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Abstract

Background: RNA-Sequencing (RNA-seq) experiments have been popularly applied to transcriptome studies in
recent years. Such experiments are still relatively costly. As a result, RNA-seq experiments often employ a small
number of replicates. Power analysis and sample size calculation are challenging in the context of differential
expression analysis with RNA-seq data. One challenge is that there are no closed-form formulae to calculate power for
the popularly applied tests for differential expression analysis. In addition, false discovery rate (FDR), instead of
family-wise type I error rate, is controlled for the multiple testing error in RNA-seq data analysis. So far, there are very
few proposals on sample size calculation for RNA-seq experiments.

Results: In this paper, we propose a procedure for sample size calculation while controlling FDR for RNA-seq
experimental design. Our procedure is based on the weighted linear model analysis facilitated by the voommethod
which has been shown to have competitive performance in terms of power and FDR control for RNA-seq differential
expression analysis. We derive a method that approximates the average power across the differentially expressed
genes, and then calculate the sample size to achieve a desired average power while controlling FDR. Simulation
results demonstrate that the actual power of several popularly applied tests for differential expression is achieved and
is close to the desired power for RNA-seq data with sample size calculated based on our method.

Conclusions: Our proposed method provides an efficient algorithm to calculate sample size while controlling FDR
for RNA-seq experimental design. We also provide an R package ssizeRNA that implements our proposed method and
can be downloaded from the Comprehensive R Archive Network (http://cran.r-project.org).
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Background
During the past decade, next generation sequencing
(NGS) technology has revolutionized genomic studies,
and tremendous development has been made in terms of
throughput, scalability, speed and sequencing cost. RNA-
Sequencing (RNA-seq), also called Whole Transcriptome
Shotgun Sequencing (WTSS), is a technology that uses
the capabilities of NGS to study the entire transcrip-
tome. Compared with microarray technologies that used
to be the major tool for transcriptome studies, RNA-seq
technologies have several advantages including a larger
dynamic range of expression levels, less noise, higher
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throughput, andmore power to detect gene fusions, single
nucleotide variants and novel transcripts. Hence, RNA-
seq technologies have been popularly applied in transcrip-
tomic studies.
In a typical RNA-seq experiment, messenger RNA

(mRNA) molecules are extracted from samples, frag-
mented, and reverse transcribed to double-stranded com-
plementary DNA (cDNA). The cDNA fragments are
then sequenced on a high-throughput platform, such as
HiSeq by Illumina or SOLiD by Applied Biosystems. After
sequencing, millions of DNA fragment sequences, called
reads, are recorded and aligned to a reference genome.
The number of reads mapped to each gene measures the
expression level for that gene. Thus, RNA-seq provides
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discrete count data serving as measurements of mRNA
expression levels, which is different from the fluorescence
intensity measurements from microarray technologies
that have been considered as continuous variables after
transformation. As a result of high frequency of low
integers, the statistical methods developed for analyzing
microarray data are not directly applicable for RNA-seq
data.
In the statistical analysis of RNA-seq data, identifying

differentially expressed (DE) genes across treatments or
conditions is a major step or main focus. A gene is consid-
ered to be DE across treatments or conditions if the mean
read counts differ across treatment groups. Otherwise, we
say the gene is equivalently expressed (EE). Many statisti-
cal methods have been proposed for the detection of DE
genes with RNA-seq data. Some popular methods, includ-
ing edgeR [1–4], DESeq [5] and DESeq2 [6], are based
on the negative binomial (NB) distribution. QuasiSeq [7]
presented quasi-likelihood methods with shrunken dis-
persion estimates. A more recently proposed method by
the Smyth group [8] works with log-transformed count
data and captures the mean-variance relationship of the
log-count data through a precision weight for each obser-
vation (using a function called voom in their R package)
and then applies the limma method [9] for differential
expression analysis.
Due to the genetic complexity and high-dimensionality

of the resulting datasets, RNA-seq experiments require
complicated bioinformatic and statistical analysis in addi-
tion to the cost of experimental materials and sequencing.
Many experiments only employ a small number of repli-
cates, in which cases the power of statistical inference is
limited. However, if the sample size is too large (which
is rare), it is also a waste of experimental materials and
manpower. For these reasons, one of the principal ques-
tions in designing an RNA-seq experiment is: how many
biological replicates should be used to achieve a desired
power? In other words, how large of the sample size do we
need?
To answer this question, we need to determine a sam-

ple size that is required to achieve a desired power while
controlling an appropriate error rate. When calculating
sample size for a single test, type I error rate is com-
monly used. Fang and Cui [10] discussed a sample size
formula for a single gene based on likelihood ratio test or
Wald test. Hart et al. [11] and their associated R pack-
age RNASeqPower [12] proposed a sample size calculation
method for any single gene based on score test while con-
trolling type I error rate. However, for RNA-seq data anal-
ysis, tens of thousands of genes are simultaneously tested
for differential expression, which requires the correction
of multiple testing error, and false discovery rate (FDR)
[13] has been the choice of error criterion in RNA-seq
data analysis.

Several sample size calculation methods while con-
trolling FDR have been proposed in microarray exper-
iments. For example, Liu and Hwang [14] developed a
method to calculate sample size given a desired power
and a controlled level of FDR by finding the rejection
region for the test procedure and hence power for each
sample size. Hereafter, we call this sample size calcula-
tion method the LH method. Orr and Liu [15] assem-
bled the ssize.fdr R package which implements the LH
method.
However, sample size calculation for RNA-seq data

analysis while controlling FDR is underdeveloped. Some
earlier studies performed sample size and power estima-
tion for RNA-seq experiments under Poisson distribution
[16, 17], but the additional biological variation across
RNA-seq samples yields overdispersion, which means the
equal mean-variance relationship for the Poisson distribu-
tion does not adapt to the variability present in RNA-seq
data. To account for overdispersion, the negative binomial
distribution is more flexible to use. Li et al. [18] proposed a
sample size determination method while controlling FDR
based on the exact test implemented in edgeR that tests
for genes differentially expressed between two treatments
or conditions. This method calculates a sample size based
on the minimum fold change of DE genes, the minimum
average read counts of DE genes in the control group,
and the maximum dispersion of DE genes under nega-
tive binomial models. As expected, such a method would
be very conservative and not practically informative. The
RnaSeqSampleSize R package [19] provides an estimation
of sample size based on single read count and disper-
sion which implements Li et al.’s method. Also, instead
of using the minimum average read counts and the max-
imum dispersion, RnaSeqSampleSize gives an estimation
of sample size based on the read count and dispersion
distributions estimated from real data, together with the
minimum fold change, which is much better than Li et al.’s
method, but would still be conservative due to the usage
of the minimum fold change. The LH method is appli-
cable as long as we can compute the power and type I
error rate given a rejection region. However, there are no
closed-form formulae for power for the popularly applied
NB based methods. Then we have to rely on a lot of sim-
ulation to figure out quantities such as power and type I
error rate for each sample size and each simulation set-
ting [10]. Ching et al. [20] provided a power analysis tool
that calculates the power for a given budget constraint
for each size of samples, and then determined the sam-
ple size for a desired power. Wu et al. [21] introduced
the concepts of stratified targeted power and false dis-
covery cost, and estimated sample size by the evaluation
of statistical power over a range of sample sizes based
on simulation studies. Both Ching et al. and Wu et al.’s
methods are simulation-based, thus we need to do a lot
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of simulations for power assessment for each sample size,
which is time-consuming.
In this paper, we propose a much less computationally

intensive method, which only demands one-time simu-
lation, for sample size calculation in designing RNA-seq
experiments. First, we use the voommethod to model the
mean-variance relationship of the log-count data of RNA-
seq and produce a precision weight for each observation.
Second, based on the normalized log-counts and asso-
ciated precision weights, we estimate the distribution of
weighted residual standard deviation of expression levels.
Then for two-sample experiments, we derive a formula
of the t test statistic in the weighted least squares setting
and estimate the distribution of effect sizes for differen-
tial expression. Next, we apply the LHmethod to calculate
the required sample size for a given desired power and a
controlled FDR level. Our simulation demonstrates that
the desired power is reached for data with the sample size
calculated from our method for several popular tests for
differential expression.
The article is organized as follows. The ‘Methods’

section describes our proposed method illustrated with
the two-sample t-test. In the ‘Results and discussion’
section, we present four simulation studies based on either
negative binomial distributions or real RNA-seq dataset,
and our method provide reliable sample sizes for all sim-
ulation studies. The ‘Conclusions’ section discusses our
results and some future work.

Methods
In this section, we first review the voom method [8]
and the LH method of sample size calculation. Then, we
introduce our approach for calculating sample size while
controlling FDR in designing RNA-seq experiments.

The voommethod
Suppose that an RNA-seq experiment includes a total ofN
samples. Each sample has been sequenced, and the result-
ing reads are aligned with a reference genome. The num-
ber of reads mapped to each reference gene is recorded.
The RNA-seq data then consist of a matrix of read counts
rgij, where g = 1, 2, . . . ,G denotes gene g, i = 1, 2 denotes
group where i = 1 is for the control group and i = 2 is
for the treatment group, and j = 1, 2, . . . , ni denotes repli-
cates in each group with N = n1 + n2. The idea of the
voommethod proposed by Law et al. [8] is to use precision
weights to account for the mean-variance relationship and
apply weighted least square analysis to RNA-seq data.
Themethod of voom starts from transforming the RNA-

seq count data to the log-counts per million (log-cpm)
value calculated by

ygij = log2
( rgij + 0.5

Rij + 1
× 106

)
,

where Rij = ∑G
g=1 rgij is the library size for the ith treat-

ment and jth replicate. As has been done in [9], Law et al.
then fit a linear model to the transformed data according
to the experimental design. For each gene g, the following
linear model

yg = Xβg + εg

is fitted to yg = (yg11, . . . , yg1n1 , yg21, . . . , yg2n2)′, the vec-
tor of log-cpm values, where X is the design matrix with
rows xTij , βg is a vector of parameters that may be parame-
terized to include log2-fold changes between experimental
conditions, and εg is the error term with E(εg) = 0.
Assuming that E(ygij) = μgij = xTij βg , then by ordinary

least squares, the above linear model is fitted for each gene
g, which yields regression coefficient estimates β̂g , fitted
values μ̂gij = xTij β̂g , residual standard deviations ηg and
fitted log2-read counts

l̂gij = μ̂gij + log2(Rij + 1) − log2(106).

To obtain a smooth mean-variance trend, Law et al.
fit a LOWESS curve to the square root of residual stan-
dard deviations η

1/2
g as a function of average log-counts

r̃g , where r̃g = ȳg + log2(R̃ + 1) − log2(106) with ȳg being
the average log-cpm value for each gene g and R̃ being
the geometric mean of library sizes. Then for each obser-
vation ygij, the predicted square root residual standard
deviation η̂

1/2
gij is obtained to be the LOWESS fitted value

corresponding to l̂gij.
Finally, the voom precision weights are defined as the

inverse variances wgij = 1
η̂2gij

. Law et al. recommended
analyzing the log-cpm data with weighted least squares,
and the weights (wgij) are used to account for the mean-
variance relationship in the log-cpm values. Assuming
normal distribution for residual errors (εg), methods such
as t-tests or moderated t-tests can then be applied for
differential expression analysis.

The LHmethod of sample size calculation
In genomic studies, we simultaneously test a large num-
ber of hypotheses, each relating to a gene. Hence, multiple
testing is commonly used in the analysis. Assume there
are G genes in total and each gene is tested for the signif-
icance of differential expression. Table 1 summarizes the
various outcomes that occur when testing G hypotheses,
where V is the number of false positives, R is the number

Table 1 Outcomes when testing G hypotheses

Accept null Reject null Total

True nulls U V π0G

False nulls T S (1 − π0)G

Total W R G
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of rejections among the G tests, and π0 is the proportion
of non-differentially expressed genes.
False discovery rate (FDR), defined by Benjamini and

Hochberg [13], is the expected proportion of false posi-
tives among the rejected hypothesis:

FDR = E
(
V
R

∣∣∣∣R > 0
)
Pr(R > 0),

while positive FDR (pFDR), proposed by Storey [22], is
defined to be

pFDR = E
(
V
R

∣∣∣∣R > 0
)
.

Both FDR and pFDR are widely used error rates to con-
trol in multiple testing encounted in genomic studies. In
RNA-seq experiments, most often we end up detecting
DE genes, i.e. R > 0. Hence, in this paper, we do not
differentiate between FDR and pFDR.
Liu and Hwang [14] proposed a method for a quick

sample size calculation for microarray experiments while
controlling FDR. Let H = 0 represent no differential
expression (null hypothesis is true) and H = 1 represent
differential expression (null hypothesis is false). Based on
the definition of pFDR and assumptions in [22] (all tests
are identical, independent and Bernoulli distributed with
Pr(H = 0) = π0, where π0 is the proportion of EE genes),
they derived that

α

1 − α

1 − π0
π0

≥ Pr(T ∈ �|H = 0)
Pr(T ∈ �|H = 1)

, (1)

where α is the controlled level of FDR, T denotes the test
statistic and � denotes the rejection region of the test.
Then for each comparison, the LH method calculates the
sample size as follows. First, for a fixed proportion of non-
differentially expressed genes, π0, and the level of FDR
to control, α, they find a rejection region � that satisfies
(1) for each sample size. Then for the selected rejection
region � for each sample size, the power is calculated by
Pr(T ∈ �|H = 1). According to the desired power, a
sample size is determined.
The rejection region depends on the test applied for dif-

ferential expression, and the method based on (1) can be
applied to any multiple testing procedure where the same
rejection region is used. This LH method can be imple-
mented using an R package, ssize.fdr, developed by Orr
and Liu [15], and applied for designing one-sample, two-
sample, or multi-sample microarray experiments. The
method would be applicable to RNA-seq experiments if
we can calculate power and type I error rate given a
rejection region.

Proposedmethod for RNA-seq experiments with
two-sample comparison
For the popularly applied tests in RNA-seq differential
expression analysis such as edgeR and DESeq, there are

no closed-form expressions to calculate the two quantities
Pr(T ∈ �|H = 0) and Pr(T ∈ �|H = 1). Hence, the LH
method cannot be directly applicable to these methods.
However, the recently proposed voom and limma analysis
for RNA-seq data [8, 23] is based on weighted linear mod-
els and we can obtain tractable formulae for power and
type I error rate. In this paper, our idea is to derive for-
mulae to calculate power and type I error rate based on
voom and weighted linear model analysis, and then apply
the LH method for sample size calculation. We will use
two-sample t-tests to illustrate our idea. Similar methods
can be derived for other designs such as paired-sample or
multiple treatments comparison.
Suppose our interest is to identify the differentially

expressed (DE) genes between a treatment and a control
group. Assuming that for gene g, group i and replicates j,
we observe the RNA-seq data read counts rgij, where the
mean for gene g in group i is λgij = dijγgi. Here, dij stands
for a normalization factor or effective library size that
adjusts the sequencing depth for sample j in group i, γgi
stands for the normalized mean expression level of gene
g in group i. Then for each gene g, to test for differential
expression means to test the hypothesis:

Hg
0 : γg1 = γg2 vs. Hg

1 : γg1 �= γg2.

As reviewed in the first part of the ‘Methods’ section,
when applying the voom method, the RNA-seq read
counts rgij are transformed to log-cpm values ygij with
associated weights wgij and mean μgi for each sample j in
group i. With this parameterization, testing for DE means
testing

Hg
0 : μg1 = μg2 vs. Hg

1 : μg1 �= μg2,

where μg1 and μg2 are the expectation of log-cpm values
of gth gene for control and treatment group, respectively.
For each individual gene g, the weighted linear model

yg = Xβg + σgW
− 1

2
g ε

can be fitted to log-cpm values

yg = (
yg11, . . . , yg1n1 , yg21, . . . , yg2n2

)
with design matrix

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
...
...

1 0
1 1
...
...

1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

coefficients vector

βg =
(

βg1
βg2

)
,
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unknown gene-specific standard deviation σg , and associ-
ated voom precision weights

Wg = diag(wg11, · · · ,wg1n1 ,wg21, · · · ,wg2n2).

Assuming ε ∼ MVN(0, In1+n2), where MVN stands for
multivariate normal distribution, the t-test statistic for
gene g is

Tg = β̂g2

S.E.(β̂g2)
, (2)

where the estimated log2-fold change between treatment
and control group β̂g2 and its standard error S.E.(β̂g2)
could be obtained through weighted least squares estima-
tion.
To make the t-test based method more straightforward

to apply, we reparameterize the formula (2) to

Tg = 
g

sg
√

1
n1 + 1

n2

, (3)

where

sg =

√√√√(
yg − Xβg

)′
Wg

(
yg − Xβg

)
n1 + n2 − 2

can be viewed as the pooled sample standard deviation,
which is an estimator of σg , and


g ≡ β̂g2

√
w̄g1·w̄g2·
w̄g··

(4)

can be viewed as the scaled effect size which is defined
by weighted mean difference of log-cpm values. Here,
w̄g1· = 1

n1
∑n1

j=1 wg1j, w̄g2· = 1
n2

∑n2
j=1 wg2j and w̄g·· =

1
n1+n2

∑2
i=1

∑ni
j=1 wgij. Details of the derivation for (3) is

provided in the Appendix A .
After generating the effect size 
g , and the standard

deviation σg for each gene g, we could assume, as in [14],
that the effect size follows a normal distribution


g ∼ N
(
μ
, σ 2




)
,

and the variance of log-cpm values for each gene follows
an inverse gamma distribution

σ 2
g ∼ Inv − Gamma(a, b)

with mean b
a−1 . Then we apply the LH method to cal-

culate the optimal sample size given desired power and
controlled FDR level. See Appendix B for a brief review of
the calculations in the LH method involving in choosing
the rejection region � safisfying formula (1).
Our proposed method requires the estimation of hyper-

parameters μ
, σ
, a, and b. If a relatively large pilot
dataset is available, these parameters can be estimated
based on the pilot data. Otherwise, we can simulate data
to obtain the values for these hyperparameters. It has been

shown that the NB model fits real RNA-seq data well
[5]. In addition, many popularly applied tests for differen-
tial expression analysis of RNA-seq data are based on NB
models. Hence, we suggest to simulate data according to
NB models, and then use such simulated data to obtain
the estimates of μ
, σ
, a, and b, which are then used to
calculate sample size. We outline our proposed procedure
for sample size calculation as follows:

1. For a given RNA-seq experiment, specify the
following parameters:
G : total number of genes for testing;
π0: proportion of non-DE genes;
α: FDR level to control;
pow: desired average power to achieve;
λg : average read count for gene g = 1, . . . ,G in
control group (without loss of generality, we assume
that the normalization factors dij are equal to 1 for all
samples);
φg : dispersion parameter for gene g;
δg : fold change for gene g.
Note that λg and φg could be estimated from real
data using methods such as edgeR.

2. Simulate RNA-seq read count data from a NB
distribution with given parameters in step 1.

3. Use the voom and limma method to obtain the
log-cpm value and the associated precision weight
for each count, and then estimate effect size 
g
according to (4) for each gene g and parameters a, b
for the prior of σg .

4. Estimate μ
 and σ
 by fitting


g ∼ N
(
μ
, σ 2




)
.

5. Use the LH method to determine the sample size n
to achieve desired power and controlled FDR level.

Results and discussion
In this section, we present four simulation studies to eval-
uate our proposed method for sample size calculation for
RNA-seq experiments. In the first three simulation stud-
ies, we set the total number of genes to beG = 10, 000 and
the desired average power to be 80 %. The last simulation
is real data-based.

Simulation 1. Same set of parameters
We start from the simplest simulation setting where all
genes share the same set of parameters for the NB dis-
tribution. Although such cases are unrealistic, they allow
the method of Li et al. [18] to perform best because this
method uses a single set of NB parameters (mean, disper-
sion, fold change) when calculating sample size. Hence,
we use this simulation setting to study the performance of
our method and compare it to the method of Li et al. We
refer to the parameter settings from Table 1 in [18], and
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compare the resulting sample size and power calculated
by both Li et al.’s method and our proposed method.
In the main manuscript, we present results for one of

those parameter settings as an example: the proportion of
non-DE genes π0 = 0.99, themean read counts for control
group λ = 5 with normalization factors dij = 1, disper-
sion parameter φ = 0.1, FDR controlling at level 0.05, and
fold change δ = 2 for differentially expressed genes. Sup-
pose rgij denotes the read count for gene g, group i and
replicate j = 1, 2, . . . , ni in each group with n1 = n2 = n.
Then, for EE genes, both rg1j and rg2j were drawn from
NB(5, 0.1); for DE genes, rg1j were drawn from NB(5, 0.1)
and rg2j were drawn from NB(10, 0.1) or NB(2.5, 0.1).
After setting these simulation parameters in step 1, we

follow steps 2-4 to simulate data and obtain the values of
hyperparameters. To investigate the effect of this simula-
tion step, we tried different sizes of simulated data, m =
50, 100, 200, 500, 1000, wherem is the sample size for each
group in step 2 of our procedure. For eachm, we generated
read counts rg1j (control group) and rg2j (treatment group)
from independent NB distributions for every gene g and
sample j, g = 1, . . . ,G, j = 1, . . . ,m. After using voom and
lmFit in the R package limma [9] to produce weights wgij
for each observation, we then obtained effect size 
g for
each gene and parameters a, b for the prior distribution of
σ 2
g . The fitted inverse gamma distributions of σ 2

g for each
m are shown as in Fig. 1, with vertical lines indicating the
modes. It seems that the mode doesn’t change much, and
the distribution of σ 2

g shrinks towards the center as sample
size gets larger.
After obtaining the fitted parameters, we calculated

sample size according to our proposed method described
in the third part of the ‘Methods’ section to achieve a
desired power of 80 %. We then simulated data accord-
ing to each calculated sample size and checked whether
the desired power was achieved. In Table 2, the first three
columns listed our simulation results corresponding to

0.6 0.8 1.0 1.2 1.4 1.6

0
5

10
15

σg
2

D
en

si
ty

m = 50
m = 100
m = 200
m = 500
m = 1000

Fig. 1 Fitted inverse gamma distributions of σ 2
g for sample sizem =

50, 100, 200, 500, 1000 for simulation 1

this simulation setting. As m increased from 50 to 100 to
1000, the calculated sample size dropped from 35 to 34
and 32, respectively. This decrease is expected because the
parameters were estimated more precisely with larger m.
For example, the distribution of σ 2

g shrank asm increased
as shown in Fig. 1. The effect on the resulting sample size
is not big, at most with a difference of 3 (35 vs. 32).
We now choose a sample size n = 32 and demon-

strate this sample size indeed reaches the desired power
0.8. At n = 32, we simulated 100 datasets and performed
several popularly applied tests such as the edgeR exact
test, the voom and limma method, DESeq, DESeq2 and
QuasiSeq using the corresponding R packages. Desired
power (0.8) was achieved for all testing methods when
controlling FDR at 0.05 using q-value procedure [24], and
the observed FDR was controlled successfully under all
the five methods. The results are shown in Fig. 2. For the
voom and limma pipeline method, the observed power
curves while FDR was controlled using the Benjamini and
Hochberg’s method [13] and the q-value procedure [24]
and the power curve based on our calculation are shown
in Fig. 3. The observed power was obtained by averaging
actual power over 100 simulated datasets for each sample
size. The observed power and the power calculated by our
method are close with our calculation being a little conser-
vative. Hence, our proposed method provides an accurate
estimate of power, and the sample size calculated by our
method is reliable.
Finally we would like to compare our method with other

existing sample size calculation methods, including Li
et al.’s approach [18, 19] and Wu et al.’s approach [21].
Li et al. proposed to calculate the sample size by “using
a common ρ∗ = argming∈M1{|log2(ρg)|} minimum fold
change”, where ρg in their paper denotes the fold change
and is equivalent to δg in this paper. However, we found
that the direction of fold change does matter when apply-
ing their code. If we set ρg = 2, the sample size calculated
by their method is n = 20, as presented in their Table
1. The plot of average power vs. nominal FDR for their
method is shown in Fig. 4, from which we notice that the
desired power (0.8) is not achieved at sample size n = 20
when controlling FDR at 0.05. In fact, the observed power
is 0.6166 when using the edgeR exact test based on which
they derived their method. When applying the the voom
and limma pipeline, the observed power is 0.4608 for sam-
ple size 20. If we set ρg = 0.5, then the sample size will
be 32, same as our proposed method, and we get power
of 0.8988 using the edgeR exact test and 0.8149 using the
voom and limma pipeline for differential expression anal-
ysis. Wu et al. (PROPER) provided a simulation-based
power evaluation tool, which requires a lot of simulations
to assess the power for each sample size. Table 3 presents
the computation time needed for the calculation. It took
PROPER 6.5 hours to get the resulting sample size while
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Table 2 Sample size and anticipated average power calculated by our method and observed average power by the voom and limma
pipeline while controlling FDR using q-value procedure based on parameters at differentm for three simulation settings

Simulation 1 Simulation 2 Simulation 3

Our Method Our Method RnaSeqSampleSize Our Method

m Sample Anticipated Observed Sample Anticipated Observed Sample Estimated Sample Anticipated Observed
size power power size power power size power size power power

50 35 0.802 0.858 13 0.810 0.876 9 0.780 22 0.800 0.801

100 34 0.814 0.846 13 0.814 0.876 9 0.724 22 0.803 0.801

200 34 0.815 0.846 13 0.823 0.876 9 0.765 22 0.804 0.801

500 33 0.817 0.833 13 0.827 0.876 9 0.769 22 0.805 0.801

1000 32 0.800 0.804 13 0.826 0.876 9 0.764 22 0.805 0.801

We also present the comparison between our method and RnaSeqSampleSize R package for simulation 2, where the right two columns are sample size and power calculated
by the RnaSeqSampleSize R package

the other two methods only needed seconds. PROPER is
more than 1,300 fold time-consuming than our proposed
method. The resulting sample size from PROPER is 25,
less than our proposed method. This is because PROPER
is based on edgeR exact test, which tends to be more
powerful than the voom and limma pipeline.
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Fig. 2 Results from simulation 1. Data were simulated with sample
size n = 32. a Observed average power from different methods of
differential expression analysis is plotted against the nominal FDR
level controlled using the q-value procedure. b The actual FDR level
versus the nominal FDR level for different methods

Results for other parameter settings underm = 200 are
presented in the Additional file 1, with Li et al.’s results in
the first row, and our results in the second row.

Simulation 2. Gene-specific mean and dispersion with fixed
fold change
In the second simulation setting, we used a real RNA-
seq dataset to generate gene-specific mean and dispersion
parameters. A maize dataset was obtained from a study by
Tausta et al. [25], who compared gene expression between
bundle sheath and mesophyll cells of corn plants.
Similar to simulation 1, we generated 10,000 genes from

NB(λg ,φg), with fold change δ = 2 for DE genes, λg and φg
from the means and dispersions estimated for each gene
in the maize dataset. For EE genes, both rg1j and rg2j were
drawn from NB(λg ,φg); for DE genes, rg1j were drawn
from NB(λg ,φg) and rg2j were drawn from NB(2λg ,φg)
or NB(0.5λg ,φg). The proportion of non-DE genes was
π0 = 0.8.
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Fig. 3 Anticipated power curve calculated by ssizeRNA and observed
power curves using voom and limma while FDR was controlled using
either the Benjamini and Hochberg method (BH) or the q-value
procedure by Storey and Tibshirani (ST) for simulation 1



Bi and Liu BMC Bioinformatics  (2016) 17:146 Page 8 of 13

0.0

0.2

0.4

0.6

0.8

1.0

0.000 0.025 0.050 0.075 0.100

P
ow

er

Method
DESeq
DESeq2
edgeR
QuasiSeq
voom

Observed average power vs. Nominal FDR level 
 for different methods

Fig. 4 Observed average power vs. nominal FDR for five methods at
sample size n = 20 calculated by Li et al.’s method for simulation 1

The fitted inverse gamma distributions of σ 2
g form = 50

and 1000 are very similar, as shown as in Fig. 5, where ver-
tical lines indicate the modes. The middle three columns
in Table 2 give the sample size and average power calcu-
lated by our ssizeRNA package. As shown in Table 2, the
resulting sample sizes are all 13 when m ranges from 50
to 1000. This is expected because Fig. 5 indicates that the
estimated distributions of σ 2

g are very close using different
m values for this dataset.
At n = 13, we checked the plots of average power vs.

nominal FDR and true FDR vs. nominal FDR, and the
results were similar to those obtained in simulation 1.
More specifically, the desired power (0.8) was achieved,
and FDR was controlled successfully. Actually, the desired
power can be reached at sample size n = 11. Figure 6(a)
gives the power curve calculated by our method based
on hyperparameters estimated at m = 1000 together
with observed power curves with FDR controlled by the
Benjamini and Hochberg’s method and the q-value proce-
dure, respectively. The anticipated power curve based on
m = 1000 is close to the other two observed power curves.
The RnaSeqSampleSize R package [19] could give an

estimation of sample size and power by prior real data.

They first use user-specified number of genes to esti-
mate the gene read count and dispersion distribution,
then sample_size_distribution and est_power_distribution
functions will be used to determine sample size and actual
power. When we used the same real dataset as our simula-
tion setting 2, the sample size calculated by their method
was 7, with actual power 0.774, which did not reach the
desired power 0.8. We also tried to apply their method
using our simulated data (with different m), the result-
ing sample size is larger (n = 9). The power estimated
by their method at n = 9 are shown in Table 2, and
all their estimated power were actually smaller than 0.8.
PROPER started from an estimation of mean and dis-
persion parameters, which is similar to our method. The
sample size calculated by their method is 10, with power
0.804 based on DE detection method edgeR. The com-
parison results of our proposed method and these three
approaches are shown in the middle three columns of
Table 3. Still, PROPER is muchmore time-consuming than
the other two methods.

Simulation 3. Gene-specific mean and dispersion with
different fold change
In this simulation, the setting is the same as the second
simulation study, except that the fold change δg was sim-
ulated from a log-normal distribution for differentially
expressed genes. For EE genes, both rg1j and rg2j were
drawn from NB(λg ,φg); for DE genes, rg1j were drawn
from NB(λg ,φg) and rg2j were drawn from NB

(
λgδg ,φg

)
or NB(λg/δg ,φg) where

δg ∼ log − normal(log(2), 0.5log(2)).

The last three columns in Table 2 give the sample size
and power calculated by our method. As in simulation 2,
varying the size of simulated data (m) did not result in
different sample sizes. Anticipated and observed power
curves are presented in Fig. 6(b), fromwhich we notice that
the three curves are almost indistinguishable after power
reaches 60 %. This more realistic simulation demonstrates
that our proposed method provides accurate power and
sample size.

Table 3 Comparison of sample size calculation methods, including the proposed method in this paper, Zhao et al.’s approach
(RnaSeqSampleSize) and Wu et al.’s approach (PROPER).

Simulation 1 Simulation 2 Simulation 3

Method Sample Power Computation Sample Power Computation Sample Power Computation
size time size time size time

Our method 34 0.815 17.3 sec 13 0.823 16.8 sec 22 0.804 15.5 sec

RnaSeqSampleSize 32 0.810 0.3 sec 9 0.765 54.6 sec 74 0.742 82.8 sec

PROPER 25 0.806 6.5 h 10 0.804 1.5 h 19 0.805 3.5 h

Results determined by our method were based on parameters estimated atm = 200. Power was evaluated based on the voom and limma pipeline for our method, while
edgeR for RnaSeqSampleSize and PROPER. The computation time for each simulation was calculated on a MacAir laptop with 1.3 GHz i7 CPU and 4GB RAM



Bi and Liu BMC Bioinformatics  (2016) 17:146 Page 9 of 13

0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

σg
2

D
en

si
ty

m = 50
m = 1000

Fig. 5 Fitted inverse gamma distributions of σ 2
g for sample sizem = 50

and 1000 for simulation 2

We also applied RnaSeqSampleSize to this simulation
setting. Since their method is based on minimum fold
change, such results will be conservative due to the
variability of fold change, especially as in this case, the
minimum fold change is close to 1.Whenwe used the 10th
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Fig. 6 Anticipated power curve calculated by ssizeRNA and observed
power curves using voom and limma while FDR was controlled using
either the Benjamini and Hochberg method (BH) or the q-value
procedure by Storey and Tibshirani (ST) for simulation 2 (in (a)) and 3
(in (b))

percentile of fold change of DE genes as the “minimum”
fold change, the sample size calculated by their method
was 74, which is still much larger than what we actually
need, but the power calculated by their method based
on the “minimum” fold change was less than the desired
power 0.8. PROPER gave a result of sample size 19 with
power 0.805 based on DE detection method edgeR. The
comparison results of our proposed method and these
two approaches are shown in the last three columns of
Table 3.
Based on results from simulations, our proposed

method and RnaSeqSampleSize provided answers much
faster than PROPER, and our proposed method and
PROPER provided good sample size estimation. Over-
all, our proposed method worked the best while both
accuracy and computation time are considered.

Simulation 4. Real data-based simulation
Our method involves simulating data based on nega-
tive binomial distributions. To check the robustness of
our method, we conducted a simulation based on a real
RNA-seq dataset from [26], which was upon an RNA-seq
experiment that sequenced 69 lymphoblastoid cell lines
(LCL) derived from unrelated Nigerian individuals. We
used the genes with minimum read counts across all indi-
viduals larger than 10, which results in 9154 genes. First,
we estimated the mean and dispersion across all 69 indi-
viduals for each gene. Assume that fold change comes
from a log-normal distribution as in simulation 3,

δg ∼ log − normal(log(2), 0.5log(2)),

the proportion of non-DE genes being 80 %, to reach
a desired power 0.8 while controlling FDR at 0.05, the
sample size calculated by our method is 12 atm = 200.
To check whether desired power can be achieved at

the calculated sample size, we simulated 100 datasets.
For each simulation, we randomly picked 24 out of the
69 individuals and randomly assigned 12 individuals to
the control group and the remaining 12 individuals to
the treatment group. Consider all 9154 genes among
the 24 individuals as EE since the samples were ran-
domly selected from the same population. Then we ran-
domly generated 20 % of the 9154 genes to be DE,
and their counts in the treatment group were multi-
plied by fold change δg which were drawn from a log −
normal(log(2), 0.5log(2)) distribution. The scaled counts
were rounded to the nearest integers. This strategy likely
results in more realistic data because all counts come
from real dataset and no distributional assumptions were
imposed. The plot of average power vs. nominal FDR at
n = 12 is shown in Fig. 7(a), where desired power (0.8)
was achieved for most testing methods, including edgeR,
DESeq2, QuasiSeq, voom and limmamethods, when con-
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Fig. 7 Results from simulation 4. a Observed average power from
different methods of differential expression analysis is plotted against
the nominal FDR level controlled using the q-value procedure at
sample size n = 12. b Anticipated power curve calculated by ssizeRNA
and observed power curves using voom and limma while FDR was
controlled using either the Benjamini and Hochberg method (BH) or
the q-value procedure by Storey and Tibshirani (ST)

trolling FDR at 0.05 using q-value procedure. Figure 7(b)
gives the power calculated by our method based on hyper-
parameters estimated at m = 200. It also presents the
observed average power curves when FDR was controlled
by either the Benjamini and Hochberg’s method or the q-
value procedure. The anticipated power curve based on
m = 200 is close to the other two observed power curves.
Hence, our proposed method also provides a reliable esti-
mation of sample size and power in the most realistic
simulation study.

Conclusions
In recent years, RNA-seq technology has become a major
platform to study gene expression. With large sample
size, RNA-seq experiments would be rather costly; while
insufficient sample size may result in unreliable statisti-
cal inference. Thus sample size calculation is a crucial
issue when designing an RNA-seq experiment. Although

we could use a lot of simulations for each sample size and
determine the one that reach our desired power as sug-
gested in [10, 20, 21], this requires generous calculation
and lacks efficiency. Our method provides a quick cal-
culation for sample size, which only demands one-time
simulation. From the simulation studies in the section
of Results and discussion, we demonstrate that our pro-
posed method offers a reliable approach for sample size
calculation for RNA-seq experiments.
For each gene g, when we use a two-sample t-test to do

differential expression analysis, the effect size 
g in for-
mula (4) depends on the simulated sample size m. Larger
m may lead to better estimation of the prior distributions
and hence a more accurate sample size. Based on our sim-
ulation studies, the effect ofm on the resulting sample size
is not big, and m = 200 should be enough for providing a
relatively precise sample size.
The ordinary t-test instead of the moderated t-test [9]

was used in ssizeRNA R package. Because the ordinary
t-test is a bit less powerful than the moderated t-test, it
tends to overestimate the sample size which might be the
reason why our calculated sample size in simulation 2 is
a little bit larger than what we actually need according to
the observed power curves using voom and limma. How-
ever, the overestimation is not dramatic and far less than
the method of Li et al. [18].
In this article, we illustrate our idea using a method for

two-sample comparison with the t-test, because detect-
ing differentially expressed genes between two treatment
groups is the most common case in RNA-seq analysis.
Our idea could be applied to multi-sample comparison
with an F-test or tests for linear contrasts of treatment
means as well.
The R package ssizeRNA implements our proposed sam-

ple size calculation method for RNA-seq experiments and
it is freely available on the Comprehensive R Archive Net-
work (http://cran.r-project.org). To install this package,
start R and enter:

source(“http://bioconductor.org/biocLite.R”)
biocLite(“ssizeRNA”)

Appendices
Appendix A: Derivation of Eq. (3)
For each individual gene g, the weighted linear model

yg = Xβg + σgW
− 1

2
g ε

can be fitted to log-cpm values

yg = (yg11, . . . , yg1n1 , yg21, . . . , yg2n2)′

http://cran.r-project.org
http://bioconductor.org/biocLite.R
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with design matrix

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
...
...

1 0
1 1
...
...

1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

coefficients vector

βg =
(

βg1
βg2

)
,

unknown gene-specific standard deviation σg , associated
voom precision weights

Wg = diag
(
wg11, · · · ,wg1n1 ,wg21, · · · ,wg2n2

)
,

and error

ε ∼ MVN
(
0, In1+n2

)
.

Thus we could obtain the coefficient estimators

β̂g =
(
XTWgX

)−1
XTWgyg

with variance-covariance matrix

Var(β̂g) = σ 2
g

(
XTWgX

)−1
,

where σ 2
g is estimated by s2g

s2g =
(
yg − Xβg

)′
Wg

(
yg − Xβg

)
n − p

with

p = rank(X) = 2.

Let vgk be the kth diagonal element of
(
XTWgX

)−1,
where(

XTWgX
)−1

=
( ∑2

i=1
∑ni

j=1 wgij
∑n2

j=1 wg2j∑n2
j=1 wg2j

∑n2
j=1 wg2j

)−1

=

( ∑n2
j=1 wg2j − ∑n2

j=1 wg2j
− ∑n2

j=1 wg2j
∑2

i=1
∑ni

j=1 wgij

)
∑n1

j=1 wg1j
∑n2

j=1 wg2j
.

Under the assumptions as made in Smyth (2004),

β̂gk|βgk , σ 2
g ∼ N

(
βgk , vgkσ 2

g

)
and

s2g |σ 2
g ∼ σ 2

g

dg
χ2
dg ,

where dg is the residual degrees of freedom for the linear
model of gene g, the ordinary t-test statistic will be

tgk = β̂gk

sg
√vgk

,

which follows an approximate t-distribution with dg
degrees of freedom.
Assuming equal variance between treatment and con-

trol group, then the statistic for testing

Hg
0 : μg1 = μg2 vs. Hg

1 : μg1 �= μg2

for the gth gene is

Tg = β̂g2

S.E.(β̂g2)

= β̂g2

sg
√vg2

= β̂g2

sg

√ ∑2
i=1

∑ni
j=1 wgij∑n1

j=1 wg1j
∑n2

j=1 wg2j

=
β̂g2

√
1
n1 + 1

n2

√∑n1
j=1 wg1j

∑n2
j=1 wg2j∑2

i=1
∑ni

j=1 wgij

sg
√

1
n1 + 1

n2

=
β̂g2

√∑n1
j=1 wg1j/n1

∑n2
j=1 wg2j/n2∑2

i=1
∑ni

j=1 wgij/(n1+n2)

sg
√

1
n1 + 1

n2

=
β̂g2

√
w̄g1·w̄g2·
w̄g··

sg
√

1
n1 + 1

n2

≡ 
g

sg
√

1
n1 + 1

n2

,

where


g ≡ β̂g2

√
w̄g1·w̄g2·
w̄g··

with w̄g1· = 1
n1

∑n1
j=1 wg1j, w̄g2· = 1

n2
∑n2

j=1 wg2j and w̄g·· =
1

n1+n2
∑2

i=1
∑ni

j=1 wgij.

Appendix B: Choice of rejection region� satisfying formula (1)
For the two-sample comparison with t-test statistics Tg as
in Eq. (3), we assume as in LH method that the effect size
follows a normal distribution


g ∼ N
(
μ
, σ 2




)
,
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and the variance of log-cpm values for each gene follows
an inverse gamma distribution

σ 2
g ∼ Inv − Gamma(a, b)

with mean b
a−1 , then formula (1) becomes

α

1 − α

1 − π0
π0

≥ Pr(T ∈ �|H = 0)
Pr(T ∈ �|H = 1)

= Pr(T ∈ �|H = 0)∫ ∫
Pr(T ∈ �|H = 1,
g , σg)π1(
g)π2(σg)d
gdσg

= Pr(|Tg | > c|H = 0)∫ ∫
Pr(|Tg | > c|H = 1,
g , σg)π1(
g)π2(σg)d
gdσg

,

(5)

where π1(
g) and π2(σg) denote the probability distri-
bution function (p.d.f.) of 
g and σg respectively. The
numerator in (5) equals

2 · Tn1+n2−2(−c),

where Td(·) denotes the cumulative distribution func-
tion (c.d.f.) of a central t-distribution with d degrees of
freedom, and the denominator in (5) equals

1 −
∫ ∫

Tn1+n2−2
(
c|θg

)
π1(
g)π2(σg)d
gdσg

+
∫ ∫

Tn1+n2−2
(−c|θg

)
π1(
g)π2(σg)d
gdσg . (6)

Here, Td
(·|θg) denotes the c.d.f. of a non-central t-

distribution with d degrees of freedom and non-centrality
parameter

θg = 
g

σg
√

1
n1 + 1

n2

.

The integration in (6) with respect to 
g could be
avoided through mathematical derivation, and the inte-
gration with respect to σg is approximated using static
quadrature rules, which allows a stable calculation to get
the root of c. Details of derivation could be found in
Appendix B of [14].
Once the choice of c has beenmade for each sample size,

power would be calculated accordingly by integrating over
the prior distributions on effect size and residual variance.
Hence based on the desired power, sample size is finally
determined.

Additional file

Additional file 1: This excel file contains comparison of resulting sample
size and power between Li et al.’s method [18] and our proposed method
for simulation 1, with parameter settings from Table 1 in [18]. The results
are obtained underm = 200, with Li’s result in the first row from each
parameter setting, and our result in the second row. (XLS 49.2 kb)
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