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Abstract—The presentation of extracellular matrix (ECM)
proteins provides an opportunity to instruct the phenotype
and behavior of responsive cells. Decellularized cell-secreted
matrix coatings (DM) represent a biomimetic culture surface
that retains the complexity of the natural ECM. Microenvi-
ronmental culture conditions alter the composition of these
matrices and ultimately the ability of DMs to direct cell fate.
We employed a design of experiments (DOE) multivariable
analysis approach to determine the effects and interactions of
four variables (culture duration, cell seeding density, oxygen
tension, and media supplementation) on the capacity of DMs
to direct the osteogenic differentiation of human mesenchy-
mal stem cells (hMSCs). DOE analysis revealed that matrices
created with extended culture duration, ascorbate-2-phos-
phate supplementation, and in ambient oxygen tension
exhibited significant correlations with enhanced hMSC
differentiation. We validated the DOE model results using
DMs predicted to have superior (DM1) or lesser (DM2)
osteogenic potential for naı̈ve hMSCs. Compared to cells on
DM2, hMSCs cultured on DM1 expressed 2-fold higher
osterix levels and deposited 3-fold more calcium over
3 weeks. Cells on DM1 coatings also exhibited greater
proliferation and viability compared to DM2-coated sub-
strates. This study demonstrates that DOE-based analysis is
a powerful tool for optimizing engineered systems by
identifying significant variables that have the greatest con-
tribution to the target output.

Keywords—Extracellular matrix, Mesenchymal stem cells,

Multivariable analysis, Osteogenesis.

INTRODUCTION

The extracellular matrix (ECM) plays a pivotal role
in regulating the maintenance and behavior of pro-
genitor cells via physical interactions with cell surface
proteins and the modulation of soluble growth factor

concentrations within the cellular microenviron-
ment.7,23 Thus, capitalizing on the innate ability of the
ECM to modulate cell behavior has been of great
interest in developing novel biomaterial surfaces that
are better able to direct cell phenotype by recapitu-
lating the in vivo cellular milieu.41,43 The design of cell
culture interfaces that maintain cells in their native
behavioral state or instruct their phenotypic transfor-
mation toward that of a desired tissue would be of
great benefit in the advancement of cell-based therapies
and tissue engineering. To date, this has been primarily
pursued by the deposition of individual ECM proteins
on a substrate surface.17,33,36 However, this approach
fails to accurately mimic the complex protein compo-
sition within the endogenous ECM, an environment
that can be efficiently generated by a number of cel-
lular populations.

Mesenchymal stem cells (MSCs) represent a useful
tool in the study of cell-secreted matrix coatings, as
they produce generous amounts of ECM when cul-
tured on tissue culture plastic (TCP) and other bio-
material surfaces. Upon decellularization of these
cultures, the residual ECM coating retains the capacity
to alter the phenotype of subsequently seeded cell
populations.8,13,22 The composition of the in vivo ECM
associated with each particular tissue has a profound
effect on the phenotypic behavior of the engaged
neighboring cells. Therefore, it is reasonable to expect
that cell-secreted matrix coatings of differing compo-
sition will manipulate the properties of the adjacent
cells during culture to varying degrees. The composi-
tion of ECMs deposited in vitro by progenitor cells is
dependent upon the culture duration and microenvi-
ronmental culture conditions.1,4,20,30 Upon decellular-
ization, ECM coatings deposited over different lengths
of time and environmental conditions (e.g., oxygen
tension, shear forces, soluble factors) will therefore
acquire unique compositions that will determine their
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efficacy in modulating the phenotype of naı̈ve stem cell
populations.14,26 Hence, it is important to determine
the ideal conditions under which to culture matrix-
depositing MSCs prior to their decellularization for
material-based therapeutic strategies.

The examination of interactions between large
numbers of potentially contributing variables using
so-called ‘‘One Factor At a Time’’ (OFAT) experi-
mental approaches is ineffective due to the number of
variable permutations and the likelihood of overlook-
ing complex interactions of those variables. Alterna-
tively, multivariable statistical analysis through a
design of experiments (DOE) approach addresses these
challenges by markedly reducing the number of vari-
able combinations and repetitions to be examined,
while simultaneously determining the significance of
single input variables and combinations of such vari-
ables toward the ultimate response of the system. DOE
represents a powerful tool that has previously been
applied toward the optimization of developmental
protocols from a broad array of scientific fields.9,28,40,42

Substrate-mediated cues directing human MSC
(hMSC) fate toward the osteogenic lineage, such as
those provided by the native ECM, offer a novel
approach toward the development of biomaterial
constructs designed to bridge and repair non-healing
skeletal defects.5,11,29 We hypothesized that a DOE-
based approach would provide an efficient means of
engineering specific hMSC-secreted matrix coatings
optimized to accelerate the osteogenic differentiation
of naı̈ve hMSCs. We first investigated this hypothesis
by analyzing differences in the osteogenic differentia-
tion and proliferation of naı̈ve MSCs in the presence of
MSC-secreted matrices engineered under distinct
DOE-determined conditions. Upon characterizing
cellular responses to these matrices, we validated DOE
predictions of matrix efficacy at directing hMSC
osteogenic fate with an in-depth analysis of the oste-
ogenic capacity of two engineered hMSC-secreted
matrix coatings.

MATERIALS AND METHODS

Cell Culture

Human bone marrow-derived MSCs (hMSCs,
Lonza, Walkersville, MD) were expanded without
further characterization in alpha minimum essential
medium (a-MEM, Invitrogen, Carlsbad, CA) supple-
mented with 10% fetal bovine serum (JR Scientific,
Woodland, CA) and 1% penicillin and streptomycin
(Mediatech, Manassas, VA). Cells were cultured under
standard conditions and utilized at passages 3–5.
Medium was further supplemented with 50 lg/mL
ascorbate-2-phosphate (A2P) for one passage prior to

experimental use to prime cells for enhanced matrix
deposition.10 For studies examining the role of oxy-
gen tension, the oxygen microenvironment was con-
trolled as previously described using airtight chambers
(Billups-Rothenberg, Del Mar, CA).16

DOE Model

A Box–Behnken experimental design was created
with Design-Expert 8 software (Stat-Ease, Minneapo-
lis, MN) to analyze the contribution of three contin-
uous variables (seeding density, culture duration, and
oxygen tension) and one discrete variable (media sup-
plementation) toward the ability of hMSC-secreted
matrices to direct hMSC osteogenic differentiation.
Continuous variables were examined at low, medium,
and high levels with a centrally repeated condition.
Linear, quadratic, and two-factor interactions of each
variable were assessed.

Preparation of Decellularized Matrices

hMSCs were cultured on 12-well plates under DOE-
prescribed conditions with media changes performed
every 3 days. Cells were seeded at densities from
2 9 104 to 8 9 104 cells/cm2 and allowed to attach
overnight. Plates were then cultured for 3–15 days
at oxygen tensions ranging from 5 to 21% in either
supplemented media (SM: a-MEM + 50 lg/mL
A2P) or osteogenic media (OM: a-MEM + 10 mM
b-glycerophosphate, 50 lg/mL A2P, 10 nM dexa-
methasone). Wells were then decellularized in a man-
ner similar to that previously described.8 Briefly, wells
were rinsed with PBS and treated with 0.5% Triton
X-100 (Sigma, St Louis, MO) in 20 mM NH4OH in
PBS for 5 min at 37 �C. Wells were rinsed with PBS
and treated with DNAse (Sigma, 200 units/mL PBS)
for 1 h at 37 �C. Following additional PBS rinsing,
plates were allowed to dry within a sterile biosafety
cabinet for up to 12 h. Matrix-coated plates were
stored at room temperature in the dark for up to
1 month prior to use. Plates coated with fibronectin
(Sigma, 0.5 mL of 25 lg/mL solution for 2 h) and
untreated TCP served as control substrates.

Characterization of Decellularized Matrices

Decellularization of 12-well plates was assessed via
uptake of calcein AM (AnaSpec, Fremont, CA) and
DNA quantification. Briefly, 1 mL of calcein solution
(3 lg/mL in a-MEM) was added to cell layers both
pre- and post-decellularization for 15 min at 37 �C.
Calcein fluorescence was quantified using a microplate
reader (BioTek, Winooski, VT) at 485/530 nm and
imaged using a Nikon Eclipse TE2000-U fluorescent
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microscope. DNA content was quantified using the
Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen,
Carlsbad, CA) and microplate reader as described.24

The morphology of hMSC-secreted ECMs was
characterized by scanning electron microscopy after
culture on Thermanox plastic coverslips (Nunc,
Rochester, NY) over 2 weeks as described.39 Cyto-
chemical staining of 12-well plates was performed by
fixing cultures and decellularized matrices with 2%
formaldehyde followed by rinsing in PBS. Plates were
then stained for total protein with 0.1% coomassie
brilliant blue in 80% H2O/20% methanol (MP, Solon,
OH) for 15 min. Cell layers and decellularized matrices
were also stained for glycosaminoglycan content. Wells
were rinsed with 1% acetic acid followed by incubation
for 15 min with 1% Alcian Blue 0.1 N HCl (Sigma).

Osteogenic Response of Naı̈ve hMSCs

qPCR Analysis

hMSCs were seeded onto decellularized ECM-
coated, fibronectin-coated, or uncoated TCP wells in
SM at 7500 cells/cm2 and allowed to attach overnight.
Culture medium was refreshed with OM the following
day, and cells were cultured in standard conditions for
3–21 days. Total RNA was collected using the RNeasy
Mini kit (Qiagen, Valencia, CA) and 250–500 ng of total
RNA was then reverse-transcribed with the QuantiTect
Reverse Transcription Kit (Qiagen). qPCR was per-
formed using TaqMan1 Universal PCR Master Mix
(Applied Biosystems, Foster City, CA) on a Mastercy-
cler1 realplex2 (Eppendorf, Westbury, NY); primers
and probes for BGLAP (Hs01587814_g1), COL1A1
(Hs01076777_m1), IBSP (Hs00173720_m1), MRPL13
(Hs00204173_m1), RUNX2 (Hs00231692_m1), and
SP7 (Hs01866874_s1) were purchased from Applied
Biosystems. Amplification conditions were 50 �C for
2 min, 95 �C for 10 min, followed by 40 cycles at 95 �C
for 15 s and 60 �C for 1 min. Quantitative PCR results
were normalized to RPL13 transcript level to yield DCt.
Fold change in expression was then calculated using the
formula 2DCt, and fold changes between experimental
groups and control wells were calculated to yield DDCt.

Alkaline Phosphatase Activity and Calcium Deposition

hMSCs were seeded onto decellularized matrix-
coated, fibronectin-coated, and uncoated TCP wells as
described above. Intracellular alkaline phosphatase
(ALP) activity was quantified and normalized to
sample DNA content.15 Unseeded decellularized
matrices were analyzed at each timepoint as a control
to distinguish intracellular ALP from ALP deposited
and retained within the matrix, and ALP results were

normalized to these control values. The distribution of
mineralized deposits on the ECMs was analyzed
qualitatively by alizarin red staining, while calcium
deposition at 0, 1, 3, and 5 weeks was analyzed
quantitatively as previously described.15,24

Cell Proliferation, Viability, and Attachment

To assess the contribution of distinct ECMs toward
cellular proliferation and viability, hMSCs were seeded
onto decellularized matrix-coated, fibronectin-coated,
and uncoated TCP wells in SM at 4000 cells/cm2,
allowed to attach overnight, and cultured in OM as
described above. Cell proliferation was measured by
quantifying DNA concentration in each well at 1, 4,
and 7 days. Cell viability was quantified by measuring
metabolic activity with a 10% solution of alamarBlue
(AbD Serotec, Raleigh, NC) for 3 h at 1, 4, and
7 days.24 In addition, cell viability was examined under
stressful conditions. Briefly, hMSCs were seeded onto
each experimental surface at 50,000 cells/cm2, allowed
to attach overnight, and cultured in hypoxia chambers
(1% O2) for 24 h with serum-free media. Cell viability
was assayed via calcein uptake. To characterize the
ability of cells to attach to each substrate, hMSCs were
seeded at 50,000 cells/cm2 in SM and allowed to attach
to culture surfaces for 1 or 4 h. Wells were then rinsed
with PBS, and cell retention was quantified by calcein
uptake.

Statistical Analysis

Data are presented as mean ± standard error unless
otherwise stated. Statistical analysis was performed
using paired Student’s t tests and one-way ANOVA
where applicable. Statistical analysis of DOE experi-
ments was performed by Design-Expert 8 software
(Stat-Ease). p Values less than 0.05 were considered
statistically significant.

RESULTS

DOE Model

A DOE-based approach was utilized to examine the
effect of culture conditions when producing hMSC-
secreted decellularized matrices (DMs) to direct the
osteogenic potential of naı̈ve hMSCs. Four distinct
culture variables (Table 1) were input into a Box–
Behnken experimental design, resulting in 26 unique
culture environments for creating distinct DMs. The
osteogenic and proliferative responses of naı̈ve hMSC
to these DMs were determined by qPCR and DNA
quantification and compared to that of hMSCs
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cultured on TCP alone following 7 days in OM. Each
response output was found to be significantly influ-
enced by one or more input variables (p < 0.05), and
the linear, quadratic, and two-factor interactions of
each variable were assessed (Table 2).

DOE predictions of the naı̈ve hMSC response to
DMs engineered using different culture conditions
were generated based on experimental results (Fig. 1).
mRNA expression of osterix (SP7), a zinc finger-
containing transcription factor required for osteoblast
differentiation and bone formation,35 increased 8- to
35-fold in naı̈ve hMSCs cultured on DMs after 7 days
compared with cells cultured on TCP alone (Figs. 1a
and 1b). SP7 expression was significantly higher on
DMs with extended culture durations and deposited in
SM (Fig. 1a) rather than OM (Fig. 1b). mRNA
expression of RUNX2, another key transcription factor
associated with osteoblast differentiation,31 underwent
a more modest 1- to 2-fold increase on DMs over TCP
(Figs. 1c and 1d). RUNX2 expression was modulated
in both a linear and quadratic fashion by the culture
duration and oxygen tension under which DMs were
deposited, with extended culture duration and higher
oxygen tension each yielding increased RUNX2
expression by hMSCs. Expression of bone sialoprotein
(IBSP) mRNA, generating a protein component of
native bone ECM that enhances matrix mineraliza-
tion,18 increased 2- to 10-fold in naı̈ve hMSCs cultured
on DMs compared with TCP, with increases in IBSP
correlating with increased DM culture duration
(Figs. 1e and 1f). Similar to SP7, IBSP was also
present at significantly higher levels in naı̈ve hMSCs

cultured on DMs deposited in SM (Fig. 1e) compared
with those deposited in OM (Fig. 1f). Finally, hMSC
proliferation increased significantly when cultured on
DMs deposited over extended time periods and in OM
(data not shown). Culture conditions not specifically
noted in Figs. 1a–h are constant at their median value.

Results from the DOE-based experiments indicated
that hMSC-secreted matrices deposited over longer
durations (15 days) with higher initial seeding densities
(8 9 104 cells/cm2) under higher oxygen tensions (21%
O2) and in SM produce the most effective osteogenic
substrates after decellularization. As verification of
each of these findings would prove cumbersome and to
further explore the efficacy of this model, we per-
formed in-depth analyses of two distinct DMs pre-
dicted to be most effective (DM1) or somewhat less
effective (DM2) at instructing the osteogenic differen-
tiation of naı̈ve hMSCs. DM1 was deposited over
15 days in 21% O2, while DM2 was deposited over
6 days in 5% O2. Both DM1 and DM2 were produced
using initial seeding densities of 8 9 104 cells/cm2 and
cultured in SM.

Characterization of Decellularized Matrices (DMs)

Decellularization of confluent hMSC layers (DM1)
was confirmed by quantification of residual calcein
uptake and DNA present within 12-well plates upon
application of our decellularization protocol. Calcein
uptake was virtually eliminated upon decellularization
(Fig. 2a), with a 98.6% reduction in fluorescence
observed in decellularized wells. Fluorescent micros-
copy images of calcein-treated wells before (Fig. 2c)
and after decellularization (Fig. 2f) confirmed an
apparent reduction in viable cells. Quantification of
soluble DNA present within DM1-coated wells treated
with cell lysis buffer also revealed a 99.9% reduction
upon decellularization (Fig. 2b). Bright field and
scanning electron microscopy were used to image DM1
hMSC cell layers before (Figs. 2d and 2e) and after
decellularization (Figs. 2g and 2h), respectively. These
techniques revealed a visible residual substrate com-
posed in part of both proteins and glycosaminogly-
cans, as determined by staining with coomassie
brilliant blue and Alcian blue (data not shown).

qPCR

We analyzed gene expression of five markers related
to osteogenic differentiation (osterix, Runx2), as well
as bone mineralization and ECM deposition (bone
sialoprotein, osteocalcin, collagen 1a) over 21 days in
hMSCs cultured on DM1, DM2, fibronectin, and
TCP. Osterix expression from hMSCs cultured on
DM1 was significantly higher than all other groups at

TABLE 1. DOE input variables considered and specific
experimental levels tested.

DOE input variables Specific conditions tested

A 3, 9, 15 days

B 5, 13, 21% O2

C 2 9 104, 5 9 104, 8 9 104 cells/cm2

D SM, OM

A culture duration, B oxygen tension, C cell density, D media type.

TABLE 2. Naı̈ve hMSC output responses and input variables
determined to be of significance.

DOE output response

Significant input variables

(p £ 0.05)

SP7 expression A, C, D

RUNX2 expression A, B, A2, B2

IBSP expression A, D, A2

DNA quantification A, D, B2

A culture duration, B oxygen tension, C cell density, D media type,

X linear interaction between output and variable, X2 quadratic

interaction between output and variable.
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7 days, with a roughly 20-fold increase over hMSCs
cultured on TCP, and a 2-fold increase over hMSCs
cultured on DM2 (Fig. 3a). Both DM1 and DM2 were
effective at stimulating osterix expression over the
control surfaces at days 7, 11, and 15. Similar to prior
DOE experimental results obtained during initial
application, increases in RUNX2 expression resulting

from hMSC culture on DM1 and DM2 were more
muted. A roughly 2-fold increase was observed for cells
on DM1 and DM2 over control groups at 7 days, with
RUNX2 expression returning to those present in
hMSCs cultured on TCP by 15 days (Fig. 3b).

Bone sialoprotein (IBSP) mRNA expression in
hMSCs cultured on DM1 was significantly higher than

FIGURE 1. DMs engineered using extended culture duration, higher seeding densities, ambient oxygen tension, and A2P sup-
plemented media appeared most effective at driving naı̈ve hMSC osteogenesis, as determined by 3D surface model graphs
exhibiting the correlation between culture conditions during matrix deposition and the resulting response of naı̈ve hMSCs. (a) SP7
(osterix) expression in SM (21% O2), (b) SP7 expression in OM (21% O2), (c) RUNX2 expression in SM, (d) RUNX2 expression in OM,
(e) IBSP expression in SM, and (f) IBSP expression in OM at 7 days. Data are fold change over expression in hMSCs on TCP.
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all other groups from day 11 through 21, peaking with
a roughly 75-fold increase over TCP controls at
11 days (Fig. 3c). hMSCs cultured on DM2 also
showed a trend for increased IBSP expression over
control groups from day 7 through 21. mRNA
expression of osteocalcin (BGLAP), a common bio-
chemical marker of bone formation,27 exhibited a sig-
nificant increase in hMSCs cultured on DM1-coated
wells over all other groups at days 3, 7, 15, and 21
(Fig. 3d). This expression peaked with a roughly 7-fold
increase over TCP and 2-fold increase over DM2 at
7 days. Finally, collagen 1a expression, an essential
building block of the major organic component of
native bone ECM, was significantly increased in
hMSCs cultured on DM1 compared with all other
groups at 11 days (Fig. 3e).

Alkaline Phosphatase Activity and Calcium Deposition

Quantification of intracellular ALP activity in
hMSCs cultured on DM1, DM2, fibronectin, and TCP

in OM over 21 days revealed a significant increase
within cells cultured onDM1 andDM2 at days 7 and 21
compared to controls (Fig. 4). No discernable differ-
ences in ALP levels were detectable between cells cul-
tured on DM1 and DM2 coated plates with the
exception of a reduction in ALP on DM1 coated plates
on day 3.

Calcium deposition from hMSCs cultured on each
substrate in OM was assayed both quantitatively
and qualitatively over 5 weeks. Quantitative analysis
revealed a significant increase in calcium deposition
from hMSCs cultured on DM1 over all other groups
at weeks 3 and 5, with a roughly 4-fold increase over
control groups at week 3 (Fig. 5a). hMSCs cultured
on DM2 also showed a significant increase in calcium
deposition at week 5. No appreciable calcium depo-
sition was noted after 1 week of hMSC culture, nor
was any detectable calcium present in DM1 or DM2
prior to hMSC seeding. Qualitative analysis of wells
via alizarin red staining also revealed a significant
increase in calcium deposition by hMSCs cultured on
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DM1 (Fig. 5b) over all other groups (Figs. 5c–e) by
3 weeks.

Cell Proliferation, Viability, and Attachment

We detected a significant increase in the prolifera-
tive potential of hMSCs cultured on DM1 over all
other groups at days 4 and 7 (Fig. 6a). hMSCs cultured

on DM2-coated wells also proliferated faster than cells
cultured on control surfaces. Furthermore, we
observed differences in cell viability and metabolism of
hMSCs cultured on the four surfaces. We detected a
significant increase in alamarBlue reduction, an indi-
cator of cell metabolism, from hMSCs cultured on
DM1-coated wells over cells cultured on DM2-coated
wells and TCP at all timepoints (Fig. 6b). hMSCs
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cultured on DM2-coated wells also showed a slight but
significant increase in alamarBlue reduction at days 1
and 7 in comparison to hMSCs cultured on TCP alone.
The ability of each of the four substrates to influence
cell viability under harsh environmental conditions,
such as those faced upon implantation in vivo, was also
examined by total calcein uptake within wells follow-
ing 24 h in a serum-free and hypoxic environment. We
observed significantly greater calcein uptake by
hMSCs cultured on DM1-coated wells compared to
cells cultured in control TCP wells (Fig. 6c).

The capacity of hMSCs to attach to DM1, DM2,
fibronectin, and TCP substrates was assayed by calcein
uptake within the wells at 1 and 4 h post-seeding. After
1 h, only fibronectin-coated wells exhibited a signifi-
cant increase in calcein uptake. However, we detected
significant increases in calcein uptake 4 h post-seeding
for cells on both DM1- and DM2-coated wells com-
pared with TCP wells, and calcein uptake in DM2-
coated wells was increased over fibronectin-coated
wells (Fig. 7).

DISCUSSION

The successful design and implementation of con-
structs that mimic the properties of host tissue repre-
sents a fundamental goal of tissue engineering and
regenerative medicine. Along with the types of cells
present, the ECM is a defining component of each
tissue in the body and therefore should be considered
in the design of culture surfaces and tissue engineered
constructs. Common approaches toward ECM incor-
poration in biomaterial design include (1) the coating
of material surfaces with recombinant ECM proteins
and peptides1,37 and (2) the use of decellularized allo-
genic or xenogenic tissue scaffolding to bridge the tis-
sue defect and influence cellular behavior.2,19 However,
the presentation of individual matrix proteins fails to
capture the complex composition and architecture
found within native ECM, and decellularized tissues
suffer from immunological concerns while also lacking
the reproducibility, availability, and tailorability
available with synthetic materials.3,7,12 Cell-secreted
matrix coatings, such as those studied herein, offer
the complexity of a biologically relevant ECM, while
enabling the potential synergism of an underlying,
highly tunable synthetic backbone.

hMSCs represent a valuable tool for testing our
hypothesis due to their multipotent nature and secre-
tion of large quantities of matrix in culture, presum-
ably depositing transitional matrices associated with
the induced lineages along the way. As the complexity
of environmental variables influencing the composition
of the hMSC-secreted matrix is not fully understood,
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recent studies analyzing the ability of DMs to influence
naı̈ve MSC differentiation have focused on determin-
ing the relevance of various parameters including cul-
ture duration and the presence of soluble osteogenic
cues.26,32 In order to minimize the number of experi-
ments necessary to correlate such conditions with DM

efficacy to modulate cell phenotype while maximizing
experimental returns, we employed a DOE approach
to analyze four conditions associated with hMSC-
matrix deposition. This strategy is invaluable when a
full knowledge of input variables and their effect on
the system as a whole is poorly understood. A response
surface method approach was employed to observe the
curvature of our system response as a result of variable
changes, and a Box–Behnken 3-level factorial design
was chosen in lieu of a typical 5-level central composite
design (CCD), as the more numerous and axial vari-
able levels associated with the CCD are more difficult
to carry out with biological systems. In this instance, a
DOE-based approach allowed for more than a 2-fold
reduction in the number of experimental groups and
5-fold reduction in the number of experimental sam-
ples necessary to perform a complementary, full-fac-
torial designed experiment (n = 3). In the case of 5 or
more variable systems, the reduction in the number of
experimental groups becomes even more pronounced,
allowing for faster optimization of engineered systems,
and in turn, the isolation of those system variables
which have the greatest impact and merit further
study.

The DOE-based approach in our study revealed
unanticipated correlations between conditions under
which hMSC-deposited decellularized matrix coatings
are created and their resulting capacity to direct the
osteogenic differentiation of naı̈ve hMSCs. Previous
studies have examined links between the stage of hMSC
differentiation prior to decellularization and the ability
of the resulting DMs to drive osteogenesis. For exam-
ple, Hoshiba et al.26 demonstrated that an early stage
transitional osteogenic matrix deposited by hMSCs in
2D was most efficient, while Liao et al.32 observed that
a more mature mineralized matrix coating was superior
in a 3D murine cell model. Our data indicate that DMs
deposited by hMSCs cultured in media supplemented
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FIGURE 6. hMSC proliferation and viability are enhanced
when cultured on DM1 compared to culture on DM2 or control
substrates. (a) Total DNA on each substrate at 1, 4, and 7 days
post-seeding. (b) AlamarBlue reduction by hMSCs cultured on
each substrate at 1, 4, and 7 days. (c) Calcein uptake by
hMSCs seeded on each substrate and under environmental
stress for 24 h. #p < 0.05 vs. all groups, �p < 0.05 vs. DM2 and
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with A2P only, and therefore in a comparably undif-
ferentiated state, are more effective at driving hMSC
osteogenesis than those DMs deposited by cells
exposed to standard osteogenic media.

Mineralization of the DM also appeared unneces-
sary to drive naı̈ve cell differentiation, as both DM1
and DM2 did not contain detectable levels of calcium
prior to decellularization yet enhanced osteogenic
differentiation compared to TCP. However, we did
observe that culture duration of hMSCs for up to
15 days facilitated greater matrix deposition and more
effective osteogenic DMs. Matrix deposition beyond
15 days generally resulted in curling at the edges of the
cell layers, producing DMs that failed to completely
adhere to the culture dish and did not fully cover the
culture area. While no significant two-factor interac-
tions were detected in our study, a trend was noted
between culture duration and media type in driving
osterix expression in naı̈ve hMSCs (p = 0.089). The
capacity of culture duration to drive osterix expression
was more pronounced in supplemented media (Fig. 3a)
than osteogenic media (Fig. 3b).

While the results of our study revealed several novel
correlations between DM design and resultant hMSC
phenotype, these findings should not be taken as rigid
guidelines by which all osteogenic DMs should be
engineered. Instead, these findings serve as a proof-
of-principle that a DOE-based approach is a useful
tool in optimizing unique biologically engineered sys-
tems. Differences in our results from previously pub-
lished studies such as those pertaining to matrix
mineralization may be due in part to disparities in the
material surface, dimensionality, cell source, cell pas-
sage number, decellularization technique, and media
type utilized in each study, all of which could affect
DM composition and the outcome of a DOE-based
optimization study.

To further probe the results from our DOE model,
we characterized the osteogenic potential of the DOE-
determined optimal matrix (DM1), as well as a second
matrix (DM2) whose osteogenic potential was pre-
dicted to fall between that of DM1 and our control
substrate TCP. Fibronectin-coated TCP also served as
a single ECM protein-coated control, as fibronectin
has been repeatedly described to influence adhesion,
proliferation, and differentiation of numerous cultured
cell populations.25 Although both DMs were more
effective osteogenic substrates when compared to
control surfaces, DM1 significantly outperformed
DM2 as indicated by increases in the expression of
multiple osteogenic genes, accelerated calcium deposi-
tion, and enhanced proliferative potential. These data
show the power and accuracy of the DOE-based
experimental approach to quickly isolate effective
conditions that optimize multivariable input systems.

The assays and methods chosen in our study were
selected in an attempt to effectively determine the
impact of our substrates on naı̈ve hMSC phenotype.
To quantify osteogenic differentiation, we utilized
qPCR in addition to ALP and calcium quantification.
ALP and calcium are commonly sequestered within
decellularized matrices, thereby making it difficult to
discern whether measurements are indicative of the
newly seeded cells alone or a combination of the cells
and matrix. To address this challenge, we maintained
unseeded control DMs at each time point and sub-
tracted ALP quantities detected in those matrices from
hMSC-seeded DMs. While our qPCR and calcium
data confirmed the impressive osteogenic potential of
our DMs, ALP activity was only slightly higher in
hMSCs cultured on DM1 and DM2 compared to
controls, possibly due to feedback inhibition from
extracellular ALP present in the scaffolds. This prob-
lem was rendered mute in our calcium quantification
assays, as the DMs studied contained no appreciable
calcium prior to seeding with naı̈ve hMSCs.

qPCR results from our study and previous work38

demonstrate that cell-secreted matrix coatings have the
capacity to alter gene expression within progenitor cell
populations. However, the method or methods by
which this occurs are still unclear. Grunert et al.
demonstrated that glycosaminoglycans present in DMs
bind and modulate the efficacy of endogenous induc-
tive factors such as bone morphogenetic protein-2 to
direct hMSC osteogenic fate.22 Growth factors
deposited by cells within the matrix prior to decellu-
larization may therefore play a major role in deter-
mining DM efficacy, with naı̈ve hMSCs likely secreting
a unique array of trophic factors in comparison to cells
found in a transitionally differentiated state.6,24 hMSC
integrin binding ECM protein motifs may also con-
tribute to the DM capacity to instruct cell phenotype.
Previous reports confirm that the decellularization
techniques utilized in our study retain key osteogenic
ECM components upon cell removal,8 and MSC–
ECM protein interactions have been significantly
linked to both MSC potential for in vitro osteogenic
differentiation34 and the pathway by which differenti-
ation occurs.29 The capacity of osteogenic supplements
to influence naı̈ve hMSC differentiation may also be
modulated by DM cell–substrate interactions, as
dexamethasone may not be necessary for the osteo-
genic differentiation of MSCs cultured in mineralized
matrix-coated constructs.32 To date, the mechanism of
action for cell-secreted ECMs to direct cell fate, par-
ticularly with regard to ECM composition, is unclear.
The presence of other components such as residual cell
debris or intracellular proteins that may elicit an
eventual immune response should be investigated more
fully.21 While further characterization of osteogenic

Engineering Matrix-Based Culture Surfaces 1183



DMs and their interactions with progenitor cell pop-
ulations is undoubtedly needed to fully unlock their
mechanism of impact, our novel approach toward
eliciting optimal cell-secreted DM design may help to
better identify the specific DMs which merit such fur-
ther study.

CONCLUSIONS

This study presents a simple but powerful DOE-
based approach for engineering cell-secreted matrix
coatings that can effectively drive the differentiation of
progenitor cell populations toward a desired pheno-
type. This 2D proof-of-principle may serve as an
effective tool toward the development of novel matrix-
coated culture surfaces that ‘‘instruct’’ cell phenotype
or for elucidating ECM-mediated pathways in stem
cell differentiation. In addition, the translation of these
techniques to a 3D model system could potentially
allow for the design of synthetic/natural hybrid bio-
material constructs capable of modulating progenitor
cell behavior following implantation within a tissue
defect site.
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