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Abstract
We consider the following second order differential equation with delay:

{
(Lx)(t)≡ x′′(t) +

∑p
j=1 aj(t)x

′(t – τj(t)) +
∑p

j=1 bj(t)x(t – θj(t)) = f (t), t ∈ [0,ω],

x(tk) = γkx(tk – 0), x′(tk) = δkx′(tk – 0), k = 1, 2, . . . , r.

In this paper we use focal problems to analyze the sign constancy of Green’s
functions.
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1 Introduction
Impulsive equations attract attention of many recognized mathematicians. See, for ex-
ample, the books [–]. The positivity of solutions to the Dirichlet problem was studied
in []. A generalized Dirichlet problem was considered in [–]. Multipoint problems and
problems with integral boundary conditions were considered in [–]. The Dirichlet
problem for impulsive equations with impulses at variable moments was studied in [].
All these works considered impulsive ordinary differential equations.

Let us assume that all trajectories of solutions to a non-impulsive ordinary differential
equation are known. In this case, impulses imply only choosing the trajectory between the
points of impulses, but we stay on the trajectory of a corresponding solution of the non-
impulsive equation between ti and ti+. In the case of an impulsive equation with delay, it
is not true anymore. That is why the properties of delay impulsive equations can be quite
different.

There are only a few results on the positivity of solutions to impulsive differential equa-
tions with delay. Note the results [–] about the positivity of Green’s functions for
boundary value problems for first order delay impulsive equations. Nonoscillation of sec-
ond order delay impulsive differential equation was studied in []. Sturmian comparison
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theory for impulsive second order delay equations was studied in []. The positivity of
Green’s functions for the nth order impulsive delay differential equation was considered in
[]. The idea of construction of Green’s functions for second order impulsive differential
equations was first proposed in []. The use of Green’s functions for auxiliary impul-
sive problems in the study of sign constancy of delay impulsive differential equations was
proposed in [], where a one-point problem was studied. Note also paper [] for focal
problems.

In this paper we use the results for one-point and focal problems in order to obtain
results on the sign constancy for Green’s functions of two-point boundary value problems.

Let us consider the following impulsive equations:

(Lx)(t) ≡ x′′(t) +
p∑

j=

aj(t)x′(t – τj(t)
)

+
p∑

j=

bj(t)x
(
t – θj(t)

)
= f (t), t ∈ [,ω] (.)

x(tk) = γkx(tk – ), x′(tk) = δkx′(tk – ), k = , , . . . , r, (.)

 = t < t < t < · · · < tr < tr+ = ω,

x(ζ ) = , ζ < , (.)

where f , aj, bj : [,ω] → R are summable functions and τj, θj : [,ω] → [, +∞) are mea-
surable functions for j = , , . . . , p. p and r are natural numbers, γk and δk are real positive
numbers.

Let D be a space of functions x : [,ω] → R such that their derivative x′(t) is absolutely
continuous on every interval t ∈ [ti, ti+), i = , . . . , r, x′′ ∈ L∞, there exist the finite limits
x(ti – ) = limt→t–

i
x(t) and x′(ti – ) = limt→t–

i
x′(t) and condition (.) is satisfied at points

ti (i = , . . . , r). We understand solution x as a function x ∈ D satisfying (.)-(.).

Definition . We call [,ω] a semi-nonoscillation interval of (Lx)(t) =  if every nontriv-
ial solution having zero of derivative does not have zero on this interval.

The influence of nonoscillation on sign properties of Green’s functions in the case of
nth order differential equations was found in the known papers [, ]. An extension of
these results on delay differential equations was obtained in [, ]. The importance of a
semi-nonoscillation interval in the case of non-impulsive delay differential equations was
first noted in []. In this paper we develop the use of semi-nonoscillation intervals to
impulsive delay differential equations.

2 Construction of Green’s functions
For equation (.) we consider the following variants of boundary conditions:

x(ω) = , x′(ω) = , (.)

x() = , x′(ω) = , (.)

x′() = , x(ω) = , (.)

x() = , x(ω) = , (.)

x′() = , x′(ω) = . (.)
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Thus boundary conditions (.), (.), (.) are of focal sort, (.) is Dirichlet’s one, (.)
is Neumann’s condition.

We denote by Gi(t, s) Green’s function of problem (.)-(.), (.i) respectively.
It is known from the formula of solutions’ representation for a system of delay impulsive

equations (see [] and []) that the general solution of (.)-(.) can be represented in
the form

x(t) = v(t)x() + C(t, )x′() +
∫ t


C(t, s)f (s) ds, (.)

where C(t, s) is the Cauchy function and v(t) is the solution of the semi-homogenous
problem

⎧⎨
⎩(Lx)(t) = , t ∈ [,ω],

x() = , x′() = .
(.)

C(t, s), as a function of t, for every fixed s, satisfies the equation

x′′(t) +
p∑

j=

aj(t)x′(t – τj(t)
)

+
p∑

j=

bj(t)x
(
t – θj(t)

)
= , t ∈ [s,ω], (.)

x(tk) = γkx(tk – ), x′(tk) = δkx′(tk – ), k = is + , . . . , r, (.)

tis < s < tis+ < · · · < tr < tr+ = ω,

x(ζ ) = x′(ζ ) = , ζ < s, (.)

and the initial conditions C(s, s) = , ∂
∂t C(s, s) = . Note that C(t, s) =  for t < s.

Using this general representation, we can obtain the following formulas of Green’s func-
tions:

G(t, s) = C(t, s) +
h(t, s)

v(ω)C′
t(ω, ) – v′

(ω)C(ω, )
, (.)

where

h(t, s) = C′
t(ω, s)

[
v(t)C(ω, ) – v(ω)C(t, )

]
+ C(ω, s)

[
v′

(ω)C(t, ) – v(t)C′
t(ω, )

]
,

G(t, s) = C(t, s) – C(t, )
C′

t(ω, s)
C′

t(ω, )
, (.)

G(t, s) = C(t, s) – C(ω, s)
v(t)
v(ω)

, (.)

G(t, s) = C(t, s) – C(t, )
C(ω, s)
C(ω, )

. (.)

Let us consider the following homogeneous equation:

(Lx)(t) = , t ∈ [,ω]. (.)
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Lemma . If
() bj(t) ≤ , t ∈ [,ω];
() the Cauchy function C(t, s) of the first order equation

⎧⎪⎪⎨
⎪⎪⎩

y′(t) +
∑p

j= aj(t)y(t – τj(t)) = , t ∈ [,ω],

y(tk) = δky(tk – ), k = , . . . , m,

y(ζ ) = , ζ < ,

(.)

is positive for  ≤ s ≤ t ≤ ω.
Then the Cauchy function C(t, s) of equation (.) and its derivative C′

t(t, s) are positive
in  ≤ s ≤ t ≤ ω.

Proof It follows from the condition C(s, s) = , C′(s, s) =  that there exists εs >  such that
C(t, s) >  and C′

t(t, s) >  for t ∈ (s, s + εs). Let us suppose that there exists a point η such
that C′

t(η, s) = , C′
t(t, s) >  for t ∈ [,η). It is clear that in this case x(t) = C(t, s) satisfies

the equation

x′′(t) +
p∑

j=

aj(t)x′(t – τj(t)
)

= φ(t), t ∈ [s,ω], (.)

where φ(t) = –
∑p

j= bj(t)x(t – θj(t)), t ∈ [s,η]. It follows from the nonnegativity of bj(t) (j =
, . . . , p) and the positivity of x(t) = C(t, s) that φ(t) ≥  for t ∈ [,η].

Let us denote y(t) = x′(t). Then we can write an equation for y(t) in the form

⎧⎪⎪⎨
⎪⎪⎩

y′(t) +
∑p

j= aj(t)y(t – τj(t)) = φ(t), t ∈ [s,ω],

y(tk) = δky(tk – ), k = , . . . , m,

y(ζ ) = , ζ < .

(.)

It is clear that y(s) = . The solution of (.) can be written

y(t) =
∫ t

s
C(t, ζ )φ(ζ ) dζ + C(t, s), (.)

where C(t, s) is the Cauchy function of (.). Now it is clear that

y(η) =
∫ η

s
C(η, ζ )φ(ζ ) dζ + C(η, s) > . (.)

Lemma . has been proven. �

Lemma . If the conditions () and () of Lemma . are fulfilled, then Green’s function
G(t, s) of (.)-(.), (.) exists and there exists an interval (, εs) such that G(t, s) <  for
t ∈ (, εs).

Proof According to Lemma ., we have C′
t(t, s) >  in  ≤ s ≤ t ≤ ω. This implies that

Green’s function G(t, s) of (.), (.), (.), (.), which is defined by (.), exists.
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It is clear that

G(, s) = C(, s) – C(, )
C′

t(ω, s)
C′

t(ω, )
= , (.)

G′
t(, s) = –C′

t(, )
C′

t(ω, s)
C′

t(ω, )
= –

C′
t(ω, s)

C′
t(ω, )

< . (.)

It means from (.) that there exists an interval (, εs) such that G(t, s) <  for t ∈ (, εs).
Lemma . has been proven. �

Lemma . If the conditions () and () of Lemma . are fulfilled, then Green’s function
G(t, s) of (.)-(.), (.) exists and there exists an interval (, εs) such that G(t, s) <  for
t ∈ (, εs).

Proof It follows from the condition v() = , v′
() = , where v(t) is a solution of problem

(.), that there exists ε >  such that v(t) >  for t ∈ (, ε). Let us suppose that there exists
a point η such that v′

(η) = , v′
(t) >  for t ∈ [,η). It is clear that in this case x(t) = v(t)

satisfies the equation

x′′(t) +
p∑

j=

aj(t)x′(t – τj(t)
)

= φ(t), t ∈ [s,ω], (.)

where φ(t) = –
∑p

j= bj(t)x(t – θj(t)), t ∈ [s,η]. It follows from the nonnegativity of bj(t) (j =
, . . . , p) and the positivity of x(t) = v(t) that φ(t) ≥  for t ∈ [,η].

Let us denote y(t) = x′(t). Then we can write an equation for y(t) in the form

⎧⎪⎪⎨
⎪⎪⎩

y′(t) +
∑p

j= aj(t)y(t – τj(t)) = φ(t), t ∈ [s,ω],

y(tk) = δky(tk – ), k = , . . . , m,

y(ζ ) = , ζ < .

(.)

It is clear that y(s) = . The solution of (.) can be written

y(t) =
∫ t

s
C(t, ζ )φ(ζ ) dζ , (.)

where C(t, s) is the Cauchy function of (.). Now, from the positivity of C(t, ζ ), it is
clear that

y(η) =
∫ η

s
C(η, ζ )φ(ζ ) dζ > . (.)

It means that v′
(η) = y(η) > . Now it is clear that v(t) >  for t ∈ [,ω]. It means that

there is no nontrivial solution to the problem (Lx)(t) = , x′() = , x(ω) = . If there is no
nontrivial solution of the problem, then Green’s function of (.)-(.), (.) exists and

G(, s) = C(, s) – C(ω, s)
v()
v(ω)

= –
C(ω, s)
v(ω)

< . (.)

Lemma . has been proven. �
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Lemma . If the conditions () and () of Lemma . are fulfilled, then Green’s function
G(t, s) of (.)-(.), (.) exists and there exists an interval (, εs) such that G(t, s) <  for
t ∈ (, εs).

Proof Let us demonstrate that the problem (Lx)(t) = , x() = , x(ω) =  has only the triv-
ial solution. If there exists a nontrivial solution of this problem, it is proportional to C(t, ).
According to Lemma ., C(t, ) >  for t ∈ (,ω]. It means that x(ω) = C(ω, ) > . That
contradicts the assumption x(ω) = .

Let us take a look at G(, s) and G′
t(, s)

G(, s) = –C(, )
C(ω, s)
C(ω, )

= , (.)

G′
t(, s) = –C′

t(, )
C(ω, s)
C(ω, )

= –
C(ω, s)
C(ω, )

< , (.)

since C(t, s) is positive. It means that there exists an interval (, εs) such that G(t, s) < 
for t ∈ (, εs).

Lemma . has been proven. �

3 Sign constancy of Green’s functions
In this section we will prove the sign constancy of Green’s functions G(t, s) and G(t, s)
using the results from [] and [] about the sign constancy of G(t, s), G(t, s) and G(t, s).

Theorem . Assume that the following conditions are fulfilled:
() Gξ

 (t, s) ≥ , t, s ∈ [, ξ ] for every  < ξ < ω.
() [,ω] is a semi-nonoscillation interval of (Lx)(t) = .
() bj(t) ≤ , t ∈ [,ω].
() The Cauchy function C(t, s) of the first order equation (.) is positive for

 ≤ s ≤ t ≤ ω.
Then G(t, s) ≤ , G(t, s) ≤ , G(t, s) ≤  for t, s ∈ [,ω] and under the additional con-

dition
∑p

j= bj(t)χ (t – θj(t)) 	≡ , t ∈ [,ω], where

χ (t, s) =

⎧⎨
⎩, t ≥ s,

, t < s,
(.)

we have also G(t, s) ≤  for t, s ∈ [,ω].

Proof Let us start with problem (.)-(.), (.). According to Lemma ., there exists
a unique solution for every summable f (t). Let us assume that G(t, s) changes sign. It
means that there exists a function f (t) ≥  such that the solution x(t) changes sign. Then
there is a point  < ξ < ω such that x(ξ ) >  and x′(ξ ) =  (see Figure ). From condition ,
we know that Green’s function for this problem Gξ

 (t, s) is nonnegative. Then x(t) ≥  for
t ∈ [, ξ ]. But, according to Lemma ., x(t) <  for t which are close to . This contraction
demonstrates that the solution x(t) cannot change its sign for nonnegative f (t). This proves
that G(t, s) should be nonpositive.

Let us now consider problem (.)-(.), (.). According to Lemma ., there exists a
unique solution for every summable f (t). Let us assume that G(t, s) changes sign. It means
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Figure 1 x(t).

Figure 2 x(t).

Figure 3 x(t).

that there exists a function f (t) ≥  such that the solution x(t) changes sign. Then there
is a point  < ξ < ω such that x(ξ ) >  and x′(ξ ) =  (see Figure ). From condition , we
know that Green’s function for this problem Gξ

 (t, s) is nonnegative. Then x(t) ≥  for t ∈
[, ξ ]. But, according to Lemma ., x(t) <  for t which are close to . This contraction
demonstrates that the solution x(t) cannot change its sign for nonnegative f (t). This proves
that G(t, s) should be nonpositive.

Let us now consider problem (.)-(.), (.). According to Lemma ., there exists
a unique solution for every summable f (t). Let us assume that G(t, s) changes sign. It
means that there exists a function f (t) ≥  such that the solution x(t) changes sign. Then
there is a point  < ξ < ω such that x(ξ ) >  and x′(ξ ) =  (see Figure ). From condition ,
we know that Green’s function for this problem Gξ

 (t, s) is nonnegative. Then x(t) ≥  for
t ∈ [, ξ ]. But, according to Lemma ., x(t) <  for t which are close to . This contraction
demonstrates that the solution x(t) cannot change its sign for nonnegative f (t). This proves
that G(t, s) should be nonpositive.
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Let us now consider problem (.)-(.), (.). The condition

p∑
j=

bj(t)χ
(
t – θj(t)

) 	≡  (.)

means that bj(t)χ (t –θj(t)) <  on the set of positive measure. Let us prove the nonpositivity
of Green’s function G(t, s) step by step.

Step . Let us suppose that there is a solution of (Lx)(t) = f (t), t ∈ [,ω], x′() = x′(ω) = 
with nonnegative f (t) ≥ , f (t) 	≡  such that x(t) ≥ . It is clear that this x(t) satisfies the
equation

x′′(t) +
p∑

j=

aj(t)x′(t – τj(t)
)

= φ(t), t ∈ [,ω], (.)

where φ(t) = f (t) –
∑p

j= bj(t)x(t – θj(t)). It is clear that φ(t) ≥  and from the fact∑p
j= bj(t)χ (t – θj(t)) <  on the set of positive measure, we have φ(t) >  for t ∈ [,ω].
Let us denote y(t) = x′(t). Then we can write an equation for y(t) in the form

⎧⎨
⎩y′(t) +

∑p
j= aj(t)y(t – τj(t)) = φ(t), t ∈ [,ω],

y(ζ ) = , ζ < .
(.)

It is clear that y() = . The solution of (.) can be written

y(t) =
∫ t


C(t, s)φ(s) ds, (.)

where C(t, s) is the Cauchy function of (.). It follows that C(t, s) >  from []. Now it
is clear that

y(ω) =
∫ ω


C(t, s)φ(s) ds > , (.)

and x′(ω) = y(ω) > . This demonstrates that the case x(t) >  for f (t) ≥ , f (t) 	≡  is im-
possible.

Step . Let us assume that there exists a solution x(t) changing sign on [,ω] for non-
negative f (t). We have to consider two cases: the solution x(t) changes sign first time from
positive to negative; and the solution x(t) changes sign first from negative to positive.

In the first case, we have a point η such that x(η) = . It means that our function x(t)
satisfies the problem (Lx)(t) = f (t), x′() = , x(η) = . We have proven above that G(t, s) ≤
 and this excludes the possibility of x(t) >  for t ∈ [,η).

In the second case, we have a point ξ such that
⎧⎨
⎩(Lx)(t) = f (t), t ∈ [,ω],

x(ξ ) = α > , x′(ξ ) = ,
(.)

and the condition Gξ
 (t, s) ≥  implies that x(t) > . We proved in Step  that the situation

x(t) >  is impossible. Then G(t, s) ≤  for t, s ∈ [,ω].
Theorem . has been proven. �
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Theorem . Assume that aj ≥ , bj ≤  for j = , . . . , p,  < γk ≤ ,  < δk ≤  for k = , . . . , r,
and there exists a function v ∈ D and ε >  such that

(Lv)(t) ≥ ε > , v(t) > , v′(t) < , v′′(t) > , t ∈ (,ω), (.)

where the differential operator L is defined by (.). And let [,ω] be a semi-nonoscillation
interval of (Lx)(t) = . Then Green’s functions G(t, s), G(t, s), G(t, s) satisfy the in-
equalities G(t, s) ≤ , G(t, s) ≤ , G(t, s) ≤ , (t, s) ∈ [,ω] × [,ω]. If, in addition,∑p

j= bj(t)χ (t – θj(t)) 	≡ , t ∈ [,ω], then G(t, s) ≤ , (t, s) ∈ [,ω] × [,ω].

Proof It is clear that all the conditions of assertion () of Theorem . from [] are ful-
filled. According to this theorem, Gξ

 (t, s) ≥  for every t, s ∈ (,ω) and every  < ξ < ω. Us-
ing Theorem . above, we obtain that G(t, s) ≤ , G(t, s) ≤ , G(t, s) ≤  for t, s ∈ [,ω].
If, in addition,

∑p
j= bj(t)χ (t – θj(t)) 	≡ , t ∈ [,ω], then it follows that G(t, s) ≤  for

t, s ∈ [,ω].
Theorem . has been proven. �

Theorem . Assume that the following conditions are fulfilled:
() Gξ

(t, s) ≤ , t, s ∈ [, ξ ] for every  < ξ < ω.
() [,ω] is a semi-nonoscillation interval of (Lx)(t) = .

Then G(t, s) ≤  for t, s ∈ [,ω].

Proof Let us consider problem (.)-(.), (.). According to Lemma ., there exists a
unique solution for every summable f (t). Let us assume that G(t, s) changes sign. It means
that there exists a function f (t) ≥  such that the solution x(t) changes sign from negative
to positive according to Lemma .. Then there is a point  < ξ < ω such that x(ξ ) = α >
 and x′(ξ ) =  (see Figure ). From condition , we know that Green’s function for this
problem, Gξ

(t, s) is nonpositive. From condition , it follows that the solution of problem
(Lx)(t) = , x(ξ ) = α > , x′(ξ ) =  is positive for t ∈ (, ξ ]. Then x(t) ≤  for t ∈ [, ξ ]. This
contradicts Lemma ., which claims that x(t) can change its sign only from negative to
positive for nonnegative f (t). Then G(t, s) should be nonpositive.

Theorem . has been proven. �

Theorem . Assume that aj ≥ , bj ≥  for j = , . . . , p,  ≤ γk ,  ≤ δk , for k = , . . . , r, and
there exists a function v ∈ D and ε >  such that

(Lv)(t) ≤ –ε < , v(t) > , v′(t) > , v′′(t) < , t ∈ (,ω), (.)

where the differential operator L is defined by (.). And let [,ω] be a semi-nonoscillation
interval of (Lx)(t) = . Then Green’s function G(t, s) of (.)-(.), (.) satisfies the in-
equality G(t, s) ≤ , (t, s) ∈ [,ω] × [,ω].

Proof Looking at Theorem . from [], we can see that the problem satisfies all of the
conditions. Then G(t, s) ≤  for every t, s ∈ (,ω). Using Theorem . above, we obtain
that G(t, s) ≤  for t, s ∈ [,ω].

Theorem . has been proven. �



Domoshnitsky and Landsman Advances in Difference Equations  (2017) 2017:81 Page 10 of 14

Example . Let us now find an example of a function v satisfying the condition of The-
orem .. To this end, let us start with v(t) = e–αt in the interval t ∈ [, t). The function v
in the rest of the intervals will be of the form

v(t) = cie–αait , t ∈ [ti, ti+), (.)

where
⎧⎨
⎩v(ti) = γiv(ti – ),

v′(ti) = δiv′(ti – ).
(.)

After some calculations, we get that v is of the form

⎧⎪⎨
⎪⎩

v(t) = e–αt , t ∈ [, t),

v(t) =
∏i

j= γje
–α

∏i
j= δj∏i
j= γj

t
, t ∈ [ti, ti+).

(.)

For the next theorems, we use the following notation:

E = min
i=,,...,r

∏i
j= δj∏i
j= γj

, (.)

� = max
t∈[,ω]

max
i=,,...,r

θj(t), (.)

T = max
t∈[,ω]

max
i=,,...,r

τj(t) (.)

� = max {T,�}. (.)

Theorem . If aj ≥ , bj ≤ ,  < γi < δi ≤ , j = , . . . , r, and


� e– >


�

esssup
t∈[,ω]

p∑
j=

∣∣aj(t)
∣∣ + esssup

t∈[,ω]

p∑
j=

∣∣bj(t)
∣∣, (.)

then Green’s functions G(t, s), G(t, s) and G(t, s) are nonnegative.

Proof Let us substitute this v(t), defined by (.), into the condition of Theorem .

α (
∏i

j= δj)

(
∏i

j= γj)
– α

∏i
j= δj∏i
j= γj

esssup
t∈[,ω]

p∑
j=

∣∣aj(t)
∣∣eα

∏i
j= δj∏i
j= γj

τj(t)

– esssup
t∈[,ω]

p∑
j=

∣∣bj(t)
∣∣eα

∏i
j= δj∏i
j= γj

θj(t)
> .

(.)

Thus

αEe–αE� > αE esssup
t∈[,ω]

p∑
j=

∣∣aj(t)
∣∣ + esssup

t∈[,ω]

p∑
j=

∣∣bj(t)
∣∣, (.)
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where � is defined by (.). Denoting F(α) = αEe–αE�, we can find its maximum using
the derivative

F ′(α) =
(
αe–αE� – αE�e–αE�

)
E = α( – E�α)e–αE�E, (.)

and we get that α = 
E�

is a point of maximum. Substituting this α into (.), we see that
(.) implies, according to Theorem ., the nonnegativity of P(t, s).

Theorem . has been proven. �

In the particular case aj(t) = , j = , . . . , p, we have

Corollary . If bj ≤ ,  < γi < δi ≤ , j = , . . . , r, and


� e– > esssup

t∈[,ω]

p∑
j=

∣∣bj(t)
∣∣, (.)

then Green’s functions G(t, s), G(t, s) and G(t, s) are nonnegative.

Theorem . If aj ≥ , bj ≤ ,  < δi ≤ γi ≤ , j = , . . . , r, and

E

� e– >
E
�

esssup
t∈[,ω]

p∑
j=

∣∣aj(t)
∣∣ + esssup

t∈[,ω]

p∑
j=

∣∣bj(t)
∣∣, (.)

then Green’s functions G(t, s), G(t, s) and G(t, s) are nonnegative.

Proof Let us substitute this v(t), defined by (.), into the condition of Theorem .

α (
∏i

j= δj)

(
∏i

j= γj)
– α

∏i
j= δj∏i
j= γj

esssup
t∈[,ω]

p∑
j=

∣∣aj(t)
∣∣eατj(t)

– esssup
t∈[,ω]

p∑
j=

∣∣bj(t)
∣∣eαθj(t) > .

(.)

Thus

αEe–α� > αE esssup
t∈[,ω]

p∑
j=

∣∣aj(t)
∣∣ + esssup

t∈[,ω]

p∑
j=

∣∣bj(t)
∣∣, (.)

where � is defined by (.). Denoting F(α) = αEe–α�, we can find its maximum using
the derivative

F ′(α) =
(
αe–α� – α�e–α�

)
E = α( – �α)e–α�E, (.)

and we get that α = 
�

is a point of maximum. Substituting this α into (.), we see that
(.) implies, according to Theorem ., the nonnegativity of G(t, s), G(t, s) and G(t, s).

Theorem . has been proven. �
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Theorem . Assume that

ω


esssup

p∑
j=

∣∣aj(t)
∣∣ + ω esssup

p∑
j=

∣∣bj(t)
∣∣ < . (.)

Then [,ω] is a semi-nonoscillation interval.

Example . Let us now find an example of a function v satisfying the condition of The-
orem .. To this end, let us start with v(t) = t(ω – t) in the interval t ∈ [, t), where ε is
a small positive constant. The function v in the rest of the intervals will be of the form

v(t) = v(ti) + v′(ti)(t – ti) – (t – ti), t ∈ [ti, ti+), i = , . . . , r, tr+ = ω, (.)

where
⎧⎨
⎩v(ti) = γiv(ti – ),

v′(ti) = δiv′(ti – ).
(.)

Thus
⎧⎨
⎩v(t) = t(ω – t), t ∈ [, t),

v(t) = v(ti) + v′(ti)(t – ti) – (t – ti), t ∈ [ti, ti+),
(.)

where v(ti) and v′(ti) can be presented in the forms

⎧⎪⎪⎨
⎪⎪⎩

v(ti) = t(ω – t)
∏i

j= γj +
∑i

k= v′(tk)(tk – tk–)
∏i

j=k γj

–
∑i

k= (tk – tk–) ∏i
j=k γj,

v′(ti) = (ω – t)
∏i

j= δj – 
∑i

k= (tk – tk–)
∏i

j=k δj.

(.)

Let us assume that v(t) >  and substitute this v(t) into condition (.) of Theorem ..
For the next corollary, we use the following notation:

� = max
i=,,...,r

[
v′(ti) – ti

]
, (.)

� = max

[
max

i=,,...,r
v
(

v′(ti)


+ ti

)
, max

i=,,...,r
v(ti)

]
, (.)

where v(tr+) = v(ω).

Corollary . If aj ≥ , bj ≥ ,  ≤ γk ,  ≤ δk , j = , . . . , p, v(t) defined by (.) is positive
for t ∈ (,ω) and

�

p∑
j=

aj(t) + �

p∑
j=

bj(t) < , (.)

then Green’s function G(t, s) of problem (.)-(.), (.) is nonpositive.
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Proof Let us substitute this v(t), defined by (.), into the assertion of Theorem .

– +
p∑

i=

ai(t) max
i=,,...,r

[
v′(ti) – ti

]

+
p∑

i=

bi(t) max

[
max

i=,,...,r
v
(

v′(ti)


+ ti

)
, max

i=,,...,r
v(ti)

]
< , (.)

and we get the condition

�

p∑
j=

aj(t) + �

p∑
j=

bj(t) < . (.)
�
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