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1 Introduction and summary

It is difficult to assign a precise mathematical meaning for the concept of integrability in

Quantum Field Theory. A naive intuition goes back to Liouville of the 19th century and

suggests an existence of a sufficiently large set of mutually commuting operators whose

joint spectra fully specify stationary states of the quantum system. For deeper insights,

it is useful to consider 2D Conformal Field Theory (CFT), where significant simplifica-

tions occur due to the presence of an infinite dimensional algebra of (extended) conformal

symmetry [1]. For a finite-size 2D CFT (with the spatial coordinate compactified on a

circle of the circumference R), a mathematically satisfactory construction of an infinite set

of mutually commuting local Integrals of Motion (IM) can be given and the simultane-

ous diagonalization of these operators turns out to be a well-defined problem within the

representation theory of the associated conformal algebra.

Different conformal algebras, as well as different sets of mutually commuting local IM

yield a variety of integrable structures in CFT. The series of works [2–4] was dedicated

to the simplest of these structures, associated with the diagonalization of the local IM

from the quantum KdV hierarchy [5–8]. Subsequent studies of this problem culminated

in a rather surprising link between the integrable structures of CFT and spectral theory

of Ordinary Differential Equations (ODE) [9–11]. In particular, in [11] a one-to-one corre-

spondence was conjectured between the joint eigenbasis of the IM from the quantum KdV

hierarchy and a certain class of differential operators of the second order −∂2z +VL(z), with
singular potentials VL(z) (“monster” potentials in terminology of [11]). Apart from a reg-

ular singularity at z = 0 and an irregular singular point at z = ∞, the monster potentials

possess L regular singular points {xa}La=1. These potentials are not of much immediate

interest in quantum mechanics, but arise rather naturally in the context of the theory of

isomonodromic deformations. Solutions of the corresponding Schrödinger equations are

single valued (monodromy-free) at z = xa and their monodromy properties turn out to be

similar to that of the radial wave functions for the three-dimensional isotropic anharmonic

oscillator. The monodromy-free condition was formulated in a form of the system of L

algebraic equations imposed on the set {xa}La=1.
1 The correspondence proposed in [11]

precisely relates the set of monster potentials VL(z) and the joint eigenbasis for all quan-

tum KdV integrals of motion in the level L subspace of the highest weight representation

of the Virasoro algebra. In particular, this implies that a number of the potentials VL(z)

for a given value of L exactly coincides with a number of partitions p1(L) of the integer L

into parts of one kind.

1An alternative, but equivalent form of the monodromy-free condition was given in [12, 13].
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Since 1998, the link to the spectral theory of ODE have been extended to a large variety

of integrable CFT structures (for review, see [14]), so that a natural question has emerged on

whether a similar relation exist for massive integrable QFT. This question remained more

or less dormant until the work [15], after which the so-called thermodynamic Bethe Ansatz

equations have started to appear in different contexts of SUSY gauge theories [16–19].

These remarkable developments have led to the work [20], which established a link between

eigenvalues of IM in the vacuum sector of the massive sine/sinh-Gordon model and some

new spectral problem generalizing the one from [9, 10].

This work is aimed to extend the results of [11, 20] and provide an explicit example of

the correspondence between stationary states of massive integrable QFT in a finite volume

and singular differential operators of a certain class. At first glance, the best candidate

for this purpose should be the sine-Gordon model, which always served as a basis for

the development of integrable QFT. However, in spite of some technical complexity, a

more general model introduced by Fateev [21] (which contains the sine-Gordon model as

a particular case) turned out to be more appropriate for this task. The situation here

is analogous to that in the Painlevé theory. Even though the Painlevé VI is the most

complicated and general equation in the Painlevé classification, geometric structures behind

this equation are much more transparent than those related to its degenerations. From this

point of view, the fact that the sine-Gordon model is a certain degeneration of the Fateev

model, could be understood as a QFT version of the relationship between the Painlevé VI

and a particular case of Painlevé III.

The organization of this paper is as follows. In section 2 we introduce the notion

of Generalized Hypergeometric Opers (GHO’s) — a special class of Fuchsian differential

operators of the second order

D = −∂2z + TL(z) (1.1)

with 3+L regular singular points at z = z1, z2, z3 and z = x1, . . . xL. The variable z can be

regarded as a complex coordinate on the Riemann sphere with 3+L punctures. Projective

transformations of z allows one to send the three points zi to any designated positions. At

the same time other parameters of GHO are chosen in such a way that the remaining L

regular singular points satisfy the monodromy-free condition. Therefore, the monodromy

properties of GHO for L > 0 turn out to be similar to those for L = 0 (i.e. the ordinary

hypergeometric differential operator of the second order). The complex numbers {xa} can

be thought as local coordinates in the L-dimensional moduli space of GHO’s.

In section 3 we consider more general differential operators, which inherit the

monodromy-free property of GHO’s. We call them the Perturbed Generalized Hyper-

geometric Opers (PGHO’s). These operators have the form

D(λ) = −∂2z + TL(z) + λ2 P(z) , (1.2)

where

P(z) =
(z3 − z2)

a1 (z1 − z3)
a2 (z2 − z1)

a3

(z − z1)2−a1(z − z2)2−a2(z − z3)2−a3
(1.3)

– 2 –
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and the parameters 0 < ai < 2 satisfy the constraint

a1 + a2 + a3 = 2 . (1.4)

Due to the last relation the quantity P(z)(dz)2 transforms as a quadratic differential under

PSL(2,C) transformations and the points z1, z2, z3 on the Riemann sphere can still be sent

to any given positions. In the presence of “perturbation” the monodromy properties of the

operators (1.2) are changed dramatically in comparison with λ = 0 case. However, one

can still find positions of the punctures x1, . . . xL, so that they remain monodromy-free

singular points for any values of λ. In this case the coordinates {xi}Li=1 obey a system of L

algebraic equations similar to that from [11–13]. Therefore, the moduli space of the PGHO’s

constitute a finite discrete subset A(L) in the moduli space of GHO’s.2 It appears that, for

a given L, the cardinality of A(L) coincides with a number of partitions p3(L) of the integer

L into parts of three kinds. In sections 4–6 we interpret this fact in the spirit of [11] and

present arguments in support of existence of a one-to-one correspondence between elements

of A(L) and the level-L common eigenbasis of the local IM in the integrable hierarchy

introduced by Fateev in [21]. The arguments closely follow the line of [2–4, 10, 11] adapted

to the algebra of extended conformal symmetry, which can be regarded as a quantum

Hamiltonian reduction of the exceptional affine superalgebra D̂(2, 1;α) [22] (the “corner-

brane” W -algebra, in terminology of [23]).

The generalization of the above constructions to the case of massive QFT is given in

sections 7–9. It is based on the idea from [20], which was inspired by the works [16–19]. As

far as our attention has been confined to the case of CFT, there was no need to separately

consider the antiholomorphic PGHO, D̄(λ̄) = −∂2z̄ + T̄L̄(z̄) + λ̄2 P̄(z̄), since there is only a

nomenclature difference between the holomorphic and antiholomorphic cases. In massive

QFT, following [20], one should substitute the pair of PGHO’s (D(λ), D̄(λ̄)) by a pair of

(2× 2)-matrix valued differential operators

D(λ) = ∂z −Az , D̄(λ̄) = ∂z̄ −Az̄ (1.5)

with

Az = −1
2 ∂zη σ3 + σ+ e+η + σ− λ2 P(z) e−η

Az̄ = +1
2 ∂z̄η σ3 + σ− e+η + σ+ λ̄

2 P̄(z̄) e−η ,
(1.6)

where σ3, σ± = (σ1 ± iσ2)/2 are the standard Pauli matrices. In fact, (Az, Az̄) forms an

sl(2) connection whose flatness is a necessary condition for the existence of solution of the

linear problem

D(λ)Ψ = 0 , D̄(λ̄)Ψ = 0 . (1.7)

2To the best of our knowledge, the PGHO for L = 0 was originally introduced (up to change of variables)

in the unpublished work (2001) of A. B. Zamolodchikov and the second author (see also [23]). Its particular

cases were studied in a series of works on integrable models of boundary interactions [24–26]. For L > 0,

the PGHO’s appeared in the work [13].
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The zero-curvature condition leads to the Modified Sinh-Gordon equation (MShG):3

∂z∂z̄η − e2η + ρ4 P(z)P̄(z̄) e−2η = 0 , ρ2 = λλ̄ . (1.8)

We consider a particular class of singular solutions of this equation, distinguished by spe-

cial monodromy properties of the associated linear problem (1.7). The set of constraints

imposed on these solutions is discussed in section 7. In summary, e−η should be a smooth,

single valued complex function without zeroes on the Riemann sphere with 3+L+ L̄ punc-

tures. Since z = ∞ is assumed to be a regular point on the sphere, then

e−η ∼ |z|2 as |z| → ∞ . (1.9)

At the same time, e−η develops a singular behavior at z = zi,

e−η ∼ |z − zi|−2mi as |z − zi| → 0 (i = 1, 2, 3) , (1.10)

and also at z = xa and z̄ = ȳb

e−η ∼ z̄ − x̄a
z − xa

(a = 1, . . . L)

e−η ∼ z − yb
z̄ − ȳb

(b = 1, . . . L̄) . (1.11)

The arbitrary parameters mi in the asymptotic formulae (1.10) should be restricted to the

domains4

−1
2 ≤ mi ≤ −1

4 (2− ai) , (1.12)

whereas positions of the punctures (1.11) are constrained by a certain monodromy-free

condition. The latter is now understood as a requirement that e±
1
2
ησ3 Ψ (where Ψ is a

general solution of the auxiliary linear problem (1.7)) is single-valued in the neighborhood

of the punctures z = xa (a = 1, . . . L) and z̄ = ȳb (b = 1, . . . L̄). Following the consideration

from [13], the monodromy-free condition can be transformed into a set of L+ L̄ constraints

imposed on the regular part of local expansions of (∂zη, ∂z̄η) at the monodromy-free

punctures:

∂zη =
1

z − xa
+

1

2
γa + o(1) (1.13)

∂z̄η = − 1

z̄ − x̄a
+ o(1) (a = 1, . . . L)

and

∂z̄η =
1

z̄ − ȳb
+

1

2
γ̄b + o(1) (1.14)

∂zη = − 1

z − yb
+ o(1) (b = 1, . . . L̄) ,

3It’s worth noting that the MShG equation is well known in differential geometry as a particular case of

the Gauss-Peterson-Codazzi equation (see e.g. review [27] and references therein).
4At mi =

1
2
, 1

4
(2−ai) the leading asymptotic (1.10) involves logarithms. Here we ignore such subtleties.

– 4 –
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Figure 1. The Pochhammer loop on the Riemann sphere.

where γa = ∂z logP(z)|z=xa , γ̄b = ∂z̄ log P̄(z̄)|z̄=ȳb . We expect that as far as positions

of the punctures zi are fixed, the triple m = (m1,m2,m3) (1.12) and the pair (L, L̄) are

chosen, the MShG equation possesses a finite set A(L,L̄)
m of solutions satisfying all the above

requirements. We can now define the moduli spaceAm which is the union of such finite sets:

Am = ∪∞
L,L̄

A(L,L̄)
m . (1.15)

Notice that, to a certain extent, Am can be regarded as a Hitchin moduli space [28].5

An essential ingredient of the formal theory of the partial differential equation (1.8)

is the existence of an infinite hierarchy of one-forms, which are closed by virtue of the

equation (1.8) itself. In the case under consideration this formal property leads to the

existence of an infinite set of conserved charges {q2n−1, q̄2n−1}∞n=1, which can be used

to characterize the elements of the moduli space Am. The proof of this statement goes

along the following lines. It easy to see that the flat connection A = Az dz +Az̄ dz̄ (1.6)

associated with an element of Am is not single-valued on the punctured sphere. However,

it does return to the original value after a continuation along the Pochhammer loop — the

contour γP depicted in figure 1. Therefore one can consider the Wilson loop

W = Tr

[
P exp

(∮

γP

A
)]

, (1.16)

whose definition does not depend on the precise shape of the integration contour. In

particular, it is not sensitive to deformations of γP which sweep through the monodromy-

free punctures. By construction the Wilson loop is an entire function of the spectral

parameter θ,

λ = ρ eθ , λ̄ = ρ e−θ . (1.17)

5In the original formulation the Hitchin moduli space deals with non-singular connections on a principal

G-bundle over a Riemann surface. Here we allow singularities of a certain type, so that the corresponding

moduli space is discrete and rather non-trivial even for the sl(2)-connections over 2-sphere.

– 5 –
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Furthermore, since the shift of the argument θ 7→ θ + iπ does not affect the connection

A, the Wilson loop W = W (θ) is a periodic function of the period iπ. The textbook

calculation [29] yields the following asymptotic expansions:

logW ≍
{
−q0 ρeθ +

∑∞
n=1 cn q2n−1 e−(2n−1)θ as ℜe(θ) → +∞, |ℑm(θ)| < π

2

−q0 ρe−θ +
∑∞

n=1 cn q̄2n−1 e(2n−1)θ as ℜe(θ) → −∞, |ℑm(θ)| < π
2

. (1.18)

Here q0 = − 4π2
∏3

i=1 Γ(1−
ai
2
)
, whereas cn = (−1)n

2n!

Γ(n− 1
2
)√

π
stand for the constants that set a

conventional multiplicative normalization (see eqs. (7.13)–(7.16) below) for the conserved

charges {q2n−1, q̄2n−1}∞n=1.

The main result of this work is presented in section 8, where we conjecture a correspon-

dence between elements of the moduli space Am (1.15) and a subset H(0)
k of the stationary

states of the Fateev model in a finite volume. To describe H(0)
k explicitly, let us recall some

basic facts about the model. The Fateev model is governed by the following Lagrangian in

1 + 1 Minkowski space

L =
1

16π

3∑

i=1

(
(∂tϕi)

2 − (∂xϕi)
2
)

(1.19)

+2µ
(
eiα3ϕ3 cos(α1ϕ1 + α2ϕ2) + e−iα3ϕ3 cos(α1ϕ1 − α2ϕ2)

)

for the three scalar fields ϕi = ϕi(x, t). Here αi are coupling constants satisfying the

constraint

α2
1 + α2

2 + α2
3 =

1

2
. (1.20)

In this work we focus on the case where α2
i > 0. The parameter µ in the Lagrangian sets

the mass scale, µ ∼ [ mass ]. We will consider the theory in a finite-size geometry (where

the spatial coordinate x compactified on a circle of circumference R) with the periodic

boundary conditions

ϕi(x+R, t) = ϕi(x, t) . (1.21)

Due to the periodicity of the potential term in (1.19) in ϕi, the space of states H splits

on the orthogonal subspaces Hk1,k2,k3 := Hk characterized by the three “quasimomenta”

ki ∈
[
−1

2 ,
1
2

]
:

ϕi 7→ ϕi + 2π/αi : |Ψk 〉 7→ e2πiki |Ψk 〉 , |Ψk 〉 ∈ Hk . (1.22)

Similar to the quantum mechanical problem of a particle in a periodic potential, the sub-

spaces Hk possess the band structure; they split into discrete components labeled by three

integers:

Hk = ⊕n1,n2,n3∈ZH
(n1,n2,n3)
k . (1.23)

– 6 –
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The QFT (1.19) is integrable, in particular, it has an infinite set of commuting local

integrals of motion I
(+)
2n−1, I

(−)
2n−1, with 2n = 2, 4, 6, . . . being the Lorentz spins of the

associated local densities [21]:

I
(±)
2n−1 =

∫ R

0

dx

2π

[ ∑

i+j+k=n

C
(n)
ijk (∂±ϕ1)

2i (∂±ϕ2)
2j (∂±ϕ3)

2k + . . .
]
, (1.24)

where ∂± = 1
2(∂x ∓ ∂t) and . . . stand for the terms involving higher derivatives of ϕi, as

well as the terms proportional to powers of µ. The constant C
(n)
ijk was found in [23]

C
(n)
ijk =

n!

i! j! k!

(
2α2

1(1− 2n)
)
n−i

(
2α2

2 (1− 2n)
)
n−j

(
2α2

3 (1− 2n)
)
n−k

(2n− 1)3 (4α2
1)

1−i (4α2
2)

1−j (4α2
3)

1−k
, (1.25)

where (x)n stands for the Pochhammer symbol. Note, that the displayed terms in (1.24)

with C
(n)
ijk given by (1.25) define the normalization of I

(±)
2n−1 unambiguously. Our primary

interest concerns eigenvalues of I
(±)
2n−1 in the subspaces H(n1,n2,n3)

k (1.23), particularly, in

the subspace H(0)
k := H(0,0,0)

k1,k2,k3
corresponding to the first Brillouin zone:

I
(±)
2n−1 : I

(±)
2n−1 |Ψ(0)

k 〉 = I
(±)
2n−1 |Ψ(0)

k 〉 , |Ψ(0)
k 〉 ∈ H(0)

k . (1.26)

It seems natural to expect that for 0 ≤ ki ≤ 1
2 , the sets of eigenvalues {I(+)

2n−1, I
(−)
2n−1}∞n=1

fully specify the common eigenbasis of the local IM in H(0)
k .

In the recent paper [30] it was argued that the vacuum eigenvalues {I(+)
2n−1, I

(−)
2n−1}∞n=1

(i.e. those corresponding to the unique state in H(0)
k with the lowest value of the energy

E = I
(+)
1 + I

(−)
1 ) are simply related to the set of conserved charges {q2n−1, q̄2n−1}∞n=1

associated with the unique element A(0,0)
m of the moduli space Am (1.15). Namely:

µ−1
(
I1 − 1

2 R E0
)
= d1 q1 , µ−1

(
Ī1 − 1

2 R E0
)
= d1 q̄1 (1.27)

and

µ1−2n I
(+)
2n−1 = dn q2n−1 , µ1−2n I

(−)
2n−1 = dn q̄2n−1 (n = 2, 3, . . .) . (1.28)

With the normalization conditions described above, the constants dn and E0 reads explic-

itly as

dn = (2π)2n−1 (−1)n−1

16π2

3∏

i=1

Γ
(
2 (2n− 1)α2

i

)
(1.29)

and

E0 = −πµ2
3∏

i=1

Γ(2α2
i )

Γ(1− 2α2
i )
. (1.30)

These relations should be supplemented by the identification of the parameters from the

quantum and classical integrable problems:

α2
i =

ai
4
, ki =

1

ai
(2mi + 1) (i = 1, 2, 3) , (1.31)

– 7 –
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whereas the relation between dimensionless parameter µR and ρ is given by

µR = 2ρ . (1.32)

In this work we promote eqs. (1.27)–(1.32) to a general relations between the joint

spectra of the local IM in the subspace H(0)
k corresponding the first Brillouin zone and the

set of the conserved charges associated with the elements of the moduli space Am. For the

values of ki restricted to the segment
[
0, 12

]
, this gives a remarkable bijection between the

joint eigenbasis of the local IM in H(0)
k and the elements of Am.

In section 9 we demonstrate that the correspondence between the classical and quantum

integrable systems provides a powerful tool for deriving integral equations which determine

the full spectrum of local IM in the massive QFT.

We conclude this paper with few remarks concerning the QFT (1.19) in the regime

where one of the couplings αi is pure imaginary.

2 Generalized hypergeometric oper

2.1 Monodromies of the Fuchsian differential equations

In this preliminary subsection we include some basic concepts and results about the Fuch-

sian differential equations.

Let z stands for the complex coordinate on CP1\{z1, z2, . . . zn}, the Riemann sphere

with n punctures. Consider the second order Fuchsian differential operator −∂2z + T (z),

where T (z) is given by

T (z) = −
n∑

i=1

(
δi

(z − zi)2
+

ci
z − zi

)
. (2.1)

The equation

(
− ∂2z + T (z)

)
ψ = 0 (2.2)

is a general second-order differential equation with n regular singular points. We will always

regard the parameters δi as fixed numbers. The positions of the singularities zi and the

coefficients ci (which are usually referred to as the “accessory parameters”) will be treated

as variables. The accessory parameters ci are constrained by the elementary relations

n∑

i=1

ci = 0 ,
n∑

i=1

(zi ci + δi) = 0 ,
n∑

i=1

(z2i ci + 2 ziδi) = 0 , (2.3)

ensuring that T (z) has no additional singularity at z = ∞. Thus only n − 3 of these

parameters are independent. Also, the projective transformations of the variable z allows

one to send three of the points zi, say (z1, z2, z3), to any designated positions, usually

(0, 1, ∞). Therefore, with fixed δi, the differential equation (2.2) essentially depends on

2 (n− 3) complex parameters.
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. z1

. z 5 . z 4+a . z n. ..

Γ1 Γ2 Γa

. z2
. z3

. z 4 . .. . z 3+a

. ..

z*

Figure 2. The elements Γ1, Γ2, . . .Γn−3 of the fundamental group π1
(
CP

1\{zi}
)
. Choosing the ac-

cessory parameters in (2.1) according to (2.11) fixes the conjugacy classes of the associated elements

of the monodromy group of (2.2) as given in (2.9).

The equation (2.2) generates a monodromy group — a homomorphism of the funda-

mental group of the sphere with marked points into the group SL(2,C),

M : π1
(
CP1\{zi}

)
7→ SL(2,C) . (2.4)

Let (ψ1(z), ψ2(z)) is a basis of linearly independent solutions of (2.2). Then its continuation

along any closed path γ defines the monodromy matrix

M(γ) :
(
ψ1(γ ◦ z), ψ2(γ ◦ z)) = (ψ1(z), ψ2(z))M(γ) , (2.5)

which depends only on the homotopy class of γ ∈ π1(CP1 \{zi}). Let γi ∈ π1(CP1\{zi}),
i = 1, 2, . . . n be the elementary paths around the points zi, and

M (i) := M(γi) ∈ SL(2,C) (2.6)

the associated elements of the monodromy group of (2.2). The parameters

δi = δ(pi) with δ(p) = 1
4 − p2 (2.7)

determine the conjugacy classes of M (i) via the equation

Tr
(
M (i)

)
= −2 cos(2πpi) . (2.8)

Let
{
Γa

}n−3

a=1
be the system of contours shown in figure 2, such that Γa loops around the

punctures z1, z4, . . . z3+a only; and let the set ν = (ν1, . . . νn−3) parameterize the conjugacy

classes of the corresponding monodromy matrices M(Γa),

Tr
(
M(Γa)

)
= −2 cos(πνa) (a = 1, . . . n− 3) . (2.9)

For given conjugacy classes (2.9) (i.e., for a given set ν), the accessory parameters are de-

termined in terms of the so-called classical conformal block fν(X1, . . . Xn−3) corresponding

to “haircomb” diagram shown in figure 3 (for details, see e.g. [31, 32]). Namely,

ci =
∂

∂zi
F (i = 1, . . . n) , (2.10)
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δ(      ) δ(      ) δ(      ). . .

. . .

ν /21 ν /22 ν /2L

( 1, δ4X )

, δ( 8

3 ), δ )1(0

( n, δ )Xn−3 , δ )2(1

Figure 3. Dual diagram for the classical conformal block from eq. (2.11), δ(νa/2) =
1

4
(1− ν2a).

where the shortcut notation F stands for

F = F0 + δ3 log

(
z21
z31z32

)
+

n∑

i=1
i 6=3

δi log

(
z31z32
z21z23i

)
+ fν(X1, . . . Xn−3) , (2.11)

with zij := zi − zj and the arguments of the conformal block are cross ratios

Xa =
za+3 − z1
za+3 − z3

z2 − z3
z2 − z1

(a = 1, . . . n− 3) . (2.12)

A certain additive normalization of the classical conformal block is usually assumed.

For this reason, we reserve the room for an arbitrary coordinate-independent constant

F0 in (2.11).

2.2 Definition of GHO

Here we consider a special class of second order Fuchsian differential operators. We will

always assume that the three parameters pi defining conjugacy classes of the matrices

M (i) in (2.6)–(2.8), associated with the elementary paths around the “fixed” punctures

z1, z2, z3, are positive numbers satisfying the following constraints

0 < pi <
1
2 (i = 1, 2, 3) , 0 < p1 + p2 + p3 <

1
2 . (2.13)

For the remaining L := n−3 punctures we require that both linearly independent solutions

of (2.2) are single-valued (or monodromy-free) in the vicinity of these punctures. It is well

known [33] how to reformulate this condition as a set of algebraic relations imposed on

the corresponding parameters δ3+a, Ca := c3+a and xa := z3+a, (a = 1, . . . L). Namely,

suppose that T (z) has a Laurent expansion at z = xa of the form

T (z) = − la(la + 1)

(z − xa)2
− Ca

z − xa
−

+∞∑

k=0

t
(a)
k (z − xa)

k . (2.14)

It is easy to see that la must be an integer. We will focus on the case la = 1, i.e.

δ3+a = −2 (a = 1, . . . L) . (2.15)

To ensure that solutions of eq. (2.2) are single-valued in the vicinity of the punctures at z =

xa (a = 1, . . . L), the expansion coefficients t
(a)
0 and t

(a)
1 in (2.14) should be constrained as

(Ca)
3 − 4 Ca t

(a)
0 + 4 t

(a)
1 = 0 . (2.16)
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This yields

Ca

[
1

4
(Ca)

2 − T0(xa)−
L∑

b 6=a

(
2

(xa − xb)2
− Cb

xa − xb

)]

−T ′
0(xa) +

L∑

b 6=a

(
4

(xa − xb)3
− Cb

(xa − xb)2

)
= 0 (a = 1, . . . L) , (2.17)

where

T0(z) = −
3∑

i=1

(
δi

(z − zi)2
+

ci
z − zi

)
. (2.18)

The prime in T ′(z) stands for the derivative w.r.t. the variable z. This system of alge-

braic equations should be supplemented by the three conditions (2.3), specialized to the

case (2.15):

3∑

i=1

ci = −
L∑

a=1

Ca ,

3∑

i=1

(zi ci + δi) = −
L∑

a=1

(xaCa − 2) , (2.19)

3∑

i=1

(z2i ci + 2xiδi) = −
L∑

a=1

(x2aCa − 4xa) .

As far as positions of the punctures z1, z2, z3 and corresponding parameters p =

(p1, p2, p3) are fixed, eqs. (2.17), (2.19) define an algebraic variety which will be denoted by

V(L)
p . If positions of the punctures (x1, . . . xL) are used as local coordinates on V(L)

p , then

a system of L locally defined functions Ca(x1, . . . xL) satisfy the integrability conditions

∂

∂xb
Ca =

∂

∂xa
Cb . (2.20)

These relations can be verified by the brute-force calculation using eqs. (2.17) and (2.19),

but, of course, they follows immediately from the general relation (2.10). In this partic-

ular case the classical conformal block in eq. (2.11) is related to the classical limit of the

(3 + L)-point correlator involving three generic chiral vertex operators Vi with conformal

dimensions ∆i (i = 1, 2, 3) and L degenerate vertices V(3,1) with dimensions ∆(3,1):

〈V1(0)V2(1)V3(∞)V(3,1)(X1) . . . V(3,1)(XL) 〉 ∼ exp

(
1

b2
fν(X1, . . . XL)

)
, b2 → 0 , (2.21)

where the parameter b2 and other conventional notations are inherited from the quantum

Liouville theory (see ref. [34] for details)

∆i →
δi
b2
, ∆(3,1) → − 2

b2
as b2 → 0 . (2.22)
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δ(    + ε ) δ(    + ε  + ε )

(X  ,−2) (X  ,−2) δ 2(1,     )(X  ,−2)

δ 1(0,    ) δ 3(    ,    )8

. . .

. . .

δ(    + ε  + ... + ε  )11 1 21 1 1 Lp p

2 L1

p

,−

Figure 4. Dual diagram for the classical conformal block from eq. (2.21). Here ǫa = 0, ±1

(a = 1, . . . L).

Due to the well known fusion rule for the degenerate vertex V(3,1) [35], only a discrete set

of the parameters ν = (ν1, . . . νL) is allowed (see figure 4):

ν1 = 2 (p1 + ǫ1) , νa = νa−1 + 2 ǫa (a = 2, . . . L) , (2.23)

where the discrete variables ǫa takes the values 0,±1 only. Different configurations

(ǫ1, . . . ǫL) correspond to the different locally defined functions C
(ǫ1...ǫL)
a (x1, . . . xL) (ǫa =

0,±1), which are branches of the multivalued algebraic function of the complex variables

x1, . . . xL. This is illustrated by the simplest case with L = 1 in appendix A.

In what follows we will refer to the differential operators (1.1), whose moduli space coin-

cides with the algebraic variety V(L)
p as to the Generalized Hypergeometric Opers (GHO’s).6

The marked points xa (a = 1, . . . L) will be called as monodromy-free punctures.

2.3 Connection matrices for GHO

We have introduced the concept of GHO because the monodromy group of such opers

coincides with the monodromy group of the conventional hypergeometric equation. Let us

recall some facts about this group. In the case under consideration there are only three

elementary SL(2,C)-matrices M (i), M (j) and M (k) (2.8), corresponding to the contours

γi, γj and γk, shown in figure 5. Here (i, j, k) is any cyclic permutation of (1, 2, 3). These

matrices satisfy an obvious relation

M (i)M (k)M (j) = I , (2.24)

because the contour γi ◦ γk ◦ γj is a contractible loop. Further, since 0 < pi <
1
2 , one of

these matrices, say, M (i) can always be chosen diagonal

M (i) = −e−2πipiσ3 . (2.25)

Here and below we use standard notation for the Pauli matrices σ1, σ2, σ3. Then

eqs. (2.8), (2.24), (2.25) define M (j) and M (k) up to a diagonal similarity transforma-

tion. In particular,

M (j) = e−ωiσ3

[
i

s(2pi)

(
e2πipi c(2pj) + c(2pk) 2Λ

−2 Λ −e−2πipi c(2pj)− c(2pk)

)]
eωiσ3 . (2.26)

6A general notion of g-oper for Riemann surfaces with punctures was introduced in [36]. In the case of

the genus zero surface with n-marked points an sl(2)-oper is equivalent to that of the second order Fuchsian

differential operator.
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zj

zi

zk

Figure 5. The contractible loop γk ◦ γj ◦ γi = γi ◦ γk ◦ γj = γj ◦ γi ◦ γk on the sphere with three

punctures.

The quantity ωi is an arbitrary complex number and

Λ =
√
c(p2 + p3 − p1) c(p1 + p2 − p3)c(p1 − p2 + p3) c(p1 + p2 + p3) , (2.27)

where we have used the shorthand notations

c(p) = cos(πp) , s(p) = sin(πp) . (2.28)

We now return to the the equation (2.2) corresponding to the GHO. Let χ
(i)
σ (z) (i =

1, 2, 3; σ = ±) be its solutions such that

χ(i)
σ → 1√

2pi
(z − zi)

1
2
+σpi

(
1 +O(z − zi)

)
as z → zi . (2.29)

The prefactor here is chosen to satisfy the normalization condition

W[χ
(i)
σ′ , χ

(i)
σ ] = σ δσ+σ′,0 , (2.30)

where W[f, g] = fg′ − gf ′ stands for the Wronskian. If the constraints (2.13) are imposed,

the asymptotic conditions (2.29) define7 three different bases (for i = 1, 2, 3) in the two-

dimensional linear space of solutions of (2.2). Let us combine the solutions (2.29) for given

i into the row

χ(i) = (χ
(i)
− , χ

(i)
+ ) , i = 1, 2, 3 . (2.31)

Then the two sets of basis vectors χ(i) and χ(j) are related through a linear transformation

χ(i) = χ(j) S(j,i) . (2.32)

7It is worth noting, however, that (2.29) define these solutions only up to phase factors of the form

±e2πipiM (M ∈ Z).
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Here S(j,i) stand for SL(2,C)-matrices, satisfying the relations

det
(
S(j,i)

)
= 1 , S(i,k)S(k,i) = I , S(i,k)S(k,j)S(j,i) = I , (2.33)

where again (i, j, k) is any cyclic permutation of (1, 2, 3). It is easy to see that one needs

six independent complex numbers to parameterize the three matrices S(i+1,i) (i ∼ i + 3)

satisfying (2.33). Moreover, these connection matrices are subject to three additional

complex constraints. Indeed, the monodromy matrix M (j) (2.26) can be expressed in term

of the connection matrix S(j,i):

M (j) = −
(
S(j,i)

)−1
e−2πipjσ3 S(j,i) . (2.34)

This relation combined with eqs. (2.33) leads to

S(j,i) = −e−ωjσ3 eiπpjσ3 σ2 A(k) eωiσ3 , (2.35)

with

A(k) =

(
A

(k)
−− A

(k)
−+

A
(k)
+− A

(k)
++

)
, (2.36)

where the matrix elements read explicitly

A
(k)
σ′σ =

√
Λ

s(2pi)s(2pj)

[
c(pi + pj + pk) c(pi + pj − pk)

c(pi − pj + pk) c(pi − pj − pk)

]σσ′

4

(2.37)

and Λ is given by (2.27). Note that eq. (2.35) can be equivalently rewritten as a formula

for the Wronskians:

W[χ
(j)
σ′ , χ

(i)
σ ] = −i eiπσ

′pj A
(k)
σ′σ e−σ′ωj−σωi . (2.38)

The complex parameters ωi (i = 1, 2, 3), entering the expression (2.35), remain un-

determined. These parameters do not affect the conjugacy class of the representation of

π1
(
CP1\{z1, z2, z3}

)
. Nevertheless, they are important characteristics of the GHO itself.

In the next section we argue that, in the case of GHO, a coordinate-independent additive

normalization of the function F (2.11) can be chosen in such a way that

exp(ωi) = exp
(
− 1

2

∂

∂pi
F
)

(i = 1, 2, 3) . (2.39)

An immediate consequence of this fact is that

exp(ωi)
( zjk
zjizik

)−pi
(2.40)

depends on L projective invariants (2.12) only. Explicit forms for (2.40) in the cases L = 0

and L = 1 are given by equations (B.2) and (B.4) from appendix B, respectively.

Finally, note that exp(ωi) is defined up to the phase factor ±e2πipM (M ∈ Z). This

ambiguity is inherited from the similar ambiguity in the definition of χ
(i)
σ in eq. (2.29).
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2.4 GHO and complex solutions of the Liouville equation

Until now we have discussed holomorphic GHO only. Of course, with minor modifications

all the above can applied to the antiholomorphic GHO

D̄ = −∂2z̄ −
3∑

i=1

(
δ̄i

(z̄ − z̄i)2
+

c̄i
z̄ − z̄i

)
−

L̄∑

b=1

(
(−2)

(z̄ − ȳb)2
+

C̄b

z̄ − ȳb

)
. (2.41)

In what follows we assume that the triple {z̄i}3i=1 is complex conjugate to {zi}3i=1, the

corresponding δ̄i = δi are real and, furthermore,

pi = p̄i . (2.42)

We will not impose any relations between coordinates of the monodromy-free punctures

for the holomorphic and antiholomorphic GHO’s. For this reason the coordinates of an-

tiholomorphic monodromy-free punctures in (2.41) are denoted by ȳb , b = 1, . . . L̄ and

L̄ = 0, 1, 2 . . . does not necessarily coincide with L.

Let χ̄
(i)
σ be the basis solutions of D̄ψ̄ = 0, which are defined similarly to eq. (2.29).

With the same arguments as above, one arrives to the antiholomorphic analog of eq. (2.38)

W[χ̄
(j)
σ′ , χ̄

(i)
σ ] = i e−iπσ′pj A

(k)
σ′σ e−σ′ω̄j−σω̄i , (2.43)

where A
(k)
σ′σ is the same matrix as in eq. (2.37).

Consider a bilinear form

τ(z, z̄) = χ(i) G(i)
(
χ̄(i)

)T
(2.44)

where G(i) is an arbitrary 2 × 2 matrix and superscript T stands for the matrix trans-

position. We specialize G(i) by the requirement that τ(z, z̄) is a single-valued function

on the punctured sphere. Imposing this condition in the vicinity of the puncture zi, one

concludes that G(i) is a diagonal matrix. With the connection formula (2.32), the single-

valuedness implies that S(ji) G(i)
(
S̄

(ji))T
is also a diagonal matrix. Using the explicit

form of connection matrices (2.35)–(2.37), one finds

G(i) = const e−(ωi+ω̄i)σ3 σ3 . (2.45)

If the undetermined constant is chosen to be ±1, then the complex function

η : e−η := τ(z, z̄) , (2.46)

satisfies the Liouville equation

∂z∂z̄η = e2η . (2.47)

This fact can be easily verified and it is well known in the theory of the classical Liouville

equation. Since we are considering the complex solution of eq. (2.47), the overall sign of

the constant in (2.45) it is not important and we fix it to be 1. As a result, one has

e−η = e−(ωi+ω̄i) χ
(i)
− χ̄

(i)
− − eωi+ω̄i χ

(i)
+ χ̄

(i)
+ . (2.48)
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At the monodromy-free punctures, z = xa (a = 1, . . . L) and z̄ = ȳb (b = 1, . . . L̄), e−η

becomes singular,

e−η ∼ 1

z − xa
and e−η ∼ 1

z̄ − ȳb
, (2.49)

however it still remains single-valued. Thus, e−η is a complex single-valued function on

the sphere with 3 + L + L̄ punctures. Notice, that it does not have any zeroes, as this

contradicts to the Liouville equation (2.47).

As it follows from eq. (2.48), the solution η satisfies the asymptotic conditions

η = −2 log |z|+O(1) as |z| → ∞
η = 2mi log |z − zi|+ η

(reg)
i + o(1) as |z − zi| → 0 , (2.50)

where

mi = pi −
1

2
,

exp
(
η
(reg)
i

)

2 pi
= eωi+ω̄i . (2.51)

The constants η
(reg)
i can be regarded as regularized values of the Liouville field at the

punctures zi. They are be expressed in terms of the regularized Liouville action [34, 37, 38].

To explain this important relation we recall that the Liouville equation and the asymptotic

conditions (2.50) follow from the variational principle for the functional

ALiouv[η] = lim
ǫi→0
R→∞

[
1

π

∫

|z−zi|>ǫ

|z|<R

d2z
(
∂zη∂z̄η + e2η

)
(2.52)

+2
3∑

i=1

(
mi ηi −m2

i log(ǫi)
)
+ 2 η∞ + 2 logR

]
.

Since the fields configuration is singular at z → zi, we cut out a small disk of radius ǫi
around the point zi and add the boundary terms with

ηi =
1

2πǫi

∮

|z−zi|=ǫi

dℓ η (2.53)

to ensure the behavior (2.50) near zi. To control the large |z|-behavior we regularize the

action for large values of z and add the boundary term with

η∞ =
1

2πR

∮

|z|=R

dℓ η . (2.54)

In addition, we include some field independent terms such that ALiouv is finite and in-

dependent on ǫi and R when ǫi → 0, R → ∞. Contributions of the monodromy-free

punctures (2.49) to the functional (2.52) are finite8 and therefore there is no need to in-

clude additional regularization terms to the action. It is now easy to show that

η
(reg)
i =

1

2

∂A∗
Liouv

∂pi
, (2.55)

8Unless the some of the holomorphic and antiholomorphic punctures coincide.
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where A∗
Liouv stands for the stationary value of the functional (2.52) calculated on the field

configuration η defined by eq. (2.48). More generally, the stationary value of the Liouville

functional depends on 6 + L+ L̄ variables,

A∗
Liouv = A∗

Liouv

(
p1, p2, p3 | z1, z2, z3;x1, . . . xL; ȳ1, . . . ȳL̄

)
, (2.56)

and its total deferential is given by [34, 37, 38]

dA∗
Liouv = 2

3∑

i=1

ηi dpi −
3∑

i=1

(
ci dzi + c̄i dz̄i

)
−

L∑

a=1

Ca dxa −
L̄∑

b=1

C̄b dȳb . (2.57)

As it follows from (2.10), A∗
Liouv can be expressed in terms of F and its antiholomorphic

counterpart F̄ :

A∗
Liouv = −F − F̄ . (2.58)

The coordinate-independent constant F0 in eq. (2.11) has not yet been fixed. Therefore

there is no need to add a pi-dependent constant in (2.58), as it can always be absorbed by F0

and F̄0. The number and positions of the holomorphic and antiholomorphic monodromy-

free punctures are fully independent. For instance, we can consider the general holomorphic

GHO, whereas the antiholomorphic differential operator (2.41) is reduced to the pure hy-

pergeometric oper, i.e. L̄ = 0. Then, eqs. (2.51), (2.55) and (2.58), imply that the additive

normalization of F can be chosen to satisfy the relation (2.39). Of course, a similar relation

holds for F̄ and eω̄i .

3 Perturbed generalized hypergeometric oper

3.1 Definition of PGHO

Consider the universal cover of the Riemann sphere with three marked points z1, z2, z3
and P(z) (dz)2, where P(z) is given by (1.3) with positive parameters ai. If ai satisfy

the constraint (1.4), the quantity P(z) (dz)2 transforms as a quadratic differential under

PSL(2,C) transformations and the punctures z1, z2, z3 on the Riemann sphere can still be

sent to any desirable positions.

Suppose we are also given a GHO, D = −∂2z + TL(z) which has its first three punc-

tures at the branching points of P(z) plus L monodromy-free punctures at z = xa
(a = 1, . . . L). Remind, that previously we have required that the parameters pi obey

the constraints (2.13). In what follows we will impose somewhat stronger constraints on

these parameters. Namely we replace (2.13) by

0 < pi <
ai
4

(i = 1, 2, 3) . (3.1)

The rôle of this constraint will be explained in section 5.1 below. An immediate object of

our interest is an ODE of the form

D(λ)ψ = 0 , D(λ) = −∂2z + TL(z) + λ2 P(z) , (3.2)
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where λ stands for an arbitrary complex parameter. The properties of the differential

equation (3.2) are essentially affected by the presence of the λ-dependent term. Never-

theless, one can still find particular values of its parameters to make the marked points

z = xa (a = 1, . . . L) to be monodromy-free punctures for arbitrary values of λ. Indeed, the

conditions (2.16) can be easily generalized for λ 6= 0. In this case the system of algebraic

system (2.17)–(2.19) is extended by additional L equations

Ca = −∂z logP(z)
∣∣
z=xa

=
3∑

i=1

2− ai
xa − zi

(a = 1, . . . L) , (3.3)

which determine the values of xa (a = 1, . . . L). These algebraic equations have a finite

discrete set of solutions. Therefore, for any given L, there only a finite number NL of sets

of monodromy-free punctures

A(L)
p =

{ (
x
(α)
1 , . . . x

(α)
L

) }NL

α=1
(NL <∞) . (3.4)

Notice that eqs. (2.17)–(2.19), (3.3) are symmetric upon permutations of (x1, . . . xL), there-

fore we will not distinguish sets, which differ only by a permutation of the positions of the

punctures.

Let us illustrate the situation on the simplest L = 1 example. As in appendix A, we

set (z1, z2, z2) = (0, 1,∞), so that together with (A.1) one has an additional relation

y = a1 − 1 + a3 x . (3.5)

This leads to a cubic equation for the position x of the monodromy-free puncture:

a3 s3 x
2 (x− 1) + s x (x− 1)− a1 s1 (x− 1)− a2 s2 x = 0 , (3.6)

where si = −ai(ai − 2) − 4 δi and s = (s2 − s1)(a3 − 1) + s3(a1 − 1). Thus, there are

only three different positions {x(α)}3α=1 for a monodromy-free puncture, determined by the

roots of (3.6).

For L ≤ 3 one can numerically check that for generic values of ai and pi (1.4), (3.1), the

number of solutions of the algebraic system (2.17)–(2.19) and (3.3) (modulo permutations)

is given by

N1 = 3 , N2 = 9 , N3 = 22 . (3.7)

In many extents these equations are similar to the Bethe Ansatz equations. In particular,

using eq. (2.10), they can be written in a compact Yang-Yang form

∂Y

∂xa
= 0 (a = 1, . . . L) , (3.8)

where

Y = −
L∑

a=1

logP(xa)− F . (3.9)
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Once the algebraic system (3.8) is solved, the function TL(z) in (3.2) can be written

in the form

TL(z) = T0(z) + L
3∑

i=1

ai
(z − zj)(z − zk)

−
√
P(z)

∂

∂z

L∑

a=1

2

(z − xa)
√
P(z)

, (3.10)

where

T0(z) = −
3∑

i=1

(
δi

(z − zi)2
+

c
(0)
i

z − zi

)
, (3.11)

and

c
(0)
i =

δi + δj − δk
zj − zi

+
δi + δk − δj
zk − zi

, (i, j, k) = perm(1, 2, 3) . (3.12)

We will refer to the differential operator D(λ) of the form (3.2) with P(z) and TL(z) are

given by (1.3) and (3.10), respectively, as Perturbed Generalized Hypergeometric Oper

(PGHO). The finite set A(L)
p (3.4) can be regarded as a moduli space of the PGHO’s. It is

a finite discrete subset in the moduli space of GHO’s. (Notice that we slightly modify the

notation used in the introduction by including the subscript p = (p1, p2, p3).)

3.2 Wilson loop for PGHO

As we have just explained, the position of the punctures xa (a = 1, . . . L) can be specially

chosen so that solutions of ODE (3.2) still remain single-valued in the vicinity of these

points. However, contrary to TL(z), the term λ2 P(z) is not single-valued on the punctured

sphere. Thus, even with the special choice of xa, the monodromy group of the differential

operator D(λ) turns out to be essentially different from that in the case λ = 0. Here we

begin to explore the monodromy properties of PGHO.

3.2.1 Definition of the Wilson loop

Let us consider the contour γP depicted in figure 1. It is usually called the Pochhammer

contour (loop). As an element of the fundamental group π1(CP
1\{z1, z2, z3}), it can be

expressed in terms of the elementary loops γi, γj and γk which wind around the punctures

zi, zj and zk, respectively:

γP = γk ◦ γi ◦ γj
(
γi ◦ γk ◦ γj = 1, (i, j, k) = circle perm(1, 2, 3)

)
. (3.13)

Since the Pochhammer loop winds around each of the three punctures and the relation (1.3)

is imposed, the value of the function P(z) does not change upon the analytic continuation

along the contour γP . Therefore the coefficients of PGHO return to their original values

and it makes sense to introduce the quantity

W(λ) = Tr
[
M(γP |λ)

]
, (3.14)

where M(γP |λ) is the monodromy matrix for D(λ) corresponding to the Pochhammer

loop. A significant advantage of W(λ) is that it does not depend on the precise shape
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of the integration contour. In particular, it is not sensitive to deformations of γP which

sweeps through the monodromy-free punctures. In what follows we will refer to (3.14) as

the Wilson loop (corresponding to PGHO D(λ)).

The second order differential operator D(λ) depends analytically on λ2 and henceW(λ)

is an entire function of λ2, i.e., the series expansion

W(λ) = W0 +
∞∑

n=1

Wn λ
2n (3.15)

converges for any complex λ. Its value at λ = 0 can be found using eqs. (2.25), (2.26) from

section 2.3:

W0 =Tr
[
(M (i))−1(M (j))−1M (i)M (j)

]
= 2

(
2 + c(4p1) + c(4p2) + c(4p3) + (3.16)

c(2p1+ 2p2+ 2p3) + c(2p1+ 2p2− 2p3) + c(2p1− 2p2+ 2p3) + c(−2p1 + 2p2 + 2p3)
)
.

Note, that this expression does not depend on the number of the monodromy-free punc-

tures L. Higher expansion coefficients in the series (3.15) can, in principle, be calculated

using the standard perturbation theory.

3.2.2 Large-λ asymptotic expansion

The leading large-λ asymptotic of the Wilson loop can be obtained within the WKB ap-

proach. It is easy to see that

W(λ) ≍ 2 cosh

(
λ

∮

γP

dz
√
P(z) + o(1)

)
as |λ| → ∞ . (3.17)

Here the r.h.s. is written as a sum of two WKB exponents. Of course, for different values

of arg(λ2) only one term dominates whereas another exponent should be neglected. The

quantity
√
P(z) is a multivalued function on CP1\{z1, z2, z3} whose phase has not been yet

uniquely specified. To resolve this phase ambiguity, we consider the Möbius transformation

which sends (z1, z2, z2) to (0, 1,∞). With this change of the integration variable, the

integral in (3.17) transform to the form

∮

γP

dz
√
P(z) = e−

iπ
2
(a1+a2)

∫

γ̃P

dz z
a1
2
−1(1− z)

a2
2
−1 . (3.18)

The Pochhammer contour now looks as in figure 6. Let us choose the base point z∗ ∈ γ̃P

within the real segment [0, 1] and assume that z
a1
2
−1

∗ (1 − z∗)
a2
2
−1 > 0. Then the phase

of the integrand in (3.18) is determined unambiguously through the analytic continuation

along the integration contour. This convention removes the phase ambiguity of P(z) for

z ∈ γP . The integral which appears in the r.h.s. of (3.18) is well known in the theory of

the hypergeometric equation:

∮

γ̃P

dz zα−1(1− z)β−1 =
(
1− e2πiα

) (
1− e2πiβ

) Γ(α)Γ(β)

Γ(α+ β)
. (3.19)
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0 1

z

γP
~

z*

Figure 6. The Pochhammer loop on the complex plane with the punctures at z1 = 0, z2 = 1 and

z3 = ∞.

We can now rewrite eq. (3.17) in the form

logW(λ) ≍ −q0 λ+ o(1) as | arg(λ)| < π

2
, |λ| → ∞ , (3.20)

with

q0 = − 4π2
∏3

i=1 Γ(1− ai
2 )

. (3.21)

It is not difficult to extend the above leading asymptotics to a complete asymptotic

expansion for large values of λ. For this purposes, we perform the change of variables in

ODE (3.2)

w = e
iπ
2
(a1+a2)

∫
dz
√

P(z) , ψ(z) (dz)−
1
2 = ψ̂(w) (dw)−

1
2 . (3.22)

This transformation brings eq. (3.2) to the form of an ordinary Schrödinger equation

(
− ∂2w + T̂L(w) + λ2

)
ψ̂ = 0 , (3.23)

with the potential

T̂L = P−1

(
TL +

4P∂2zP − 5 (∂zP)2

16P2

)
. (3.24)

It is well known how to develop the large-λ asymptotic expansion of monodromy coefficients

of eq. (3.23). The procedure leads to the following asymptotic series

logW(λ) ≍ −q0 λ+
∞∑

n=1

cn q
(L)
2n−1 λ

1−2n +O(λ−∞) as | arg(λ)| < π

2
, |λ| → ∞ , (3.25)

where

cn =
(−1)n

2n!

Γ
(
n− 1

2

)
√
π

(3.26)

– 21 –



J
H
E
P
0
9
(
2
0
1
4
)
1
4
7

and

q
(L)
2n−1 = eiπ(n−

1
2
) (a1+a2)

∮

γ̂P

dw Un

[
T̂L
]
. (3.27)

In the last formula Un[ û ] are homogeneous (grade(û) = 2, grade(∂) = 1, grade(Un) = 2n)

differential polynomials in û of the degree n (known as the Gel’fand-Dikii polynomials [39]),

Un[ û ] =
(−1)n

(2n− 1) cn
Λ̂n · 1 . (3.28)

Here

Λ̂ = −1
4 ∂

2 + û− 1
2 ∂

−1 û′ , (3.29)

and prime stands for the derivative. Thus,

U0[ û ] = 1 ,

U1[ û ] = û , (3.30)

U2[ û ] = û2 − 1
3 û

′′ ,

U3[ û ] = û3 − 1
2 (û

′)2 − û ′′ + 1
5 û

′′′′ ,

Un[ û ] = ûn + . . . ,

where the last line shows the overall normalization of the polynomials.

There is no need to do describe the contour γ̂P in (3.27) explictly, since we now change

the integration variable in eq. (3.27) back to the original coordinate z. In this way one

obtains

q
(L)
1 =

∮

γP

dz

P 1
2

(
TL +

4P∂2zP − 5 (∂zP)2

16P2

)

q
(L)
3 =

∮

γP

dz

P 3
2

(
TL +

4P∂2zP − 5 (∂zP)2

16P2

)2

. (3.31)

(Notice that in the derivation of the second formula we dropped the term −1
3 ∂2wT̂L in

eq. (3.27) with n = 2, which do not contribute to the integral.) Of course, it is straightfor-

ward to perform the change of variables in eq. (3.27) for any given n. We do not present

explicit formulae for n > 2, but note that

q
(L)
2n−1 =

∮

γP

dz

Pn− 1
2

(
(TL )n + . . .

)
, (3.32)

where the omitted terms contain derivatives and the lower powers of TL.

– 22 –



J
H
E
P
0
9
(
2
0
1
4
)
1
4
7

3.2.3 Expansion coefficients q
(0)
2n−1

Using the formulae (3.31), (3.32), one can perform some explicit calculations of the coeffi-

cients in the asymptotic series (3.25). Let us first consider of the perturbed hypergeometric

oper, i.e., PGHO without monodromy-free punctures.

Using eqs. (3.10), (3.31) (specialized for the case L = 0) and the integral (3.19), one

can show that

q
(0)
1 =

8π2
∏3

i=1 Γ
(
ai
2

)
( 3∑

i=1

P 2
i

4
− 1

8

)
, (3.33)

and

q
(0)
3 = − 2π2

3
∏3

i=1 Γ
(
3ai
2

)
[ 3∑

i=1

Ei

(
P 4
i

16
− P 2

i

16
+

1

192

)
(3.34)

+
∑

i 6=j

Eij

(
P 2
i

4
− 1

24

)(
P 2
j

4
− 1

24

)
+

1

240

3∑

i=1

Hi

]
,

where

Pi =
2pi√
ai
, (3.35)

and where the numerical coefficients Ei, Eij and Hi are given by

Ei = ai (3aj − 2) (3ak − 2)

Eij = 3 ai aj (3ak − 2) (3.36)

Hi = 8− a2i − 9 (a1a2 + a2a3 + a3a1) + 15 a1a2a3 .

The indices (i, j, k) represents any permutation of the numbers (1, 2, 3). For n > 2 the

calculation of q
(0)
2n−1 is straightforward, but rather long. It is much easy to establish the

following general structure:

q
(0)
2n−1 = Rn(P

2
1 , P

2
2 , P

2
3 ) , (3.37)

where Rn stands for n-the degree polynomials in the variables P 2
i

Rn(P
2
1 , P

2
2 , P

2
3 ) =

∑

i+j+k=n

R
(n)
ijk P 2i

1 P 2j
2 P 2k

3 + . . . (3.38)

(the dots represent the sum of monomials of degrees lower than n). One can show that

R
(n)
ijk =

(−1)n−1 25−2nπ2
∏3

i=1 Γ((n− 1
2) ai)

n!
(
a1(

1
2 − n)

)
n−i

(
a2 (

1
2 − n)

)
n−j

(
a3 (

1
2 − n)

)
n−k

i! j! k! (2n− 1)3 a1−i
1 a1−j

2 a1−k
3

. (3.39)
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3.2.4 Expansion coefficients q
(L)
1 and q

(L)
3 for L ≥ 1

It is not difficult to calculate q
(L)
1 for arbitrary L. Indeed, the third term in (3.10) do not

contribute to the integral (3.31) for q
(L)
1 . The contribution of the first term in (3.10) is

given by (3.33). The second term in (3.10) gives a contribution proportional to L. The

final result reads as

q
(L)
1 = q

(0)
1 +

8π2
∏3

i=1 Γ(
ai
2 )

L . (3.40)

The calculation of q
(L)
3 is very cumbersome and we do not describe it here. Below

we quote the result which is expressed in terms of the parameters δi, ai (i = 1, 2, 3) and

the coordinates xa (a = 1, . . . L) of the monodromy-punctures. Also, it is assumed that

(z1, z2, z3) = (0, 1,∞);

q
(L)
3 = q

(0)
3 − 2π2

3
∏3

i=1 Γ(
3ai
2 )

( ∑

j>k

Q
(L)
jk +Q

(L)
0 +Q

(L)
1

L∑

j=1

xj +Q
(L)
2

L∑

j=1

x2j

)
. (3.41)

Here

Q
(L)
jk =

3

2
(2−3a3)

(
(3a3 − 4)

(xj+xk)
2(2−xj−xk)2

(xj − xk)2
+ (4 a23 − 3 a3 − 4)(xj − xk)

2

)
(3.42)

and

Q
(L)
0 =

(
1

4

(
36 a21 a

2
3 − 57 a21 a3 + 15 a1 a

2
3 + 6 a21 − 126 a23 − 48 a1 a3

+36 a1 + 252 a3 − 112
)
+ 6 (2− 3 a3)(4− a1 − 3 a3) δ1 + 6 a1 (2− 3 a3) δ2

+6 a1 (2− 3 a2) δ3

)
L+ 3 (2− 3 a3)(4− 4 a1 + a21 − 3 a3 + 3 a1 a3) L

2 (3.43)

and

Q
(L)
1 = 6

(
3 a1 a

3
3 − 12 a1 a

2
3 − 2 a33 + 14 a1 a3 + 15 a23 − 4 a1 − 22 a3 + 8

)

+12 (1− a3)(2− 3 a3)(δ2 − δ1) + 12 (2− 2 a1 + a3 − 3 a23 ) δ3

+6 (3 a3 − 2)(4− 2 a1 − 3 a3 + 2 a1 a3 ) L , (3.44)

Q
(L)
2 = 3 (3 a3 − 2)

(
2 (a23 − 2) (L− 1) + 4 a3 δ3 + (a3 − 2) a23

)
.

4 Hidden algebraic structures behind PGHO

We have already mentioned a remarkable property of the algebraic sys-

tem (2.17)–(2.19), (3.8). Our numerical work shows that for given L the number

NL of its solutions (i.e., the cardinality of the set A(L)
p (3.4)) does not depend on

parameters, at least for generic values of ai and pi (1.4), (3.1). For L ≤ 3, the integers

NL are quoted in (3.7). In this pattern one can recognize the first values for the number
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of partitions of the integer L into integer parts of three kinds, which we denote as p3(L).

This sequence is generated by the series

∞∑

L=0

p3(L) q
L =

∞∏

k=1

1

(1− qk)3
= 1 + 3 q + 9 q2 + 22 q3 + 51 q4 + 108 q5 + . . . . (4.1)

We now interrupt our formal study to discuss remarkable algebraic structures be-

hind PGHO.

Introduce the three-component chiral Bose field φ = (φ1, φ2, φ3), i.e. the operator

valued function

φi(u) =
1

2
(Qi + Pi u)− i

∑

n 6=0

ai(−n)
n

einu (i = 1, 2, 3) , (4.2)

where Qi, Pi and ai(n) are operators satisfying the commutation relations of the Heisenberg

algebra

[Qi,Pj ] = 2i δij , [ ai(n) , aj(m) ] =
n

2
δij δn+m,0 . (4.3)

Let Ps+1(∂φ, ∂
2φ, . . .) be a local field of spin s+1, which is a local polynomial of ∂φ

and its higher derivatives ( ∂ stands for ∂
∂u

here). All such fields are periodic in u, therefore

one can introduce the integral,

I[Ps+1] =

∫ 2π

0

du

2π
Ps+1(∂φ, ∂

2φ, . . .) . (4.4)

Below the shortcut notation Is for I[Ps+1] is used. Suppose we are given a special infinite

sequence of operators Is (corresponding to special infinite sequence of the polynomials

Ps+1) which are mutually commutative operators,

[ Is, Is′ ] = 0 . (4.5)

We will refer to the operators {Is} as the (chiral) local Integral of Motions (IM).

A complete algebraic classification of all possible infinite sets of local IM seems to be

a hopeless task. However some non trivial examples are available. Among them there is a

two-parameter family discovered by Fateev in [21]. The first two representatives from this

set are given by

I1 =

∫ 2π

0

du

2π

3∑

i=1

(∂φi)
2 , (4.6)

and

I3 =
1

3

∫ 2π

0

du

2π

[ 3∑

j=1

Ej

(
∂φj

)4
+
∑

m 6=j

Emj

(
∂φm

)2(
∂φj

)2

+
∑

j 6=k 6=m

Kj ∂
2φj ∂φk ∂φm +

3∑

j=1

Hj

(
∂2φj

)2
]
. (4.7)
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Numerical coefficients in the last formula depends on three parameters α1, α2 and α3

obeying the quadratic constraint α2
1 + α2

2 + α2
3 =

1
2 . It turns out that Ej , Emj and Hj are

given by eqs. (3.36), provided the parameters are identified as

αi =
1
2

√
ai , (4.8)

whereas

Kj = 32i α1 α2 α3

(
1− 6α2

j

)
. (4.9)

An explicit form for the higher spin representatives is not available. However it is known

that [23]

I2n−1 = 22n
∫ 2π

0

du

2π

[ 3∑

i+j+k=n

C
(n)
ijk

(
∂φ1

)2i(
∂φ2

)2j(
∂φ3

)2k
+ . . .

]
, (4.10)

where the dots stand for the terms, involving higher derivatives of φi and the constant C
(n)
ijk

is given by (1.25). There are good reasons to expect (see ref. [23] and section 6.1 below)

that I1 and I3 are just the first two representatives of an infinite two-parameter family of

mutually commuting IM, {I2n−1}∞n=1.

Let FP with P = (P1, P2, P3) be the Fock space, i.e., the space generated by the action

of ai(n) with n < 0 on the vacuum state |P 〉 which satisfies the equations

Pi |P 〉 = Pi |P 〉 , ai(n) |P 〉 = 0 , n = 1, 2, 3 . . . . (4.11)

The space FP naturally splits into the sum of finite dimensional “level subspaces”

FP = ⊕∞
L=0F (L)

P ; LF (L)
P = L F (L)

P , (4.12)

where

L = 2
3∑

i=1

∞∑

n=1

ai(−n) ai(n) . (4.13)

The dimensions of the level subspaces do not depends on P. Obviously, it coincides with

the number of integer partitions of L into parts of three kinds, defined in (4.1),

dim
[
F (L)
P

]
= p3(L) . (4.14)

The grading operator L essentially coincides with I1 (4.6):

I1 = L+
3∑

i=1

(
P 2
i

4
− 1

24

)
. (4.15)

Therefore all local IM from the Fateev family act invariantly in the level subspaces F (L)
P .

The diagonalization of I2n−1 in a given level subspaces reduces to a finite-dimensional

matrix problem which however rapidly becomes very complex for higher levels.

– 26 –



J
H
E
P
0
9
(
2
0
1
4
)
1
4
7

Of course, the highest weight vector of the Fock space (the “vacuum” vector) is an

eigenvector for all integrals of motion I2n−1. Let I
(0)
2n−1 be the corresponding eigenvalues.

The results from section 3.2.3 and eqs. (4.6), (4.7) imply that for n = 1 and n = 2 the

following relation holds

q
(0)
2n−1 =

(−1)n−1 25−2nπ2
∏3

i=1 Γ
(
2 (2n− 1)α2

i

) I
(0)
2n−1 , (4.16)

where the parameters ai and pi of q
(0)
2n−1 are related to αi and the zero mode momen-

tum Pi as in eqs. (4.8) and (3.35), respectively. Moreover, for any value of n both sides

of (4.16) are polynomials in the variables (P1)
2, (P2)

2, (P3)
2 of the degree n. Comparing

eqs. (3.37), (3.38) with (4.10), (1.25), it is easy to check that all leading n-th degree mono-

mials are exactly the same in the both sides. Thus one can reasonably expect that (4.16),

involving the vacuum eigenvalues of the integral of motion and the expansion coefficients

of the Wilson loop for the PGHO with L = 0 holds exactly for any value of n ≥ 1.

Actually, we expect that (4.16) can be extended to the relation between the whole

spectrum of I2n−1 in any level subspace F (L)
P and admissible values of q

(L)
2n−1 associated with

the different PGHO’s with L monodromy-free punctures. Indeed, for ai and pi restricted

as in (1.4), (3.1), the number of solutions of the algebraic system (3.8), NL, is expected

to coincide with dim
[
F (L)
P

]
. As before, let Ap =

{(
x
(α)
1 , . . . x

(α)
L

)}NL

α=1
be the whole set

of such solutions. With a chosen representative
(
x
(α)
1 , . . . x

(α)
L

)
∈ Ap, one can associate

an infinite sequence of the expansion coefficients q
(L,α)
2n−1. In the case n = 1 and n = 2

explicit formulae are presented in section 3.2.4. From the other side, let
{
I
(L,β)
2n−1 }NL

β=1 be

a sets of eigenvalues of the NL × NL-matrix of I2n−1 acting in the level subspace F (L)
P .

We expect that, up to the overall normalization factor, the set
{
q
(L,α)
2n−1

}NL

α=1
coincides with

{
I
(L,β)
2m−1

}NL

β=1
for any fixed n and L. Thus the subscripts α and β can be identified and

eq. (4.16) is generalized as follows:

q
(L,α)
2n−1 =

(−1)n−1 25−2nπ2
∏3

i=1 Γ
(
2 (2n− 1)α2

i

) I
(L,α)
2n−1 . (4.17)

Form = 1, I1|F(L)
P

∝ 1NL×NL
and (4.17) follows from (3.40). Unfortunately we do not know

how to prove this remarkable relation for n > 1. However, an explicit form of NL × NL-

matrices I3|F(L)
P

is available and the conjectured relation has been tested numerically for

L ≤ 3 and a wide range of parameters ai and pi from the domain (1.4), (3.1). The

numerical work also suggests that, for generic values of the parameters, the eigenvalues of

the matrices I3|F(L)
P

are not degenerate. With this observation, one may expect that the

joint eigenvectors of the commuting family of IM,

|L, α 〉 ∈ F (L)
P : I2n−1 |L, α 〉 = I

(L,α)
2n−1 |L, α 〉 , (4.18)

form a non-degenerate basis in each level subspace F (L)
P . Therefore there exists a bijection

between the moduli space A(L)
p of PGHO’s with L monodromy-free punctures and the

level-L joint eigenbasis
{
|L, α 〉}NL

α=1.
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5 Connection matrices for PGHO

In the previous sections we have discovered interesting properties of the Wilson loop (de-

fined in (3.14)) by studying its asymptotic expansions at large values of λ, using the WKB

approximation. Even though this asymptotic analysis has led to remarkable insights into

the algebraic structure of the problem, considered in section 4, it does not solve the mathe-

matical problem of an exact calculation of the Wilson loop as entire functions of the variable

λ2. In this section we address this problem. Actually, here we solve a more general problem

of an exact calculation of all connection matrices for the PGHO. By doing this we employ

and extend ideas and methods previously developed in [2–4, 10]. The matrix elements

of the connection matrices are entire functions of λ2. Additional information about their

analytic properties, namely, asymptotic distributions of their zeroes, is deduced from the

standard WKB analysis. We use various symmetries of the differential operator (3.2) and

derive a system of functional relations, which allows one to completely determine all the

connection matrices. Interestingly, these functional relations have only a discrete (albeit

infinite) set of solutions, which possess the required analytic properties. We conjecture that

these solutions precisely correspond to PGHO’s with an arbitrary number of monodromy-

free punctures. The results are supported by several analytical and numerical checks for

PGHO with L = 0.

5.1 Functional relations for the connection matrices

A proper definition of the bases of solutions (2.29) for λ 6= 0 requires some additional

considerations. First of all, one needs to take into account that (unlike the λ = 0 case)

analytic continuations along infinitesimal loops around the singular points z1, z2 and z3
affects the PGHO itself. Therefore, in order to define solutions by asymptotic conditions

at these points one needs to make suitable brunch cuts. Let us chose an extra point,

say z = ∞, and cut the Riemann sphere along the lines, connecting this point with the

branching points of P(z). In figure 7 these cuts are shown by the dashed lines. Next, the

asymptotic conditions (2.29) must be slightly modified

χ(i)
σ → 1√

2pi
(z − zi)

1
2
+σpi

(
1 +O

(
(z − zi)

ai
2

))
as z → zi , (5.1)

since the order of the correction term is changed with respect to that in the λ = 0 case.

The above conditions uniquely define the solutions χ
(i)
σ (z) provided that the parameters pi

satisfy an additional constraints 0 < pi <
ai
4 , which were already enforced in eq. (3.1) above.

The connection matrices S(j,i)(λ) for λ 6= 0 can be defined in the same way (2.32) as

in the case of unperturbed GHO:

χ(i) = χ(j) S(j,i)(λ) . (5.2)

They satisfy the same relations (2.33) as for λ = 0:

det
(
S(j,i)(λ)

)
= 1 , S(i,j)(λ)S(j,i)(λ) = I , S(i,k)(λ)S(k,j)(λ)S(j,i)(λ) = I . (5.3)
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zi zj

zk

S(j,i)(λ)

Figure 7. The Riemann sphere with cuts. The dashed lines represent cuts which extended from

the branching points of P(z) to z = ∞. The connection matrixes are associated with oriented links.

Throughout this section we assume that (i, j, k) is a cyclic permutation of (1, 2, 3). In

figure 7 the matrices S(j,i)(λ) are associated with the oriented lines connecting the points

zi and zj .

The main rôle in the following analysis belongs to symmetry transformations which

essentially allows one to connect solutions χ(i) on different sheets of the Riemann surface

of the PGHO. Let

Ω̂i : z 7→ γi ◦ z , λ 7→ q−1
i λ (i = 1, 2, 3) (5.4)

be a transformation, involving a translation of the independent variable z along the contour

γi, accompanied by the substitution λ 7→ q−1
i λ, where

qi = eiπai , q1 q2 q3 = 1 . (5.5)

It is easy to see, that the substitutions (5.4) leave PGHO unchanged. Therefore they act

as linear transformations in the space of solutions. Namely, in the basis χ(i) they read

Ω̂i

(
χ(i)

)
= −χ(i) e−2πipiσ3 (5.6a)

Ω̂j

(
χ(i)

)
= −χ(i) S(i,j)(λ) e−2πipjσ3 S(j,i)(λ q−1

j ) (5.6b)

Ω̂k

(
χ(i)

)
= −χ(i) S(i,k)(λ) e−2πipkσ3 S(k,i)(λ q−1

k ) . (5.6c)

The most fundamental property of the differential operator (3.2) is that a combined

transformation Ω̂k ◦ Ω̂j ◦ Ω̂i, where (i, j, k) is a cyclic permutation of (1, 2, 3), is equivalent

to the identity transformation in the space of solutions of (3.2),

Ω̂k ◦ Ω̂j ◦ Ω̂i

(
χ(i)

)
= χ(i) . (5.7)

The proof follows from the relation (5.5) and the fact that γk◦γj◦γi is a contractible contour,
which loops around a regular point (z = ∞) of the PGHO (see figure 5). Combining (5.6)
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and (5.7) with the definition (5.2) one easily obtains

S(i,k)(λ) e−2πipkσ3 S(k,j)(λ q−1
k ) e−2πipjσ3 S(j,i)(λ qi) e

−2πipiσ3 = −I . (5.8)

Consider now the transformation Ω̂k ◦ Ω̂i ◦ Ω̂j , where the indices i and j are interchanged

with respect to (5.7). Repeating the above arguments (again with an account of (5.5)) one

can show that this transformation is equivalent to a linear transformation of solutions

Ω̂k ◦ Ω̂i ◦ Ω̂j

(
χ(i)

)
= χ(i)M(γP |λ) , (5.9)

where M(γP |λ) can be interpreted as a monodromy matrix of the Pochhammer loop de-

picted in figure 1. Then using (5.6) one obtains,

W(λ) = −Tr
[
e−2πipiσ3 S(i,j)(λ qj) e

−2πipjσ3 S(j,k)(λ) e−2πipkσ3 S(k,i)(λ q−1
k )

]
. (5.10)

We would like to stress that the above considerations apply to all PGHO’s with an arbi-

trary number of the monodromy-free punctures. This means that the connection matrices

will always satisfy the same relations (5.3), (5.6), (5.8) and (5.10), even though these ma-

trices depend on a set of the monodromy-free punctures. Note in particular, eqs. (5.3)

and (5.8) forms a system of functional relations for the coefficients of the connection matri-

ces. A simple inspection shows that there are only nine independent relations among (5.3)

and (5.8) for twelve different coefficients. Nevertheless, as we shall see below, these func-

tional relations together with appropriate analyticity assumptions completely determine

all these coefficients. More precisely, the relations have an infinite discrete set of solutions,

corresponding the PGHO’s with arbitrary number of the monodromy-free punctures.

For further references note, that the elements of the connection matrices, are simply

related to the Wronskians of the basic solutions,

W[χ
(j)
σ′ , χ

(i)
σ ] = −σ′ S(j,i)

−σ′σ(λ) . (5.11)

In what follows the set of functions W
(k)
σ′σ(λ) defined through the relation

W[χ
(j)
σ′ , χ

(i)
σ ] = −i eiπσ

′pj W
(k)
σ′σ(λ) e

−ωjσ
′−ωiσ , (5.12)

will be referred as connection coefficients. For λ = 0 this definition coincides with eq. (2.38)

and therefore W
(k)
σ′σ(0) coincides with A

(k)
σ′σ from eq. (2.37). As well as the Wilson loop, the

connection coefficients are entire functions of the variable λ2, i.e. they can be represented

by power series in λ2 with infinite radius of convergence. Our next goal is to describe their

characteristic properties.

5.2 Large-λ asymptotic

Consider the large λ behavior of the connection coefficients. In the leading order one has

W
(k)
σ′σ(λ) ∼ exp

(
λ

∫ zj

zi

dz
√
P(z)

)
(i = 1, 2, 3 , zi ∼ zi+3) , (5.13)
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where the integrals taken along the oriented links depicted in figure 7. Introduce the

constants rk > 0 and bk:
∫ zj

zi

dz
√
P(z) = rk eiπbk . (5.14)

Then eq. (5.13) can be equivalently written in the form

W
(k)
σ′σ

(
e−iπbkλ

)
≍ exp

(
rkλ+O(log λ)

) (
λ→ ∞ , | arg(λ2)| < π

)
. (5.15)

Note that, as it follows from the definition (5.14), the positive constant rk is given by

rk = 1
π

sin
(
π
2 ak

) 3∏

n=1

Γ
(
an
2

)
(5.16)

(here k = 1, 2, 3 and a0 ∼ a3), whereas bk satisfy the relations

eiπ(bi−bk) = −e−
iπ
2

aj . (5.17)

To assign precise meaning to an individual phase factor e−iπbk in eq. (5.15), one needs to

resolve the overall phase ambiguity of
√
P(z). Following the procedure from section 3.2.2

we send (z1, z2, z3) to (0, 1,∞), then
∫ z2

z1

dz
√

P(z) = e−
iπ
2
(a1+a2)

∫ 1

0
dz z

a1
2
−1 (1− z)

a2
2
−1 . (5.18)

Assuming that the integrand in the l.h.s. of this equation is positive for 0 < z < 1, one

finds eiπb3 = e−
iπ
2
(a1+a2). Together with (5.17), this implies

eiπb1 = e
iπ
2
(a3−a2) , eiπb2 = −e−

iπa2
2 , eiπb3 = −e

iπa3
2 . (5.19)

In fact, it is not difficult to calculate explicitly the subleading term in the asymptotic

formula (5.15). In order to simplify formulae below we make use the notation

A
(k)
σ′σ(λ) ≡W

(k)
σ′σ(i e

−iπbk λ) , A
(k)
σ′σ(0) ≡ A

(k)
σ′σ , (5.20)

where A
(k)
σ′σ is given by eq. (2.37). Then

A
(k)
σ′σ(iλ) ≍

(
Λj(λ)

)σ′ (
Λi(λ)

)σ
√
4 s(2pi

ai
)s(

2pj
aj

)
erk λ

(
1 +O(λ−1)

)
, (5.21)

where

Λi(λ) =

(
λ

ai

)− 2pi
ai

√√√√Γ(1 + 2pi
ai
)

Γ(1− 2pi
ai
)

eωi

(
zjk
zjizik

)−pi

. (5.22)

The above formula can be applied for large λ2 such that | arg(λ2)| < π. In the case of real

λ2 < 0, i.e. when λ = i |λ|, the asymptotic is given by

A
(k)
σ′σ

(
|λ|
)
≍
(
Λj(|λ|)

)σ′ (
Λi(|λ|)

)σ
√
s(2pi

ai
)s(

2pj
aj

)
cos
(
rk |λ| − σπpi

ai
− σ′πpj

aj
+O(λ−1)

)
. (5.23)
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As it was discussed at the end of section 2.3, the combinations (2.40), which appear

in the formula (5.22), are functions of the L projective invariants. In the case L = 0, they

are given by equation (B.2) from appendix B. For this reason it is convenient to write the

subleading terms in the asymptotic formulae (5.21) and (5.23) as

(
Λj(λ)

)σ′(
Λi(λ)

)σ
=
(
S(σ′pj |pk + pi)S(σ

′pj |pk − pi)S(σpi|pj + pk)S(σpi|pj − pk)
) 1

4

×
(
g
(L,α)
j

)σ′ (
g
(L,α)
i

)σ
, (5.24)

where

S(pi|q) =
(
λ

ai

)− 4pi
ai Γ

(
1
2 + pi − q

)
Γ
(
1
2 + pi + q

)

Γ
(
1
2 − pi − q

)
Γ
(
1
2 − pi + q

)
Γ(1− 2pi) Γ

(
1 + 2pi

ai

)

Γ(1 + 2pi) Γ
(
1− 2pi

ai

) , (5.25)

and g
(L,α)
i (g

(0)
i = 1) stand for λ-independent constants corresponding to a given set of

monodromy - free punctures (3.4).9

The asymptotic formula (5.21) can be extended to the following systematic asymp-

totic series

A
(k)
σ′σ(iλ) ≍

(
Λj(λ)

)σ′ (
Λi(λ)

)σ
√
4 s
(
2pi
ai

)
s
(
2pj
aj

) erk λ B(k)(λ) X
(j)
σ′

(
e−

iπaj
2 λ
)
X(i)

σ (λ) . (5.26)

Here the quantity B(k)(λ) is a formal power series

B(k)(λ) = exp

( ∞∑

n=1

cn q
(L)
2n−1

4 sin
(
π
(
n− 1

2

)
ai
)
sin
(
π
(
n− 1

2

)
aj
) λ1−2n

)
, (5.27)

where q
(L)
2n−1 stand for the expansion coefficient for the Wilson loop (3.25) and the numerical

coefficients cn are defined by eq. (3.26). Similarly, the symbol X
(i)
σ (λ) in (5.26) denotes the

formal power series expansion in fractional powers of λ, namely,10

X(i)
σ (λ) = exp

( ∞∑

n=1

x(i)σ,n λ
− 2n

ai

)
. (5.28)

9In the case L = 1, the formula (B.4) from appendix B leads to

g
(1,α)
i = i

ϑ2(u
(α) − ui, q)

ϑ1(u(α) − ui, q)

ϑ3(uj − uk, q)

ϑ4(uj − uk, q)
(α = 1, 2, 3) ,

where u(α) are the values of uniformizing parameter u (A.12) corresponding to the roots
(

x(α), y(α)
)

of the

system of two equations (A.1) and (3.5) (i.e.
(

x(α), y(α)
)

=
(

x(u(α)), y(u(α))
)

, where functions x = x(u)

and y = y(u) are given by (A.13)).
10An explicit form of the expansion coefficients x

(i)
σ,n are not known. The sole exclusion is the first

coefficient in the case of PGHO with L = 0, which reads explicitly

x
(i)
σ,1|L=0 =

(

2

ai

)− 2

ai
Γ
(

1
ai

)

Γ
(

1
2
− 1

ai

)

4
√
π

Γ
(

1 + 1
ai

+ 2σpi
ai

)

Γ
(

− 1
ai

+ 2σpi
ai

)

(

p2j − p2k

p2i − 1
4

+
aj − ak

2 + ai

)

.
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5.3 Zeroes of A
(k)
σ′σ(λ)

By definition (5.20), the functions A
(k)
σ′σ(λ) are entire functions of λ

2. Let us discuss patterns

their zeros {λ(k)n }∞n=1, so that

A
(k)
σ′σ(λ

(k)
n ) = 0 , n = 1, 2, . . . . (5.29)

Here we have omitted the indices σ′, σ in the notation of zeroes. This dependence will be

implicitly assumed. We will also assume that the sign of λ
(k)
n is fixed by the requirement

−π/2 < arg
(
λ
(k)
n

)
≤ π/2.

Due to the cyclic symmetry, it is sufficient to consider one value of k, say k = 3.

Let us set (z1, z2, z3) to (0, 1,∞) and then make the change of variables (3.22). The

transformation w = w(z) is the Schwartz-Christoffel mapping which sends (0, 1,∞) to

(0, r3, r2 e
iπ
2
a1), whereas the function ψ̂ satisfies the ordinary Schrödinger equation (3.23)

with the potential T̂L(w) given by (3.24). Consider a zero λ
(3)
n of the function A

(3)
σ′σ(λ).

It is easy to see that if λ2 = −(λ
(3)
n )2, the Schrödinger equation (3.23) has a solution ψ̂n

such that

ψ̂n(w) ∼





w
1
2
+

2p1σ
a1

(
1 +O(w)

)
, as w → 0

(r3 − w)
1
2
+

2p2σ
′

a2

(
1 +O(w − r3)

)
, as w → r3

. (5.30)

If the parameters pi are restricted by the condition 0 < 2pi
ai

< 1
2 (see eq. (3.1)), the

above asymptotic conditions lead to well-defined spectral problems for all σ, σ′ = ±1. An

immediate consequence of this fact is that all the zeroes of A
(3)
σ′σ(λ) are simple.

In the simplest case of the perturbed hypergeometric oper (i.e., for L = 0), the potential

in the Schrödinger equation (3.23) is real and positive. Therefore all the zeroes λ
(3)
n are

also real and positive. Then the large-λ asymptotic formulae (5.21)–(5.23) imply that the

zeroes accumulate at the infinity along the positive real axis and for large integer n ≫ 1

one has

λ(k)n ≍ π

rk

(
n+

σpi
ai

+
σ′pj
aj

− 1

2

)
+O(n−1) . (5.31)

(Because of cyclic symmetry, the last formula is valid for any cyclic permutation (i, j, k).)

For a general case of PGHO with L > 0 the potential in the equation (3.23), in general,

becomes complex-valued for w ∈ [0, r3], so that the zeros λ
(3)
n also become complex. How-

ever, they still remain simple and accumulate at infinity in the vicinity of the positive real

axis. The asymptotic formula (5.31) continues to hold for L > 0. Moreover, we would

like to stress, that for large n this formula gives the asymptotics of precisely the n-th zero

λ
(k)
n (in the sense that n coincides with the number of zeroes, whose absolute value is less

or equal than |λ(k)n |). Similar considerations apply to all functions A
(k)
σ′σ(λ); they can be

written in the form of convergent products

A
(k)
σ′σ(λ) = A

(k)
σ′σ

∞∏

n=1

(
1− λ2

(
λ
(k)
n

)2
)
, (5.32)
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where A
(k)
σ′σ is given by (2.37). At this stage it is convenient to introduce spectral ζ-

functions, which capture all information about the distribution of zeroes λ
(k)
n ,

ζk(ν) =
∞∑

n=1

(
λ(k)n

)−iν
(5.33)

(recall that we assume that −π/2 < arg
(
λ
(k)
n

)
≤ π/2). As follows from the asymptotic

formula (5.31) the function ζk(ν) is analytic in the lower half plane ℑm(ν) ≤ 0, except the

point ν = −i, where it has a simple pole with the residue −i rk/π. Using these properties

the product formula (5.32) can be transformed into an integral representation

log

(
A

(k)
σ′σ(iλ)

A
(k)
σ′σ(0)

)
= rk λ− 1

2

∫

R−i0

dν

ν

ζk(ν)

sinh
(
πν
2

) λiν . (5.34)

Closing the integration contour in this formula in upper half plane and comparing the result

with the asymptotic expansion (5.26) one concludes that the function ζk(ν) has zeroes at

ν = 2i, 4i, . . . and additional simple poles on the imaginary axis ν with the following

residues

res
[
ζk(ν)

]
ν=i(2n−1)

= i
Γ
(
n+ 1

2

)
q
(L)
2n−1

4π
3
2 n! sin

(
π
(
n− 1

2

)
ai
)
sin
(
π
(
n− 1

2

)
aj
) ,

res
[
ζk(ν)

]
ν= 2in

ai

= −i
2n

πai
sin

(
πn

ai

)
x(i)σ,n , (5.35)

res
[
ζk(ν)

]
ν= 2in

aj

= −i
2n

πaj
sin

(
πn

aj

)
(−1)n x

(j)
σ′,n ,

where n = 1, 2, . . . . Moreover it follows from (5.21) that

ζk(0) = −σpi
ai

− σ′pj
aj

(5.36)

and

exp
(
− 2i ζ ′k(0)

)
=

(
Λj(λ)

)σ′ (
Λi(λ)

)σ

A
(k)
σ′σ(0)

√
4 s(2pi

ai
)s(

2pj
aj

)

∣∣∣∣∣
λ=1

, (5.37)

where Λi(λ) is defined in (5.22).

5.4 Bethe Ansatz equations

The nine non-linear functional equations (5.3) and (5.8) involve too many unknown func-

tions (twelve) and, in fact, appear to be rather complicated for a direct analysis. Fortu-

nately, it is possible to reduce these equations to eight sets of rather compact equations of

the Bethe Ansatz type, where each set involves only three unknown functions. In principle,

this could be done by direct manipulations with the equations (5.3) and (5.8), but here

we prefer a more efficient approach involving direct calculations of the Wronskians. It is

based on the relation (5.7) and the following simple properties:
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(i) The solutions χ(i)(z) are simply transformed under the action of Ω̂i with the same

i (see eq. (5.6a)). This follows from the fact that the asymptotic condition (2.29),

defining the solution χ
(i)
σ (z), does not involve the parameter λ.

(ii) For any two solutions ψ1(z) and ψ2(z) of (3.2) one has

W
[
Ω̂i(ψ1), Ω̂i(ψ2)

]
= w(λq−1

i ) , where w(λ) = W
[
ψ1, ψ2

]
. (5.38)

The proof follows from the definition (5.4) and the fact that the Wronskian in (5.38)

does not depend on the point z where it is calculated.

Let (i, j, k) be a cyclic permutation of (1, 2, 3) and σ, σ′, σ′′ = ±1. Together with

functions A
(k)
σ′σ(λ) (5.20) it is convenient to introduce additional notation T

(i)
σ

W
[
Ω̂j(χ

(i)
σ ) , χ(i)

σ

]
= i T (i)

σ (−i eiπbi λ) . (5.39)

From eq. (5.6b) it immediately follows that

iT (k)
σ (λ) = −e2πipj A

(k)
+,σ

(
λq

1
2
j

)
A

(k)
−,σ

(
λq

− 1
2

j

)
+ e−2πipjA

(k)
+,σ

(
λq

− 1
2

j

)
A

(k)
−,σ

(
λq

1
2
j

)
. (5.40)

The same quantity can be calculated in a different way, using the additional relations (5.7)

and (5.38). First, from (5.6a) and (5.38) it follows that

W
[
Ω̂i

(
χ
(j)
σ′

)
, χ(i)

σ

]
= σ′ e−2πiσpi S

(j,i)
−σ′,σ(λq

−1
i ) . (5.41)

Similarly, using also the property (5.7), one can easily show that

W
[
Ω̂j

(
χ(i)
σ

)
, χ

(k)
σ′′

]
= W
[
Ω̂−1
k Ω̂−1

i

(
χ(i)
σ

)
, χ

(k)
σ′′

]
= −σ e−2πi(σpi−σ′pk) S

(i,k)
−σ,σ′′(λqk) . (5.42)

Next, any three basic solutions χ
(i)
σ , χ

(j)
σ′ and χ

(k)
σ′′ are connected by the a linear relation

σ′S(j,i)
−σ,σ′(λ)χ

(k)
σ′′ + σ′′S(k,j)

−σ,σ′′(λ)χ
(i)
σ + σS

(i,k)
−σ′′,σ(λ)χ

(j)
σ′ = 0 . (5.43)

Consider again the Wronskian in (5.39). Expressing the second χ
(i)
σ therein from (5.43)

and then using the previous relation (5.41), (5.42) one obtains

T (i)
σ (λ)A

(i)
σ′′σ′(λ) = e−iπ(σpi−σ′pj−σ′′pk)A

(j)
σσ′′(λq

1
2
k )A

(k)
σ′σ(λq

1
2
j )

+eiπ(σpi−σ′pj−σ′′pk)A
(j)
σσ′′(λq

− 1
2

k )A
(k)
σ′σ(λq

− 1
2

j ) . (5.44)

Making simultaneous cyclic permutations of the indices (i, j, k) and the values (σ, σ′, σ′′)
one obtains another two equations of the same type, which contain the same three functions

A
(i)
σ′′σ′(λ), A

(j)
σσ′′(λ) and A

(k)
σ′σ(λ) as in the equation (5.44). By definition, T

(i)
σ (λ) is an entire

function of λ2, therefore the l.h.s. of (5.44) vanishes at all zeroes of A
(i)
σ′′,σ′(λ). Proceeding

in this way one obtains a system of three coupled Bethe Ansatz type equations for the
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position of zeroes





e2πi(σ
′′pk+σ′pj−σpi)

A
(k)
σ′σ

(
λ
(i)
n q

+ 1
2

j

)
A

(j)
σσ′′

(
λ
(i)
n q

+ 1
2

k )

A
(k)
σ′σ

(
λ
(i)
n q

− 1
2

j )A
(j)
σσ′′

(
λ
(i)
n q

− 1
2

k

) = −1

e2πi(σ
′pj+σpi−σ′′pk)

A
(j)
σσ′′

(
λ
(k)
n q

+ 1
2

i

)
A

(i)
σ′′σ′

(
λ
(k)
n q

+ 1
2

j )

A
(j)
σσ′′

(
λ
(k)
n q

− 1
2

i )A
(i)
σ′′σ′

(
λ
(k)
n q

− 1
2

j

) = −1

e2πi(σpi+σ′′pk−σ′pj)
A

(i)
σ′′σ′

(
λ
(j)
n q

+ 1
2

k )A
(k)
σ′σ

(
λ
(j)
n q

+ 1
2

i

)

A
(i)
σ′′σ′

(
λ
(j)
n q

− 1
2

k

)
A

(k)
σ′σ

(
λ
(j)
n q

− 1
2

i )
= −1

, (5.45)

where n = 1, 2, . . . and λ
(i)
n , λ

(j)
n and λ

(k)
n denote the zeroes of A

(i)
σ′′σ′(λ), A

(j)
σσ′′(λ) and

A
(k)
σ′σ(λ), respectively. Choosing (σ, σ′, σ′′) = (±1,±1,±1) one gets, eight different triples

of the Bethe Ansatz type equation, where each set involves only three different functions.

Any particular functions A
(i)
σ′σ(λ) enters into the two sets of these equations.

As an immediate consequence one can derive an “asymptotically exact” Bohr-

Sommerfeld quantization condition for the roots λ
(k)
n . Substituting the asymptotic for-

mula (5.26) into (5.45) one obtains,

λ = λ(k)n : rk λ+Φ
(k)
σσ′(λ) ≍ π

(
n+

σpi
ai

+
σ′pj
aj

− 1

2

)
, (5.46)

where

Φ
(k)
σ′σ(λ) =

∞∑

n=1

(−1)n cn q
(L)
2n−1

4 sin
(
π
(
n− 1

2

)
ai
)
sin
(
π
(
n− 1

2

)
aj
) λ1−2n (5.47)

−
∞∑

n=1

x(i)σ,n sin
(
πn
ai

)
λ
− 2n

ai −
∞∑

n=1

(−1)n x
(j)
σ′,n sin

(
πn
aj

)
λ
− 2n

aj .

It is convenient to introduce a new function

ǫi(λ) = i log


A

(j)
σσ′′

(
λ q

+ 1
2

k

)
A

(k)
σ′σ

(
λ q

+ 1
2

j

)

A
(j)
σσ′′

(
λ q

− 1
2

k

)
A

(k)
σ′σ

(
λ q

− 1
2

j

)


+ 2π

(
σpi − σ′pj − σ′′pk

)
(5.48)

and another two functions ǫj(λ) and ǫk(λ), which are obtained from (5.48) by simultaneous

cyclic permutations of the indices (i, j, k) and (σ, σ′, σ′′). To simplify the following equations

we have omitted the indices σ, σ′, σ′′ in the notation of ǫ-functions since their arrangement

is firmly connected to the indices (i, j, k) and so that they can always be restored.

We expect that the Bethe Ansatz equations (5.45) combined with the asymptotic

formula (5.31) have an infinite number of solutions, corresponding to PGHO’s with different

configurations of monodromy-free punctures. These solutions are distinguished by different

phase assignments in the logarithmic form of the Bethe Ansatz equations (5.45),

ǫi
(
λ(i)n

)
= π

(
2m(i)

n − 1
)
, m(i)

n ∈ Z (i = 1, 2, 3) , (5.49)
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which involve three sets of integers {m(i)
n }∞n=1, i = 1, 2, 3. These integers, of course, depend

on the choice of branches of the logarithm in the left hand side of (5.48). However, once

these branches are appropriately fixed, every solution is characterized by a unique choice

of {m(i)
n }. In particular, for the PGHO without any monodromy free punctures (L = 0

case) all roots lie of the real axis and the integers m
(i)
n exactly coincide with n,

m(i)
n ≡ n , n = 1, 2, . . . , for L = 0 . (5.50)

Further, although we have previously assumed that the parameters pi, pj , pk obey the

constraints (3.1), the resulting Bethe Ansatz equations (5.45) make sense for any complex

values of pi. Most importantly, their solutions continuously depend on these parameters.

Below we will use this fact to enumerate all solutions of (5.45), following the line of ap-

pendix A of ref. [11]. Fix the values σ, σ′ and σ′′ and assume that

σpi ≫ 1, σ′pj ≫ 1, σ′′pk ≫ 1 , (5.51)

and that |pi|, |pj | and |pk| are of the same order of magnitude. Then the asymptotics (5.31)

(as well as the numerical analysis of (5.49)) suggests that for sufficiently large values of

the parameters (5.51) all roots λ
(i)
n will be ordered |λn+1| − |λn| ∼ O(1) and lie in a close

vicinity of the real axis. Then, if one uses the principal branch of the logarithms in (5.48),

all the integers m
(i)
n will be distinct and uniquely defined for every solution of (5.49).

Obviously, not every set of integers {m(i)
n } corresponds to a solution of (5.49). Indeed,

substituting (5.31) into (5.49) one concludes that the sequences of integers m
(i)
n stabilize

at large n, i.e.,

m(i)
n = n , for sufficiently large n . (5.52)

Thus, the infinite sets {m(i)
n } associated with different solutions of (5.49) only differ in

finitely many first entries. Therefore the most general pattern for the set {m(i)
n } can be

obtained from the L = 0 set (m
(i)
n ≡ n, for all n = 1, 2, . . . ,∞) by deleting a certain

number of (positive) entries (we denote this number by Mi) and adding the same number

of distinct non-positive integer entries. It can be written as

m(i)
n =




1− µ̃

(i)
Mi−n+1 , for n = 1, . . .Mi

Nn−Mi
(µ(i)) , for n ≥Mi + 1

. (5.53)

Here µ(i) = {µ(i)1 , µ
(i)
2 , . . . µ

(i)
Mi

} and µ̃(i) = {µ̃(i)1 , µ̃
(i)
2 , . . . µ̃

(i)
Mi

} denote two increasing se-

quences of positive integers 1 ≤ µ
(i)
1 < µ

(i)
2 < . . . < µ

(i)
Mi

and 1 ≤ µ̃
(i)
1 < µ̃

(i)
2 < . . . < µ̃

(i)
Mi

with Mi ≥ 0; and Nℓ(µ
(i)), ℓ = 1, 2, . . . , denotes ℓ-th element of the increasing sequence

of consecutive positive integers with deleted entries µ
(i)
n , n = 1, . . .Mi:

{
N(µ(i))

}
=
{
1, 2, . . .

/
µ
(i)
1 , . . .

/
µ
(i)
2 , . . .

}
. (5.54)

We conjecture that the solutions of the Bethe Ansatz equations (5.49), associated with

such set of integers {µ(i)} and {µ̃(i)} correspond to PGHO’s with exactly

L =
3∑

i=1

Mi∑

ℓ=1

(
µ̃
(i)
ℓ + µ

(i)
ℓ − 1

)
(5.55)
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monodromy-free punctures. For a given value of L the number of the integer sets{
µ̃(1), µ(1), µ̃(2), µ(2), µ̃(3), µ(3)

}
, satisfying this equation is equal to p3(L) (which is the

number of partitions of L into integer parts of three kinds, already defined in (4.1)).

5.5 Non-linear integral equations for L = 0

The entire function A
(k)
σ′σ(λ) is completely determined by its zeros λ

(k)
n and the leading

asymptotic term in (5.21). On the other hand, the positions of the zeros are restricted by

the equation (5.49). Mathematically, the problem of reconstructing the function A
(k)
σ′σ(λ)

from this data is similar to the one which emerged long ago in the context of the analytic

Bethe Ansatz [40–43]. For the sine-Gordon model the problem was solved by Destri and

De Vega [44, 45], who have reduced it to a single complex non-linear integral equation.

Similar equation was earlier derived in the latticeXXZ-model in ref. [46]. Here we consider

the the non-linear integral equations determining A
(k)
σ′σ(λ) in the simplest case of PGHO

without monodromy-free punctures, i.e, L = 0.

Using (5.34) define spectral ζ-functions ζi(ν), ζj(ν) and ζk, associated with A
(i)
σ′′σ′(λ),

A
(j)
σσ′′(λ) and A

(k)
σ′σ(λ), respectively. It is convenient to introduce a new variable θ = log(λ).

The Bethe Ansatz equations (5.45) allows one to derive a non-trivial relation between ǫ-

and ζ-functions. For the case when all roots lie on the positive real axis, it reads (see [44, 45]

for details of a similar derivation)

ζi(ν) = iν
3∑

i=1

Φil(ν)

∫ ∞

−∞

dθ

π
e−iνθ ℑm

[
log
(
1 + e−iǫl(θ−i0)

)]
(ℑm(ν) > 0) , (5.56)

where

Φii(ν) =
sinh(πν2 ) sinh

(
πν(aj+ak)

2

)

2 cosh(πν2 ) sinh(
πνaj
2 ) sinh

(
πνak
2

) ,

Φij(ν) = Φji(ν) =
sinh

(
πν
2

)

2 cosh(πν2 ) sinh(πνak2 )
(i 6= j) . (5.57)

The integral (5.56) converges in the half plane ℑm(ν) > 0, but it can be analytically

continued to the whole complex plane of ν. In fact, as it was remarked before, the function

ζi(ν) is analytic in the lower plane ℑm(ν) ≤ 0 except a simple pole at ν = −i. Combining

the relations (5.34), (5.48) and (5.56) it is easy to show that

ǫi(θ) = 2ri e
θ − π

(
σ′ 2pj

aj
+ σ′′ 2pk

ak

)
+

3∑

l=1

∫ ∞

−∞

dθ′

π
Gil(θ − θ′)ℑm

[
log
(
1+ e−iǫl(θ

′−i0)
)]
,

(5.58)

where

Gil(θ) =

∫ ∞

−∞
dν
(
Φil(ν)− δil

)
eiνθ . (5.59)
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Notice that eqs. (5.35) and (5.56) imply the following relations

q
(0)
2n−1 =

8n!
√
π

Γ
(
n− 1

2

)
3∑

i=1

sin
(
π
(
n− 1

2

)
ai
)
fi ( i (2n− 1) ) , (5.60)

x(i)σ,n|L=0 =
1

ai cos
(
πn
ai

)
(
(−1)n fj

(
i 2n
ai

)
+ fk

(
i 2n
ai

) )
, (5.61)

where we use function

fi(ν) =

∫ ∞

−∞

dθ

π
e−iνθ ℑm

[
log
(
1 + e−iǫi(θ−i0)

)]
, (5.62)

which is analytic in the upper half-plane, ℑm(ν) > 0. The function fi(ν) has a simple pole

at ν = 0,

fi(ν) = − i

ν

(
σpi − σ′pj − σ′′pk

)
+ f

(0)
i +O(ν) . (5.63)

In a view of eqs. (5.37) and (5.56), it is easy to see that

(
Λj(λ)

)σ′ (
Λi(λ)

)σ∣∣∣
λ=1
L=0

= exp
(
f i , j , kσ,σ′,σ′′ − f i , j , k−σ,−σ′,−σ′′

)
, (5.64)

where

f i , j , kσ,σ′,σ′′ =
1

2ai

(
f
(0)
j + f

(0)
k

)
+

1

2aj

(
f
(0)
i + f

(0)
k

)
.

The equation (5.58) has been solved numerically for various values of the parameters

a1, a2, a3 and p1, p2, p3. Using the obtained numerical values of ǫi(θ) we calculated (5.60)

for n = 1, 2 and (5.61) for n = 1 and checked that they are in an excellent agreement

with eqs. (3.33), (3.34) and the analytical formula for x
(i)
σ,1|L=0 from footnote 10. Also we

numerically checked eq. (5.64), where the l.h.s. is given by (5.24) with g
(0)
i = g

(0)
j = 1.

6 Hidden algebraic structures (continuation)

In a view of identification (4.17), the formal power series B(k)(λ) in the asymptotic for-

mula (5.26) can be understood as eigenvalues of the formal operator

B(k)(λ) = exp

(
−

∞∑

n=1

Γ
(
1−

(
n− 1

2

)
ak−1

)
Γ
(
1−

(
n− 1

2

)
ak+1

)

Γ
((
n− 1

2

)
ak
) Γ

(
n− 1

2

)

22n−2 n!
√
π
I2n−1 λ

1−2n

)

(6.1)

in the Fock space FP with Pi =
2pi√
ai
. (Here and below, we always assume that the pa-

rameters αi and ai are related as in (4.8).) In fact, all other terms in (5.26) can be also

understood as eigenvalues of certain operators commuting with the local IM.
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6.1 Corner-brane W -algebra and reflection operators

Here we argue that the factor
(
g
(L,α)
j

)σ′ (
g
(L,α)
i

)σ
in (5.24) can be identified with an eigen-

value of certain λ-independent operator R
(k)
σ′σ acting in the Fock FP space and commuting

the local IM I2m−1:

R
(k)
σ′σ |L, α 〉 =

(
g
(L,α)
j

)σ′ (
g
(L,α)
i

)σ |L, α 〉 . (6.2)

The operators R
(k)
σ′σ are similar to the reflection operator from ref. [34]. The main part

in the construction belong to a W -algebra whose rôle is analogous to that of the Virasoro

algebra in the quantum Liouville theory. This W -algebra was introduced in ref. [49] and

studied in ref. [22]. Below we closely follow the consideration from ref. [23], where this

W -algebra was called “corner-brane” W -algebra.

Let us introduce four vectors

α1 = i
(
+ α1,+α2,+α3

)

α2 = i
(
+ α1,−α2,−α3

)

α3 = i
(
− α1,+α2,−α3

)
(6.3)

α4 = i
(
− α1,−α2,+α3

)
,

and define the exponential vertex operators

VA(u) = e2αA·φ(u) (A = 1, 2, 3, 4) . (6.4)

Here φ = (φ1, φ2, φ3) is the three-component chiral Bose field (4.2) and the dot prod-

uct stands for x · y =
∑3

i=1 xiyi. We now choose the first three vectors α1, α2 and α3

from the set (6.3) and define the algebra W(1,2,3) as an algebra generated by the holomor-

phic currents Ws of spin s characterized by the condition that they commute with three

“screening charges”
∮

u

dv Ws(u)VA(v) = 0 (A = 1, 2, 3) . (6.5)

The integration here is taken over a small contour around the point u. For small s the

condition (6.5) can be straightforwardly analyzed. In particular, one can show that spin-1

currents satisfying (6.5) are absent, but there is one (up to an overall multiplier) spin-2

current

W2 = ∂φ · ∂φ+ ρ · ∂2φ , (6.6)

with

ρ =
i

2

(
1

α1
,
1

α2
,
1

α3

)
, (6.7)

which generate the Virasoro subalgebra with the central charge

c = 3− 6
3∑

i=1

1

ai
. (6.8)
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Furthermore, there are no non-trivial spin-3 currents since the spin-3 fields satisfying (6.5)

turns to be the derivative ∂W2. For spin-4 there are three fields — two “descendent”

currents ∂2W2 and (W2)
2, but also one new current W4. Explicit form of W4 is somewhat

cumbersome and can be found in appendix A of ref. [23]. For s > 4, the calculations based

on definition (6.5) become very complicated. However one can argue (see ref. [23]) that

there is exactly one independent current W2n at each even spin s = 2n, having the form

W2n =W
(sym)
2n + ∂V2n−1 , (6.9)

where the non-derivative term W
(sym)
2n (but not V2n−1) is symmetric with respect to all

180o rotation around the coordinate axes of the (φ1, φ2, φ3) space:

(φ1, φ2, φ3) 7→ (φ1,−φ2,−φ3), (−φ1, φ2,−φ3), (−φ1,−φ2, φ3) . (6.10)

The above construction can be repeated for any choice of three vectors αA, αB and

αC from the set (6.3) to yield four corner-brane W -algebras which are labeled by are triple

integers (A,B,C):11

W(1,2,3) , W(2,3,4) , W(3,4,1) , W(4,1,2) . (6.11)

To simplify formulae, below we will use the shortcut notations

W(A) ≡ W(B,C,D) , where (A,B,C,D) = perm(1, 2, 3, 4) . (6.12)

Of course, all algebras W(A) are isomorphic to W(4) ≡ W(1,2,3), differing from it only

by the way they are embedded in the Heisenberg algebra (4.3). To be more precise, it

is expected that for generic values of the parameters there exist twelve invertible linear

operators

R(A,B) : F (L)
P 7→ F (L)

P

(
A,B = 1, . . . 4 , A 6= B

)
(6.13)

satisfying the condition:

W (B)
s (u) = R(A,B) W (A)

s (u)
[
R(A,B)

]−1
(s = 2, 4, . . .) . (6.14)

It is also expected that the whole W(A)-algebra is generated by the spin-4 currentW
(A)
4 (u),

so that relations (6.14) for any s follow from s = 4 case. The operators (6.13) will be referred

to below as reflection operators.

A rigorous proof of existence of the reflection operators is absent. However, assuming

that they are exist, it is not difficult to describe the procedure which allows one to construct

them explicitly.

Let us denote the Fourier coefficients of the W
(A)
4 -currents by W̃

(A)
4 (n) (n ∈ Z, A =

1, 2, 3, 4). For generic values of the parameters the Fock space possesses a natural structure

11These W -algebras are naturally associated with four corners of the pillow-brane from ref. [23]. The

notations Xi and αi from ref. [23] coincides with ours φi and 2iαi, respectively.
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of the highest weight irreducible representation of the W(A)-algebra. It is expected that,

for a given A, each level subspace F (L)
P is spanned on the vectors

W̃
(A)
4 (n1) . . . W̃

(A)
4 (nM ) |P 〉 , L = −

M∑

i=1

ni (ni ∈ Z) , (6.15)

and one can chose NL linear independent vectors of the form (6.15) to build the basis

in F (L)
P :

{
w

(A)
b

}NL

b=1
: w

(A)
b = W̃

(A)
4 (n1) . . . W̃

(A)
4 (nM ) |P 〉 . (6.16)

(Here we use subscript b to enumerate the basis vectors.) The choice of the monomials

W̃
(A)
4 (n1) . . . W̃

(A)
4 (nM ) in (6.16) is not particularly important for us here. What’s impor-

tant is that for the given choice of monomials one can build four different bases in F (L)
P

corresponding to different values of A = 1, 2, 3, 4 and therefore, using these bases, one can

introduce the set of linear operators according to the rule

R(A,B) : R(A,B)w
(A)
b = w

(B)
b . (6.17)

Let

{eβ}NL

β=1 : eβ = ai1(−m1) . . . aiM (−mN ) |P 〉 , L =
N∑

i=1

mi (mi = 1, 2, . . .) , (6.18)

be the basis in the level subspace F (L)
P . Then the W -basis (6.16) can be expressed in terms

of the Heisenberg states (6.18):

w
(A)
b =

(
R(A)

)β
b
eβ . (6.19)

The matrix of the linear operator R(A,B) in the Heisenberg basis is given by

R(A,B) eβ =
([
R(A)

]−1)b
β

(
R(B)

)β′

b
eβ′ . (6.20)

In a view of eq. (6.9), the operators W̃
(A)
2n (0) =

∫ 2π
0

du
2π W

(A)
2n (u) are elements of all

W -algebras W(A). We introduce special notations for these elements:

{
I2n−1

}∞
n=1

: I2n−1 := W̃
(A)
2n (0) =

∫ 2π

0

du

2π
W

(sym)
2n (u) . (6.21)

Each operator from this set is written in the form of integral over the local density and

commute with the reflection operators

[R(A,B), I2n−1 ] = 0 . (6.22)

To prove the last relation, one should rewrite eq. (6.14) in the form

W
(B)
2n (u) R(A,B) = R(A,B) W

(A)
2n (u) , (6.23)
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and then integrate both sides of the obtained relation over the period. Much of this work is

based on the assumption that the operators I2n−1 form a maximal commuting set, despite

that at the moment a rigorous proof of mutual commutativity of I2n−1 defined by eq. (6.21)

is lacking.

Let us illustrate the construction above by the simplest L = 1 case. At the first level,

there are three linear independent states and the Heisenberg basis is generated by the

vectors

ei = ai(−1) |P 〉 (i = 1, 2, 3) . (6.24)

As for W (4)-basis, one can use the following three linear independent vectors

w1 = W̃
(4)
4 (−1) |P 〉, w2 = W̃

(4)
4 (0) W̃

(4)
4 (−1) |P 〉, w3 = W̃

(4)
4 (1) W̃

(4)
4 (−2) |P 〉. (6.25)

An explicit form of the W4-current for W(1,2,3) ≡ W(4) algebra is given by formulae (A.1)-

(A.5) in appendix A of ref. [23]. Using those formulae one can calculate (3 × 3)-matrix(
R(4)

)β
b
, defined in (6.19).12 Having at hand an explicit expression for this matrix, other

matrixes (R(A))βb can be obtained by means of the formal substitutions

(R(1))βb = (R(4))βb |α1 7→−α1
α2 7→−α2

, (R(2))βb = (R(4))βb |α1 7→−α1
α3 7→−α3

, (R(3))βb = (R(4))βb |α2 7→−α2
α3 7→−α3

. (6.26)

Then eq. (6.20) allows one to construct twelve 3 × 3-matrices
(
R(A,B)

)β′

β
and then check

the commutativity condition (6.22).

Returning to general properties of the reflection operators, it can be easily seen from

eqs. (6.20), (6.22) that they are mutually commute

R(A,B)R(C,D) = R(C,D)R(A,B) (6.27)

and satisfy the relations

R(A,B)R(B,A) = 1 , R(A,C) = R(A,B)R(B,C) , R(1,2)R(2,3)R(2,3)R(3,4) = 1 . (6.28)

For our purposes it is useful to enumerate twelve reflections operators in slightly different

manner than in the definition (6.14). Namely we define

R
(k)
σ′σ := R(A,B) (σ, σ′ = ±1 , k = 1, 2, 3) , (6.29)

by means of the following relations

R
(k)
++ = R(4,4−k) (k = 1, 2, 3)

R
(1)
+− = R(1,2) , R

(2)
+− = R(3,1) , R

(3)
+− = R(2,3) (6.30)

R
(k)
−σ′,−σ = R(B,A) .

Then, eqs. (6.22), (6.27) and (6.28) imply that eigenvalues of the operators R
(k)
σ′σ in the

level subspace F (L)
P have the form (6.2), where g

(L,α)
i (i = 1, 2, 3) stand for some constants.

12We are grateful to A.V. Litvinov for writing a computer code for this calculation.
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Furthermore, explicit calculations in the case L = 1 shows that g
(1,α)
i (i = 1, 2, 3; α =

1, 2, 3) are the same as those quoted in footnote 9. Notice that the square of Λi(λ) (5.22)

can be identified with eigenvalues of the following reflection operators acting in the level

subspace F (L)
P :

{(
Λ
(α)
1 (λ)

)2 }NL

α=1
= SpectF(L)

P

[ (
S(p1|p2 + p3)S(p1|p2 − p3)

) 1
2 R(4,1)R(3,2)

]

{ (
Λ
(α)
2 (λ)

)2 }NL

α=1
= SpectF(L)

P

[ (
S(p2|p3 + p1)S(p2|p3 − p1)

) 1
2 R(4,1)R(2,3)

]
(6.31)

{(
Λ
(α)
3 (λ)

)2 }NL

α=1
= SpectF(L)

P

[ (
S(p3|p1 + p2)S(p3|p1 − p2)

) 1
2 R(4,2)R(1,3)

]
,

where S(pi|q) is given by (5.25) and Pi related to pi as in (3.35), i.e., Pi =
2pi√
ai
.

6.2 Large-λ asymptotic expansion and dual non-local IM

Here we discuss the formal asymptotic series X
(i)
σ (λ) (5.28) which appears in the large-λ

asymptotic expansion of the connection coefficients A
(k)
σ′σ(iλ) (5.26).

In the previous section we have described the characteristic property of the local IM

— they are integrals over the local densities W
(sym)
2n (u) satisfying the conditions

∮

u

dv W
(sym)
2n (u)VA(v) = ∂uF

(A)
2n−1 (6.32)

for A = 1, 2, 3, 4, where the vertex operators VA given by (6.4) and F
(A)
2n−1 are some lo-

cal fields. In fact, there exists another set of vertex operators satisfying similar condi-

tions [22, 49]. Namely, consider six vertex operators

V
(i)
± (u) =

(
αk ∂φk ± αi ∂φi ± αj ∂φj

)
e
± iφi

αi (u) (6.33)

(
(i, j, k) = cyclic perm(1, 2, 3)

)
, then using explicit formulae for the first twoW -currents,

it is straightforward to check that for m = 1 and m = 2
∮

u

dv W
(sym)
2n (u)V

(i)
± (v) = ∂uF̃

(i,±)
2n−1 . (6.34)

We expect, that both eqs. (6.32) and (6.34) hold for any m = 1, 2 . . .∞. Let us introduce

the following notations for the integrals of the vertex operators (6.33):

x̃
(i)
0 =

∫ 2π

0
du V

(i)
− (u) , x̃

(i)
1 =

∫ 2π

0
du V

(i)
+ (u) . (6.35)

Repeating the calculations from ref. [4], one can show that
(
x̃
(i)
0 , x̃

(i)
1

)
satisfy the Serre

relations for the quantum Kac-Moody algebra Uq̃i

(
ŝl(2)

)
:

(
x̃(i)a

)3
x̃
(i)
b − [3]q̃i

(
x̃(i)a

)2
x̃
(i)
b x̃(i)a + [3]q̃i x̃

(i)
a x̃

(i)
b

(
x̃(i)a

)2 − x̃
(i)
b

(
x̃(i)a

)3
= 0 (a, b = 0, 1) , (6.36)

where

q̃i = e
iπ
(

1+ 1
ai

)

(6.37)
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and the conventional notation [n]q = (qn− q−n)/(q− q−1) is applied. We may now employ

the whole machinery developed in the work [4], to construct families of mutual commuting

operators which are also commute with the local IM. In particular, let us introduce the

operators

X
(i)
± (λi) = Z−1

± (Pi) Trρ±

[
e
±πiPi

2αi
H(i)

× (6.38)

P exp

(
λi

∫ 2π

0
du
(
V

(i)
− (u) q̃

±H(i)

2
i E(i)

± + V
(i)
+ (u) q̃

∓H(i)

2
i E(i)

∓
))]

.

Here ρ± are representations of the so-called q-oscillator algebra generated by the elements

H(i), E(i)
+ , E(i)

− subject to the relations

q̃i E(i)
+ E(i)

− − q̃−1
i E(i)

− E(i)
+ =

1

q̃i − q̃−1
i

, [H(i), E(i)
± ] = ±2 E(i)

± , (6.39)

and such that the traces

Z±(Pi) = Trρ±

[
e
±πiPi

2αi
H(i)

]
(6.40)

exist and do not vanish for complex Pi belonging to the lower half plane ℑm(Pi) < 0. The

operator X
(i)
± (λi) can be understood as the series expansion in (λi)

2

X(i)
σ (λi) = 1 +

∑

m=0

X(i)
σ,n (λ2i )

n (σ = ±) , (6.41)

and, as it follows from the result of ref. [4], each of the expansion coefficient commute with

the local IM

X(i)
σ,n : FP 7→ FP , [X(i)

σ,n, I2m−1] = 0 . (6.42)

In fact, the definition (6.38) and the series expansion (6.41) can be applied literally only

within the domain

−2 < ℜe(ai) < −1 . (6.43)

In this case all the matrix elements of X
(i)
σ,n are represented by convergent 2n-fold P-ordered

integrals. Furthermore, all the matrix elements are entire functions of (λi)
2 in this case.

Following the approach developed in ref. [4], one can show that P-ordered integrals X
(i)
σ,n can

be always rewritten as contour integrals. The such representation allows one to define the

operators X
(i)
σ,n outside the domain (6.43) through the analytical continuation. In particular,

the action of X
(i)
σ,n can be defined in the domain of our current interest, i.e. for 0 < ai < 2.

Following the terminology of ref. [3] we will referred to X
(i)
σ,n in the domain 0 < ai < 2 as

dual non-local integrals of motion. Notice that, the possibility of analytical continuation of

the coefficients in the expansion (6.41) does not necessarily imply the convergency of the

series. As 0 < ai < 2, eq. (6.41) should be understood as a formal series expansion with

zero radius of convergence.13

13In the domain a3 < −2 the operators X
(3)
σ (6.38) were studied in ref. [26].
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The analytical calculation of the spectrum of dual non-local IM is a complicated un-

solved problem. An explicit result can be obtained only for the vacuum eigenvalue of the

first IM, X
(i)
σ,1. It suggests that, in all likelihood, the formal asymptotic series X

(i)
σ (λ) (5.28)

coincides with the eigenvalue of the formal operator (6.41) provided the following relation

between the expansion parameters holds

λi =
1

Γ(− 1
ai
)

(
λ

ai

)− 1
ai

. (6.44)

6.3 Relation to quantum superalgebra Uq

(
D̂(2, 1;α)

)

The appearance of the exponential fields VA(u) and the relation (6.32) suggests a

strong connection of our problem with the quantized exceptional affine superalgebra

Uq

(
D̂(2, 1;α)

)
. This algebra is generated by twelve elements h1, h2, h3, h4, x1, x2, x3, x4

and y1, y2, y3, y4. An unusual feature of this superalgebra is that its Cartan matrix

‖CA,B‖ =




0 1 α −1− α

1 0 −1− α α

α −1− α 0 1

−1− α α 1 0




(6.45)

contains an arbitrary (complex) parameter α. So, that together with the “deformation”

parameter q the algebra Uq

(
D̂(2, 1;α)

)
has two continuous parameters. For our purposes

it is convenient to connect these parameters to our constants a1, a2 and a3, used before

in (5.5),

q = eiπa1 , qα = eiπa2 , q−1−α = eiπa3 , (6.46)

and introduce additional notations

qAB = − exp
(
2πiαA ·αB

)
. (6.47)

The generating elements of the algebra satisfy the following commutation relations [22, 47]

[hA, hB] = 0 , [hA, xB] = CAB xB , [hA, yB] = −CAB yB

xA yB + yB xA = δAB
qhA − q−hA

q − q−1
(A,B = 1, 2, 3, 4) , (6.48)

and also the Serre relations

x2A = y2A = 0 (6.49)

and for any triple (A,B,C) with A,B,C all different14

[qAB](xAxCxB − xBxCxA)+[qBC ](xBxAxC − xCxAxB)+[qCA](xCxBxA − xAxBxC) = 0 ,

[qAB](yA yC yB − yB yC yA)+[qBC ](yB yA yC − yC yA yB)+[qCA](yC yB yA − yA yB yC) = 0 ,

(6.50)

14If any two of indices in (6.50) coincide the relation trivially reduces to (6.49).
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where

[q] = q − 1/q . (6.51)

The last two relations are totally symmetric under any permutations of A,B,C, so there

only four pairs different relations (6.50) with (A,B,C) = (1, 2, 3), (1, 2, 4), (1, 3, 4),

or (2, 3, 4).

Remarkably, as shown in [22], the integrals of the vertex operators

xA =

∫ 2π

0
duVA(u) (6.52)

satisfy the above Serre relations (6.49), (6.50). Therefore, one could again execute the

program of the work [4]
(
now based on the quantum affine algebra Uq(D̂(2, 1;α))

)
and

define families of commuting transfer matrices, which are entire functions of the variable

λ2 and act directly in the Fock spaces discussed in section 4. Moreover, in view of the

relation (6.32), these transfer matrices will commute with all local integrals of motion I2n−1.

This direction, however, would requires a lot of additional work, since, to our knowledge,

the representation theory of Uq(D̂(2, 1;α)) is not sufficiently studied. Nevertheless, we

expect that the values of the Wilson loop W(λ) (3.14) for various PGHO’s will be given

by eigenvalues of the transfer matrix obtained as a trace over some finite-dimensional

representation of Uq(D̂(2, 1;α)). Moreover, we expect that the corresponding values of the

connection coefficients A
(k)
σ′σ(λ) (5.20) will be given by eigenvalues of appropriate analogs

of Baxter Q-operators, obtained as traces over some special oscillator-type representations,

first introduced in [3] in the context of Uq(ŝl(2)).

As a justification of the above picture, consider the value W0, given by (3.16). This

expression looks like a diagonal character Tr
[
exp(

∑
A βAhA)

]
of an 18-dimensional repre-

sentation (indeed, it contains 18 exponential terms, where some exponents vanish). Quite

excitingly, Zengo Tsuboi has pointed out that his calculations with analytic Bethe Ansatz

suggest [48] that the algebra Uq(D̂(2, 1;α)) does indeed have an 18-dimensional represen-

tation. Note, that the corresponding non-affine algebra has only 17-dimensional represen-

tation, but there is no an “evaluation map”, so that dimensions of representations of the

affine and non-affine algebras should not necessarily coincide in this case [48]. We hope to

return to this interesting question in the future, as well as to other question relevant to an

algebraic construction of commuting transfer matrices in this case.

7 MShG equation and the auxiliary linear problem

7.1 Complex solutions of MShG

We now turn to further development of the concept of PGHO, where the central rôle is

played by the modified sinh-Gordon (MShG) equation

∂z∂z̄η − e2η + ρ4 P(z)P̄(z̄) e−2η = 0 , (7.1)

where P(z) is still given by (1.3), i.e.,

P(z) =
(z3 − z2)

a1 (z1 − z3)
a2 (z2 − z1)

a3

(z − z1)2−a1(z − z2)2−a2(z − z3)2−a3
,
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P̄(z̄) stands for complex conjugate of P(z) and ρ is an arbitrary constant. For ρ = 0,

this partial differential equation reduces to the Liouville equation, ∂z∂z̄η − e2η = 0. In

what follows, the field η is understood as a solution of the MShG equation, rather than

the Liouville equation.

The subject of our interest are solutions of (7.1), which can be thought as “ρ-

deformation” of the complex solutions of the Liouville equation from section 2.4. To de-

scribe their properties it is still convenient to employ the function e−η (see eq. (2.46)). As

before, we assume that e−η is a smooth, single valued complex function without zeroes on

the sphere with 3+L+L̄ punctures. Since z = ∞ is a regular point on the Riemann sphere,

e−η satisfy the asymptotic condition e−η ∼ |z|2 as z → ∞. The asymptotic behavior at the

punctures z = z1, z2, z3 are given by the same formulae as (2.50), i.e., e−η ∼ |z− zi|−2mi as

|z− zi| → 0. Notice that as mi < −1
4 (2− ai) the first term in the r.h.s. of (7.1) dominates

as |z − zi| → 0. Therefore, the term ∝ e−2η can be neglected for sufficiently small |z − zi|
and we return to the Liouville equation. From the other hand, it is easy to see that in the

case of the Liouville equation, the parameters mi should be bounded from below. For this

reason we assume that the constraints −1
2 < mi < −1

4 (2− ai) are enforced.

In the case of the Liouville field the behavior at the punctures z = xa (a = 1, . . . L)

and z̄ = ȳb (b = 1, . . . L̄) are given by (2.49). This singular behavior consistent with

the Liouville dynamics, however the term ∝ e−2η in the MShG equation (7.1) can not be

treated as a small perturbation in the vicinity z = xa and z̄ = ȳb — it essentially modifies

the singular behavior at these points. A brief analysis of (7.1) suggests to replace (2.49)

by e−η ∼ z̄−x̄a

z−xa
and e−η ∼ z−yb

z̄−ȳb
, i.e. the asymptotic formulae (1.11) from the introduction.

We also impose certain “monodromy-free” constraints on positions of the punc-

tures (1.11). For this purpose, let us recall that the MShG equation constitute the flatness

condition for sl(2) connection (1.6). Suppose Ψ is a general solution of the associated

linear problem (∂z−Az)Ψ = (∂z̄−Az̄)Ψ = 0. The monodromy-free constraints mean that

e±
1
2
ησ3 Ψ is single-valued in the neighborhood of the points z = xa (a = 1, . . . L) and z̄ = ȳb

(b = 1, . . . L̄). (Notice that, since e−η is a single valued function, the factor e±
1
2
ησ3 does

not essentially affect the monodromy properties — its rôle is clarified by the forthcoming

consideration.)

It is not difficult to reformulate the monodromy-free constraints as local conditions at

the punctures imposed on the MShG field η [13]. For this purpose, it is useful to rewrite

the matrix differential operators in (1.5) in the form

∂z −Az = λ−
1
2
σ3 e

1
2
ησ3 D e−

1
2
ησ3 λ

1
2
σ3 , ∂z̄ −Az̄ = λ̄

1
2
σ3 e−

1
2
ησ3 D̄ e

1
2
ησ3 λ̄−

1
2
σ3 , (7.2)

where

D = ∂z + ∂zη σ3 − λ
(
σ+ + σ− P(z)

)
(7.3)

D̄ = ∂z̄ − ∂z̄η σ3 − λ̄
(
σ− + σ+ P̄(z̄)

)
.

Let us focus on the differential operator D in the vicinity of the puncture z = xa, where

∂zη → 1

z − xa
+ fa (fa = const) . (7.4)
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It can be easily seen that as z → xa

C−1
a DCa = ∂z +

(
λP(xa)

)−1 2fa − γ(xa)

z − xa
σ+ +O(1) . (7.5)

Here we use the notation

γ(z) = ∂z logP(z) , (7.6)

and the gauge transformation is performed by the singular, but single-valued at z = xa,

matrix

Ca =

(
1 (λP(xa))

−1 1
z−xa

0 1

)
. (7.7)

Hence for

fa =
1

2
γ(xa) , (7.8)

D is gauge equivalent to a nonsingular at z = xa differential operator. Similarly in the case

∂z̄η → − 1

z̄ − x̄a
+ ḡa (ḡa = const) , (7.9)

one can consider the gauge transformation

C̄
−1
a D̄ C̄a = ∂z̄ − λ̄−1 2 ḡa

z̄ − x̄a
σ+ +O(1) (7.10)

with

C̄a =

(
1 λ̄−1

z̄−x̄a

0 1

)
. (7.11)

Therefore, as

ḡa = 0 , (7.12)

D̄ is gauge equivalent to a regular at z̄ = x̄a differential operator. An immediate conse-

quence of our analysis is that eqs. (7.8) and (7.12) constitute the single-valuedness condition

for e±
1
2
ησ3 Ψ at z = xa. Of course, similar consideration can be done for the punctures

at z̄ = ȳb.

The partial differential equation (7.1) is invariant with respect of to PSL(2,C) trans-

formation. One can use this symmetry to sent the punctures (z1, z2, z3) to any positions.

Then we expect that, for a given triple m = (m1,m2,m3) (1.12) and pair (L, L̄), the

MShG equation possesses a finite set A(L,L̄)
m of solutions such that e−η is a smooth, sin-

gle valued complex function without zeroes on the punctured Riemann sphere, whereas η

satisfy eqs. (1.9)–(1.11), (1.13), (1.14).
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7.2 Conserved charges for MShG on the punctured sphere

As it was already explained in the introduction, the elements of A(L,L̄)
m can be characterized

by means of the set of conserved charges {q2n−1, q̄2n−1}∞n=1 generated by the asymptotic

expansions (1.18) of the Wilson loop. These conserved quantity are given by the integrals

q2n−1 =

∮

γP

ω2n , q̄2n−1 =

∮

γ̄P

ω̄2n , (7.13)

where {ω2n−1, ω̄2n−1}∞n=1 constitute an infinite hierarchy of one-forms, which are closed by

virtue of the MShG equation only,

dω2n = dω̄2n = 0 . (7.14)

Explicit formulae for {ω2n−1, ω̄2n−1}∞n=1 are not particular important for us. They can be

found in ref. [30] (Here we closely follow notations from this paper.) It is useful to mention

that ω2n are usually normalized by the condition

ω2n = ρ1−2n
((

P(z)
) 1

2
−n

(∂zη)
2n + . . .

)
dz +

(
. . .
)
dz̄ , (7.15)

where dots in the first bracket involves terms with higher derivatives of ∂zη and/or P(z).

Similarly

ω̄2n = ρ1−2n
((

P̄(z̄)
) 1

2
−n

(∂z̄η)
2n + . . .

)
dz̄ +

(
. . .
)
dz . (7.16)

The one-forms are not single-valued on the punctured sphere due to the presence of the

multivalued functions P(z), P̄(z̄). However, the restriction of ω2n to the Pochhammer loop

depicted in figure 1 are single-valued and the integrals (7.13) are not sensitive to continuous

deformations of the contour. (The second integral in (7.13) is taken over the contour γ̄P
which is complex conjugate γP .)

7.3 Relation to PGHO

Here we describe a relation between the linear problem associated with the complex solu-

tions from the set A(L,L̄)
m and the Perturbed Generalized Hypergeometric Opers.

It is well known, the matrix linear problem (∂z − Az)Ψ = (∂z̄ − Az̄)Ψ = 0 can be

reduced to second order linear differential operators. The relations (7.2), (7.3) allows one

to write its general solution as

Ψ =

(
e

η
2 ψ

e−
η
2 (∂z + ∂zη)ψ

)
=

(
e−

η
2 (∂z̄ + ∂z̄η) ψ̄

e
η
2 ψ̄

)
, (7.17)

where ψ and ψ̄ solve the equations

[
∂2z − u(z, z̄)− λ2 P(z)

]
ψ = 0 (7.18)

[
∂2z̄ − ū(z, z̄)− λ̄2 P̄(z̄)

]
ψ̄ = 0 ,

with

u(z, z̄) = (∂zη)
2 − ∂2zη , ū(z, z̄) = (∂z̄η)

2 − ∂2z̄η . (7.19)
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In the vicinity of the monodromy-free puncture z = xa

u(z, z̄) =
2

(z − xa)2
+

γa
z − xa

+O(1) , (7.20)

whereas the monodromy-free conditions (1.13) imply that

γa
(
γ2a − 4u(0)a

)
+ 4u(1)a = 0 , a = 1, . . . L , (7.21)

where u
(0)
a and u

(1)
a are defined through the expansion

u(z, z̄) =
2

(z − xa)2
+

γa
z − xa

+ u(0)a + u(1)a (z − xa) +O
(
(z − xa)

2
)
. (7.22)

Notice that u(z, z̄) remains finite at the monodromy-free punctures at z = yb (b = 1, . . . L̄).

Similarly the field ū(z, z̄) is nonsingular at z = xa (a = 1, . . . L), whereas

ū(z, z̄) =
2

(z̄ − ȳb)2
+

γ̄b
z̄ − ȳb

+ ū
(0)
b + ū

(1)
b (z̄ − ȳb) +O

(
(z̄ − ȳb)

2
)

as z̄ → ȳb (7.23)

and

γ̄b
(
γ̄2b − 4 ū

(0)
b

)
+ 4 ū

(1)
b = 0 , b = 1, . . . L̄ . (7.24)

We may now consider the limit ρ → 0. Contrary to the MShG field, the composite

fields u(z, z̄) and ū(z, z̄) admit small-ρ perturbative expansion even in the vicinity of the

monodromy-free punctures. It can be easily seen that, with the identification

pi = mi +
1
2 , (7.25)

the limiting form of u(z, z̄) coincides with holomorphic potential TL(z) (3.10):

lim
ρ→0

u(z, z̄) = TL(z) , (7.26)

and the monodromy-free equations (7.21) become identical to the system of equa-

tions (2.17), (3.3). Similarly the field ū(z, z̄) turns to be T̄L̄(z̄) — an obvious antiholo-

morphic counterpart of TL(z). Notice that

q
(L)
2n−1 = lim

ρ→0

(
ρ2n−1 q2n−1

)
, q̄

(L̄)
2n−1 = lim

ρ→0

(
ρ2n−1 q̄2n−1

)
, (7.27)

where q
(L)
2n−1 are defined by eq. (3.27) and q̄

(L̄)
2n−1 stand for their antiholomorphic

counterparts.

8 Local IM versus MShG conserved charges

In the case without the monodromy-free punctures (i.e. L = L̄ = 0), the values of conserved

charges q2n−1 and q̄2n−1 coincide:

q2n−1|L=L̄=0 = q̄2n−1|L=L̄=0 . (8.1)
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In the recent work [30], a relation between these quantities and vacuum eigenvalues of local

IM for the Fateev model was proposed. In this section we discuss a natural generalization

of that relation to the excited states spectrum.

The definition and some basic properties of the Fateev model [21] have been already

described in the introduction. The following clarifying remark on the decomposition (1.23)

is in order at this stage. A brief inspection of the Lagrangian (1.19) reveals that the model

can be understood within the Conformal Perturbation Theory — the Gaussian theory of

three-component Bose field perturbed by the relevant operator. As µ = 0 the general

solution of the equation of motion can be written in the form,

1
2 ϕ(x, t) = φ

(
2π
R

(x− t)
)
− φ̄

(
2π
R

(x+ t)
)
, (8.2)

where we use the “right-moving” chiral Bose field (4.2). The “left-moving” chiral Bose field

φ̄(ū) is defined by similar formulae, in particular,

φ̄i(ū) =
1

2
(Q̄i − P̄i ū)− i

∑

n 6=0

āi(−n)
n

e−inū (i = 1, 2, 3) . (8.3)

As it follows from the periodic boundary condition the zero-modes eigenvalues satisfy the

condition P + P̄ = 0, and hence the Hamiltonian of the Gaussian theory acts irreducibly

in the tensor product

FP ⊗ F̄−P . (8.4)

Here FP is the Fock space defined in section 4 and F̄−P is similar space generated by the

“left-moving” chiral Bose field. The Hamiltonian of the model (1.19) with µ 6= 0 acts in

the space

⊕α

(
FP+α ⊗ F̄−P−α

)
, (8.5)

where

1
2 P = (α1 k1, α2 k2, α3 k3) , −1

2 < ki ≤ 1
2 , (8.6)

and sum is taken over the vectors of the form

α = (n1 α1, n2 α2, n3 α3) (ni ∈ Z) . (8.7)

The component H(0)
k := H(0,0,0)

k in the decomposition (1.23) can be realized as a certain

subspace of (8.5) spanned by the stationary states such that

|Ψ(0)
k 〉 ∈ H(0)

k : lim
µ→0

|Ψ(0)
k 〉 ∈ FP ⊗ F̄−P , (8.8)

where P = (P1, P2, P3) related to k = (k1, k2, k3) as in eq. (8.6). In this work we do

not consider the stationary states corresponding to the higher Brillouin zones, i.e., the

subspaces H(n1,n2,n3)
k of (8.5) whose CFT limit is described in terms of the tensor product
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FP+α ⊗ F−P−α with a given vector α 6= 0 of the form (8.7). Also we do not consider

“charged” sectors of the model associated with quasiperiodic boundary conditions

ϕi(x+R, t) = ϕi(x, t) + 2π li/αi , li ∈ Z . (8.9)

The QFT (1.19) possesses an infinite set of commuting local integrals of motion (1.24).

In the CFT limit the operators I
(+)
2n−1 becomes chiral local IM discussed in section 4

lim
µ→0

I
(+)
2n−1 =

(
2π

R

)2n−1

I2n−1 . (8.10)

Of course, similar relations hold for I
(−)
2n−1 whose CFT limit is defined by Ī2n−1 — the

antiholomorphic counterpart of I2n−1:

lim
µ→0

I
(−)
2n−1 =

(
2π

R

)2n−1

Ī2n−1 . (8.11)

Let |Ψ(A)
k 〉 ∈ H(0)

k be joint eigenvectors of the operators I
(±)
2n−1 and A is some multi-index

labeling different eigenvectors

I
(±)
2n−1 |Ψ(A)

k 〉 = I
(±,A)
2n−1 |Ψ(A)

k 〉 . (8.12)

Recall that in section 4 we considered joint eigenvectors |L, α 〉 for the commuting family

of chiral IM {I2n−1}∞n=1 (see eq. (4.18)). Let | L̄, ᾱ 〉 be their antiholomorphic analog. Then

our consideration suggests that

lim
µ→0

|Ψ(A)
k 〉 = |L, α 〉 ⊗ | L̄, ᾱ 〉 ∈ FP ⊗ F̄−P , (8.13)

where P = (P1, P2, P3) related to (k1, k2, k3) as in eq. (8.6).

In ref. [30], the k-vacuum eigenvalues were considered,

I
(vac)
2n−1 = I

(+)
2n−1({ki} |R) = I

(−)
2n−1({ki} |R) . (8.14)

They are correspond to the vacuum states from H(0)
k , i.e., the states with the lowest value

of energy E(A) = I
(+,A)
1 + I

(−,A)
1 . In the large-R limit all vacuum eigenvalues I

(vac)
2n−1 vanish

except I
(vac)
1 . The vacuum energy is composed of an extensive part proportional to the

length of the system,

E(vac) = R E0 + o(1) at R→ ∞ , (8.15)

where E0 stands for the specific bulk energy (1.30) [21].

The main observation of ref. [30] is that the vacuum eigenvalues (8.14) can be ex-

pressed in terms of the classical conserved charges (8.1). The relations are described by

eqs. (1.27)–(1.32). One of the main objectives of this work is to promote eqs. (1.27)–(1.32)

to more general relations between the joint spectrum of the local IM (8.12) for the eigen-

states |Ψ(A)
k 〉 ∈ H(0)

k (8.13) and the conserved charges associated with complex solutions

the MShG equation from the finite set A(L,L̄)
m described in the previous section. Notice

that, in a view of relations (7.27), (8.10) and (1.32), the formulae (1.27) and (1.28) reduce

to eqs. (4.17) in the CFT limit.
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9 Non-linear integral equations for the Fateev model

The usual approach for studying off-shell physics is the Thermodynamic Bethe Ansatz

(TBA). Its key input is factorizable scattering theory underlying integrable QFT. In prin-

ciple, TBA is a mathematically well defined method for evaluating thermodynamic quan-

tities by solving a set of coupled integral equations. However, in the case of a non-diagonal

scattering this method requires many ad hoc assumptions (such as “string hypotheses”)

and, therefore, is not very practical for complicated theories. The model described by

the Lagrangian (1.19) in the regime where all the couplings αi are real, seems to be a

good illustration of this statement. Even though the corresponding factorizable scattering

theory has been proposed quite a while ago [50], the derivation TBA equations for this

complicated theory (to the best of our knowledge) has never appeared in the literature.

The purpose of this section is to demonstrate that the correspondence between classical

and quantum integrable systems proposed in the previous section, provides an alternative

powerful tool for deriving functional and Bethe Ansatz type equations which determine

the full spectrum of local IM in the massive QFT. For the vacuum sector of the Fateev

model, we convert our functional equations into the non-linear integral equations and

numerically study their solutions, extending the similar analysis from section 5.5. Note,

that a system of integral equations corresponding to the ground state was independently

proposed by Fateev [49].

9.1 Connection matrices for MShG linear problem

Let us consider to the axillary linear problem (1.7) associated with some element of the

finite set A(L,L̄)
m . We introduce three matrix solutions

Ψ(i) =
(
Ψ

(i)
− ,Ψ

(i)
+

)
∈ SL(2,C) (i = 1, 2, 3) . (9.1)

For given i, Ψ(i) solves the linear problem and satisfies the following asymptotic condition

Ψ(i) →
(
e

4θ
ai
z − zi
z̄ − z̄i

) 1
4
(1−2pi)σ3

eiβiσ3 as z − zi → 0 . (9.2)

Here pi = mi +
1
2 whereas βi stands for arbitrary constant which will be fixed later (see

eq. (9.17) below). The connection matrices are defined as follows:

Ψ(i) = Ψ(j) S(j,i)(θ) . (9.3)

At this stage we will treat them as matrix functions of the spectral parameter θ (1.17);

that is indicated explicitly in (9.3). They are entire functions of θ satisfying the equations

identical to (5.3):

det
(
S(j,i)(θ)

)
= 1 , S(i,j)(θ)S(j,i)(θ) = I , S(i,k)(θ) S(k,j)(θ) S(j,i)(θ) = I . (9.4)

The axillary linear problem is invariant with respect to the symmetries analogous

to (5.4)

Ω̂i : z 7→ γi ◦ z , z̄ 7→ γ̄i ◦ z̄ , θ 7→ θ − iπai (i = 1, 2, 3) . (9.5)
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(Note that Ω̂i involves now the translation of the variable z̄ along the complex conjugate

contour γ̄i.) These symmetries act as linear transformations in the space of solutions and

in the basis Ψ(i) they read

Ω̂i

(
Ψ(i)

)
= Ψ(i)

Ω̂j

(
Ψ(i)

)
= Ψ(i) S(i,j)(θ)S(j,i)(θ − iπaj) (9.6)

Ω̂k

(
Ψ(i)

)
= Ψ(i) S(i,k)(θ)S(k,i)(θ − iπak) .

Similar to derivations of eqs. (5.8) and (5.10), the symmetry transformations (9.6) allow

one to obtain the relation

S(i,k)(θ) S(k,j)(θ − iπak) S
(j,i)(θ + iπai) = I (9.7)

and express the Wilson loop (1.16) in terms of the connection matrices

W = Tr
[
S(i,k)(θ − iπak)S

(k,j)(θ)S(j,i)(θ + iπaj)
]
. (9.8)

Another easily established symmetry of the axillary linear problem (1.7) involves the

operation

Π̂ : θ 7→ θ − iπ , (9.9)

Π̂
[
∂z −Az

]
= ∂z −Az , Π̂

[
∂z̄ −Az̄

]
= ∂z −Az .

Using this symmetry it is easy to show that S(j,i) are quasiperiodic matrix functions of the

spectral parameter θ:

S(j,i)(θ + iπ) = e
iπ
aj

(2pj−1)σ3
S(j,i)(θ) e

− iπ
ai

(2pi−1)σ3 . (9.10)

To describe properties of S(j,i)(θ) it is convenient to use the matrices Q(k)(θ) defined

through the relation

S(j,i)(θ) =
1√

4s
(2pi

ai

)
s
(2pj

aj

) e
− θ

aj
σ3
[
− σ2 Q(k)(θ + iπbk)

]
e

θ
ai

σ3 , (9.11)

where bi stand for the constants given by eq. (5.19). In terms of the matrix Q(k)(θ) the

quasiperiodicity condition (9.10) looks somewhat simpler:

Q(k)(θ + iπ) = e
− 2iπpj

aj
σ3

Q(k)(θ) e
− 2iπpi

ai
σ3 . (9.12)

The shift of the argument in the definition (9.11) makes simpler the relation between the

matrix elements Q
(k)
σ′σ(θ),

Q(k) =

(
Q

(k)
−− Q

(k)
−+

Q
(k)
+− Q

(k)
++

)
, (9.13)
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and connection coefficients A
(k)
σ′σ(λ) (5.20). To describe this relation we note that Q

(k)
σ′σ(θ)

can be written in the form

Q
(k)
σ′σ(θ + iπbk) = i

√
4s
(
2pi
ai

)
s
(
2pj
aj

)
e

θ
ai

σ+ θ
aj

σ′

det
(
Ψ

(j)
σ′ ,Ψ

(i)
σ

)
. (9.14)

Then using the relation between the axillary problem (1.7) and PGHO, one can show that

lim
ρ→0,ℜe(θ)→+∞

λ=ρeθ−fixed

(
e
−
(

2pi
ai

σ+
2pj
aj

σ′
)
θ
Q

(k)
σ′σ(θ)

)
=

√
f
(j)
σ′ f

(i)
σ A

(k)
σ′σ(iλ)

lim
ρ→0,ℜe(θ)→−∞

λ̄=ρe−θ−fixed

(
e
−
(

2pi
ai

σ+
2pk
ak

σ′
)
θ
Q

(k)
σ′σ(θ)

)
=

√
f
(j)
σ′ f

(i)
σ Ā

(k)
−σ′,−σ(iλ̄) , (9.15)

where

f (i)σ = 2 s
(2pi

ai

)
e(ω̄i−ωi−2βi)σ , (9.16)

and Ā
(k)
σ′σ(λ̄) is an antiholomorphic counterpart of A

(k)
σ′σ(λ) (5.20).

Let us fix the value of constant βi in eqs. (9.2) and (9.16):

eiβi =

(
zjizik
zjk

z̄jk
z̄jiz̄ik

) pi
2

. (9.17)

Then, by virtue of a WKB analysis similar to one employed in derivation eq. (5.21), the

following asymptotic formulae within the strip
∣∣ℑm(θ)

∣∣ < π
2 can be obtained:

Q
(k)
σ′σ(θ) →





(
Sj

)σ′

4
(
Si

)σ
4 exp

(
rk ρ e

θ
)

as ℜe(θ) → +∞
(
Sj

)−σ′

4
(
Si

)−σ
4 exp

(
rk ρ e

−θ
)

as ℜe(θ) → −∞
. (9.18)

Here rk stand for the constants given by eq. (5.16) and

(
Si

) 1
2 =

(
ρ

ai

)− 4pi
ai

Γ
(
1 + 2pi

ai

)

Γ
(
1− 2pi

ai

) exp(η
(reg)
i )

2 pi

∣∣∣∣
zjk
zjizik

∣∣∣∣
−2pi

, (9.19)

where η
(reg)
i is the regularized value of the MShG field at the puncture zi (i = 1, 2, 3), i.e.,

η = (2pi − 1) log |z − zi|+ η
(reg)
i + o(1).

9.2 Reconstruction of the connection matrices for L = L̄ = 0

The quasiperiodic entire function Q
(k)
σ′σ(θ) is completely determined by its zeroes in the strip

|ℑm(θ)| ≤ π
2 and the leading asymptotic behavior given by (9.18). On the other hand,

positions of the zeroes are restricted by the Bethe Ansatz equations similar to (5.45). In

fact, the problem of reconstruction of the connection matrices S(ij)(θ) is almost identical

to that is studied in section 5. Thus, we will not repeat the analysis in detail but quote

the non-linear integral equation determining the connection matrices in the case without

monodromy-free punctures. In this case, using the arguments similar to those given in
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section 3.2 from ref. [20], one can argue that all the roots of Q
(k)
σ′σ(θ) are simple and located

at the lines ℑm(θ) = i
(
n+ 1

2

)
π (n ∈ Z). After that the derivation becomes straightforward

and yields the system of non-linear integral equations which differs from (5.58) in the source

terms only:

ǫi(θ) = 4ρri sinh(θ)−π
(
σ′ 2pj

aj
+ σ′′ 2pk

ak

)
+

3∑

l=1

∫ ∞

−∞

dθ′

π
Gil(θ−θ′)ℑm

[
log
(
1+e−iǫl(θ

′−i0)
)]
.

(9.20)

Once the numerical data for ǫi(θ) are available, Q
(k)
σ′σ(θ) can be computed by means of the

relation

logQ
(k)
σ′σ(θ) = 2ρ rk cosh(θ) +

3∑

l=1

∫ ∞

−∞

dθ′

π
Fkl(θ − θ′)ℑm

[
log
(
1 + e−iǫl(θ

′−i0)
)]
, (9.21)

where

Fkl(θ) =

∫ ∞

0
dν

Φkl(ν)

sin
(
πν
2

) sin(νθ) , (9.22)

and Φkl(ν) are defined by (5.57).

Notice that, in the case L = L̄ = 0 the conserved charges q2n−1 and q̄2n−1 have the

same value which is given by

q2n−1 =
8n!

√
π

Γ
(
n− 1

2

)
3∑

l=1

sin
(
π
(
n− 1

2

)
al
) ∫ ∞

−∞

dθ

π
e(2n−1)θ ℑm

[
log
(
1 + e−iǫl(θ−i0)

)]
. (9.23)

Also the subleading term in the asymptotic (9.18) is given by

(
Sj

)σ′

4
(
Si

)σ
4 = exp

( 3∑

l=1

Φkl(0)

∫ ∞

−∞

dθ

π
ℑm

[
log
(
1 + e−iǫl(θ−i0)

)])
, (9.24)

where

Φki(0) =
1

2aj
, Φkj(0) =

1

2ai
, Φkk(0) =

1

2ai
+

1

2aj
. (9.25)

We solved the integral equation (9.20) numerically for various values of the parameters

a1, a2, a3 and p1, p2, p3 and then calculated the values the conserved charge q1 from the

formula (9.23). The results are in an excellent agreement with the expression for the

vacuum energy given by eqs. (3.25)-(3.28) of ref. [30]:

q1=
2π2

∏3
i=1 Γ

(
ai
2

)
[
− 1

6ρ

3∑

i=1

(
1− 24

ai
p2i

)
+ 4ρ

3∏

i=1

γ

(
ai
2

)
− 4

π
ρ3
∫
d2zP(z)P̄(z̄)e−2η

]
, (9.26)

where γ(x) := Γ(x)
Γ(1−x) . Note that the third term in this expression involves the solution

of the MShG equation without monodromy-free punctures (its contribution is essential for

large values of ρ). The MShG equation has been solved numerically to find the value of

the integral, entering (9.26), and calculate the constants η
(reg)
i , entering (9.19). Using the

latter, we have verified the numerical agreement between (9.19) and (9.24).
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9.3 k-vacuum eigenvalues of local IM in the Fateev model

First of all let us recall some facts concerning the factorizable scattering theory associated

with QFT (1.19). All the details can be found in appendix F in ref. [50].

The spectrum consists of three quadruplets of fundamental particles

Z
(i)
ǫǫ′ , ǫ, ǫ′ = ± , i = 1, 2, 3 , (9.27)

with the masses

Mi =M0 sin

(
πai
2

)
, M0 =

2µ

π

3∏

i=1

Γ

(
ai
2

)
(9.28)

and their bound states. (Here the relation ai = 4α2
i is assumed to hold.) The

Zamolodchikov-Faddeev commutation relations for the fundamental particles read

Z
(i)
ǫ1ǫ

′
1
(θ1)Z

(i)
ǫ2ǫ

′
2
(θ2) = −

∑

ǫ3 ǫ′3
ǫ4 ǫ′4

[
Saj (θ1 − θ2)

]ǫ3ǫ4
ǫ1ǫ2

[
Sak(θ1 − θ2)

]ǫ′3ǫ′4
ǫ′1ǫ

′
2
Z

(i)
ǫ4ǫ

′
4
(θ2)Z

(i)
ǫ3ǫ

′
3
(θ1)

Z
(i)
ǫǫ′1

(θ1)Z
(j)
ǫ′2ǫ

′′(θ2) = ǫ ǫ′′
∑

ǫ3 ǫ
′
4

[
Ŝak(θ1 − θ2)

]ǫ′3ǫ′4
ǫ′1ǫ

′
2
Z

(j)
ǫ4ǫ′′

(θ2)Z
(i)
ǫǫ′3

(θ1) , (9.29)

where (i, j, k) = cyclic perm(1, 2, 3) and

Ŝa(θ) = i tanh
(
θ
2 + i πa4

)
Sa
(
θ + i πa2

)
. (9.30)

Also Sa(θ) stands for the conventional S-matrix in the quantum sine-Gordon theory [51]

with the renormalized coupling constant a, related to the Coleman coupling β2C [52] as

follows

a =
β2C

8π − β2C
. (9.31)

In particular, the sine-Gordon soliton-soliton scattering amplitude reads explicitly as

sa(θ) := [Sa(θ)]
++
++ = − exp

(
− i

∫ ∞

0

dν

ν

sinh
(
πν
2 (1− a)

)

cosh
(
πν
2

)
sinh

(
πν
2 a
) sin(νθ)

)
. (9.32)

In a view of our previous discussion it is expected that the non-linear integral equa-

tions (9.20) solves the problem of calculation of the k-vacuum eigenvalues (8.14) in the

Fateev model in the finite volume. To make the link more explicit let us note the ker-

nels (5.59) in the equations (9.20) are simply related to the amplitude (9.32) and

ŝa(θ) := [Ŝa(θ)]
++
++ = exp

(
− i

∫ ∞

0

dν

ν

sinh
(
πν
2

)

cosh
(
πν
2

)
sinh

(
πν
2 a
) sin (νθ)

)
. (9.33)

Namely, it is easy to see that

Gii(θ) = i ∂θ log
(
saj (θ) sak(θ)

)
, Gij(θ) = i ∂θ log

(
ŝak(θ)

)
. (9.34)

– 58 –



J
H
E
P
0
9
(
2
0
1
4
)
1
4
7

These formulae confirm an empirical rule that the kernels of the non-linear integral equa-

tions coincide with the logarithmic derivative of some diagonal elements of the S-matrix,

which has been previously observed for some other models (e.g., the sine-Gordon model).

The µ − ρ relation (1.32) combined with the definition of ri (5.16), implies that the com-

bination 4ρri, which appears in the source term of the integral equation (9.20), is simply

expressed in terms of the particle mass Mi (9.28):

4 ρ ri =MiR . (9.35)

Also, as it follows from (1.31), the parameters 2 pj/aj should be identified with the quasi-

momentum magnitudes |kj |. Finally the k-vacuum eigenvalues (8.14) can be calculated

using eqs. (1.27), (1.28) and (9.23).

Unfortunately, at the moment there is no independent derivation of the results of

section 9.2 from the field theory side — the Fateev model does not have any known lattice

analog, and neither it has any known coordinate or algebraic Bethe Ansatz solutions.15

10 Concluding remarks

In this paper we have described the relation between the MShG equation, on one hand and

the Fateev model on the other. We believe that the outlined results open a new general

way of approaching integrable QFT.

As an immediate (but perhaps not entirely straightforward) application one could

consider various Toda QFT’s. This would involve differential operators of higher orders (the

g-opers [36]) and the classical modified Toda equations. Some basic ingredients, required for

this development have already been revealed. Among them a classification of third order

differential operators with monodromy-free singular points, corresponding to stationary

states in CFT’s with the extendedW3-symmetry [54], and the relation between the vacuum

sector in the Â
(2)
2 Toda QFT and the modified Bullough-Dodd equation [55]. However,

perhaps the most important potential outcome of our approach is related to the problem

of non-perturbative quantization of classically integrable non-linear sigma models. Here,

we are motivated by the following consideration.

This work has been focused on the “symmetric” regime of the Fateev model where all

the couplings αi in (1.19) are real, so that the Lagrangian is completely symmetric under

simultaneous permutations of the real fields ϕi and the real couplings αi. The theory is

apparently non-unitary in this case. In the most interesting regime one of the couplings,

say α3, is pure imaginary

α2
1 > 0 , α2

2 > 0 , α2
3 := −b2 < 0 , (10.1)

and the theory is governed by the real Lagrangian

L =
1

16π

3∑

i=1

(
(∂tϕi)

2 − (∂xϕi)
2
)

(10.2)

−2µ
(
ebϕ3 cos(α1ϕ1 + α2ϕ2) + e−bϕ3 cos(α1ϕ1 − α2ϕ2)

)
,

15The limiting case α3 = 0 of the Fateev model can be reduced to the Bukhvostov-Lipatov model, where

the non-linear integral equations were derived from the coordinate Bethe Ansatz in ref. [53].
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where

α2
1 + α2

2 − b2 =
1

2
. (10.3)

The physical content in the unitary regime is different from the symmetric one. However,

assuming the same periodic boundary conditions for each field ϕi (i = 1, 2, 3), we can

use the same symbols H and Hk to denote the spaces of states and their certain linear

subspaces in the both cases. Just remember that because of the lack of periodicity in

ϕ3-direction in the unitary regime, eq. (1.22) can be applied for i = 1, 2 only. Therefore k

should be regarded as a pair of quasimomenta, k = (k1, k2), and eq. (1.23) should be now

substituted by

Hk = ⊕n1,n2∈ZH
(n1,n2)
k . (10.4)

Again, it makes sense to focus on the component H(0)
k := H(0,0)

k corresponding to the first

Brillouin zone. We would like to emphasize that the fact of existence of the local IM and

their form are not sensitive to the choice of the regime. In particular, with the formal

substitution α3 → −i b, eqs. (1.24) and (1.25) can be applied to the unitary case. The

eigenstates in H(0)
k are again specified by the joint spectra of local IM.

Having in mind relations betweenH(0)
k and Am in the symmetric regime, let us consider

the MShG equation in the regime a1, a2 > 0, a3 < 0 (the constraint a1 + a2 + a3 = 2 is

still assumed). A brief inspection shows that set of requirements (1.9)–(1.14) imposed on

the MShG field looks quite meaningful in this case. Only the formulae (1.10) and (1.12)

which describe the behavior of the solution in the vicinity of the third puncture z3, call for

a special attention. As ai > 0 we had a freedom to control the asymptotic behavior of η

as z → zi, with the free parameter mi. If a3 < 0, the situation is different — the leading

asymptotic behavior of the solution at z = z3 is fixed by the MShG equation itself [20]:

e−η ∼
∣∣P(z)

∣∣− 1
2 ∝ |z − z3|

a3
2
−1 . (10.5)

With this modification, we expect eq. (1.15) to remain a meaningful definition of the mod-

uli space Am, provided m is understood now as a pair (m1,m2). Using the intuition

gained from the study of the sine and sinh-Gordon models [20], we expect that the re-

lations (1.27)–(1.32) remain valid for the case a3 = −b2/4 < 0. The only exemption is

the second formula in eq. (1.31) for i = 3 — evidently it cannot be applied literally. No-

tice also that the definition of the set of the conserved charges {q2n−1, q̄2n−1}∞n=1 remains

unchanged. We expect that, with these simple modifications the relation between the

subspace H(0)
k and the moduli space Am holds for the case a3 = −b2/4 < 0.

The Fateev model in the unitary regime admits a dual description in terms of the

action
∫
d2x Gµν(X) ∂aX

µ∂aX
ν , where Gµν is a certain two-parameter families of metric

on the topological three-sphere which possesses two U(1) Killing vector fields [21]. The

sigma-model description is especially useful in the strong coupling limit (α2
i , b

2 → ∞ with

α2
i /b

2 kept fixed), which can be regarded as the classical limit. Notice that the classical

integrability of the theory was established only recently in ref. [56].
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(0, δ1)

(x,−2)

δ(p1 + ǫ)

(1, δ2)

(∞, δ3)

Figure 8. Dual diagram for the classical conformal block from (A.3). Here ǫ = 0, ±1.

Acknowledgments

The authors are grateful to B. A. Dubrovin, A. V. Litvinov, F. A. Smirnov, Z. Tsuboi

and A. B. Zamolodchikov for fruitful discussions. Part of this work was done during the

visit of the second author to IPhT at CEA Saclay in May-June 2013. SL would like to

express his sincere gratitude to members of the laboratory and especially Didina Serban

and Ivan Kostov for their kind hospitality and interesting discussions. The research of VB

was partially supported by the Australian Research Council.

A GHO with L = 1

The system of algebraic equations (2.17)–(2.19) looks rather cumbersome. Here we discuss

the simplest case L = 1 in some details.

First, using Möbius transformation one can move the first three punctures to the

standard positions, (z1, z2, z2) = (0, 1,∞). The coordinate of the forth puncture x (which

is the only monodromy-free puncture for L = 1) will now coincides with the projective

invariant X1 (2.12), while the corresponding accessary parameter will be denoted as C.

Eqs. (2.19) allows one to express the accessory parameters c1, c2, c3 in terms of C and x,

and, thereby, to reduce eq. (2.17) to a single algebraic equation. The later can be brought

to the form

P3(x, y) = 0 , where y = 1− 2x− x (1− x)C , (A.1)

and

P3(x, y) = y3 + (1− 2x) y2 +
(
4 δ1 − 1 + 4 (δ2 − δ1 − δ3

)
x+ 4 δ3 x

2
)
y

+(4 δ1 − 1) (1− 2x) + 4 (δ1 − δ2)x
2 . (A.2)

For generic values of δi, (A.1) considered as a cubic equation for C, has three different

roots. We will label them by an integer ǫ = 0, ±1. For small x the roots admit Laurent

expansions, which can be related to the series expansions for the classical conformal blocks

depicted in figure 8:

C(ǫ) =
∂

∂x
fδ(p1+ǫ)

[−2, δ2
δ1, δ3

]
(x) (ǫ = 0, ±1) . (A.3)
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Here we use the standard notation for the general 4-point classical conformal block

fδ
[ δ2,δ3
δ1, δ4

]
(x) = (δ − δ1 − δ2) log(x) +

(δ − δ1 + δ2)(δ + δ3 − δ4)

2 δ
x+O(x2) . (A.4)

In fact, (A.3) is the simplest illustration of the general relation (2.10).

The roots C(ǫ) corresponds to different branches of a multivalued function, which

has algebraic singularities in the complex plane of the variable x. For sufficiently small

positive pi all branch points lie outside of the real axis. In this case the branches C(ǫ)

can be unambiguously defined for all real x through the analytic continuation of the series

expansions (A.3), (A.4) along the real axis. The real functions C(ǫ), defined in this way,

have the following expansion in the vicinity of points x = 0, 1 and ∞

C(0)(x) =





2
x
+O(1) as x→ 0

1−2p2
x−1 +O(1) as x→ 1
2
x
+O(x−2) as x→ ∞

, (A.5a)

C(+)(x) =





1−2p1
x

+O(1) as x→ 0
2

x−1 +O(1) as x→ 1
3+2p3

x
+O(x−2) as x→ ∞

, (A.5b)

C(−) =





1+2p1
x

+O(1) as x→ 0
1+2p2
x−1 +O(1) as x→ 1
3−2p3

x
+O(x−2) as x→ ∞

. (A.5c)

To simplify the notations, we shall denote by f(x) the classical conformal block associated

to the “principle” branch C(−) (A.5c):

f(x) = (1 + 2 p1) log(x) +

∫ x

0
dx

(
C(−) − 1 + 2p1

x

)
. (A.6)

This defines f(x) unambiguously in the neighborhood of x = 0. In general, the integral

depends on a integration contour connecting x to the origin, and the classical conformal

blocks corresponding to ǫ = 0 and ǫ = +1 are just different branches of the multivalued

function (A.6).

To describe global properties of the multivalued functions C(x) and f(x) we use the

fact that any nondegenerate cubic is homeomorphic to an elliptic curve. In the case under

consideration the corresponding elliptic modulus (denoted by k below) can be chosen as

k2 =
8 p1p2p3

(12 + p1 + p2 + p3)(
1
2 + p1 − p2 − p3)(

1
2 − p1 + p2 − p3)(

1
2 − p1 − p2 + p3)

. (A.7)

(Recall that k2 is defined up to modular transformations k2 7→ 1−k2, 1/k2). Below we use

the nome q which is related to the elliptic modulus as

k2 =
ϑ42(0, q)

ϑ43(0, q)
. (A.8)
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For the purpose of uniformization of the cubic (A.1), it is useful to introduce three param-

eters u1, u2, u3 such that

pi =
1

2
ρ(uj − ui, q) ρ(uk − ui, q) . (A.9)

Here ρ(u, q) stands for the double periodic function

ρ(u, q) =
ϑ3(u, q)ϑ4(u, q)

ϑ1(u, q)ϑ2(u, q)
=
ϑ4(2u, q

2)

ϑ1(2u, q2)
, (A.10)

and (i, j, k) is an arbitrary permutation of (1, 2, 3). Notice that the above relations define

ui up to the overall shift ui → ui+ const. For real pi restricted as in eq. (2.13), the elliptic

nome is real and 0 < q < 1, whereas the parameters ui can be chosen in the form

ui = u0 + i vi 0 < vi < − log(q) . (A.11)

In terms of an uniformizing variable

u : u ∼ u+Nπ + i M log q (N,M ∈ Z) , (A.12)

the cubic (A.1) is described as follows

x = −ϑ3(u− u3 − u2 + u1, q)ϑ1(u− u1, q)ϑ2(u− u1, q)

ϑ3(u+ u3 − u2 − u1, q)ϑ1(u− u3, q)ϑ2(u− u3, q)

ϑ1(u3 − u2, q)ϑ2(u3 − u2, q)

ϑ1(u2 − u1, q)ϑ2(u2 − u1, q)

y = ρ(u− u3, q) ρ(u2 − u1, q) , (A.13)

whereas the accessory parameter is given by

C =
1

x
+

1

x− 1
+

y

x(x− 1)
. (A.14)

These equations imply that C is a single-valued doubly-periodic function with simple poles

located at

u ∈
{
ui, ui +

1
2 π , uj + uk − ui +

1
2 (π + i log q)

}
(A.15)

corresponding to x = 0, 1 and ∞ at the three sheets of the Riemann surface. Since the

classical conformal block (A.6) has the logarithmic branching at these points, it is not a

single-valued function on the two-torus. Note that the residues of C at u = uj + uk − ui +
1
2 (π+i log q) do not depend on pi, whereas all the residues of ∂piC equals to ±2 (see (A.5)).

Using this observation one can show that

exp

(
1

2

∂f

∂pi

)
= ξi

ϑ1(u− ui, q)

ϑ2(u− ui, q)
, (A.16)

i.e., it is a double periodic function as well as the accessary parameter itself. The constant

ξi depends on the normalization prescription for the classical conformal block. For our

assignment (A.6), it reads explicitly as

ξi =
ϑ3(uji + uki, q)ϑ1(ukj , q)ϑ

2
2(0, q)

ϑ1(uji, q)ϑ2(uji, q)ϑ1(uki, q)ϑ2(uki, q)
(uji = uj − ui) . (A.17)
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B Some explicit formulae for GHO with L = 0 and L = 1

For the ordinary hypergeometric oper (i.e., without any monodromy free punctures) the so-

lutions χ
(i)
σ (2.29) are expressed in terms of the hypergeometric functions (see e.g. ref. [34]):

χ(i)
σ =

1√
2pi

(z − zi)
1
2
+σpi

(
z − zj
zi − zj

)−σ(pi+pk)
(
z − zk
zi − zk

) 1
2
+σpk

(B.1)

×2F1

(
1

2
+ σ(pi − pj + pk),

1

2
+ σ(pi + pj + pk), 1 + 2σpi;

(z − zi)zjk
(z − zj)zik

)
.

In this case, the combination (2.40) reads explicitly

exp(ωi)

(
zjk
zjizik

)−pi

=
(
Ω(pi, pj + pk) Ω(pi, pj − pk)

) 1
4 (L = 0) , (B.2)

where

Ω(p, p′) =
Γ(12 + p− p′) Γ(12 + p+ p′)

Γ(12 − p− p′) Γ(12 − p+ p′)

Γ(1− 2p)

Γ(1 + 2p)
. (B.3)

In the case L = 1, one can show that

exp(ωi)

(
zjk
zjizik

)−pi

= i
ϑ2(u− ui, q)

ϑ1(u− ui, q)

ϑ3(uj − uk, q)

ϑ4(uj − uk, q)

(
Ω(pi, pj + pk) Ω(pi, pj − pk)

) 1
4 , (B.4)

where the notations are inherited from appendix A. The derivation is based on the general

facts (2.39) and (2.11) specialized for GHO with L = 1. Combining these relations with the

result (A.16) from appendix A, one obtains ωi up to an additive coordinate-independent

constant ∂piF0. We may now consider the limit when the monodromy-free puncture ap-

proaches to zi. At this limit the differential equations (2.2) becomes the hypergeometric

one, and the limiting behavior of ωi can be analyzed explicitly. This fix the value of ∂piF0

for L = 1 and yields formula (B.4).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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