λ,l)→(μ,m) = ga,k−2me
(m)
k−2.

By Lemma 6.8 and Remark 6.9, T ga,k−2m is a Z[q±1, z±1]–linear combination of elements
of B of type (k,m). But for any element S of B of type (k,m), Se

(m)
k−2 is a simple layered

tangle diagram of type (k − 1, m), see Fig. 1. Therefore by Proposition 6.6 and Remark 6.9,
Se

(m)
k−2 is a Z[q − q−1]–linear combination of elements of B of type (k − 1,m). Taking into

account that l = m, this gives the result.
CASE 2, l = m − 1 and μ ⊂ λ. Then d

(k)

(λ,l)→(μ,m) is a sum of terms of the

form qsgk+1−2m,ae
(m−1)
k−2 . But T gk+1−2m,ae

(m−1)
k−2 is a simple layered tangle diagram of

type (k − 1,m − 1), see Fig. 2. Therefore, again by Proposition 6.6 and Remark 6.9,
T gk+1−2m,ae

(m−1)
k−2 is a Z[q −q−1]–linear combination of elements of B of type (k−1,m−

1). Since l = m − 1, this proves the result.

Proposition 6.12 d∗
sc(λ,0)e

(l)
n−1dt is in the Z[q±1, z±1]–span of B.

Proof Taking into account Corollary 6.7, we can assume without loss of generality that
the elements gve

(l)
n−1 for v ∈ Sn−2f are elements of B, as these are simple layered tangle

diagrams (with distinct underlying Brauer diagrams). Moreover, gve
(l)
n−1 is of type (n, l).

Thus c(λ,0)e
(l)
n−1 = ∑

v∈Sλ
ql(v)gve

(l)
n−1 is in the Z[q]–span of elements of B of type (n, l).

Let

s = ((λ(0), l0), (λ
(1), l1), . . . , (λ

(n), ln)),

where (λ(0), l0) = (∅, 0) and (λ(n), ln) = (λ, l). Then

ds = d
(n)

(λ(n−1),ln−1)→(λ(n),ln)
d

(n−1)
(λ(n−2),ln−2)→(λ(n−1),ln−1)

· · ·

Fig. 2 Product T gk+1−2m,ae
(m−1)
k−2 , where T is of type (k,m)
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By repeated use of Lemma 6.11, c(λ,0)e
(l)
n−1ds is in the Z[q±1, z±1]–span of elements of

B. But the expansion of (c(λ,0)e
(l)
n−1ds)

∗ = d∗
sc(λ,0)e

(l)
n−1 involves only elements of B of

type (n, l). By repeated application of Lemma 6.11 once more, d∗
sc(λ,0)e

(l)
n−1dt is in the

Z[q±1, z±1]–span of B.

6.2.4 The Murphy Basis and the Generic Ground Ring

Let B denote the matrix of expansion coefficients of the elements of Wn with respect to
some Morton–Wassermann tangle basis B of Wn(R0) (and some choice of ordering of Wn

and of B). By Proposition 6.12, we know that the matrix B has entries in Z[z±1, q±1] ⊂ R0.
On the other hand, since Wn is a basis of the BMW algebra over R = R0[δ−1], it follows
that B is invertible over R. We are going to show that B is invertible over Z[z±1, q±1] and
therefore Wn is a basis of Wn over R0.

The Brauer algebraBn overZ[δ] is the specialization ofWn(R0) at q = 1 and z = 1. (See
the following Section 6.3 for details). Under the specialization, the Morton–Wassermann
basis of Wn(R0) specializes to the usual diagram basis of the Brauer algebra, and Wn spe-
cializes to the corresponding collection of elements of the Brauer algebra, denoted Bn.
Moreover, the evaluation of B at q = 1 and z = 1, which we denote by BZ, is the matrix
of expansion coefficients of the elements of Bn with respect to the diagram basis of the
Brauer algebra. Let d denote the determinant of B and d̄ the determinant of BZ, which is
the evaluation of d at q = 1 and z = 1. Since B is a matrix over Z[z±1, q±1], it follows that
BZ is a matrix over Z, and hence d̄ is an integer.

Lemma 6.13 BZ is invertible over Z.

Proof SinceB is invertible overR, it follows thatBZ is invertible overZ[δ±1]. Equivalently,
d̄ = det(BZ) is a unit in Z[δ±1]. But d̄ is an integer, so it follows that d̄ = ±1 and thus BZ

is invertible over Z.

Lemma 6.14 B is invertible over R0.

Proof Since B is invertible over R, d = det(B) is a unit in R. We can regard R as a subring
of

R = Z[z±1, q±1, (q − 1)−1, (q + 1)−1, (z + q)−1, (qz − 1)−1],
see Eq. (6.1). Since d is an element of Z[z±1, q±1] ⊆ R0 which is a unit in in R, it has the
form

d = ±qazb(q − 1)c(q + 1)e(z + q)f (qz − 1)g

for some integers a, b and some natural numbers c, e, f, g. But the specialization of d at
q = 1 and z = 1 is equal to ±1 and therefore we must have c = e = f = g = 0. Thus
d = ±qazb is a unit in R0, so B is invertible over R0.

The invertibility of B over R0 together with Proposition 6.2 implies the following
theorem:

Theorem 6.15 Let Wn denote the BMW algebra over the generic ground ring R0. The set

Wn =
{

d∗
sc(λ,l)dt

∣

∣ s, t ∈ ̂W(λ,l)
n , (λ, l) ∈ ̂Wn

}

(6.6)

is an R0–basis of Wn, and (Wn, ∗, ̂Wn,�,Wn) is a cell datum for Wn.
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Remark 6.16 The basis (6.3) differs from the Murphy–type basis for the BMW algebras
given in [9] by a triangular transformation.

Corollary 6.17 For n ≥ 0 and for � a cell module of Wn+1, the restricted module

ResWn+1
Wn

(�) has an order preserving cell filtration.

Proof For k ≥ 0, (λ, l) ∈ ̂Wk , and t ∈ ̂W
(λ,l)
k , let mt = (c(λ,l) + W

�(λ,l)
k )dt. Then

{mt : t ∈ ̂W
(λ,l)
k } is the basis of the cell module �

(λ,l)
Wk

derived from the cellular bases W .
The collection of these bases, as k and (λ, l) vary, is a family of path bases, because the path
basis condition holds over R = R0[δ−1], according to Lemma 3.12, and therefore it holds
over R0 as well. It follows from Lemma 3.9 that restrictions of cell modules have an order
preserving cell filtration.

6.3 Brauer Algebras

The Brauer algebras were defined by Brauer [4]. Wenzl [40] showed that the Brauer algebras
are obtained from the group algebra of the symmetric group by the Jones basic construction,
and that the Brauer algebras over a field of characteristic zero are generically semisimple.
Cellularity of the Brauer algebras was established by Graham and Lehrer [16].

Let S be an integral domain with a distinguished element δ. The Brauer algebra Bn =
Bn(S; δ) is the free S–module with basis the set of (n, n)–Brauer diagrams. The product of
two Brauer diagrams is obtained by stacking them and then replacing each closed loop by a
factor of δ; see [4] or [40] for details.

Definition 6.18 Let S be an integral domain and δ ∈ S. The Brauer algebra Bn = Bn(S; δ)

is the free S–module with basis the set of (n, n)–Brauer diagrams, with bilinear product
determined by the multiplication of Brauer diagrams. By convention, B0(S; δ) = S.

The involution ∗ on (n, n)–Brauer diagrams which reflects a diagram in the axis y =
1/2 extends linearly to an algebra involution of Bn(S; δ). Note that the Brauer diagrams
with only vertical strands are in bijection with permutations of {1, . . . , n}, and that the
multiplication of two such diagrams coincides with the multiplication of permutations.
Thus the Brauer algebra contains the group algebra SSn of the permutation group Sn

as a unital subalgebra. The identity element of the Brauer algebra is the diagram cor-
responding to the trivial permutation. We will note below that SSn is also a quotient
of Bn(S; δ).

Let si and ei denote the following (n, n)–Brauer diagrams:

It is easy to see that e1, . . . , en−1 and s1, . . . , sn−1 generate Bn(S; δ) as an algebra. We have
e2i = δei , so that ei is an essential idempotent if δ �= 0 and nilpotent otherwise. Note that
e∗
i = ei and s∗

i = si .
The products ab and ba of two Brauer diagrams have at most as many through strands

as a. Consequently, the span of diagrams with fewer than n through strands is an ideal
Jn in Bn(S; δ). The ideal Jn is generated by en−1. We have Bn(S; δ)/Jn

∼= SSn, as
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algebras with involutions; in fact, the isomorphism is determined by v + Jn �→ v, for
v ∈ Sn.

Morton and Wassermann show [31] that Bn(S; δ) is a specialization of the BMW alge-
bra Wn(S; q, z, δ) at q = 1 and z = 1. Consequently, Bn(S; δ) has a presentation by
generators si and ei (1 ≤ i ≤ n − 1) and relations specializing those of the BMW
algebra.

6.3.1 The Murphy Basis

The generic ground ring for the Brauer algebras is R0 = Z[δ], where δ is an indeterminant.
Write R = Z[δ±1], and write Bn(R) = Bn(R; δ).

For n ≥ 0 write Hn = RSn. Specializing the cellular basis forHn(q
2) given in Theorem

4.1 at q = 1 gives a cellular basis for Hn. As for the Hecke algebras, ̂Hn is the set Yn of
Young diagrams of size n, and the branching diagram for the tower (Hn)n≥0 of symmetric
group algebras is Young’s lattice.

It is shown in [13, Sect. 5.2] that the pair of towers (Bn(R))n≥0 and (Hn)n≥0 satisfy the
framework axioms (1)–(7) of Section 5.1. Axiom (8) holds by Corollary 4.10, and special-
ization from the Hecke algebras to the symmetric group algebras. Axiom (9) hold forBn(R),
by the remarks at the end of Section 5.1. Moreover, by Corollary 4.3, the symmetric group
algebras are cyclic cellular, so Axiom (10) is satisfied as well. Therefore, by Theorem 5.5,
the tower of algebras (Bn(R))n≥0 is a strongly coherent tower of cyclic cellular algebras.

By the discussion in Section 5.4, the partially ordered set ̂Bn in the cell datum for Bn can
be realized as

̂Bn = {

(λ, l)
∣

∣ 0 ≤ l ≤ �n/2� and λ ∈ ̂Hn−2l
}

.

The order relation on ̂Bn, and the branching rule for the branching diagram ̂B for the tower
(Bn)n≥0 are exactly the same as for the BMW algebras discussed in the previous section.

For each n ≥ 0 and for each μ ∈ ̂Hn, define c(μ,0) = ∑

v∈Sμ
v; thus c(μ,0) is a preimage

in Bn of mμ ∈ Hn (defined in Eq. (4.2)). For n ≥ 2 and (μ,m) ∈ ̂Bn, let c(μ,m) =
c(μ,0)e

(m)
n−1, where e

(m)
i−1 is defined in Eq. (5.4).

For 1 ≤ i ≤ j let

si,j = sisi+1 · · · sj−1 = (j, j − 1, . . . , i), (6.7)

and let sj,i = s−1
i,j .

Let i ≥ 1 and λ ∈ ̂Hi−1 and μ ∈ ̂Hi , with λ → μ in ̂H. If μ = λ ∪ {(r, μr)}, let
a = ∑r

j=1 μj , and define

ū
(i)
λ→μ = si,a

λr
∑

k=0

sa,a−k and d̄
(i)
λ→μ = sa,i . (6.8)

These are liftings in Bi of the branching factors in the symmetric group algebra Hi , as
determined in Corollary 4.5 and Corollary 4.19.

For (λ, l) ∈ ̂Bi and (μ,m) ∈ ̂Bi+1 with (λ, l) → (μ,m), determine the branching
factors d

(i+1)

(λ,l)→(μ,m) and u
(i+1)

(λ,l)→(μ,m) according to the formulas of Theorem 5.7; for a path

t ∈ ̂W
(λ,l)
n , define dt to be the ordered product of these branching factors along the path t,

as in Eq. (3.4). From Corollary 3.11 we obtain:
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Theorem 6.19 Let Bn denote the Brauer algebra over the generic ground ring R0 = Z[δ].
For n ≥ 0, the set

Bn =
{

d∗
sc(λ,l)dt

∣

∣ s, t ∈ ̂B(λ,l)
n , (λ, l) ∈ ̂Bn

}

, (6.9)

is an R0–basis for Bn, and (Bn, ∗, ̂Bn,�,Bn) is a cell datum for Bn.

Proof LetR = Z[δ±1]. From the preceding discussion and Corollary 3.11, we have thatBn

is a cellular basis of Bn(R; δ). In Section 6.2.4, we have shown that the transition matrix BZ

from the diagram basis of the Brauer algebra to Bn is integer valued and invertible over Z.
It follows that Bn is a basis of the Brauer algebra Bn over the generic ground ring R0.

Corollary 6.20 For n ≥ 0 and for � a cell module of Bn+1, the restricted module
ResBn+1

Bn
(�) has an order preserving cell filtration.

Proof The proof is the same as that of Corollary 5.17.

Remark 6.21 The basis (6.9) coincides with the Murphy–type basis for Bn(δ) given in [9].

6.4 Jones–Temperley–Lieb Algebras

The Jones–Temperley–Lieb algebras were defined by Jones [19], and were used to define
the Jones link invariant in [21]. The cellularity of Jones–Temperley–Lieb algebras was
established by Graham and Lehrer [16]. Härterich [18] has given Murphy bases for
generalized Temperley–Lieb algebras.

Let S be an integral domain and δ ∈ S. The Jones–Temperley–Lieb algebra An =
An(S; δ) is the unital S–algebra presented by the generators e1, . . . , en−1 and the relations
eiei±1ei = ei , eiej = ej ei if |i − j | ≥ 2, and e2i = δei . The Jones–Temperley–Lieb alge-
bra can also be realized as the subalgebra of the Brauer algebra, with parameter δ, spanned
by Brauer diagrams without crossings. Because of the symmetry of the relations the assign-
ment ei �→ ei determines an involution ∗ of An. The span of diagrams with at least one
horizontal strand (that is, all diagrams other than the identity diagram) is an ideal Jn; it is
the ideal generated by en−1. The map An/Jn → S determined by 1An + Jn �→ 1S is an
isomorphism of algebras with involution.

The generic ground ring for the Jones–Temperley–Lieb algebras is R0 = Z[δ], where δ

is an indeterminant over Z. Set R = Z[δ±1]. Write An(R) = An(R; δ), and Hn = R for
n ≥ 0.

6.4.1 The Murphy Basis

It is shown in [13, Sect. 5.3] that the pair of towers (An(R))n≥0 and (Hn)n≥0 satisfies the
framework axioms (1)–(7) of Section 5.1. Axioms (8) and (10) are evident since Hn = R

for all n. Axiom (9) hold for An(R), by the remarks at the end of Section 5.1. Therefore,
by Theorem 5.5, the tower of algebras (An(R))n≥0 is a strongly coherent tower of cyclic
cellular algebras.

For each n ≥ 0, the partially ordered set ̂Hn in the cell datum for Hn is a singleton which
we label as {n}, and the branching diagram for the tower (Hn)n≥0 is ∅ = 0 → 1 → 2 →· · · .
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The branching diagram ̂A for the tower (An)n≥0 is that obtained by reflections from ̂H . It
can be realized as follows: For n ≥ 0, let

̂An = {

j
∣

∣ 0 ≤ j ≤ n and n − j is even
}

and order ̂An by writing m � l if l ≥ m as integers. The branching diagram ̂A has an edge
connecting j on level n and k on level n + 1 if and only if |j − k| = 1.

Evidently, the algebra Hn = R has the cellular basis {1}. We can choose the element cn

in Hn (see Lemma 2.9) to be 1 and also all the branching factors d
(n)
(n−1)→n and u

(n)
(n−1)→n to

be 1. According to Eq. (5.5), for j ∈ ̂An, we can take

cj = e
(l)
n−1, where l = (n − j)/2,

and e
(l)
n−1 is defined in Eq. (5.4). By Theorem 5.7, the branching factors for the tower

(An)n≥0 can be chosen as follows: If j ∈ ̂Ai and k ∈ ̂Ai+1 with j → k, we take

d
(i+1)
j→k = e

(l)
i−1, where l = (i − j)/2.

For a path t ∈ ̂A
(λ,l)
n , define dt to be the ordered product of these branching factors along

the path t, as in Eq. (3.4). From Corollary 3.11 we obtain:

Proposition 6.22 LetR = Z[δ±1] and letAn(R) = An(R; δ) denote the Jones–Temperley–
Lieb algebra over R. For n ≥ 0, the set

An =
{

d∗
scldt

∣

∣ s, t ∈ ̂Al
n and l ∈ ̂An

}

,

is an R–basis for An, and (An, ∗, ̂An,�,An) is a cell datum for An.

6.4.2 The Murphy Basis Coincides with the Diagram Basis

Next, we will show that the Murphy type cellular basis An of An given in Proposition
6.22 actually coincides with the diagram basis, so is in particular a basis for the Jones–
Temperley–Lieb algebra over the generic ground ring Z[δ].

Let S be an integral domain and δ ∈ S. Let k and n be non-negative integers of the
same parity. A (k, n)–Temperley–Lieb diagram is a planar diagram with k upper vertices
and n lower vertices connected in pairs with no crossings. The product of a (k, n)–TL dia-
gram and an (n,m)–TL diagram is defined by the same rule as the product of two ordinary
TL diagrams of the same size; the result is a power of δ times a (k,m)–TL diagram. The
Temperley-Lieb category is category whose objects are non–negative integers; if n−k is odd,
then Hom(k, n) = 0, and if n − k is even then Hom(k, n) is the free S–module on the basis
of (k, n)–TL diagrams. Composition of morphisms is the bilinear extension of the product
of diagrams described above. There is a map ∗ from (k, n)–TL diagrams to (n, k)–TL dia-
grams defined by reflection in a horizontal line. The linear extension of ∗ is a contravariant
functor from the TL category to itself with ∗ ◦ ∗ = id. The rank of a (m, n)–TL diagram is
the number of its vertical strands.

Fix n ≥ 0. A TL n–dangle of rank k is a (k, n)–TL diagram with k vertical strands and
(n−k)/2 horizontal strands. Any (n, n)–TL diagram T of rank k can be written uniquely as
T = y∗x, where x and y are n–dangles of rank k. A Dyck sequence of length n and rank k

is a sequence (a1, . . . , an) such that ai ∈ {±1}, each partial sum
∑j

i=1 ai is non–negative,
and

∑n
i=1 ai = k. There is a bijection between Dyck sequences of length n and rank k, and

n–dangles of rank k, given as follows. Given a Dyck sequence (ai) of length n and rank k,
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there is a unique n–dangle x of rank k with the following property: a vertex j is the right
endpoint of a horizontal strand of x if and only if aj = −1. Conversely, given an n–dangle
x of rank k, label the right endpoint of each horizontal strand with −1 and all other bottom
vertices with +1. Then the resulting sequence of labels in {±1}, read from left to right, is a
Dyck sequence of rank k. The two maps, from Dyck sequences to dangles and from dangles
to Dyck sequences, are inverses.

There is a bijection between paths on the generic branching diagram for the Temperley–
Lieb algebras, of length n, from ∅ to k, and Dyck sequences of length n and rank k. A path
is given by a sequence (0 = b0, 1 = b1, b2, . . . , k = bn) with bj − bj−1 = ±1 for each j .
Then the sequence (bi − bi−1)

n
i=1 is a Dyck sequence of length n and rank k. Conversely,

given a Dyck sequence of length n and rank k, its sequence of partial sums defines a path
on the branching diagram, of length n, from ∅ to k. Evidently, the two maps, from paths to
Dyck sequences and from Dyck sequence to paths, are inverses.

Composing the two bijections described above, we have a bijection between paths on the
branching diagram and dangles. For a path t on the branching diagram, let x(t) denote the
corresponding dangle.

Theorem 6.23 Fix n and k ≤ n with n − k even. Let s and t be elements of ̂Ak
n. Then

d∗
sckdt = x(s)∗x(t).

Thus the Murphy type basis

An =
{

d∗
sckdt

∣

∣ s, t ∈ ̂Ak
n and k ∈ ̂An

}

,

is just the set of all Temperley–Lieb diagrams on 2n vertices, and in particular is a cellular
basis of the Jones–Temperley–Lieb algebra An over the generic ground ring Z[δ].

Proof Recall that ck = e
(l)
n−1, where l = (n − k)/2. Let x

(l)
n−1 be the bottom half of e

(l)
n−1,

namely the n-dangle of rank k with horizontal strands connecting the adjacent pairs of
vertices

(k + 1, k + 2), . . . , (n − 1, n) (l strands).

Thus e
(l)
n−1 = (x

(l)
n−1)

∗x(l)
n−1. To prove the proposition it suffices to show that

x
(l)
n−1dt = x(t). (6.10)

We do this by induction on n, the case n = 1 being evident. Assume that the assertion holds
for some fixed n, for all k with k ≤ n and n − k even, and for all t ∈ ̂Ak

n. Let s ∈ ̂A
j

n+1 for
some j ,

s = (k0, k1, . . . , kn = k, kn+1 = j),

and let t be the truncation of s of length n,

t = (k0, k1, . . . , kn = k).

Write l = (n − k)/2 and l′ = (n + 1 − j)/2. There are two cases:
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Case 1. j = k + 1, l′ = l. In this case, x(s) is obtained from x(t) by adding a vertical
strand at the new vertex n + 1. On the other hand,

x(l′)
n ds = x(l)

n d
(n+1)
k→k+1dt

= x(l)
n e

(l)
n−1dt

= x(l)
n (x

(l)
n−1)

∗x(l)
n−1dt

= x(l)
n (x

(l)
n−1)

∗x(t),

using the induction hypothesis at the last step. Multiplication of an n–dangle of rank k on
the left by x

(l)
n (x

(l)
n−1)

∗ adds a vertical strand on the right, as shown in Fig. 3. Hence we have
x

(l′)
n ds = x(s).
Case 2. j = k − 1, l′ = l + 1. In this case, x(s) is obtained from x(t) by “closing”

the rightmost vertical strand; that is, if j is the vertex adjacent to this strand, the strand is
replaced by a horizontal strand joining j and n + 1. On the other hand,

x(l′)
n ds = x(l+1)

n d
(n+1)
k→k+1dt

= x(l+1)
n (x

(l)
n−1)

∗x(t),

by the same computation as in the previous case. But multiplication of an n–dangle of rank
k on the left by x

(l+1)
n (x

(l)
n−1)

∗ closes the rightmost vertical strand, as shown in Fig. 4. So

again we have x
(l′)
n ds = x(s), and this completes the inductive proof.

Corollary 6.24 Let An denote the Jones–Temperley–Lieb algebra over the generic ground
ring Z[δ]. For n ≥ 0 and for � a cell module of An+1, the restricted module ResAn+1

An
(�)

has an order preserving cell filtration.

Fig. 3 x
(l)
n (x

(l)
n−1)

∗x(t)

Fig. 4 x
(l+1)
n (x

(l)
n−1)

∗x(t)
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Proof One can either use the same proof as for Corollary 6.17, or one can check directly
using a diagrammatic model of the cell modules that ResAn+1

An
(�k

An+1
) has a filtration

0 ⊆ N ⊆ ResAn+1
An

(�k
An+1

),

with N ∼= �k−1
An

and ResAn+1
An

(�k
An+1

)/N ∼= �k+1
An

.

6.5 Partition Algebras

The partition algebras An(k), for k, n ∈ Z≥0,are a family of algebras defined in the work of
Martin and Jones in [20, 25–27] in connection with the Potts model and higher dimensional
statistical mechanics. Jones [20] showed that the even partition algebra A2n(k) is in Schur–
Weyl duality with the symmetric group Sk acting diagonally on the n–fold tensor product
V ⊗n of its k–dimensional permutation representation V . In [25], Martin defined the odd
partition algebra A2n+1(k) as the centralizer of the subgroup Sk−1 ⊆ Sk acting on V ⊗n.
Including the algebras A2n+1(k) in the tower

A0(k) ⊆ A1(k) ⊆ A2(k) ⊆ A3(k) ⊆ · · · (6.11)

allowed for the simultaneous analysis of the whole tower of algebras (6.11) using the Jones
basic construction, by Martin [25] and Halverson and Ram [17]. Cellularity of the partition
algebras was proved in [6, 41, 42].

For n ∈ Z≥0 let

P2n =
{

set partitions of {1, 2, . . . , n, 1, 2, . . . , n}
}

, and,

P2n−1 = {

d ∈ P2n
∣

∣ n and n are in the same block of d
}

.

Any element ρ ∈ P2n may be represented as a graph with n vertices in the top row, labelled
from left to right, by 1, 2, . . . , n and n vertices in the bottom row, labelled, from left to
right by 1, 2, . . . , n, with the connected components of the graph being the blocks of ρ. The
representation of a partition by a diagram is not unique; for example the partition

ρ =
{

{1, 1, 3, 4, 5, 6}, {2, 2, 3, 4, 5, 6}
}

can be represented by the diagrams:

If ρ1, ρ2 ∈ P2n, then the composition ρ1 ◦ ρ2 is the partition obtained by placing ρ1 above
ρ2 and identifying each vertex in the bottom row of ρ1 with the corresponding vertex in the
top row of ρ2 and deleting any components of the resulting diagram which contains only
elements from the middle row.

Definition 6.25 Let S be a commutative unital ring and δ ∈ S. For n ≥ 1, the partition
algebra A2n(S; δ) is the free S–module with basis P2n, equipped with the product ρ1ρ2 =
δlρ1 ◦ ρ2, for ρ1, ρ2 ∈ P2n, where l is the number of blocks removed from the middle row
in constructing the composition ρ1 ◦ ρ2. By convention , A0(S; δ) = S. Let A2n−1(S; δ)

denote the subalgebra of A2n(S; δ) spanned by P2n−1.

The Brauer algebra Bn(S; δ) embeds as a subalgebra of A2n(S; δ), spanned by partitions
with each block having two elements. In particular, A2n(S; δ) has a subalgebra isomorphic
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to the symmetric group algebra SSn, spanned by permutation diagrams. The permutation
subalgebra is generated by the transpositions

The multiplicative identity of A2n(S; δ) is the trivial permutation. It is not hard to see that
the partition algebra A2n(S; δ) is generated by the transpositions si (1 ≤ i ≤ n − 1) and
elements ej (1 ≤ j ≤ 2n − 1), where

Halverson and Ram [17, Theorem 1.11] and East [7, Theorem 36] give a presentation for
A2n in terms of the generators ej and si . The algebras A2n(S; δ) and A2n−1(δ) have an
algebra involution ∗ which acts on diagrams by flipping them over the horizontal line y =
1/2. The generators si and ej are ∗–invariant

A2n−1(S; δ) is defined as a subalgebra of A2n(S; δ), and A2n(S; δ) embeds in
A2n+1(S; δ) as follows: define a map ι : P2n → P2n+1 by adding an additional block
{n + 1,n + 1}. The linear extension of ι is a monomorphism of algebras with involution.

Let d ∈ P2n. Call a block of d a through block if the block has non–empty intersection
with both [n] and [n]. The number of through blocks of d is called the propagating number
of d, denoted pn(d). Clearly, pn(d) ≤ n for all d ∈ P2n. The only d ∈ P2n with propagating
number equal to n are the permutation diagrams. If x, y ∈ P2n and xy = δrz, then pn(z) ≤
min{pn(x), pn(y)}. Hence the span of the set of d ∈ P2n with pn(d) < n is an ideal J2n ⊂
A2n(S; δ). Moreover, J2n−1 := J2n ∩ A2n−1 is the span of d ∈ P2n−1 with pn(d) < n. One
can check that for k ≥ 2, Jk is the ideal of Ak(S; δ) generated by ek−1. The ideal Jk is ∗–
invariant, and the span of permutation diagrams in Ak is a ∗–invariant linear complement
for Jk . It follows that A2n(S; δ)/J2n ∼= SSn and A2n−1(S; δ)/J2n−1 ∼= SSn−1 as algebras
with involution; the isomorphisms are determined by v + Jk �→ v, where v is a permutation
diagram.

6.5.1 The Murphy Basis

The generic ground ring for the partition algebras is R0 = Z[δ], where δ is an indetermi-
nant. Write R = Z[δ±1], and let F = Q(δ) denote the field of fractions of R. Write An for
An(R; δ) and write H2i = H2i+1 = RSi for i ≥ 0. The tower (Hn)n≥0 is a strongly coher-
ent tower of cyclic cellular algebras, and HF

n is split semisimple. The branching diagram of
the tower (Hn)n≥0 is the graph ̂H with

(1) ̂H2i = ̂H2i+1 = the set Yi of Young diagrams of size i.
(2) an edge λ → μ in ̂H if

(a) λ ∈ ̂H2i−1, μ ∈ ̂H2i and λ ⊆ μ, or
(b) λ ∈ ̂H2i , μ ∈ ̂H2i+1 and λ = μ.

It is shown in [13, Sect. 5.7] that the pair of towers (An)n≥0 and (Hn)n≥0 satisfy the
framework axioms (1)–(7) of Section 5.1. Axiom (8) holds by Corollary 4.10. Axiom (9)
holds for the partition algebras, by the remarks at the end of Section 5.1. Finally, Axiom
(10) holds by Corollary 4.3. Therefore, by Theorem 5.5, the tower of algebras (An)n≥0 is a
strongly coherent tower of cyclic cellular algebras.
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0

2

4

6

Fig. 5 Branching diagram for the partition algebras.

By the discussion in Section 5.4, the partially ordered set ̂Ai in the cell datum for Ai can
be realized as

̂Ai = {

(λ, l)
∣

∣ λ ∈ ̂Hi−2l , for l = 0, 1, . . . , �i/2�}

ordered by (λ, l)�(μ,m) if l > m, or if l = m and λ�μ as elements of ̂Hi−2l . The branch-
ing diagram ̂A for the tower (An)n≥0 is that obtained by reflections from the branching
diagram ̂H . Thus the branching rule is the following:

(1) Let i be even and (λ, l) ∈ ̂Ai .

(a) For (μ, l) ∈ ̂Ai+1, (λ, l) → (μ, l) in ̂A if and only if λ = μ.
(b) For (μ, l + 1) ∈ ̂Ai+1, (λ, l) → (μ, l + 1) in ̂A if and only μ ⊂ λ.

(2) Let i be odd and (λ, l) ∈ ̂Ai .

(a) For (μ, l) ∈ ̂Ai+1, (λ, l) → (μ, l) in ̂A if and only if λ ⊂ μ.
(b) For (μ, l + 1) ∈ ̂Ai+1, (λ, l) → (μ, l + 1) in ̂A if and only λ = μ.

The first few levels of ̂A are given in Fig. 5.
Next, we determine the branching coefficients for the two towers (Hn)n≥0 and (An)n≥0.

Let λ ∈ ̂H2i−1 and μ ∈ ̂H2i with λ → μ in ̂H . If μ = λ ∪ {(r, μr)}, let a = ∑r
j=1 μj .

Then the branching factors for the inclusion H2i−1 ⊆ H2i in the tower (Hi)i≥0 are given
by

d
(2i)
λ→μ = sa,i and u

(2i)
λ→μ = si,a

λr
∑

k=0

sa,a−k, (6.12)

where the elements si,j are defined in Eq. (6.7). The branching factors for the inclusion
H2i ⊆ H2i+1 in the tower (Hi)i≥0 are given by

d
(2i+1)
λ→λ = u

(2i+1)
λ→λ = 1 if λ ∈ ̂H2i = ̂H2i+1. (6.13)
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For λ ∈ ̂Hk and μ ∈ ̂Hk+1, define d̄
(k+1)
λ→μ and ū

(k+1)
λ→μ by the same formulas, specifying

elements of the subalgebra of Ak+1 spanned by permutation diagrams; these are liftings in
Ak+1 of the branching factors in Hk+1 specified above.

By Theorem 5.7, the branching factors for the tower (An)n≥0 can be chosen as follows:
Let (λ, l) ∈ ̂A2i−1. If (μ, l) ∈ ̂A2i and (λ, l) → (μ, l) in ̂A, then λ ⊂ μ and

d
(2i)
(λ,l)→(μ,l) = d̄

(2i−2l)
λ→μ e

(l)
2i−2,

and, if (μ, l + 1) ∈ ̂A2i and (λ, l) → (μ, l + 1) in ̂A, then λ = μ and

d
(2i)
(λ,l)→(λ,l+1) = e

(l)
2i−2.

Similarly, if (λ, l) ∈ ̂A2i and (μ, l) ∈ ̂A2i+1 and (λ, l) → (μ, l), then λ = μ and

d
(2i+1)
(λ,l)→(λ,l) = e

(l)
2i−1,

and, if (μ, l + 1) ∈ ̂A2i+1 and (λ, l) → (μ, l + 1), then μ ⊂ λ and

d
(2i+1)
(λ,l)→(μ,l+1) = ū

(2i−2l)
μ→λ e

(l)
2i−1.

The u–coefficients u
(n+1)

(λ,l)→μ,m) are determined by similar formulas by Theorem 5.7.

Fix n ≥ 1 and (λ, l) ∈ ̂An. For a path t in ̂A
(λ,l)
n , define dt to be the ordered product of the

d–branching coefficients for the tower (Ak) along the path t, as in Eq. (3.4). Define c(λ,l) =
c(λ,0)e

(l)
i−1, where c(λ,0) = ∑

v∈Sλ
v, and e

(l)
i−1 is defined in Eq. (5.4). From Corollary 3.11

we obtain:

Proposition 6.26 Let R = Z[δ±1] and let An = An(R; δ) be partition algebra defined
over R with parameter δ. For each n, the set

An =
{

d∗
sc(λ,l)dt

∣

∣ s, t ∈ ̂A(λ,l)
n , (λ, l) ∈ ̂An

}

,

is an R–basis for An, and (An, ∗, ̂An,�,An) is a cell datum for An.

6.5.2 The Murphy Basis and the Generic Ground Ring

It remains to show that the set An is a basis for the partition algebra An(R0; δ) defined over
the generic ground ring R0 = Z[δ]. Let B denote the diagram basis for An(R0; δ).

Definition 6.27 Let 1 ≤ l ≤ k ≤ j . A set partition � of P = {1, . . . , j , 1, . . . , j}
is said to be of even type (k, l) if each element of the set of lower vertices
{k − l + 1, k − l + 2, . . . , k} lives in a block of size one; � is said to be of odd type (k, l)

if all the lower vertices in the set {k − l, k − l + 1, . . . , k} live in the same block of �.

Lemma 6.28 Let � be a partition.

(1) If � is of odd type (k + 1,m) and (λ, l) → (μ,m) is an edge from level 2k to level
2k + 1 in ̂A, then �d

(2k+1)
(λ,l)→(μ,m) is a Z-linear combination of partitions of even type

(k, l).
(2) If � is of even type (k,m) and (λ, l) → (μ,m) is an edge from level 2k − 1 to level

2k in ̂A, then �d
(2k)
(λ,l)→(μ,m)is a Z-linear combination of partitions of odd type (k, l).

Proof Assume that � is of odd type (k+1,m) and (λ, l) → (μ,m) is an edge from level 2k
to level 2k+1 in ̂A. Thus � has lower vertices k − m + 1, . . . , k + 1 in one block. If l = m,
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k l 1 k

Fig. 6 �e
(l)
2k−1, where � is of odd type (k + 1, l)

then λ = μ, and d
(2k+1)

(λ,l)→(μ,l) = e
(l)
2k−1. It follows that �d

(2k+1)

(λ,l)→(μ,m) = �e
(l)
2k−1 is equal to a

single partition of even type (k, l), and that no factor of δ arises in the computation of the
product, as shown in Fig. 6. If m = l + 1, then μ ⊂ l and

d
(2k+1)

(λ,l)→(μ,l+1) = ū
(2k−2l)

μ→λ e
(l)
2k−1,

which is a sum of elements of the form sk−l,j e
(l)
2k−1 with j ≤ k − l. It follows that

�d
(2k+1)

(λ,l)→(μ,l+1) is equal to a sum of distinct partitions, each of even type (k, l), and again no
factor of δ appears in the computation of the product, as shown in Fig. 7.

Assume now that � is of even type (k,m) and (λ, l) → (μ,m) is an edge from level
2k − 1 to level 2k in ̂A. Thus the lower vertices k − m + 1, . . . , k each constitute a block
of �. If l = m, then λ ⊂ μ and

d
(2k)

(λ,l)→(μ,l) = d̄
(2k−2l)

λ→μ e
(l)
2k−2.

But d̄
(2k−2l)

λ→μ = sj,k−l for some j ≤ k − l, and �′ = �sj,k−l is also a partition of even type

(k, l). Thus, we have to consider �d
(2k+1)

(λ,l)→(μ,l) = �sj,k−le
(l)
2k−2 = �′e(l)

2k−2, where �′ is a
partition of even type (k, l). The product �′e(l)

2k−2 is a single partition, of odd type (k, l), and
no power of δ occurs in the computation of the product, as shown in Fig. 8.

Finally, if m = l + 1, then λ = μ and d
(2k)

(λ,l)→(μ,l+1) = e
(l)
2k−2. Again the product

�d
(2k+1)

(λ,l)→(μ,l) = �e
(l)
2k−2 is a single partition, of odd type (k, l), and no power of δ occurs in

the computation of the product. The diagram for this case is similar to Fig. 8, except that
the lower vertex k − l of � is now an singleton block of �.

Proposition 6.29 Let (λ, l) ∈ ̂An and s, t ∈ ̂A
(λ,l)
n . Then d∗

sc(λ,l)dt = d∗
sc(λ,0)e

(l)
n−1dt lies

in the Z-span of B.

k l 1 k

Fig. 7 �sk−l,j e
(l)
2k−1, where � is of odd type (k + 1, l + 1)
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k l k

Fig. 8 �′e(l)
2k−2, where �′ is of even type (k, l)

Proof If n = 2k + 1 is odd, then c(λ,0)e
(l)
n−1 is a sum of partitions of odd type (k + 1, l).

If n = 2k is even, then c(λ,0)e
(l)
n−1 is a sum of partitions of even type (k, l). The argument

proceeds as in the proof of Proposition 6.12, with Lemma 6.28 taking the place of Lemma
6.11.

Theorem 6.30 The set An = {d∗
sc(λ,l)dt | s, t ∈ ̂A

(λ,l)
n , (λ, l) ∈ ̂An},is a basis for the

partition algebra An(R0; δ) over the generic ground ring R0 = Z[δ].

Proof The transition matrix B between the diagram basis of the partition algebra and the
set An has integer entries, according to Proposition 6.29, and in particular d = det(B) is
an integer. Since An is a basis for the partition algebra over R = Z[δ±1], it follow that B

is invertible over R, so the integer d is a unit in R. It follows that d = ±1 and hence B is
invertible over Z. Hence An is a basis of the partition algebra over R0.

Corollary 6.31 Let An denote the partition algebra over the generic ground ring R0 =
Z[δ]. For n ≥ 0 and for � a cell module of An+1, the restricted module Res

An+1
An

(�) has an
order preserving cell filtration.

Proof The proof is the same as that of Corollary 6.17.
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Appendix A. A Formula for Murphy Basis Elements

In this appendix, we give an alternative formula for the Murphy basis of the Iwahori–Hecke
algebraHn(q

2) and for the Murphy–type bases of the various algebras treated in Section 6.
The formula was pointed out to us by Chris Bowman for the case of the Hecke algebra,
and Bowman posed the question whether an analogous formula holds also for the BMW
algebras, etc.

Consider a tower (Hn)n≥0 of cyclic cellular algebras satisfying the hypotheses of Section
3.5. As we will show, in all the examples of such towers treated in this paper, the elements
cλ and the branching factors d

(n+1)
μ→ν and u

(n+1)
μ→ν can be chosen to satisfy

cμu(n+1)
μ→ν = (d(n+1)

μ→ν )∗cν (A.1)

for all n ≥ 0 and all μ ∈ ̂Hn and ν ∈ ̂Hn+1 with μ → ν.
We define an ordered product of u–coefficients along paths, analogous to the elements

dt defined in Eq. (3.4).
Fix n ≥ 1 and λ ∈ ̂Hn. For each path t = (∅ = λ(0), λ(1), . . . , λ(n) = λ) ∈ ̂Hλ

n , define

ut = u
(1)

∅→λ(1)u
(2)

λ(1)→λ(2) · · · u
(n)

λ(n−1)→λ(n) . (A.2)

Lemma A.1 Let (Hn)n≥0 be a tower of cyclic cellular algebras satisfying the hypotheses
of Section 3.5. Suppose that Eq. (A.1) holds for all n ≥ 0 and all μ ∈ ̂Hn and ν ∈ ̂Hn+1
with μ → ν. Then for all n ≥ 0, all λ ∈ ̂Hn and all t ∈ ̂Hλ

n , one has

d∗
t cλ = ut . (A.3)

Consequently, the cellular basis of Hn given in Corollary 3.11 can be written as
{

usdt
∣

∣ λ ∈ ̂Hn and s, t ∈ ̂Hλ
n

}

.

Proof The formula (A.3) is evident for n = 0, 1. Fix n ≥ 1 and suppose that (A.3) holds
for all λ ∈ ̂Hn and all t ∈ ̂Hλ

n . Let ν ∈ ̂Hn+1 and t = (∅, λ(1), . . . , λ(n) = μ, λ(n+1) = ν)

be an element of ̂Hν
n+1. Write t′ = t[0,n]. Then, using the induction hypothesis as well as

Eq. (A.1), we have

ut = ut′u
(n+1)

μ→ν = d∗
t′cμu

(n+1)

μ→ν = d∗
t′(d

(n+1)
μ→ν )∗cν = d∗

t cν.

The statement now follows by induction.

Lemma A.2 The branching factors d
(n+1)

μ→ν and u
(n+1)

μ→ν for the tower of Iwahori–Hecke
algebras of the symmetric groups, as determined in 4.5 and Corollary 4.19, satisfy

mμu
(n+1)

μ→ν = (d
(n+1)

μ→ν)
∗mν,

for all n ≥ 0 and all partitions μ of size n and ν of size n + 1 with μ → ν.

Proof This is immediate from Lemma 4.18, part (1).

Corollary A.3 The Murphy basis of the Iwahori–Hecke algebraHn(q
2) is given by

mλ
st = usdt

for λ a partition of n and s, t standard λ–tableaux.
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Proof This follows from Eq. (4.7) and Lemma A.1 and Lemma A.2.

Our next goal is to obtain similar formulas for the Murphy type bases of the various
algebras treated in Section 6.

Proposition A.4 Let An denote the n–th BMW, Brauer, partition or Jones–Temperley–Lieb
algebra. The Murphy type basis of An established in Section 6 can be written in the form

{

usdt
∣

∣ λ ∈ ̂An ands, t ∈ ̂Aλ
n

}

.

Sketch of proof. We need to show that if x ∈ ̂An and y ∈ ̂An+1 with x → y in the
branching diagram ̂A, then

cxu
(n+1)

x→y = (d
(n+1)

x→y)
∗cy, (A.4)

where the elements cx ∈ An and cy, u
(n+1)

x→y, d
(n+1)

x→y ∈ An+1 are as specified in Section 6.
The result will then follow from Lemma A.1. For the Temperley–Lieb algebras, Eq. (A.4) is
evident from the formulas in Section 6.4 for the elements cx and for the branching factors.

For the BMW, Brauer and partition algebras, (A.4) can be established in two steps. The
first step is to show that (A.4) holds when x = (λ, 0) ∈ ̂An and y = (μ̂, 0) ∈ ̂An+1. For
the Brauer and partition algebras this special case of (A.4) follows from Lemma 4.18, part
(1), as all the elements involved lie in a copy of the symmetric group algebra contained in
An+1. For the BMW algebras, it is necessary to establish an analogue of Lemma 4.18, part
(1) which is valid in the algebra of the braid group.

The second step in the proof of (A.4) is to establish the general case from
the special case. This involves a straightforward computation using the formulas of
Theorem 5.7.
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