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Abstract
A complete CAT(0) space X is said to have the nice projection property (propertyN
for short) if its metric projection onto a geodesic segment preserves points on each
geodesic segment, that is, for any geodesic segment L in X and x, y ∈ X ,m ∈ [x, y]
implies PL(m) ∈ [PL(x),PL(y)], where PL denotes the metric projection from X onto L. In
this paper, we prove a strong convergence theorem of a two-step viscosity iteration
method for nonexpansive mappings in CAT(0) spaces without the condition on the
propertyN . Our result gives an affirmative answer to a problem raised by Piatek
(Numer. Funct. Anal. Optim. 34:1245-1264, 2013).
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1 Introduction
A mapping T on a metric space (X,ρ) is said to be a contraction if there exists a constant
k ∈ [, ) such that

ρ
(
T(x), T(y)

) ≤ kρ(x, y) for all x, y ∈ X. ()

If () is valid when k = , then T is called nonexpansive. A point x ∈ X is called a fixed point
of T if x = T(x). We shall denote by Fix(T) the set of all fixed points of T .

One of the powerful iteration methods for finding fixed points of nonexpansive map-
pings was given by Moudafi []. More precisely, let C be a nonempty, closed, and convex
subset of a Hilbert space H and T : C → C be a nonexpansive mapping with Fix(T) �= ∅,
the following scheme is known as the viscosity iteration method:

x = u ∈ C arbitrarily chosen,

xn+ =
αn

 + αn
f (xn) +


 + αn

T(xn), ()

where f : C → C is a contraction and {αn} is a sequence in (, ) satisfying (i) limn→∞ αn = ,
(ii)

∑∞
n= αn = ∞, and (iii) limn→∞(/αn – /αn+) = . In [], the author proved that the se-

quence {xn} defined by () converges strongly to a fixed point z of T . The point z also
satisfies the following variational inequality:

〈
f (z) – z, z – x

〉 ≥ , x ∈ Fix(T).
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The first extension of Moudafi’s result to the so-called CAT() space was proved by Shi
and Chen []. They assumed that the space (X,ρ) must satisfy the property P , i.e., for
x, u, y, y ∈ X, one has

ρ(x, m)ρ(x, y) ≤ ρ(x, m)ρ(x, y) + ρ(x, u)ρ(y, y),

where m and m are the unique nearest points of u on the segments [x, y] and [x, y],
respectively. By using the concept of quasi-linearization introduced by Berg and Nikolaev
[], Wangkeeree and Preechasilp [] could omit the property P from Shi and Chen’s result
as the following theorem.

Theorem A ([], Theorem .) Let C be a nonempty, closed, and convex subset of a
complete CAT() space X, T : C → C be a nonexpansive mapping with Fix(T) �= ∅, and
f : C → C be a contraction with k ∈ [, ). For x ∈ C, let {xn} be generated by

xn+ = αnf (xn) ⊕ ( – αn)T(xn), ∀n ≥ ,

where {αn} ⊂ (, ) satisfies the conditions: (i) limn→∞ αn = , (ii)
∑∞

n= αn = ∞, (iii) either
∑∞

n= |αn+ – αn| < ∞ or limn→∞(αn+/αn) = . Then {xn} converges strongly to x̃ such that
x̃ = PFix(T)(f (x̃)) which is equivalent to the variational inequality:

〈––––→
x̃f (x̃),

–→
xx̃

〉 ≥ , x ∈ Fix(T).

Among other things, by using the geometric properties of CAT() spaces, Piatek []
proved the strong convergence of a two-step viscosity iteration method as the following
result.

Theorem B ([], Theorem .) Let X be a complete CAT() space with the property N .
Let T : X → X be a nonexpansive mapping with Fix(T) �= ∅ and f : X → X be a contrac-
tion with k ∈ [, 

 ). Then there is a unique point q ∈ Fix(T) such that q = PFix(T)(f (q)).
Moreover, for each u ∈ X and for each couple of sequences {αn} and {βn} in (, ) satisfying
(i) limn→∞ αn = , (ii)

∑∞
n= αn = ∞, and (iii)  < lim infn βn ≤ lim supn βn < , the viscosity

iterative sequence defined by x = u,

yn = αnf (xn) ⊕ ( – αn)T(xn),

xn+ = βnxn ⊕ ( – βn)yn, ∀n ≥ ,

converges to q.

In [], the author provided an example of a CAT() space lacking property N and also
raised the following open problem.

Problem Can we omit the property N in Theorem B?

In this paper, by combining the ideas of [] and [] intensively, we can omit the property
N from Theorem B. This gives a complete solution to the problem mentioned above.
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2 Preliminaries
Let [, l] be a closed interval in R and x, y be two points in a metric space (X,ρ). A geodesic
joining x to y is a map ξ : [, l] → X such that ξ () = x, ξ (l) = y, and ρ(ξ (s), ξ (t)) = |s – t|
for all s, t ∈ [, l]. The image of ξ is called a geodesic segment joining x and y which when
unique is denoted by [x, y]. The space (X,ρ) is said to be a geodesic space if every two points
in X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one
geodesic joining x and y for each x, y ∈ X. A subset C of X is said to be convex if every pair
of points x, y ∈ C can be joined by a geodesic in X and the image of every such geodesic is
contained in C.

A geodesic triangle �(p, q, r) in a geodesic space (X,ρ) consists of three points p, q, r in
X and a choice of three geodesic segments [p, q], [q, r], [r, p] joining them. A comparison
triangle for the geodesic triangle �(p, q, r) in X is a triangle �(p̄, q̄, r̄) in the Euclidean plane
R

 such that dR (p̄, q̄) = ρ(p, q), dR (q̄, r̄) = ρ(q, r), and dR (r̄, p̄) = ρ(r, p). A point ū ∈ [p̄, q̄]
is called a comparison point for u ∈ [p, q] if ρ(p, u) = dR (p̄, ū). Comparison points on [q̄, r̄]
and [r̄, p̄] are defined in the same way.

Definition . A geodesic triangle �(p, q, r) in (X,ρ) is said to satisfy the CAT() inequal-
ity if for any u, v ∈ �(p, q, r) and for their comparison points ū, v̄ ∈ �(p̄, q̄, r̄), one has

ρ(u, v) ≤ dR (ū, v̄).

A geodesic space X is said to be a CAT() space if all of its geodesic triangles satisfy
the CAT() inequality. For other equivalent definitions and basic properties of CAT()
spaces, we refer the reader to standard texts, such as [, ]. It is well known that every
CAT() space is uniquely geodesic. Notice also that pre-Hilbert spaces, R-trees, Euclidean
buildings are examples of CAT() spaces (see [, ]). Let C be a nonempty, closed, and
convex subset of a complete CAT() space (X,ρ). It follows from Proposition . of []
that for each x ∈ X, there exists a unique point x ∈ C such that

ρ(x, x) = inf
{
ρ(x, y) : y ∈ C

}
.

In this case, x is called the unique nearest point of x in C. The metric projection of X onto
C is the mapping PC : X → C defined by

PC(x) := the unique nearest point of x in C.

Definition . A complete CAT() space X is said to have the nice projection property []
if for any geodesic segment L in X, it is the case that PL(m) ∈ [PL(x), PL(y)] for any x, y ∈ X
and m ∈ [x, y].

Let (X,ρ) be a CAT() space. For each x, y ∈ X and t ∈ [, ], there exists a unique point
z ∈ [x, y] such that

ρ(x, z) = ( – t)ρ(x, y) and ρ(y, z) = tρ(x, y). ()

We shall denote by tx ⊕ ( – t)y the unique point z satisfying (). Now, we collect some el-
ementary facts about CAT() spaces which will be used in the proof of our main theorem.
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Lemma . ([], Lemma .) Let (X,ρ) be a CAT() space. Then

ρ
(
tx ⊕ ( – t)y, z

) ≤ tρ(x, z) + ( – t)ρ(y, z)

for all x, y, z ∈ X and t ∈ [, ].

Lemma . ([], Lemma .) Let (X,ρ) be a CAT() space. Then

ρ(tx ⊕ ( – t)y, z
) ≤ tρ(x, z) + ( – t)ρ(y, z) – t( – t)ρ(x, y)

for all x, y, z ∈ X and t ∈ [, ].

Lemma . ([], Lemma ) Let (X,ρ) be a CAT() space. Then

ρ
(
tx ⊕ ( – t)z, ty ⊕ ( – t)z

) ≤ tρ(x, y)

for all x, y, z ∈ X and t ∈ [, ].

Lemma . (cf. [, ]) Let {xn} and {yn} be bounded sequences in a CAT() space (X,ρ)
and let {βn} be a sequence in [, ] with  < lim infn βn ≤ lim supn βn < . Suppose that xn+ =
βnxn ⊕ ( – βn)yn for all n ∈N and

lim sup
n→∞

(
ρ(yn+, yn) – ρ(xn+, xn)

) ≤ .

Then limn→∞ ρ(xn, yn) = .

Lemma . ([], Lemma .) Let {sn} be a sequence of non-negative real numbers satis-
fying

sn+ ≤ ( – αn)sn + αnβn, ∀n ≥ ,

where {αn} ⊂ (, ) and {βn} ⊂R such that
(i)

∑∞
n= αn = ∞;

(ii) lim supn→∞ βn ≤  or
∑∞

n= |αnβn| < ∞.
Then {sn} converges to zero as n → ∞.

We finish this section by recalling an important concept of quasi-linearization intro-
duced by Berg and Nikolaev []. Let us denote a pair (a, b) ∈ X × X by

–→
ab and call it a

vector. The quasi-linearization is a map 〈·, ·〉 : (X × X) × (X × X) →R defined by

〈–→ab,
–→
cd〉 =



(
ρ(a, d) + ρ(b, c) – ρ(a, c) – ρ(b, d)

)
for all a, b, c, d ∈ X.

It is easy to see that 〈–→ab,
–→
cd〉 = 〈–→cd,

–→
ab〉, 〈–→ab,

–→
cd〉 = –〈–→ba,

–→
cd〉, and 〈–→ax,

–→
cd〉+ 〈–→xb,

–→
cd〉 = 〈–→ab,

–→
cd〉

for all a, b, c, d, x ∈ X. We say that (X,ρ) satisfies the Cauchy-Schwarz inequality if

∣∣〈–→ab,
–→
cd〉∣∣ ≤ ρ(a, b)ρ(c, d) for all a, b, c, d ∈ X.
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It is known from [], Corollary , that a geodesic space X is a CAT() space if and only if X
satisfies the Cauchy-Schwarz inequality. Some other properties of quasi-linearization are
included as follows.

Lemma . ([], Lemma .) Let X be a CAT() space. Then

ρ(x, u) ≤ ρ(y, u) + 〈–→xy, –→xu〉

for all u, x, y ∈ X.

Lemma . ([], Lemma .) Let u and v be two points in a CAT() space X. For each
t ∈ [, ], we set ut = tu ⊕ ( – t)v. Then, for each x, y ∈ X, we have

(i) 〈––→utx, ––→uty〉 ≤ t〈–→ux, ––→uty〉 + ( – t)〈–→vx, ––→uty〉;
(ii) 〈––→utx, –→uy〉 ≤ t〈–→ux, –→uy〉 + ( – t)〈–→vx, –→uy〉 and 〈––→utx, –→vy〉 ≤ t〈–→ux, –→vy〉 + ( – t)〈–→vx, –→vy〉.

The following fact, which can be found in [], is an immediate consequence of
Lemma ..

Lemma . Let X be a CAT() space. Then

ρ(tx ⊕ ( – t)y, z
) ≤ tρ(x, z) + ( – t)ρ(y, z) + t( – t)〈–→xz, –→yz〉

for all x, y, z ∈ X and t ∈ [, ].

3 Main theorem
Before proving our main theorem, we need one more lemma, which is proved by Wang-
keeree and Preechasilp (see [], Theorem .).

Lemma . Let C be a nonempty, closed, and convex subset of a complete CAT() space X,
T : C → C be a nonexpansive mapping with Fix(T) �= ∅, and f : C → C be a contraction
with k ∈ [, ). For each t ∈ (, ), let {zt} be given by

zt = tf (zt) ⊕ ( – t)T(zt).

Then {zt} converges strongly to x̃ as t → . Moreover, x̃ = PFix(T)(f (x̃)) and x̃ also satisfies
the following variational inequality:

〈––––→
x̃f (x̃),

–→
xx̃

〉 ≥ , x ∈ Fix(T). ()

Now, we are ready to prove our main theorem.

Theorem . Let C be a nonempty, closed, and convex subset of a complete CAT()
space X, T : C → C be a nonexpansive mapping with Fix(T) �= ∅, and f : C → C be a
contraction with k ∈ [, 

 ). For the arbitrary initial point u ∈ C, let {xn} be generated by

x = u,

yn = αnf (xn) ⊕ ( – αn)T(xn),

xn+ = βnxn ⊕ ( – βn)yn, ∀n ≥ ,
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where {αn} and {βn} are sequences in (, ) satisfying the following conditions:
(i) limn→∞ αn = ;

(ii)
∑∞

n= αn = ∞;
(iii)  < lim infn βn ≤ lim supn βn < .
Then {xn} converges strongly to x̃ such that x̃ = PFix(T)(f (x̃)) and x̃ also satisfies

〈––––→
x̃f (x̃),

–→
xx̃

〉 ≥ , x ∈ Fix(T).

Proof We divide the proof into three steps.
Step . We show that {xn}, {yn}, {T(xn)}, and {f (xn)} are bounded sequences. Let p ∈

Fix(T). By Lemma ., we have

ρ(xn+, p) ≤ βnρ(xn, p) + ( – βn)ρ(yn, p)

≤ βnρ(xn, p) + ( – βn)
[
αnρ

(
f (xn), p

)
+ ( – αn)ρ

(
T(xn), p

)]

≤ [
βn + ( – βn)( – αn)

]
ρ(xn, p) + ( – βn)αnρ

(
f (xn), f (p)

)

+ ( – βn)αnρ
(
f (p), p

)

≤ [
 – ( – k)αn + ( – k)αnβn

]
ρ(xn, p) + ( – βn)αnρ

(
f (p), p

)

≤ max

{
ρ(xn, p),

ρ(f (p), p)
 – k

}
.

By induction, we also have

ρ(xn, p) ≤ max

{
ρ(x, p),

ρ(f (p), p)
 – k

}
.

Hence, {xn} is bounded and so are {yn}, {f (xn)}, and {T(xn)}.
Step . We show that limn→∞ ρ(xn, T(xn)) = . By applying Lemma . twice for geodesic

triangles �(f (xn), T(xn), T(xn+)) and �(f (xn), f (xn+), T(xn+)), respectively, we obtain

ρ(yn, yn+) ≤ ( – αn)ρ
(
T(xn), T(xn+)

)
+ |αn – αn+|ρ

(
f (xn), T(xn+)

)

+ αn+ρ
(
f (xn), f (xn+)

)

≤ ( – αn)ρ(xn, xn+) + |αn – αn+|ρ
(
f (xn), T(xn+)

)

+ αn+kρ(xn, xn+),

which implies

ρ(yn, yn+) – ρ(xn, xn+) ≤ (αn+k – αn)ρ(xn, xn+) + |αn – αn+|ρ
(
f (xn), T(xn+)

)
.

Since limn→∞ αn = , lim supn→∞(ρ(yn+, yn) – ρ(xn+, xn)) ≤ . By Lemma . we have
limn→∞ ρ(xn, yn) = . Thus,

ρ
(
xn, T(xn)

) ≤ ρ(xn, yn) + ρ
(
yn, T(xn)

)

= ρ(xn, yn) + αnρ
(
f (xn), T(xn)

) →  as n → ∞.
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Step . We show that {xn} converges to x̃, which satisfies x̃ = PFix(T)(f (x̃)) and

〈––––→
x̃f (x̃),

–→
xx̃

〉 ≥ , x ∈ Fix(T).

Let {zm} be a sequence in C defined by

zm = αmf (zm) ⊕ ( – αm)T(zm), ∀m ∈N.

By Lemma ., {zm} converges strongly as m → ∞ to x̃ which satisfies () and x̃ =
PFix(T)(f (x̃)). We claim that

lim sup
n→∞

〈––––→
f (x̃)x̃,

––→
xnx̃

〉 ≤ .

It follows from Lemma .(i) that

ρ(zm, xn) = 〈–––→zmxn, –––→zmxn〉
≤ αm

〈––––––→
f (zm)xn, –––→zmxn

〉
+ ( – αm)

〈–––––––→
T(zm)xn, –––→zmxn

〉

= αm
〈––––––––→
f (zm)f (x̃), –––→zmxn

〉
+ αm

〈––––→
f (x̃)x̃, –––→zmxn

〉
+ αm〈––→x̃zm, –––→zmxn〉 + αm〈–––→zmxn, –––→zmxn〉

+ ( – αm)
〈––––––––––→
T(zm)T(xn), –––→zmxn

〉
+ ( – αm)

〈––––––→
T(xn)xn, –––→zmxn

〉

≤ αmkρ(zm, x̃)ρ(zm, xn) + αm
〈––––→
f (x̃)x̃, –––→zmxn

〉
+ αmρ(x̃, zm)ρ(zm, xn)

+ αmρ(zm, xn) + ( – αm)ρ(zm, xn) + ( – αm)ρ
(
T(xn), xn

)
ρ(zm, xn)

≤ αm(k + )ρ(zm, x̃)M + ρ
(
T(xn), xn

)
M + ρ(zm, xn) + αm

〈––––→
f (x̃)x̃, –––→zmxn

〉
,

for some M > . This implies

〈––––→
f (x̃)x̃, –––→xnzm

〉 ≤ (k + )ρ(zm, x̃)M +
ρ(xn, T(xn))

αm
M. ()

Taking the upper limit as n → ∞ first and then m → ∞, the inequality () yields

lim sup
m→∞

lim sup
n→∞

〈––––→
f (x̃)x̃, –––→xnzm

〉 ≤ . ()

Notice also that

〈––––→
f (x̃)x̃,

––→
xnx̃

〉
=

〈––––→
f (x̃)x̃, –––→xnzm

〉
+

〈––––→
f (x̃)x̃,

––→
zmx̃

〉 ≤ 〈––––→
f (x̃)x̃, –––→xnzm

〉
+ ρ

(
f (x̃), x̃

)
ρ(zm, x̃).

This, together with (), implies that

lim sup
n→∞

〈––––→
f (x̃)x̃,

––→
xnx̃

〉 ≤ .

Finally, we show that xn → x̃ as n → ∞. It follows from Lemmas ., ., ., and . that

ρ(xn+, x̃) ≤ βnρ
(xn, x̃) + ( – βn)ρ(yn, x̃)

≤ βnρ
(xn, x̃) + ( – βn)

[
α

nρ
(f (xn), x̃

)
+ ( – αn)ρ(T(xn), x̃

)]
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+ αn( – αn)( – βn)
〈–––––→
f (xn)x̃,

–––––→
T(xn)x̃

〉

≤ βnρ
(xn, x̃) + ( – βn)( – αn)ρ(xn, x̃)

+ α
n( – βn)

[
ρ(xn+, f (xn)

)
+ 

〈––––→
x̃xn+,

–––––→
x̃f (xn)

〉]

+ αn( – αn)( – βn)
[〈–––––→

f (xn)x̃,
––––––→
T(xn)xn

〉
+

〈–––––→
f (xn)x̃,

––→
xnx̃

〉]

≤ [
βn + ( – βn)( – αn)

]
ρ(xn, x̃) + α

n( – βn)ρ(xn+, f (xn)
)

+ α
n( – βn)

[〈––––––––→
f (xn)f (x̃),

––––→
xn+x̃

〉
+

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉]

+ αn( – αn)( – βn)
〈–––––→
f (xn)x̃,

––––––→
T(xn)xn

〉

+ αn( – αn)( – βn)
[〈––––––––→

f (xn)f (x̃),
––→
xnx̃

〉
+

〈––––→
f (x̃)x̃,

––→
xnx̃

〉]

≤ [
βn + ( – βn)( – αn)

]
ρ(xn, x̃) + α

n( – βn)ρ(xn+, f (xn)
)

+ α
n( – βn)ρ

(
f (xn), f (x̃)

)
ρ(xn+, x̃) + α

n( – βn)
〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉

+ αn( – αn)( – βn)ρ
(
f (xn), x̃

)
ρ
(
T(xn), xn

)

+ αn( – αn)( – βn)ρ
(
f (xn), f (x̃)

)
ρ(xn, x̃)

+ αn( – αn)( – βn)
〈––––→
f (x̃)x̃,

––→
xnx̃

〉

≤ [
βn + ( – βn)( – αn)

]
ρ(xn, x̃) + α

n( – βn)ρ(xn+, f (xn)
)

+ kα
n( – βn)ρ(xn, x̃)ρ(xn+, x̃) + α

n( – βn)
〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉

+ αn( – αn)( – βn)ρ
(
f (xn), x̃

)
ρ
(
xn, T(xn)

)

+ kαn( – αn)( – βn)ρ(xn, x̃) + αn( – αn)( – βn)
〈––––→
f (x̃)x̃,

––→
xnx̃

〉

≤ [
βn + ( – βn)( – αn)

]
ρ(xn, x̃) + α

n( – βn)ρ(xn+, f (xn)
)

+ kα
n( – βn)

[
ρ(xn, x̃) + ρ(xn+, x̃)

]
+ α

n( – βn)
〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉

+ αn( – αn)( – βn)ρ
(
f (xn), x̃

)
ρ
(
xn, T(xn)

)

+ kαn( – αn)( – βn)ρ(xn, x̃) + αn( – αn)( – βn)
〈––––→
f (x̃)x̃,

––→
xnx̃

〉
.

This implies that

ρ(xn+, x̃) ≤
[

βn + ( – βn)( – αn) + kαn( – αn)( – βn)
 – kα

n( – βn)

]
ρ(xn, x̃)

+
kα

n( – βn)
 – kα

n( – βn)
ρ(xn, x̃) +

α
n( – βn)

 – kα
n( – βn)

ρ(xn+, f (xn)
)

+
αn( – αn)( – βn)

 – kα
n( – βn)

ρ
(
f (xn), x̃

)
ρ
(
xn, T(xn)

)

+
α

n( – βn)
 – kα

n( – βn)
〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
+

αn( – αn)( – βn)
 – kα

n( – βn)
〈––––→
f (x̃)x̃,

––→
xnx̃

〉
.

Thus,

ρ(xn+, x̃) ≤ (
 – α′

n
)
ρ(xn, x̃) + α′

nβ
′
n, ()
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where α′
n = αn(–βn)(–k(–αn))

–kα
n(–βn) and

β ′
n =

kαn

 – k( – αn)
ρ(xn, x̃) +

αn

 – k( – αn)
ρ(xn+, f (xn)

)

+
( – αn)

 – k( – αn)
ρ
(
f (xn), x̃

)
ρ
(
xn, T(xn)

)

+
αn

 – k( – αn)
〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
+

( – αn)
 – k( – αn)

〈––––→
f (x̃)x̃,

––→
xnx̃

〉
.

Since k ∈ [, 
 ), α′

n ∈ (, ). Applying Lemma . to the inequality (), we can conclude
that xn → x̃ as n → ∞. This completes the proof. �

4 Concluding remarks and open problems
() Our main theorem can be applied to CAT(κ) spaces with κ ≤  since any CAT(κ)

space is a CAT(κ ′) space for κ ′ ≥ κ (see []). However, the result for κ >  is still
unknown (see [], p.).

() Our main theorem can be viewed as an extension of Corollary  in [] for a
contraction f with k ∈ [, 

 ). It remains an open problem whether Theorem .
holds for k ∈ [ 

 , ).
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