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1 Introduction

The subject of reconstruction of bulk fields as boundary operators in AdS/CFT has gen-

erated a lot of interest in the last few years [1–5]. In particular the additional subtleties

present when there are gauge symmetries in the bulk has recently received a fair bit of

attention [6–15]. Since the graviton will always be present in any example of AdS/CFT, it

is clear that a complete understanding of these issues is necessary for a full understanding

of the correspondence. In [10] a new puzzle in the CFT reconstruction of bulk fields in the

presence of gauge symmetries was pointed out (see also [16] for some related discussion);

the goal of this paper is to describe this puzzle in more detail and propose a resolution

for it. I will focus predominantly on the simple case of a single U(1) gauge symmetry

associated with a vector potential Aµ in the bulk. For obvious reasons I will refer to this

as the electromagnetic case, and will use the standard terminology from electromagnetism

to describe it.

In the vicinity of the vacuum in Hilbert space, there is a rather complete and intuitive

understanding of how to reconstruct bulk gauge-invariant operators in the CFT in the
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Figure 1. Examples of gauge-invariant operators for electromagnetism on the AdS and AdS-

Schwarzschild backgrounds. The directed blue dashed lines represent Wilson lines, and dots with

Wilson lines ending (beginning) on them represent local operators creating positive (negative)

charge. Wilson lines can also end on the boundary, or be closed into loops. Note that in the AdS-

Schwarzschild background there is a new kind of Wilson line, that stretches from one boundary to

the other.

electromagnetic case [6–8].1 These consist of local uncharged operators such as the field

strength or the electromagnetic current, as well as nonlocal operators such as closed Wilson

lines or Wilson lines ending on charged operators or the boundary.2 The left diagram of

figure 1 illustrates a representative collection of such operators.3 Some details of this

construction are reviewed in appendix A for completeness, but they will not really be

important for this paper since we will mostly rely on bulk techniques. The only important

point is that all of the operators in this diagram have CFT representations in terms of the

global current dual to the gauge field and the local operators dual to any charged bulk fields.

The situation becomes more interesting when we consider other backgrounds, such

as the AdS-Schwarzschild geometry shown in the right side of figure 1. From the figure

it is clear that in such a background there is a new kind of gauge-invariant operator: a

Wilson line that runs through the wormhole from one boundary to another. Acting with

such an operator on the Hartle-Hawking state, which above the Hawking-Page transition

is widely expected to be dual to the thermofield double state of the two CFTs [18], one

creates electric flux through the wormhole. In other words this action makes the wormhole

1By “gauge-invariant” here, I mean gauge-invariant under the U(1) gauge symmetry of electromag-

netism. Additional work is needed to define operators that are also gauge-invariant under gravitational

diffeomorphisms. For now I will ignore this issue, with the excuse that at leading order in the 1/N ex-

pansion it does not arise since we are just doing quantum field theory in a fixed background. This is not

totally satisfactory, after all avoiding large gravitational backreaction is important in defining what “in the

vicinity of the vacuum” really means [12]. I will return to this issue in section 7 below.
2Wilson lines are allowed to end on the boundary since, in the standard quantization of the gauge field

in an asymptotically AdS background, allowed gauge transformations must vanish at infinity. I review this

somewhat in appendix A, see for example [17] for a detailed discussion.
3Strictly localized Wilson line operators are somewhat singular, since they create an infinitely thin line

of electric flux that has infinite energy. They can be regulated by smearing them against some sort of

transverse profile; I will not be explicit about it in this paper but one should always remember that this

smearing is implicitly present.
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“a little bit Reissner-Nordstrom”. This Wilson line has the interesting property that it

only exists in states where the two boundaries are connected by a wormhole; its existence

is thus in some sense a diagnostic for whether or not the two sides are connected through

the bulk [10, 16]. It seems likely that if we understand how to describe it in the CFTs, we

will have learned something about how the wormhole arises in the appropriate states.4

It is not so clear that such wormhole-threading Wilson lines can be reconstructed as

CFT operators; in particular the direct method of [6–8] based on using the CFT current

will not work. The problem is that any attempt to cut a Wilson line into parts involving

only the gauge field leads to operators which are not separately gauge-invariant. This is

puzzling however, since the microscopic Hilbert space of the theory is a tensor product of

the two boundary CFTs. This means that any two-CFT operator can be decomposed into

a sum of tensor products of one-CFT operators. These one-CFT operators are themselves

gauge-invariant, since any operator in the CFT is by definition invariant under bulk gauge

transformations.5 So how are the CFTs cutting the Wilson line in the bulk? In what

follows, I will refer to this question as the factorization problem.

The statement that the two-CFT Hilbert space factorizes despite the existence of

wormhole-threading Wilson lines is very powerful, for example it immediately implies that

the CFT must have local operators (or equivalently states) that are charged under the

symmetry generated by the current that is dual to the gauge field. In the bulk this is a

standard piece of lore; any theory with an Einstein-Maxwell sector must also have objects

that are charged under the gauge field [21, 22]. Indeed recall that if we define charge

operators QR and QL in the right and left CFTs respectively, then the thermofield double

is annihilated by QR + QL (I define these operators, and the thermofield double, more

carefully in appendix A below). The operator QL−QR does not annihilate the thermofield

double, but it does still have zero expectation value, since QR and QL do separately by

the CPT-invariance of the thermal state. If we now act on the thermofield double with a

Wilson line in the charge n representation threading the wormhole from left to right, we

get a state in which the expectation value of QL−QR is 2n. For n 6= 0 such a state clearly

can only exist if the single-CFT charge operator Q is nontrivial; charged states must exist!

The Hilbert space factorization is essential to this argument, in section 2 below we will see

an example of how it could fail otherwise.6

4In figure 1 I did not draw any operators in the future or past interior regions; in particular I took the

wormhole-threading Wilson line to puncture the bifurcate horizon. Once we have the full set of exterior

operators together with these Wilson lines, the interior operators can be obtained by bulk Cauchy evolu-

tion [4]. This evolution becomes problematic if we consider interior operators for observers who jump in at

very early or very late times, see eg [19, 20], but as long as we focus on experiments that do not involve

very long time separations on the boundary, we can just use the symmetry of the state to move everything

to the vicinity of t = 0.
5If this statement is not obvious, recall that in any gauge theory we define the set of physical states as

those which are gauge-invariant. But in the CFT all states are physical. Any operator that acts on them

must thus be gauge-invariant.
6One might try to derive this conclusion from abstract conformal field theory, but so far there does not

seem to be a proof outside of two dimensions that the existence of a current requires operators that are

charged under that current. I thank Thomas Dumitrescu and Sasha Zhiboedov for discussions of this point.
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Figure 2. Cutting a Wilson line by a pair of oppositely charged fields. I will argue below that

there is a natural “gauge-covariant operator product expansion” that ensures these operators are

proportional to each other in low-energy correlation functions. Said differently, the bottom operator

flows to the top one under the renormalization group. In the case of a wormhole-threading Wilson

line, the lower operator has a simple CFT description since we can represent the left half in the left

CFT and the right half in the right CFT.

As we proceed it will become clear that the resolution of the factorization problem de-

pends on short-distance physics in the bulk. One indication of this, which I will review in

section 2 below, is that in Hamiltonian lattice gauge theory [23] there is no gauge-invariant

way whatsoever to cut a Wilson line in the fundamental representation. The microscopic

Hilbert space therefore does not tensor factorize into separate spatial regions [24–28]. We

thus are really asking what kind of high-energy cutoff AdS/CFT provides for bulk elec-

tromagnetism; apparently it must be of a different sort than that provided by lattice

gauge theory.

In this paper I will not be able to address this question in full, after all doing so would

essentially amount to constructing bulk quantum gravity. My goal will instead be to give

a rather general mechanism whereby the factorization problem can be resolved entirely

within bulk effective field theory. The mechanism is to cut the Wilson line by replacing a

segment by a pair of oppositely charged fields at the ends of the segment, as illustrated in

figure 2. In order for this type of replacement to reproduce the Wilson line at all scales

where it exists, we will in fact need the gauge field to emerge from a microscopic theory

with only the charges. There are many examples of theories which achieve this in some

sort of large N limit [29], and I will revisit one of them, the CPN−1 nonlinear-σ model in

d ≥ 2 [30–32], in detail to see how it explicitly resolves the factorization problem.7

I do not mean to argue that this mechanism is necessarily how the factorization problem

is resolved in all examples of AdS/CFT; indeed there is an analogous factorization problem

for gravity, whose resolution is almost certainly not described by effective field theory. The

hope is rather that the basic features of the mechanism hold more generally; indeed many

of them are already known or expected to be true in string theory for independent reasons.

That they follow so naturally from this idea suggests, at least to my mind, that the truth

in general can’t be too different. The main lessons are:8

7This proposal seems closely related to the discussion of [33], where it is argued that fictitious charges

near the horizon are necessary to correctly match Euclidean and Lorentzian calculations of black hole

entropy in the presence of a Maxwell field. One can interpret this paper as claiming that those charges

aren’t actually so fictitious.
8In this paper the word “fundamental” always means “transforming in the minimal positive charge

representation”. It is never used in the colloquial sense of “fundamental field”. When the latter meaning

is intended, I will use the terms “microscopic” or “short-distance”.
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• Cutting a Wilson line in the fundamental representation requires the existence of

bulk fields of fundamental charge.

• These charged fields can have rather large masses, in which case describing the “low-

energy” Wilson line in the CFT requires fairly high-dimension CFT operators.

• They cannot however be so heavy that they are black holes. In fact, obtaining a weak

gauge coupling in the bulk requires the charges to be parametrically lighter than the

Planck scale. The mechanism thus seems to require the theory to obey the “weak

gravity conjecture” of [34], in the form that demands the existence a fundamentally-

charged particle of mass m, such that m
√
G . q, where q is the gauge coupling.

All three points are closely related to prior discussions. The required existence of funda-

mental charges is a long-standing piece of lore in quantum gravity, it is sometimes called

the “principle of completeness” [21, 22]. It certainly seems to be true in string theory, but

so far to my knowledge there has not really been a convincing general argument given for

it.9 The form of the weak gravity conjecture stated above is essentially a strengthening of

the principle of completeness; it also seems to be true in string theory, but again there are

not any airtight arguments for its validity. In fact there is even some debate over what the

statement of the conjecture should actually be. In the original paper it was suggested that

merely having a particle whose charge to mass ratio obeys the bound is sufficient, even if

it is not of fundamental charge [34]. This version would not even imply the principle of

completeness. I view the discussion of this paper as thus supporting the stronger version

where there must be a fundamentally-charged particle obeying the bound.10

The second point is interesting in the context of the “effective conformal field theory”

of [36–38], which argues that high-dimension operators in the CFT are not needed for

describing low-energy physics in the bulk. Near the vacuum this essentially follows from

the usual Wilsonian decoupling of high-energy degrees of freedom. We see however that

in a nontrivial background such as AdS-Schwarzschild, this is no longer true. On balance

this is perhaps a good thing; if AdS/CFT really solves the black hole information problem,

as most people expect it does, then the solution should ultimately rely on special short-

distance properties of the theory in the bulk such as those of string theory. Indeed I view

it as something of an embarrassment that so much recent work on the subject, including

most of my own, has not used bulk UV physics at all (see however [39]). Optimistically

we can perhaps view the resolution of the factorization problem via heavy charges as the

simplest example of this; more generally I am confident that any solution of the factorization

problem will teach us something about high-energy physics in the bulk.

9In fact the general argument given above for the nonvanishing of Q, together with the single-CFT

vanishing of the expectation value of Q in the thermal state, implies that in the state obtained by acting

with a right-to-left Wilson line in the charge n representation on the thermofield double, the expectation

values of QR, QL are both given by n. This unfortunately does not quite establish that there must be states

of charge n for any n however, since thermal charge fluctuations could be large.
10Very recently this conclusion has also been reached via considering the stability of the conjecture to

compactification [35]. That work also debugs a proposed counterexample from heterotic strings to the

stronger weak gravity conjecture advocated here.
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Figure 3. Pure electrodyanamics on a spatial cylinder. The integrated electric flux operator∫
S
E · dA through any sphere S is nontrivial, but is independent of which sphere we pick.

The remainder of this paper will explain the above statements in more detail. In

section 2, I will review the issue of Hilbert space factorization in gauge theories, sharpening

the factorization problem. In section 3, I will explain in more detail how the operators in

figure 2 are related by renormalization group flow. In section 4, I will discuss the short-

distance nature of the factorization problem in more detail, and argue that its resolution

requires the gauge field to be emergent. In section 5, I will review the basic properties of the

lattice CPN−1 model in d ≥ 2 dimensions, and show that, although the lattice Hilbert space

factorizes, at large N it has a stable Coulomb phase that for d ≥ 4 persists all the way to the

IR and does not confine. In section 6, I will explain how the CPN−1 model, understood as a

resolution of the factorization problem, automatically obeys the weak gravity conjecture in

any dimension. I will argue that the reasons for this should apply more broadly, and thus

give a new motivation for why some version of the conjecture should be true. Finally in

section 7, I will give some preliminary comments on the gravitational factorization problem;

it seems to have important consequences both for the “superselection sector” proposal of

Marolf and Wall [40] and for reconstruction of the interior in AdS wormholes more generally.

2 Hilbert space structure in gauge theory

Recently there has been a fair bit of interest in the Hilbert space structure of gauge theo-

ries [24–28], mostly in the context of trying to define the von Neumann entropy of a spatial

region. The standard definition of this entropy would require us to be able to associate a

tensor factor of the Hilbert space to the region, but in gauge theories it is not at all clear

one can do this.

As an extreme illustration, consider pure electrodynamics on R2 × S2, quantized in a

Hamiltonian formulation with spatial slices R × S2.11 This situation is shown in figure 3;

the topology is the same as that of the four dimensional AdS-Schwarzschild solution, which

is of course not a coincidence. To restrict to gauge-invariant states, we need to impose the

Gauss constraint

∇ · E = 0. (2.1)

This has the consequence that the integrated electric flux through the sphere is independent

of where the sphere is located on the line; this statement holds as an operator equation in the

physical Hilbert space! Moreover this operator is nontrivial, since depending on the choice

of boundary conditions we can easily allow for states with nonzero electric flux. For example

we can regulate the spatial line as a finite interval and impose “perfect conductor” boundary

11Details of this formalism and conventions are described in appendix A.
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Figure 4. Lattice scalar electrodynamics in 1 + 1 dimensions. The gauge field is described by

assigning an element of U(1) to each link, while the charged scalar is described by adding a complex

number to each site. A gauge transformation Vi assigns an element of the group to each site.

conditions (A.4) at each end; this is analogous to the standard quantization of a Maxwell

field in AdS. Such an equivalence between two macroscopically separated operators would

be impossible in a theory where we could associate tensor factors to spatial regions, since

in a tensor product space the only operator that is shared by both factors is the identity.12

In fact had we assumed that the Hilbert space factorized, we could have argued, as I did

in the introduction for AdS/CFT, that charged fields must be present to allow the electric

flux at either end of the cylinder to be nonzero.

The situation becomes more subtle once we include charged fields, since the Gauss con-

straint (2.1) then has something nontrivial on the right hand side. To study this concretely,

as in [10] it is very convenient to specialize the discussion to the case of U(1) lattice gauge

theory coupled to charged scalars in 1 + 1 dimensions. The basic set of degrees of freedom

are illustrated in figure 4. I will take the scalar to be in the fundamental representation,

so gauge transformations act as

φ′i = Viφi

U ′i,i+1 = Vi+1Ui,i+1V
†
i . (2.2)

Our perfect conducting boundary conditions (A.4) allow U0,1 and UN−1,N to be arbitrary,

but require V0 = VN = 1. For the scalar I’ll impose Dirichlet boundary conditions φ0 =

φN = 0, which again is the natural analogue of standard quantization in AdS. With these

boundary conditions, interesting gauge-invariant operators include

W ≡ U0,1U1,2 . . . UN−1,N

Ei,i+1 ≡ −Ui,i+1
∂

∂Ui,i+1
−→
φ i ≡ φiUi,i+1Ui+1,i+2 . . . UN−1,N

←−
φ i ≡ U †0,1U

†
1,2 . . . U

†
i−1,iφi

ρi ≡
∂

∂φi
φi − φ†i

∂

∂φ†i
, (2.3)

12We can describe this nicely using the beautiful algebraic formalism of [25], who argue that it is really

operator algebras we should associate to spatial regions rather than tensor factors. We can associate a

tensor factor to a region if and only if the algebra we associate to that region has trivial center. We see in

this example that any spatial region of bounded extent which contains a complete sphere will necessarily

have a center, since the integrated flux through that sphere is equivalent to an operator far outside the

region, and thus lies in the commutant of its algebra. Unlike in the topologically trivial cases considered

in [25], it is clear here that no amount of redefining the operator algebra at the boundary of the region will

be able to trivialize this center.
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each of which corresponds to one of the gauge invariant operators in the right diagram of

figure 1. They are not all independent, for example
−→
φ i = W

←−
φ i.

We can write the Gauss constraint as

Ei,i+1 − Ei−1,i = ρi, (2.4)

from which it isn’t too hard to show that any gauge-invariant state |ψ〉 in the Hilbert space

will have a Schrodinger representation of the form

〈U, φ, φ†|ψ〉 = Ψ
[
W,
−→
φi ,
−→
φ †i

]
. (2.5)

Now say that we wish to cut space into two parts, say between site ` and site `+ 1. If

we first consider the case where there is no charged scalar field, then equations (2.4), (2.5)

tell us that the system reduces to a single compact degree of freedom, the Wilson line

W . Any attempt to restrict to the observables in some region will eliminate this nonlocal

degree of freedom, and we will be left with a trivial Hilbert space.

The situation is not so dramatic when the charged scalar is present, we can define

a large algebra of nontrivial gauge-invariant operators that live only on the right side.

One set of operators that generates this algebra is
−→
φ i,
−→π i, and Ei,i+1, with i > `. Here

−→π i ≡ πiU
†
i,i+1 . . . U

†
N−1,N , where πi ≡ −i ∂

∂φi
. Similarly we can define an analogous left-

sided algebra. But from (2.5) we see that we will never be able to generate the Wilson line

W out of such operators; this is most clear if we redefine Ψ in (2.5) to use
−→
φ i for i > ` and←−

φ i for i ≤ `. The gauge-invariant Hilbert space thus does not factorize; there is always

the remaining degree of freedom W .13

Despite this continued non-factorization, I claim that things have improved consider-

ably. The reason is that, although we cannot produce W out of our left- and right-sided

algebras, we can produce the operator

W ′ ≡
←−
φ †`
−→
φ `+1. (2.6)

This operator is not equivalent to W , but I claim they are proportional when used in

sufficiently low energy states. In other words, W ′ flows to W under renormalization group

transformations, so their difference is not detectable in low energy experiments. This is

not a coincidence: it is somewhat suspicious that, unlike in the charge-free case, we had

to go to an explicit lattice description to derive nonfactorization, and in fact in section 5

we will see that there are regulators of scalar QED where the Hilbert space does factorize.

We have thus reduced the factorization problem to a short-distance problem. Showing

the low-energy proportionality of W and W ′ directly in the lattice theory would be rather

tedious, so I will instead now give a continuum argument.

3 Wilson line renormalization group

It is well-known that different line operators can mix under renormalization group flow, see

for example [41] for a recent discussion and further references. For our purposes we would

13We can again demonstrate this very nicely in the language of [25]; each algebra has a nontrivial central

element E`,`+1 = E`−1,` + ρ` = E`+1,`+2 − ρ`+1, and thus cannot correspond to a tensor factor.
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like to argue that in electrodynamics, we can make the replacement suggested in figure 2

without affecting low energy correlation functions. We can formulate this statement as a

“gauge-covariant operator product expansion”

φ(x)†φ(y) = ei
∫
Γ A (G(x, y) + less singular terms) . (3.1)

Here Γ is a straight line from x to y, and G(x, y) is a c-number function that at zeroth

order in q is just the free field propagator for φ. Less singular means less singular in the

limit that x and y approach each other. I will always take |x− y| to be small compared to

the inverse mass of φ, so assuming canonical normalization we have

G(x, y) =
1

2∆Ωd−1

1

|x− y|2∆
+O(q2). (3.2)

Here ∆ ≡ d−2
2 is the free scaling dimension of φ and Ωd−1 = 2πd/2

Γ(d/2) is the volume of a unit

Sd−1. (3.1) should also be true for other charged operators, with appropriate modifications

of G and the representation of the Wilson line.

Equation (3.1) should hold on roughly the same grounds that we expect the ordinary

operator product expansion to hold, at least as an asymptotic series [42]. In conformally

invariant gauge theories, it can be derived by moving the Wilson line to the other side

of equation to define the gauge-invariant string operator φ(x)†e−i
∫
Γ Aφ(y). We can then

surround this operator with a sphere to define a state in the Hilbert space of the theory on

the sphere, which we can then expand in the eigenstates of the dilation operator. Via the

state-operator correspondence, this is equivalent to expanding the string operator in a basis

of gauge-invariant local operators. The first term in (3.1) corresponds to the contribution

of the identity operator, which should dominate the expansion at small separation.14 This

presentation of (3.1) might be called a “string operator expansion”, in general it is probably

the nicer statement, but (3.1) is what we need to address the factorization problem.

We can also confirm (3.1) at weak coupling by inserting both sides into correlation

functions and computing Feynman diagrams. In the remainder of this section I will illus-

trate this for scalar QED in d dimensions to leading nontrivial order in the coupling q.

In the presence of a Wilson line along a curve xµ(s), the Feynman rules are modified by

allowing photon propagators to be attached to the line as

i

∫
dsẋµ(s)Gµν (x(s), ·) . (3.3)

14The dominance of the identity is certainly true at weak coupling, showing it in general is more subtle.

The ordinary operator product expansion is highly constrained by the assumption that the two operators

being multiplied are conformal primaries, which ensures that the identity always dominates at short distance

if it appears with nonzero coefficient. The classification of conformal transformations of finite line operators

is more complicated, so far not too much seems to have been said about it (although see [43] for some remarks

on the infinite case). What we’d like to say is that there is a basis for “straight line” operators, each of

which transforms into a rescaled version of itself under a dilation. We can then use cluster decomposition

to argue for short-distance identity dominance for these operators, and thus for any line operator that is a

finite superposition of them. Alternatively, Juan Maldacena has suggesting arguing for the replacement of

figure 2 directly by studying the Hilbert space of the CFT on a sphere with two external charges at opposite

points, and using the fact that the ground state has the two charges connected by a straight Wilson line.

– 9 –
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For example in the free Maxwell theory the vacuum expectation value of a closed Wilson

line exponentiates to15

〈ei
∫
dsẋµAµ〉 = e−

∫
dsds′ẋµ(s)ẋν(s′)Gµν(x(s),x(s′)). (3.4)

To check (3.1), we can compare (3.3) evaluated on the line Γ running from x to y

to what we get at first order in q from inserting φ†(x)φ(y) and bringing down a single

interaction vertex:

iG(x, y)

∫ 1

0
dsẋµ(s)Gµν (x(s), ·)

?
≈ i
∫
ddz

[
G(x, z)

∂

∂zµ
G(z, y)−G(y, z)

∂

∂zµ
G(z, x)

]
×Gµν(z, ·). (3.5)

To leading order in the separation |x − y|, which I will take to be in the x1 direction, we

can approximate the external photon propagator on both sides as Gµν(x, ·), so it suffices

to show that

1

G(x, y)|x− y|

∫
ddz

(
G(x, z)

∂

∂zµ
G(z, y)−G(y, z)

∂

∂zµ
G(z, x)

)
= δ1

µ. (3.6)

Rotational invariance ensures that the µ 6= 1 components will vanish. Using (3.2), the

µ = 1 component boils down to showing that16

∫ ∞
0

dρ

∫ ∞
−∞

dh
ρd−2

(ρ2 + h2)∆(ρ2 + (h− 1)2)∆

(
h

h2 + ρ2
+

1− h
ρ2 + (h− 1)2

)
=

Ωd−1

Ωd−2
, (3.7)

which is in fact true.17

It would be interesting to study the gauge-covariant operator product expansion (3.1),

or its cousin the string operator expansion, in more detail; I leave this to future work.

4 UV and IR physics in AdS/CFT

Let’s now stop and take stock of the situation. We’ve argued using the gauge-covariant

operator product expansion that by making the replacement of figure 2, we can split any

Wilson line without this being detected in low-energy correlation functions. This includes

the wormhole-threading Wilson line of figure 1. But once we have split it in this manner,

15Remember here that in our conventions (A.1), the photon propagator Gµν has an overall factor of q2.
16In d = 2 the integral is divergent in the IR; this is a reflection of the standard fact that a massless

scalar field does not really exist in 1 + 1 dimensions [44]. We could regulate this by reintroducing the mass,

but it is easier to instead differentiate both sides of (3.1) with respect to x and y; this will then produce

an IR-convergent integral and the analogue of (3.5) will hold automatically by analytic continuation from

higher d.
17One way to evaluate this integral is to observe that for d > 3, we can consider the two terms in the sum

separately. Moreover they are in fact equal, via the change of variables h → 1 − h. We can then use the

identity 1
xA

= 1
Γ(A)

∫∞
0
dt tA−1e−tx twice to rewrite each factor in the denominator, perform the Gaussian

integrals over ρ and h, change variables to a = tt′

t+t′ and b = t
t+t′ , and finally perform the now trivial a and

b integrals. This answer then holds for d > 2 by analytic continuation.
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Figure 5. Using the replacement of figure 2 to reconstruct a wormhole-threading Wilson line; in

the right diagram all operators can be reconstructed using standard techniques.

we can now reconstruct it in the CFT using the machinery of appendix A. This procedure

is illustrated in figure 5.

This already leads to some interesting conclusions. First of all clearly a charged field

must exist in the bulk if we are to split the Wilson line this way. We already saw the

necessity of this in the introduction on quite general grounds, but now we see something

more; the charged field must transform in the fundamental representation of U(1) if we

are going to be able cut a fundamental Wilson line. We thus see that the principle of

completeness of [21, 22] comes along for free; the entire charge lattice of the theory will be

occupied.18

Moreover, we see that this construction works even if the charges are quite heavy;

we just need to bring them closer together than their inverse mass. From the bulk point

of view this may be surprising; to reconstruct a rather low-energy correlation function

involving just Wilson lines and electric fields, we need to know about the existence of very

heavy charges. This is not an observable violation of bulk effective field theory, since a bulk

effective field theorist can just use the Wilson line directly, but were she to want to use

the CFT to compute what she will see, she would have no choice but to use rather high-

dimension operators, even though the fields they correspond to have masses that are much

larger than what she can test in her laboratory. This is in some tension with the philosophy

of “effective conformal field theory” advocated in [36–38], but it is not a contradiction with

the validity of ECFT near the vacuum since we are considering rather high-energy states in

the CFTs. The tension arises because this high energy goes into created a weakly curved

background (away from the black hole singularities), rather than any localized high-energy

scattering processes, so a bulk observer should still expect to be able to use low-energy

effective field theory. This is another manifestation of the short-distance nature of the

factorization problem.

So have we solved the factorization problem? No! We have only postponed it. What we

have achieved is the following: you give me a correlation function containing a wormhole-

18For example to get the higher charges we can always collapse the fundamental-charge particles into

black holes. From the CFT point of view, we can take the OPE of the charged operator dual to the

fundamental field with itself, and with other operators, to generate operators of arbitrary charge.
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threading Wilson line that you are interested in, then I can give you an operator which

behaves like that Wilson line in that correlation function. But now say you change your

mind, and want to consider a different correlation function. You can very easily add a few

operators near the center of my “Wilson line” that will reveal that I am lying! Of course I

can then adjust my “Wilson line” to have the charges be close enough to still behave like

the actual Wilson line in the presence of your new operators, but now you can just add a

few more and catch me again. To really solve the factorization problem, I must give you a

single CFT operator that reproduces the Wilson line in any situation where it makes sense

in the bulk. If I am to do this using the mechanism of figures 2, 5, then naively I need to

bring the charges together to within a Planck length to preclude the cat and mouse game

just described. This pushes the problem into the regime of poorly understood bulk physics.

This may be sufficient to count as a solution, but I find it preferable when possible to see

if there can be a solution based on well-understood physics. What I will thus do instead is

consider the possibility that the effective Maxwell description of the physics breaks down

and some lower energy scale, in a way that can still be described using quantum field

theory. Said differently, the gauge field should be emergent. As long as I bring the charges

to within the distance set by that scale, then I no longer can be required to reproduce the

physics of the Wilson line any further.19

To sharpen this discussion, I will now discuss in detail a field theory where we indeed

have an emergent gauge field at long distances but a factorizable Hilbert space at short

distances. We will see that it gives a concrete realization of the philosophy of the previous

paragraph; I view it as an existence proof for a resolution of the factorization problem

based on the idea of figures 2, 5.

5 Emergent gauge fields and factorization in the CPN−1 model

The CPN−1model has a long history. In 1 + 1 dimensions its large N solution was first

described in [30, 31]. In 2 + 1 dimensions it has been studied extensively by condensed

matter physicists in the context of quantum phase transitions in valence bond solids, see for

example [45–48] and the references therein. Euclidean lattice versions of the CPN−1model

were studied in [49, 50]; these are equivalent to the version I describe here up to irrelevant

operators. My discussion basically follows [32]; there only the 1 + 1 case is discussed, but

methods are presented for other models that allow easy generalization to any spacetime

dimension. The only real novelties here are the phase diagrams in figure 7 and the discussion

of the emergence of the Wilson line and the resolution of the factorization problem in the

last subsection.

The reader should keep in mind that I am always viewing the CPN−1theory as a model

of the bulk physics of the factorization problem, not of the boundary CFT.

19Of course the first scenario can also be called an emergent gauge field, but it emerges at the Planck

scale in some way that also presumably involves the emergence of gravity. The goal here is, for simplicity,

to separate these two phenomenon. Perturbative string theory seems to be a nice compromise where gauge

fields and gravity emerge together, but in a more controlled way at an energy scale below the Planck scale.

It would be very interesting to see if one could understand the factorization problem more precisely in that

language; I’ll discuss this a bit more in section 6.
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5.1 The model

The CPN−1model is a quantum field theory of N complex scalar fields za, obeying a

constraint
∑N

a=1 z
∗
aza = 1. It has a global SU(N) symmetry under which za transforms as

a fundamental. Moreover we impose a gauge symmetry under

z′a(x) = eiθ(x)za(x), (5.1)

which, together with the constraint, means that the theory really describes a nonlinear-σ

model with target space CPN−1. From now on I will use matrix notation to suppress the

SU(N) index, for example I’ll write the constraint as z†z = 1. The Lagrangian in the

continuum is

L = −N
g2

(Dµz)†Dµz, (5.2)

where the covariant derivative Dµ ≡ ∂µ − iAµ is defined using

Aµ ≡
1

2i

(
z†∂µz − ∂µz†z

)
. (5.3)

In the Hamiltonian formalism the momentum conjugate to z is

π =
N

g2
(D0z)† , (5.4)

and the Hamiltonian density is

H =
g2

N
ππ† +

N

g2
(Diz)†Diz + iA0

(
πz − z†π†

)
. (5.5)

The term multiplying A0 is an additional constraint, analogous to the Gauss con-

straint (2.1). In the Hamiltonian quantization of this theory we have the primary con-

straint z†z = 1, the secondary constraint πz+z†π† = 0, and this Gauss constraint. We can

implement the first two by doing Dirac quantization, and then use the third to project onto

physical states. Alternatively we could introduce a local gauge-fixing condition and then

treat all four simultaneously using Dirac quantization. Either way, the key point is that

all the constraints are ultralocal. This means that a lattice regularization of this theory

will have a Hilbert space that automatically factorizes; an orthonormal basis is given by

specifying an element of CPN−1at each point on the spatial lattice. I’ll defer the details of

this lattice theory to section 5.3 below.

5.2 The solution

At large N the CPN−1model can be solved by a standard set of tricks [30–32]. The basic

idea is to introduce an auxiliary gauge field Aµ, whose equation of motion is given by (5.3),

and a Lagrange multiplier σ to impose the constraint z†z = 1. The Lagrangian becomes

L = −N
g2

(
(Dµz)†Dµz + σ(z†z − 1)

)
, (5.6)
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where now z is unconstrained and Aµ in the covariant derivative is taken as an independent

field. It is convenient to look at the Euclidean path integral formulation of this theory,

where we want to compute20

Z =

∫
DADσDzDz†e−

N
g2

∫
ddx((Dµz)†Dµz+σ(z†z−1))

. (5.7)

At fixed Aµ and σ, the integrals over z,z† are Gaussian and can be evaluated to give an

effective action for Aµ and σ. At large N this effective action will be exact, since the

fluctuations of Aµ and σ will only shift it by terms that are subleading in 1/N . Formally

this effective action is given by

Seff [A, σ] = N

[
− 1

g2

∫
ddxσ + log det

(
−D2 + σ

Λ2

)]
, (5.8)

where Λ is the UV cutoff, set by the inverse lattice spacing.

To understand the dynamics implied by (5.8), the first order of business is to study

the effective potential for σ, obtained by setting Aµ → 0 and taking σ to be constant. This

is extremized at some σ0, determined by the “gap equation”

1

g2
=

∫
ddp

(2π)d
1

p2 + σ0
. (5.9)

The integral on the right hand side is UV divergent for d ≥ 2, so we will always cut it off

at p2 = Λ2. For d = 2 this equation then has a nonzero solution for any real value of g,

given by

σ0 = Λ2e
− 4π
g2 . (5.10)

This nonzero expectation value for σ gives a mass to the z particles, which is exponentially

small via dimensional transmutation.

For d > 2, the right-hand side of the gap equation (5.9) is bounded from above by

some finite value, so for sufficiently small g there is no real solution for σ0. This reflects the

basic observation that at sufficiently small g, the global SU(N) symmetry is spontaneously

broken, as we would expect for a weakly coupled nonlinear-σ model in d > 2. So rather

than interpreting σ0 as a mass term, we need to re-expand around the true vacuum at

some z 6= 0. This also Higgses the U(1) gauge symmetry. At a particular critical value of

g, given by
1

g2
c

=

∫
ddp

(2π)d
1

p2
, (5.11)

we have σ0 = 0 and the system becomes scale invariant. For g > gc we have σ0 > 0

so the SU(N) symmetry is unbroken. For d = 2 we have gc = 0, as required by the

Mermin-Wagner-Coleman theorem [44, 52].

20Deriving this path integral from the Hamiltonian quantization is nontrivial, because of the constraints.

We should in principle worry about additional terms in the action being generated by the functional deter-

minants that arise [51], but fortunately they are all field-independent and can be ignored. Starting from

the path integral point of view, the naive definition of the measure is already invariant under the global

SU(N) symmetry and local U(1) symmetry, and we have already included all relevant and marginal terms

allowed by these symmetries.
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Figure 6. Diagrams for the quadratic part of the gauge field effective action at large N .

The ordered phase with g < gc is uninteresting for our purposes, since the gauge field

is Higgsed and the low energy physics is described by weakly interacting Goldstone bosons.

For g > gc we can potentially generate interesting dynamics. By bringing g close to gc
from above, we can arrange for σ0 to be much less than Λ2, in which case we can study

the system using continuum methods. In particular we can compute the part of Seff that

is quadratic in Aµ; this is given by

Seff ⊃ −N
∫

dd`

(2π)d
Aµ(`)Aν(−`)

∫
ddp

(2π)d

[
(2pµ+`µ)(2pν+`ν)

(p2+σ0)((p+`)2+σ0)
− 2δµν

1

p2 + σ0

]
. (5.12)

The right-hand side of this equation comes from summing the Feynman diagrams shown

in figure 6. The integral over p can be evaluated using the usual Feynman parameter

technology. We are especially interested in the low-energy piece proportional to `µ`ν−δµν`2,

since this gives rise to an effective Maxwell term. Computing the coefficient of this term,

we find the low-energy gauge couplings

1

q2
=



N
6πσ0

d = 2
N

12π
√
σ0

d = 3

N
12π2 log

(
Λ√
σ0

)
d = 4

NΛd−4 d > 4.

(5.13)

For d ≤ 4 these can be computed using dimensional regularization. For d > 4 the integral

has a power-law UV divergence, so the overall normalization is non-universal; I’ve simply

fixed the power of Λ by dimensional analysis. For d ≥ 4 we cannot take the continuum

limit and still obtain a finite coupling; this reflects the usual short-distance misbehavior of

electrodynamics.

The main lesson of (5.13) is of course that 1
q2 is finite in all cases; we have generated

Maxwell dynamics for Aµ, which has thus become a real gauge field mediating Coulomb in-

teractions between the massive charged z’s!21 Higher derivative corrections are suppressed

by the scale
√
σ0, so the Maxwell term does not dominate the behavior of Aµ for energies

above this.

For d = 2, 3, these Coulomb interactions eventually become strong and confine the

charged z’s into neutral objects. In d = 2 this happens classically, since the Coulomb

21One way to see that the z’s in fact correspond to massive particles is to not integrate over a few of

them. The integral over the rest of them will not generate any new terms in the effective action for the ones

we kept around since they are decoupled. One can also check that σ does not lead to any new particles in

the infrared.
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Symmetric, 
Confining

Symmetric, 
Confining

Symmetric, 
Confining

Ordered,
Higgs

Ordered,
Higgs

Symmetric,
Coulomb

Figure 7. Phase diagrams for the large-N lattice CPN−1-Maxwell system in various dimensions.

The left side is the pure CPN−1model discussed in the text, the bottom is pure U(1) lattice gauge

theory, and the right side is the S2N−1 nonlinear-σ model. The phases are labeled by first saying

what happens to the SU(N) global symmetry, and then the U(1) gauge field. In the text we are

predominantly interested in approaching the (upper) critical point on the left side from below.

potential is linear. In d = 3, monopole operators eventually proliferate in the path integral

over Aµ, again leading to a linear potential [32]. For d ≥ 4, whether the theory confines

depends on how large of a coupling is generated; there is a phase transition at finite q.

We can summarize all of the results of this subsection into a phase diagram for the large

N lattice CPN−1model, shown for various dimensions in figure 7. To make the physics more

clear, I have included a bare Maxwell term − 1
4q2

0

∫
F 2 (or more precisely its lattice analogue,

the sum over all single-plaquette Wilson loops [53]), and shown the phase diagram as a

function of both 1
g2 and 1

q2
0
. This phase diagram is reminiscent of that studied in [54, 55] for

lattice gauge theory with Higgs fields.22 It is interesting to note the difference of the d ≥ 4

diagram from that constructed in [54, 55] for U(1) gauge theory with a fundamental Higgs

field; namely for the CPN−1model the Coulomb phase persists all the way over to q0 =∞,

while in [54, 55] the Higgs and confining phases were continuously connected. This is not

possible here, since the global SU(N) symmetry is broken in the Higgs phase and restored

in the confining phase.

5.3 The factorization problem

We have now seen that the lattice CPN−1model has a nontrivial Coulomb phase at large N ,

which is stable for d ≥ 4 and which undergoes Abelian confinement for d = 2, 3. It thus has

nontrivial Wilson line operators in the infrared whose existence must be consistent with the

microscopic tensor factorization of the Hilbert space site by site. It is quite illuminating to

see how these Wilson lines can be written in terms of the lattice variables. This amounts

to looking for a lattice version of eq. (5.3).

I first need to establish a bit of notation: I will denote site vectors on the lattice as x,

single-site displacement vectors as δ, and links as x,δ. To avoid overcounting of links I will

22I thank Steve Shenker for suggesting this comparison, which proved extremely useful in organizing my

thinking on the lattice CPN−1model for d > 2.
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restrict δ to point in a direction of coordinate increase. Now say I have two neighboring

sites x and x+ δ. We can then define the link variable

Ux,δ ≡
z†xzx+δ

|z†xzx+δ|
, (5.14)

which indeed reduces to (5.3) in the limit that zx+δ ≈ zx. I’ll enjoy this equation more in

a moment, but to first finish defining the lattice theory the discrete covariant derivative

along the link x, δ can now be written as

Dδzx ≡ zx+δU
∗
x,δ − zx. (5.15)

Up to a constant shift, and setting the Gauss constraint to zero, the lattice Hamiltonian

is then

H =
g2

N

∑
x

πxπ
†
x +

N

g2

∑
x,δ

(
z†x+δUx,δzx + c.c.

)
. (5.16)

This is the real starting point for the phase diagram 7.23

Returning now to eq. (5.14), we see that the Wilson link operator is explicitly defined

as a contraction of charged fields: the CPN−1model thus builds the Wilson line out of the

cutting operation of figure 2 from the beginning! Said differently, eq. (5.14) shows that the

expansion (3.1) becomes exact at the lattice scale. The only new feature is that, in order to

obtain an SU(N) singlet, we need to sum over flavors. An experimentalist who attempted

to probe this Wilson line at energy scales above
√
σ0 would begin to see deviations from

Maxwell behavior, and eventually it would completely disassociate at the lattice scale.

We thus see that indeed the CPN−1model explicitly implements the philosophy of the

previous section.

6 The weak gravity conjecture

We’ve now seen that the factorization problem can be resolved entirely within effective

field theory; we are able to have a microscopic Hilbert space that factorizes into regions but

nonetheless have nontrivial Wilson line dynamics in the infrared. This resolution requires

the existence of charged particles in the fundamental representation, and thus implies the

completeness principle of [21, 22]. It is natural to wonder if it also has something to say

about a well-known strengthening of this principle, the “weak gravity conjecture” of [34].

Roughly speaking, the weak gravity conjecture says that, in any theory whose low

energy limit includes Einstein gravity coupled to a Maxwell field, if the gauge coupling

is weak then there must be a charged particle whose mass is small in Planck units. The

original argument given for this is that otherwise no extremal charged black hole would

23As in the continuum version of the model, we can also instead take U to be an independent variable

and integrate over it. This makes the derivation of the phase diagram easier, since in the g → ∞ limit

we directly recover the standard Abelian lattice gauge theory and can use known results. Performing this

integral first reproduces (5.16) up to finite renormalizations and irrelevant operators, so the phase diagram

is the same as in the theory with only the z’s.
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be able to decay, which would lead to a weird situation where there are large numbers

of stable states that are not protected by any symmetry (those which are protected by

supersymmetry would be stable regardless). Of course sometimes life is weird, which is

why it remains a conjecture.24 In fact its originators were not even sure themselves what

the conjecture should say in detail; the weakest version would simply require a particle

whose charge to mass ratio exceeds
√
G, while we could also demand it to be the lightest

charge particle, or a particle of fundamental charge. They rejected the last option based on

a claimed counterexample from the heterotic string, but this counterexample was recently

debugged in [35], who also argued that, although the “no stable non-supersymmetric ex-

tremal black holes argument” naively only requires the charge to mass ratio to obey (6.1),

upon dimensional reduction it actually requires the stronger version of (6.1) where the

particle must have fundamental charge. This will be the version which, for other reasons,

I will focus on here; more precisely it says that there must be a fundamentally-charged

particle of mass m that obeys25

m ≤ q√
G
, (6.1)

where G is Newton’s constant and q is again the gauge coupling.

Taken together, [34] and [35] show that the conjecture holds in all known compactifi-

cations of string theory that lead to U(1) gauge fields, which by itself is perhaps already

evidence enough to take it seriously. The goal of the rest of this section will be to argue

that the factorization problem gives another reason.26

We saw in the previous section that, in a theory with an emergent gauge field, q and

m are both computable in terms of the short-distance parameters of the theory. In any

such model we can thus check whether or not (6.1) holds directly, provided that we can

actually compute them. I will now do this for the CPN−1model. Before doing so, I need to

rewrite (6.1) in terms of the CPN−1variables. At first it seems that, since the CPN−1model

is just a quantum field theory, there is nowhere for Newton’s constant G to come from.

We can weakly couple the model to gravity, but we can just take the Planck mass to be

arbitrarily high compared to any scale in the model, which would allow (6.1) to be satisfied

trivially. The conjecture will be tested most strenuously if we take the cutoff Λ of the

CPN−1model to be of order the Planck scale, so that is what I will do (we can’t take it

to be higher than the Planck scale, since then we would not have solved the factorization

24One can try to better justify the conjecture by relating it to well-known arguments against remnants

and continuous global symmetries [56], but new subtleties arise. For example one can attempt to produce

an object that exceeds the Bekenstein-Hawking entropy, but unlike in a remnant scenario, where unitary

evaporation requires the entropy of the remnant to be infinite, here it can exceed the Bekenstein-Hawking

entropy only by a finite amount, only in a regime (m ∼ mp) where it is not clear we should worry, and only

if we define the ensemble the entropy is counting to be rather broad in charge.
25There is a convention-dependent order-one factor here I have ignored, which is the same as that ap-

pearing in the charge to mass ratio of an extremal black hole. I will not try to reproduce it, so I will not

bother to keep track of it.
26One could also try to prove the conjecture directly in AdS/CFT by using the conformal bootstrap to

show that the existence of a current requires charges whose scaling dimensions obey an appropriate version

of (6.1). As already mentioned, even the existence of the charges has not been established outside of 1 + 1

dimensions, and the validity of (6.1) seems like it will require special properties of holographic theories [57].
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problem!). There is some subtlety in doing this however, since the N charged fields of the

model will also renormalize the Einstein-Hilbert term via the diagrams of figure 6. For

d > 2 they will generate an effective Newton constant of order

1

G
∼ NΛd−2, (6.2)

where the more singular high-energy behavior compared to (5.13) is of course due to the

extra powers of p in the gravitational couplings compared to those of electromagnetism.

This is the well-known lowering of the strong-coupling scale of gravity in the presence of a

large number of species [58–60]. We thus want to show that

m ≤ q
√
NΛ

d−2
2 . (6.3)

Using (5.13), it is easy to see that this is indeed true for d ≥ 2. We thus see that the

electromagnetism generated by the CPN−1model automatically obeys the weak gravity

conjecture!

Let’s now step back and understand more generally why this happened. The essence of

the weak gravity conjecture is the statement that a weak gauge coupling requires charges

whose mass is small in Planck units. What we learned from the factorization problem, at

least if its resolution is to be described by effective field theory, is that at some high energy

scale, at most of order the Planck scale, the coefficient of the Maxwell term in the effective

action is zero. If we now wish to have weakly coupled gauge fields at long distances, we

need to generate a Maxwell term by integrating out massive charged fields. But if their

masses are too large, they will gap out before they are able to generate a sizeable Maxwell

term, and the gauge field will stay strongly coupled. Moreover the charges will need to be

in the fundamental representation, since otherwise we will not be able to use them to split

a Wilson line in the fundamental representation.

Does this mean we have derived the conjecture (6.1)? I would be surprised if there

was a quantum field theory resolution of the factorization problem that did not obey

the conjecture, basically for the reasons just given.27 But nobody has promised us that

the resolution of the factorization problem must be describable in quantum field theory;

indeed in perturbative string theory we know that it isn’t! There the gauge fields and

gravity instead emerge together from a nonlocal theory. Nonetheless our main conclusions

from the field theory resolution still seem to be true: there are always fundamentally

charged objects, and they always seem to obey (6.1). Perhaps there is a way to describe

the emergence of the gauge field in string theory that is more similar to the discussion of

the previous paragraph, after all in the usual perturbative formulation it is far from clear

that string theory by itself does solve the factorization problem of AdS/CFT. This seems

like a question that deserves further study.

Before concluding this section, I will briefly comment on a previous attempt to un-

derstand the weak gravity conjecture purely in terms of the consistency of effective field

theory [62, 63]. There it was first argued that the conjecture is in tension with naturalness,

27It would be interesting to check this in other examples of theories with emergent gauge fields, for

example in supersymmetric examples. One discussion of some of the relevant issues is [61].
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since for a small gauge coupling it might require light scalars. Here we have seen that the

CPN−1model will produce a small gauge coupling only if the scalars are light. There is

no problem with naturalness, the conjecture is obeyed whether or not we tune the scalars

to be light. Secondly they argued that infrared consistency of the effective field theory

of gravitons and photons requires the conjecture to hold, at least when a parameter they

called γ is small. But it is clear there can be no such argument in general; for example if

we ignore the factorization problem, there is nothing to stop us from adding a huge bare

Maxwell term to the action of the CPN−1model coupled to gravity. In the infrared this

will produce a perfectly consistent theory that violates the conjecture; and indeed one can

check that in the language of [63] this makes γ large.

7 Comments on the gravitational case

I’ll conclude this paper with a few comments on the gravitational version of the factorization

problem. Similar to the Gauss constraint (2.1) in electrodynamics, in general relativity we

have the Hamiltonian and shift constraints, which again involve spatial derivatives (see for

example [11] for a recent discussion in AdS/CFT). The tensor product structure of the two

CFTs dual to the wormhole geometry again suggests that these constraints must somehow

be modified at short distances to avoid a contradiction: gravity must also be emergent in

a way that is consistent with this factorization.

One immediate issue is that, once gravitational backreaction is included, it is no longer

clear “where” we should view the tensor factorization of the CFTs as splitting the bulk

geometry. A natural guess, already pointed out in [10], is that it happens at the compact

extremal surface of minimal area homologous to one of the boundaries.28 The electric flux

through the bifurcation surface in the electromagnetic case then has a beautiful analogue

here; the area (or more generally the Noether charge) of the extremal surface. This is

precisely what appears in the leading-order formula for the entanglement entropy of one

of the boundaries [65, 66]; this suggests a possibly deep connection between the Ryu-

Takayanagi/Hubeny-Rangamani-Takayanagi formula and the factorization problem.29

Based on the previous point, the gravitational analogue of the wormhole-threading

Wilson line of figure 1 should then be closely related to the “opening angle” variable of [72],

evaluated at this extremal surface.30 We’ve already seen that the existence of the Wilson

line is something of a diagnostic for whether the two sides are connected [10, 16]; so it must

be for its gravitational analogue. Indeed these gravitational degrees of freedom seem to be

precisely those which sew the two sides together, so understanding their description in the

CFTs is maximally interesting from the point of view of understanding how the geometric

28If there is only one such surface, it will also be homologous to the other boundary. In all the examples

I know of wormholes with CFT descriptions, in particular those of [64], this is the case. There are some

more general wormholes which do not have this property, but perhaps none of them really exist as states

in the two-CFT Hilbert space. This is analogous to what one might expect for “bag of gold” solutions.
29It is worth emphasizing that if we should indeed understand the factorization as happening at this

extremal surface, in order to reconstruct the Wilson line we still need to solve the problem of “entangle-

ment wedge” reconstruction [67–69]. Based on recent developments [12, 70, 71], I am optimistic this will

happen soon.
30I thank Don Marolf and William Donnelly for suggesting this.
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Figure 8. Reconstructing an interior operator in the thermofield double state. We evolve it back

to the Cauchy surface Σ, where it is nontrivial only in the overlap with the yellow region. All

operators on Σ must thus be dressed to the right, which requires us to use wormhole-threading

Wilson lines.

connection emerges from the entanglement of the boundary CFTs [73]. Based on what

happened in the electromagnetic case, it seems that understanding bulk short-distance

physics will be essential.

Continuing in this direction, in [40] it was argued that, in the full theory of quantum

gravity with two asymptotically-AdS boundaries, in addition to the two CFTs there must

also be “superselection sector” degrees of freedom which tell us whether or not the two

boundaries are connected by a wormhole. In fact in [10] one possible resolution of the

factorization problem that was considered was that these additional degrees of freedom

break the factorization in just such a way that the Wilson line can exist. But by now I

hope I have at least made it rather plausible that a wormhole-threading Wilson line can be

described entirely within the factorized Hilbert space of the two CFTs; this suggests the

same will be true for its gravitational analogue. If so, it then seems that we do not need

superselection sectors to tell us whether or not the bridge is connected. The CFTs force

our hand, by producing a UV completion of gravity where the bridge forms automatically.

Finally, I would like to emphasize that wormhole-threading Wilson lines, and their

gravitational analogues, are very important in defining observables behind the horizon in

the neighborhood of the thermofield-double state. For example, returning to the electro-

magnetic case for a moment, consider a charged scalar field φ behind the horizon, shown in

figure 8. To make it gauge-invariant, we need to attach some sort of dressing, which we can

for simplicity take to be a Wilson line that extends either to the right boundary or to the

left boundary. Either choice may seem a bit counterintuitive from the point of view of the

free field limit; one might want to think of the right(left)-moving part of φ as “having come

from the left(right) boundary”, and thus being naturally dressed by a Wilson line to the

left(right), while here I am choosing them both to be dressed in the same direction.31 The

31It is a bit subtle to explicitly describe a dressing where we dress left and right movers in different

directions, and in the gravitational case it ends up defining an operator which isn’t even associated to a

definite point in spacetime, since in the presence of backreaction the two parts may no longer meet at the

same point (see [20] for a similar point).
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reason for this is that the experiment I am ultimately interested in describing involves an

observer who jumps in from one side, say the right side. All of her experimental equipment

will be carried in from the right side, so she must ultimately be interested in operators

whose electromagnetic (and gravitational) dressing goes only to that side (see [20, 74] for

some similar remarks). As mentioned in the introduction, the operators which are rele-

vant for observers who do not jump in at very late times can be represented in terms of a

complete set of operators on a Cauchy slice Σ that passes through the bifurcation surface

and does not enter the interior. In representing φ however, we should only need to use

operators on Σ that are nontrivial in its intersection with the past lightcone of φ and its

dressing, shown in yellow in figure 8. We will be interested in charged operators on Σ that

lie to the left of the bifurcation surface in doing this, but we apparently want to dress them

to the right to preserve commutativity with operators outside of the yellow region. But

these are precisely the operators we need our wormhole-threading Wilson lines to produce

in the CFT; we need to take their left-dressed versions and then use a Wilson line to flip

the dressing via
−→
φ = W

←−
φ !

Thus we have learned that, at least in the vicinity of the thermofield double state,

the CFT descriptions of observables behind the horizon that are relevant for infalling

observers require the wormhole-threading Wilson line we have studied in this paper if they

are charged, and even if they are not they still require its gravitational analogue. We have

thus learned that their description will ultimately rely on understanding short-distance

physics in the bulk. This will continue to be the case in any state where the extremal

surface is visible to an infalling observer, while if this is not true then it is unclear whether

we should really think of the wormhole as existing at all. Perhaps further investigation of

this issue will shed light on the paradoxes of [19, 20, 75]; at a minimum it is probably good

news that a deeper knowledge of high-energy physics in the bulk seems to be required to

properly discuss these questions.
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A Notation and review of gauge field reconstruction

In this appendix I review electrodynamics in curved spacetime, mostly to establish con-

ventions, and then review the CFT reconstruction of a gauge field in AdS/CFT.

A.1 Conventions for electrodynamics in curved space

In this paper I will always normalize any gauge field so that a field of minimal nonzero

charge is acted on by the covariant derivative Dµ ≡ ∇µ − iAµ. The strength of elec-

tromagnetic interactions will be controlled by the coefficient of the Maxwell term in the

action

S = −
∫
ddx
√
−g
(

1

4q2
FµνF

µν −AµJµ
)
. (A.1)

Here Jµ is the electromagnetic current in the bulk, not to be confused with the CFT

current dual to Aµ, which I will denote j. Writing Jµ out explicitly in terms of canonically-

normalized matter fields, it will not have an overall factor of q. The variation of this action

leads to Maxwell’s equation

∇νFµν = q2Jµ, (A.2)

together with the requirement that at any spatial boundary we have

rµF
µνδAν = 0, (A.3)

where rµ is the outward pointing normal to the boundary. In this paper we will always

satisfy this by imposing the boundary condition

Aµ ∝ rµ, (A.4)

since this is the appropriate choice at the boundary of AdS for the standard quantization of

the gauge field. Physically it corresponds to viewing the boundary as a perfect conductor.

This boundary condition is only preserved by gauge transformations that become constant

at the boundary, so we must not quotient by gauge transformations that do not. In

fact usually we also do not quotient by gauge transformations that approach a nontrivial

constant; these instead become a U(1) global symmetry in the CFT, which acts nontrivially

on the physical Hilbert space.32

The Wilson line in the charge n representation associated to a curve Γ is defined as

Wn(Γ) = ein
∫
Γ A, (A.5)

where by abuse of notation A in the exponent indicates the pullback of A to Γ. I will often

refer to the n = 1 representation as the fundamental representation.

32The reader may wonder why we do not quotient by this global symmetry. We could, this would

correspond to projecting onto the charge zero sector of the theory. From a quantum mechanical point of

view there is nothing wrong with this, but it removes states that we might be interested in studying and

it most likely leads to a nonlocal theory on the boundary (this follows from the unproven lore that a CFT

with a conserved current must also have operators charged under that current).
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We will often be thinking in the Hamiltonian formalism; to describe this in curved

spacetime it is very convenient to introduce a covariant ADM decomposition of the metric

via a (past-pointing) normal vector nµ, a time coordinate vector tµ ≡ δµ0 , the lapse and

shift tµ = −Nnµ +Nµ, with nµN
µ = 0, and the projection tensor γµν ≡ gµν + nµnν . The

canonical momentum conjugate to Aµ is

Pµ ≡ −√γEµ = q−2√γnνFµν , (A.6)

where we see that nµP
µ = 0. Within a surface of fixed t we can pick an oriented codimen-

sion one surface Σ, of total codimension two, and then define the electric flux QΣ as

QΣ ≡
∫

Σ

√
γ̂rµE

µ, (A.7)

where rµ is the “outward” pointing normal to Σ and γ̂µν is the projection tensor on Σ, ie

γ̂µν ≡ γµν − rµrν . Quantum mechanically QΣ is quantized in integer units.

In differential form notation we can simply write QΣ = 1
q2

∫
Σ ∗F , but (A.7) makes its

noncommutativity with spatial Wilson lines that puncture Σ manifest. Indeed say a spatial

curve Γ punctures the surface Σ m↑ times from inside to outside and m↓ times from outside

to inside. From the canonical commutation relations for Aµ and P ν we have

[Wn(Γ), QΣ] = n(m↑ −m↓)Wn(Γ). (A.8)

Thus a spatial Wilson line puncturing Σ an unbalanced number of times is either a creation

or annihilation operator for some integral amount of QΣ.

The Hamiltonian is

H =

∫
dd−1x

√
γ

[
N

(
q2

2γ
PµPµ +

1

4q2
FµνFαβγ

µαγνβ − J iAi
)

+Nµ

(
1
√
γ
P νFµν

)
−A0

(
NJ0 +

1
√
γ
∂µP

µ

)]
. (A.9)

The term multiplying A0 is the Gauss constraint, which must vanish on any physical state.

In flat space this reduces to the usual formula

H =

∫
dd−1x

[(
q2

2
PiPi +

1

4q2
FijFij − J iAi

)
−A0

(
J0 + ∂iPi

) ]
,

whose discretization is the starting point for Hamiltonian U(1) lattice gauge theory [23].

A.2 Reconstruction near the vacuum

The standard CFT reconstruction of bulk fields [1–5] proceeds by solving the bulk equations

of motion of the CFT, with boundary conditions given by the “extrapolate” operator

dictionary of AdS/CFT [76] (for a recent review of the correspondence more generally,

see section six of [77]). These methods suffice to reconstruct all bulk operators acting on

states in the vicinity of the vacuum, such as those shown in the left diagram of figure 1.

For example consider a free gauge field in the Poincare patch of AdSd, with metric

ds2 =
dz2 + ηµνdx

µdxν

z2
. (A.10)
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I will work on “holographic gauge” Az = 0. We can write the gauge field as

Aµ(z, x) =
∑
σ

∫
dd−1k

(2π)d−1
Θ(−k2)θ(k0)

(
fµ,kσ(z, x)akσ + c.c

)
, (A.11)

where fµ,kσ are a complete set of positive-frequency modes, obeying the boundary condi-

tion (A.4) as well as the gauge fixing condition. They are given explicitly by

fµ,kσ(z, x) ≡
√
πeµ(k, σ)z

d−3
2 J d−3

2
(
√
−k2z)eik·x, (A.12)

where “positive frequency” means ω ≡ k0 > 0, k2 ≡ ηµνkµkν , and k ·x ≡ ηµνkµxν . The step

functions in (A.11) ensure that we restrict to positive frequency solutions with k timelike,

since spacelike and null momenta give modes that are not normalizeable as z →∞.33 The

polarization vectors eµ(k, σ) obey eµk
µ = 0 and eµ(k, σ)eν(k, σ′)ηµν = δσσ′ . These modes

are normalized so that the creation and annihilation operators in (A.11) obey

[akσ, ak′σ′ ] = δσσ′(2π)d−2δd−1(k − k′). (A.13)

Near the boundary at z = 0, we have

fµ,kσ(x, z)→ Nkeµ(k, σ)zd−3eik·x, (A.14)

where

Nk ≡
(−k2)

d−3
4

2
d−3

2 Γ
(
d−1

2

) (A.15)

To reconstruct this gauge field in the CFT, we use the extrapolate dictionary

lim
z→0

z3−dAµ(z, x) ≡ 1

d− 3
jµ(x), (A.16)

where jµ is the CFT current for the U(1) global symmetry generated by the charge operator.

The normalization factor arises from insisting that the charge (A.7), evaluated at the

boundary, becomes the integral of j0.34 Comparing equations (A.11), (A.14), and (A.16),

we see that

Nkakσ =
1

d− 3
eµ(k, σ)jµ(k). (A.17)

Viewing this as a CFT definition of akσ, we can insert it back into (A.11) to get a CFT

representation for Aµ, of the form [6–8]

Aµ(z, x) =

∫
dd−1x′Kµν(z, x;x′)jν(x′). (A.18)

33“Normalizeable” is defined with respect to the natural Klein-Gordon-like inner product on solutions of

Maxwell’s equation, given in the ADM notation defined above by

(Ã, A) ≡ i
∫
dd−1x

√
γ
(
Ã∗µnνF

µν − F̃µν∗Aµnν
)
.

34This may look alarming from the point of view of what happens when d = 3, but actually the pure

Maxwell theory in AdS3 is rather sick in the infrared. In all known examples of AdS3/CFT2 there is always

a Chern-Simons term in the bulk that regulates this.
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A similar expression can also be derived for the CFT representation of any charged field

in the bulk, and it is understood how to include interactions perturbatively using similar

methods [3, 4]. These holographic gauge operators always have gauge-invariant descriptions

where we simply add dressing Wilson lines in the z direction, extending to the boundary

at z = 0 [8]. These lines can be confirmed by studying the commutator of these operators

with the electric field.

A.3 Reconstruction in the AdS-Schwarzschild background

Let’s now consider gauge-field reconstruction in the AdS-Schwarzschild geometry, shown

in the right diagram of figure 1. The geometry has the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−2. (A.19)

Operators which lie entirely in the right exterior or the left exterior can be immediately

reconstructed using the same technique as the previous subsection; we expand in a complete

set of Schwarzschild modes and then match creation/annihilation operators to the Fourier

modes of the boundary current j (or the charged operators dual to any charged fields). It is

again easiest to work in holographic gauge Ar = 0. We now run into a new issue however;

we are not actually able to go to this gauge everywhere on a spatial slice containing the

bifurcation point, since this would remove our wormhole-threading Wilson line! What

happens instead is that there is always a single degree of freedom remaining at each point

on the bifurcation surface, which is the holographic gauge version of a Wilson line threading

the wormhole at that point. These degrees of freedom cannot be reconstructed using the

method just described, since in holographic gauge there is no set of exterior operators that

become these ones in some limit (this distinguishes them from, for example, the electric

flux through the bifurcation surface). This is not an accident of holographic gauge: we

saw in the introduction that the factorization of the two-CFT Hilbert space prevents any

description in terms of the current alone. If we can find a description of these degrees of

freedom however, such as that advocated in the main text, then as already mentioned in

the introduction we can then use bulk Cauchy evolution to evolve them together with the

exterior operators up into the interior [4].

Finally, in comparing with the CFT, it is important to remember that the thermofield

double state is defined as

|ψ〉 =
1√
Z(β)

∑
i

e−βEi/2|i∗〉|i〉, (A.20)

where |i〉 is some complete basis of energy eigenstates of the CFT quantized on the sphere

and |i∗〉 = Θ|i〉, where Θ denotes the natural CPT-like operation that exchanges the two

CFTs and reverses time. This Θ operation is the reason that it is QR + QL, rather than

QR−QL, that annihilates the thermofield double state. Charge fluctuations are correlated

between the two sides in such a way that the total charge is zero. Here QR and QL
are both defined as the integral of j0 over the relevant boundary. From (A.8), we see

that a wormhole-threading Wilson line will commute with QR + QL, as it must since it

does not create charge in the bulk, but act as a creation or annihilation operator for 2n

units of QR −QL.
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