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Abstract
Let H1, H2, H3 be real Hilbert spaces, C ⊆ H1, Q⊆ H2 be two nonempty closed convex
sets, and let A : H1 → H3, B : H2 → H3 be two bounded linear operators. The split
equality problem (SEP) is finding x ∈ C, y ∈ Q such that Ax = By. Recently, Moudafi has
presented the ACQA algorithm and the RACQA algorithm to solve SEP. However, the
two algorithms are weakly convergent. It is therefore the aim of this paper to
construct new algorithms for SEP so that strong convergence is guaranteed. Firstly,
we define the concept of the minimal norm solution of SEP. Using Tychonov
regularization, we introduce two methods to get such a minimal norm solution. And
then, we introduce two algorithms which are viewed as modifications of Moudafi’s
ACQA, RACQA algorithms and KM-CQ algorithm, respectively, and converge strongly
to a solution of SEP. More importantly, the modifications of Moudafi’s ACQA, RACQA
algorithms converge strongly to the minimal norm solution of SEP. At last, we
introduce some other algorithms which converge strongly to a solution of SEP.

Keywords: split equality problem; iterative algorithms; converge strongly

1 Introduction and preliminaries
Let C and Q be nonempty closed convex subsets of real Hilbert spaces H andH, respec-
tively, and letA :H →H be a bounded linear operator. The split feasibility problem (SFP)
is to find a point x satisfying the property

x ∈ C, Ax ∈Q

if such a point exists. SFP was first introduced by Censor and Elfving [], which has at-
tracted many authors’ attention due to its application in signal processing []. Various
algorithms have been invented to solve it (see [–]).
Recently,Moudafi [] proposed a new split equality problem (SEP): LetH,H,H be real

Hilbert spaces, C ⊆H,Q⊆ H be two nonempty closed convex sets, and let A :H →H,
B :H →H be two bounded linear operators. Find x ∈ C, y ∈Q satisfying

Ax = By. (.)

When B = I , SEP reduces to the well-known SFP. In the paper [], Moudafi gave the fol-
lowing iterative algorithms for solving the split equality problem.
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Alternating CQ-algorithm (ACQA):

{
xk+ = PC(xk – γkA∗(Axk – Byk));
yk+ = PQ(yk + γkB∗(Axk+ – Byk)).

Relaxed alternating CQ-algorithm (RACQA):

{
xk+ = PCk (xk – γA∗(Axk – Byk));
yk+ = PQk (yk + βB∗(Axk+ – Byk)).

However, the above algorithms converge weakly to a solution of SEP.
It is therefore the aim of this paper to construct a new algorithm for SEP so that strong

convergence is guaranteed. The paper is organized as follows. In Section , we define the
concept of the minimal norm solution of SEP (.). Using Tychonov regularization, we ob-
tain a net of solutions for someminimization problem approximating suchminimal norm
solutions (see Theorem .). In Section , we introduce an algorithm which is viewed as a
modification of Moudafi’s ACQA and RACQA algorithms; and we prove the strong con-
vergence of the algorithm, more importantly, its limit is the minimum-norm solution of
SEP (.) (see Theorem .). In Section , we introduce a KM-CQ-like iterative algorithm
which converges strongly to a solution of SEP (.) (see Theorem .). In Section , we
introduce some other iterative algorithms which converge strongly to a solution of SEP
(.).
Throughout the rest of this paper, I denotes the identity operator on a Hilbert space H ,

Fix(T) is the set of the fixed points of an operatorT and∇f is the gradient of the functional
f :H → R. An operator T on a Hilbert space H is nonexpansive if, for each x and y in H ,
‖Tx – Ty‖ ≤ ‖x – y‖. T is said to be averaged if there exists  < α <  and a nonexpansive
operator N such that T = ( – α)I + αN .
Let PS denote the projection fromH onto a nonempty closed convex subset S ofH ; that

is,

PS(w) =min
x∈S ‖x –w‖.

It is well known that PS(w) is characterized by the inequality

〈
w – PS(w),x – PS(w

〉 ≤ , ∀x ∈ S,

and PS is nonexpansive and averaged.
We now collect some elementary facts which will be used in the proofs of our main

results.

Lemma . [, ] Let X be a Banach space, C be a closed convex subset of X, and T : C →
C be a nonexpansive mapping with Fix(T) 
= ∅. If {xn} is a sequence in C weakly converging
to x and if {(I – T)xn} converges strongly to y, then (I – T)x = y.

Lemma . [] Let {sn} be a sequence of nonnegative real numbers, {αn} be a sequence of
real numbers in [, ] with

∑∞
n= αn = ∞, {un} be a sequence of nonnegative real numbers

http://www.journalofinequalitiesandapplications.com/content/2014/1/478
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with
∑∞

n= un < ∞, and {tn} be a sequence of real numbers with lim supn tn ≤ . Suppose
that

sn+ = ( – αn)sn + αntn + un, ∀n ∈N .

Then limn→∞ sn = .

Lemma . [] Let {wn}, {zn} be bounded sequences in a Banach space, and let {βn} be a
sequence in [, ] which satisfies the following condition:

 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

Suppose that wn+ = ( – βn)wn + βnzn and lim supn→∞ ‖zn+ – zn‖ – ‖wn+ –wn‖ ≤ , then
limn→∞ ‖zn –wn‖ = .

Lemma . [] Let f be a convex and differentiable functional, and let C be a closed
convex subset of H . Then x ∈ C is a solution of the problem

min
x∈C f (x)

if and only if x ∈ C satisfies the following optimality condition:

〈∇f (x), v – x
〉 ≥ , ∀v ∈ C.

Moreover, if f is, in addition, strictly convex and coercive, then the minimization problem
has a unique solution.

Lemma . [] Let A and B be averaged operators and suppose that Fix(A) ∩ Fix(B) is
nonempty. Then Fix(A)∩ Fix(B) = Fix(AB) = Fix(BA).

2 Minimum-norm solution of SEP
In this section, we define the concept of the minimal norm solution of SEP (.). Using
Tychonov regularization, we obtain a net of solutions for some minimization problem
approximating such minimal norm solutions.
We use � to denote the solution set of SEP, i.e.,

� =
{
(x, y) ∈H ×H,Ax = By,x ∈ C, y ∈Q

}
and assume the consistency of SEP so that � is closed, convex and nonempty.
Let S = C×Q inH =H ×H, defineG :H → H byG = [A, –B], thenG∗G :H →H has

the matrix form

G∗G =

[
A∗A –A∗B
–B∗A B∗B

]
.

The original problem can now be reformulated as finding w = (x, y) ∈ S with Gw = , or,
more generally, minimizing the function ‖Gw‖ over w ∈ S. Therefore solving SEP (.) is

http://www.journalofinequalitiesandapplications.com/content/2014/1/478
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equivalent to solving the following minimization problem:

min
w∈S f (w) =



‖Gw‖, (.)

which is in general ill-posed. A classical way to deal with such a possibly ill-posed problem
is the well-known Tychonov regularization, which approximates a solution of problem
(.) by the unique minimizer of the regularized problem:

min
w∈S fα(w) =



‖Gw‖ + 


α‖w‖, (.)

where α >  is the regularization parameter. Denote by wα = (xα , yα) the unique solution
of (.).

Proposition . For any α > , the solution wα = (xα , yα) of (.) is uniquely defined.More-
over, wα = (xα , yα) is characterized by the inequality

〈
G∗Gwα + αwα ,w –wα

〉 ≥ , ∀w ∈ S,

i.e.,

〈
A∗(Axα – Byα) + αxα ,x – xα

〉 ≥ , ∀x ∈ C;

and

〈
–B∗(Axα – Byα) + αyα , y – yα

〉 ≥ , ∀y ∈Q.

Proof It is well known that f (w) = 
‖Gw‖ is convex and differentiable with gradient

∇f (w) =G∗Gw, fα(w) = f (w) + 
α‖w‖. We can get that fα is strictly convex, coercive, and

differentiable with gradient

∇fα(w) =G∗Gw + αw.

It follows from Lemma . that wα is characterized by the inequality

〈
G∗Gwα + αwα ,w –wα

〉 ≥ , ∀w ∈ S. (.)

Note that {(x, ),x ∈ C} ⊆ S, {(, y), y ∈ Q} ⊆ S, adding up (.), we can get that

〈
A∗(Axα – Byα) + αxα ,x – xα

〉 ≥ , ∀x ∈ C;

and

〈
–B∗(Axα – Byα) + αyα , y – yα

〉 ≥ , ∀y ∈Q. �

Definition . An element w̃ = (x̃, ỹ) ∈ � is said to be the minimal norm solution of SEP
(.) if ‖w̃‖ = infw∈� ‖w‖.

http://www.journalofinequalitiesandapplications.com/content/2014/1/478
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The next result collects some useful properties of {wα}, the unique solution of (.).

Proposition . Let wα be given as the unique solution of (.). Then the following asser-
tions hold.

(i) ‖wα‖ is decreasing for α ∈ (,∞).
(ii) α �→ wα defines a continuous curve from (,∞) to H .

Proof Let α > β > ; since wα and wβ are the unique minimizers of fα and fβ , respectively,
we can get that



‖Gwα‖ + 


α‖wα‖ ≤ 


‖Gwβ‖ + 


α‖wβ‖,



‖Gwβ‖ + 


β‖wβ‖ ≤ 


‖Gwα‖ + 


β‖wα‖.

Hence we can obtain that ‖wα‖ ≤ ‖wβ‖. That is to say, ‖wα‖ is decreasing for α ∈ (,∞).
By Proposition ., we have

〈
G∗Gwα + αwα ,wβ –wα

〉 ≥ 

and

〈
G∗Gwβ + βwβ ,wα –wβ

〉 ≥ .

It follows that

〈wα –wβ ,αwα – βwβ〉 ≤ 〈
wα –wβ ,G∗G(wβ –wα)

〉 ≤ .

Hence

α‖wα –wβ‖ ≤ (α – β)〈wα –wβ ,wβ〉.

It turns out that

‖wα –wβ‖ ≤ |α – β|
α

‖wβ‖.

Thus α �→ wα defines a continuous curve from (,∞) to H . �

Theorem . Let wα be given as the unique solution of (.). Then wα converges strongly
as α →  to the minimum-norm solution w̃ of SEP (.).

Proof For any  < α < ∞, wα is given as (.), it follows that



‖Gwα‖ + 


α‖wα‖ ≤ 


‖Gw̃‖ + 


α‖w̃‖.

Since w̃ ∈ � is a solution for SEP, we get



‖Gwα‖ + 


α‖wα‖ ≤ 


α‖w̃‖.

Hence, ‖wα‖ ≤ ‖w̃‖ for all α > . That is to say, {wα} is a bounded net in H =H ×H.

http://www.journalofinequalitiesandapplications.com/content/2014/1/478
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For any sequence {αn} such that limn αn = , let wαn be abbreviated as wn. All we need
to prove is that {wn} contains a subsequence converging strongly to w̃.
Indeed {wn} is bounded and S is bounded convex. By passing to a subsequence if neces-

sary, we may assume that {wn} converges weakly to a point ŵ ∈ S. By Proposition ., we
get that

〈
G∗Gwn + αnwn, w̃ –wn

〉 ≥ .

It follows that

〈Gwn,Gw̃ –Gwn〉 ≥ αn〈wn,wn – w̃〉.

Since w̃ ∈ �, it turns out that

〈Gwn, –Gwn〉 ≥ αn〈wn,wn – w̃〉.

Using ‖wn‖ ≤ ‖w̃‖, we can get that

‖Gwn‖ ≤ αn‖w̃‖ → .

Furthermore, note that {wn} converges weakly to a point ŵ ∈ S, then {Gwn} converges
weakly to Gŵ. It follows that Gŵ = , i.e., ŵ ∈ �.
At last, we prove that ŵ = w̃ and this finishes the proof.
Since {wn} converges weakly to ŵ and ‖wn‖ ≤ ‖w̃‖, we can get that

ŵ≤ lim inf
n

‖wn‖ ≤ ‖w̃‖ =min
{‖w‖ : w ∈ �

}
.

This shows that ŵ is also a point in � which assumes a minimum norm. Due to the
uniqueness of a minimum-norm element, we obtain ŵ = w̃. �

Finally, we introduce another method to get the minimum-norm solution of SEP.

Lemma . Let T = I – γG∗G, where  < γ < /ρ(G∗G) with ρ(G∗G) being the spectral
radius of the self-adjoint operator G∗G on H . Then we have the following:
() ‖T‖ ≤  (i.e., T is nonexpansive) and averaged;
() Fix(T) = {(x, y) ∈H ,Ax = By}, Fix(PST) = Fix(PS)∩ Fix(T) = �;
() w ∈ Fix(PST) if and only if w is a solution of the variational inequality

〈G∗Gw, v –w〉 ≥ , ∀v ∈ S.

Proof () It is easily proved that ‖T‖ ≤ , we only prove that T = I – γG∗G is averaged.
Indeed, choose  < β <  such that γ /(–β) < /ρ(G∗G), thenT = I–γG∗G = βI+(–β)V ,
where V = I – γ /( – β)G∗G is a nonexpansive mapping. That is to say, T is averaged.
() If w ∈ {(x, y) ∈ H ,Ax = By}, it is obvious that w ∈ Fix(T). Conversely, assume that

w ∈ Fix(T), we have w = w– γG∗Gw, hence γG∗Gw = , then ‖Gw‖ = 〈G∗Gw,w〉 = , we
get that w ∈ {(x, y) ∈H ,Ax = By}. This leads to Fix(T) = {(x, y) ∈H ,Ax = By}.

http://www.journalofinequalitiesandapplications.com/content/2014/1/478


Shi et al. Journal of Inequalities and Applications 2014, 2014:478 Page 7 of 19
http://www.journalofinequalitiesandapplications.com/content/2014/1/478

Now we prove Fix(PST) = Fix(PS) ∩ Fix(T) = �. By Fix(T) = {(x, y) ∈ H ,Ax = By},
Fix(PS) ∩ Fix(T) = � is obvious. On the other hand, since Fix(PS) ∩ Fix(T) = � 
= ∅, and
both PS and T are averaged, from Lemma ., we have Fix(PST) = Fix(PS)∩ Fix(T).
()

〈
G∗Gw, v –w

〉 ≥ , ∀v ∈ S ⇔ 〈
w –

(
w – γG∗Gw

)
, v –w

〉 ≥ , ∀v ∈ S

⇔ w = PS
(
w – γG∗Gw

)
⇔ w ∈ Fix(PST). �

Remark . Take a constant γ such that  < γ < /ρ(G∗G) with ρ(G∗G) being the spectral
radius of the self-adjoint operator G∗G. For α ∈ (, –γ ‖G∗G‖

γ ), we define a mapping

Wα(w) := PS
[
( – αγ )I – γG∗G

]
w.

It is easy to check thatWα is contractive. So,Wα has a unique fixed point denoted by wα ,
that is,

wα = PS
[
( – αγ )I – γG∗G

]
wα . (.)

Theorem . Let wα be given as (.). Then wα converges strongly as α →  to the
minimum-norm solution w̃ of SEP (.).

Proof Let w̌ be a point in �. Since α ∈ (, –γ ‖G∗G‖
γ ), I – γ

(–αγ )G
∗G is nonexpansive. It

follows that

‖wα – w̌‖ =
∥∥PS

[
( – αγ )I – γG∗G

]
wα – PS

[
w̌ – γG∗Gw̌

]∥∥
≤ ∥∥[

( – αγ )I – γG∗G
]
wα –

[
w̌ – γG∗Gw̌

]∥∥
=

∥∥∥∥( – αγ )
[
wα –

γ

 – αγ
G∗Gwα

]
– ( – αγ )

[
w̌ –

γ

 – αγ
G∗Gw̌

]
– αγ w̌

∥∥∥∥
≤ ( – αγ )

∥∥∥∥
(
wα –

γ

 – αγ
G∗Gwα

)
–

(
w̌ –

γ

 – αγ
G∗Gw̌

)∥∥∥∥ + αγ ‖w̌‖

≤ ( – αγ )‖wα – w̌‖ + αγ ‖w̌‖.

Hence,

‖wα – w̌‖ ≤ ‖w̌‖.

Then {wα} is bounded.
From (.), we have

∥∥wα – PS
[
I – γG∗G

]
wα

∥∥ ≤ α‖γwα‖ → .

Next we show that {wα} is relatively norm compact as α → +. In fact, assume that {βn} ⊆
(, –γ ‖G∗G‖

γ ) is such that αn → + as n→ ∞. Put wn := wαn , we have the following:

∥∥wn – PS
[
I – γG∗G

]
wn

∥∥ ≤ αn‖γwn‖ → .

http://www.journalofinequalitiesandapplications.com/content/2014/1/478
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By the property of the projection, we deduce that

‖wα – w̌‖ =
∥∥PS

[
( – αγ )I – γG∗G

]
wα – PS

[
w̌ – γG∗Gw̌

]∥∥

≤ 〈[
( – αγ )I – γG∗G

]
wα –

[
w̌ – γG∗Gw̌

]
,wα – w̌

〉
=

〈
( – αγ )

[
wα –

γ

 – αγ
G∗Gwα

]
– ( – αγ )

[
w̌ –

γ

 – αγ
G∗Gw̌

]
,wα – w̌

〉

– αγ 〈w̌,wα – w̌〉
≤ ( – αγ )‖wα – w̌‖ – αγ 〈w̌,wα – w̌〉.

Therefore,

‖wα – w̌‖ ≤ 〈–w̌,wα – w̌〉.

In particular,

‖wn – w̌‖ ≤ 〈–w̌,wn – w̌〉, ∀w̌ ∈ �.

Since {wn} is bounded, there exists a subsequence of {wn} which converges weakly to a
point w̃.Without loss of generality, wemay assume that {wn} convergesweakly to w̃. Notice
that

∥∥wn – PS
[
I – γG∗G

]
wn

∥∥ ≤ αn‖γwn‖ → ,

and by Lemma . we can get that w̃ ∈ Fix(PS[I – γG∗G]) = �.
By

‖wn – w̌‖ ≤ 〈–w̌,wn – w̌〉, ∀w̌ ∈ �,

we have

‖wn – w̃‖ ≤ 〈–w̃,wn – w̃〉.

Consequently, {wn} converges weakly to w̃ actually implies that {wn} converges strongly
to w̃. That is to say, {wα} is relatively norm compact as α → +.
On the other hand, by

‖wn – w̌‖ ≤ 〈–w̌,wn – w̌〉, ∀w̌ ∈ �,

let n→ ∞, we have

‖w̃ – w̌‖ ≤ 〈–w̌, w̃ – w̌〉, ∀w̌ ∈ �.

This implies that

〈–w̌, w̌ – w̃〉 ≤ , ∀w̌ ∈ �,

http://www.journalofinequalitiesandapplications.com/content/2014/1/478
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which is equivalent to

〈–w̃, w̌ – w̃〉 ≤ , ∀w̌ ∈ �.

It follows that w̃ ∈ PS(). Therefore, each cluster point of wα equals w̃. So wα → w̃ (α → )
the minimum-norm solution of SEP. �

3 Modification of Moudafi’s ACQA and RACQA algorithms
In this section, we introduce the following algorithm which is viewed as a modification of
Moudafi’s ACQA and RACQA algorithms. The purpose for such amodification lies in the
hope of strong convergence.

Algorithm . For an arbitrary point w = (x, y) ∈ H = H × H, the sequence {wn} =
{(xn, yn)} is generated by the iterative algorithm

wn+ = PS
{
( – αn)

[
I – γG∗G

]
wn

}
, (.)

i.e.,

{
xn+ = PC{( – αn)[xn – γA∗(Axn – Byn)]}, n≥ ;
yn+ = PQ{( – αn)[yn + γB∗(Axn – Byn)]}, n≥ ,

where αn >  is a sequence in (, ) such that
(i) limn αn = ;
(ii)

∑∞
n= αn =∞;

(iii)
∑∞

n= |αn+ – αn| < ∞ or limn |αn+ – αn|/αn = .

Now, we prove the strong convergence of the iterative algorithm.

Theorem . The sequence {wn} generated by algorithm (.) converges strongly to the
minimum-norm solution w̃ of SEP (.).

Proof Let Rn and R be defined by

Rnw := PS
{
( – αn)

[
I – γG∗G

]}
w = PS

[
( – αn)Tw

]
,

Rw := PS
(
I – γG∗G

)
w = PS(Tw),

whereT = I–γG∗G. By Lemma . it is easy to see thatRn is a contractionwith contractive
constant  – αn; and algorithm (.) can be written as wn+ = Rnwn.
For any ŵ ∈ �, we have

‖Rnŵ – ŵ‖ =
∥∥PS

[
( – αn)Tŵ

]
– ŵ

∥∥
=

∥∥PS
[
( – αn)Tŵ

]
– PS(Tŵ)

∥∥
≤ ∥∥( – αn)Tŵ – Tŵ

∥∥
= αn‖Tŵ‖ ≤ αn‖ŵ‖.

http://www.journalofinequalitiesandapplications.com/content/2014/1/478
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Hence,

‖wn+ – ŵ‖ = ‖Rnwn – ŵ‖ ≤ ‖Rnwn – Rnŵ‖ + ‖Rnŵ – ŵ‖
≤ ∥∥PS

[
( – αn)Tŵ

]
– PS(Tŵ)

∥∥
≤ ( – αn)‖wn – ŵ‖ + αn‖ŵ‖
≤ max

{‖wn – ŵ‖,‖ŵ‖}.
It follows that ‖wn – ŵ‖ ≤max{‖w – ŵ‖,‖ŵ‖}. So {wn} is bounded.
Next we prove that limn ‖wn+ –wn‖ = .
Indeed,

‖wn+ –wn‖ = ‖Rnwn – Rn–wn–‖
≤ ‖Rnwn – Rnwn–‖ + ‖Rnwn– – Rn–wn–‖
≤ ( – αn)‖wn –wn–‖ + ‖Rnwn– – Rn–wn–‖.

Notice that

‖Rnwn– – Rn–wn–‖ =
∥∥PS

[
( – αn)Twn–

]
– PS

[
( – αn–)Twn–

]∥∥
≤ ∥∥( – αn)Twn– – ( – αn–)Twn–

∥∥
= |αn – αn–|‖Twn–‖
≤ |αn – αn–|‖wn–‖.

Hence,

‖wn+ –wn‖ ≤ ( – αn)‖wn –wn–‖ + |αn – αn–|‖wn–‖.

By virtue of assumptions ()-() and Lemma ., we have

lim
n

‖wn+ –wn‖ = .

Therefore,

‖wn – Rwn‖ ≤ ‖wn+ –wn‖ + ‖Rnwn – Rwn‖
≤ ‖wn+ –wn‖ +

∥∥( – αn)Twn – Twn
∥∥

≤ ‖wn+ –wn‖ + αn‖wn‖ → .

The demiclosedness principle ensures that each weak limit point of {wn} is a fixed point
of the nonexpansive mapping R = PST , that is, a point of the solution set � of SEP (.).
At last, we will prove that limn ‖wn+ – w̃‖ = .

http://www.journalofinequalitiesandapplications.com/content/2014/1/478
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Choose  < β <  such that γ /( – β) < /ρ(G∗G), then T = I – γG∗G = βI + ( – β)V ,
where V = I – γ /( – β)G∗G is a nonexpansive mapping. Taking z ∈ �, we deduce that

‖wn+ – z‖ = ∥∥PS
[
( – αn)Twn

]
– z

∥∥

≤ ∥∥( – αn)Twn – z
∥∥

≤ ( – αn)‖Twn – z‖ + αn‖z‖

≤ ∥∥β(wn – z) + ( – β)(Vwn – z)
∥∥ + αn‖z‖

≤ β
∥∥(wn – z)

∥∥ + ( – β)
∥∥(Vwn – z)

∥∥ – β( – β)‖wn –Vwn‖ + αn‖z‖

≤ ∥∥(wn – z)
∥∥ – β( – β)‖wn –Vwn‖ + αn‖z‖.

Then

β( – β)‖wn –Vwn‖ ≤ ‖wn – z‖ – ‖wn+ – z‖ + αn‖z‖

≤ (‖wn – z‖ + ‖wn+ – z‖)(‖wn – z‖ – ‖wn+ – z‖)αn‖z‖

≤ (‖wn – z‖ + ‖wn+ – z‖)(‖wn –wn+‖
)
αn‖z‖ → .

Note that T = I – γG∗G = βI + ( – β)V , it follows that limn ‖Twn –wn‖ = .
Take a subsequence {wnk } of {wn} such that lim supn〈wn – w̃, –w̃〉 = limk〈wnk – w̃, –w̃〉.
By virtue of the boundedness of wn, we may further assume, with no loss of generality,

that wnk converges weakly to a point w̌. Since ‖Rwn –wn‖ → , using the demiclosedness
principle, we know that w̌ ∈ Fix(R) = Fix(PST) = �. Noticing that w̃ is the projection of the
origin onto �, we get that

lim sup
n

〈wn – w̃, –w̃〉 = lim
k

〈wnk – w̃, –w̃〉 = 〈w̌ – w̃, –w̃〉 ≤ .

Finally, we compute

‖wn+ – w̃‖ =
∥∥PS

[
( – αn)Twn

]
– w̃

∥∥

=
∥∥PS

[
( – αn)Twn

]
– PSTw̃

∥∥

≤ ∥∥( – αn)Twn – Tw̃
∥∥

=
∥∥( – αn)Twn – w̃

∥∥

=
∥∥( – αn)(Twn – w̃) + αn(–w̃)

∥∥

= ( – αn)
∥∥(Twn – w̃)

∥∥ + α
n‖w̃‖ + αn( – αn)〈Twn – w̃, –w̃〉

≤ ( – αn)
∥∥(Twn – w̃)

∥∥ + αn
[
αn‖w̃‖ + ( – αn)〈Twn – w̃, –w̃〉].

Since lim supn〈wn – w̃, –w̃〉 ≤ , ‖wn –Twn‖ → , we know that lim supn(αn‖w̃‖ + ( –
αn)〈Twn–w̃, –w̃〉)≤ . ByLemma ., we conclude that limn ‖wn+–w̃‖ = .This completes
the proof. �

Remark . When B = I , the iteration algorithm (.) becomes

xn+ = PC
{
( – αn)

[
xn – γA∗(Axn – yn)

]}
;
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yn+ = PQ
{
( – αn)

[
yn + γ (Axn – yn)

]}
.

By Theorem ., we can get the following result.

Corollary . For an arbitrary point w = (x, y) ∈ H = H × H, the sequence {wn} =
{(xn, yn)} is generated by the iterative algorithm

{
xn+ = PC{( – αn)[xn – γA∗(Axn – yn)]}, n≥ ;
yn+ = PQ{( – αn)[yn + γ (Axn – yn)]}, n≥ ,

where αn >  is a sequence in (, ) such that
(i) limn αn = ;
(ii)

∑∞
n= αn =∞;

(iii)
∑∞

n= |αn+ – αn| <∞ or limn |αn+ – αn|/αn = .
Then xn converges strongly to the minimum-norm solution of SFP.

4 KM-CQ-like iterative algorithm for SEP
In this section, we establish a KM-CQ-like algorithm converging strongly to a solution of
SEP.

Algorithm . For an arbitrary initial point w = (x, y), the sequence {wn = (xn, yn)} is
generated by the iteration

wn+ = ( – βn)wn + βnPS
[
( – αn)

(
I – γG∗G

)]
wn, (.)

i.e.,

{
xn+ = ( – βn)xn + βnPC{( – αn)[xn – γA∗(Axn – Byn)]}, n≥ ;
yn+ = ( – βn)yn + βnPQ{( – αn)[yn + γB∗(Axn – Byn)]}, n≥ ,

where αn >  is a sequence in (, ) such that
(i) limn→∞ αn = ,

∑∞
n= αn =∞;

(ii) limn→∞ |αn+ – αn| = ;
(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

Lemma . If z ∈ Fix(T) = Fix(I – γG∗G), then for any w we have ‖Tw– z‖ ≤ ‖w– z‖ –
β( – β)‖Vw –w‖, where β and V are the same as in Lemma .().

Proof According to Lemma .(), we know that T = βI + ( –β)V , where  < β <  and V
is nonexpansive. It is easy to check that z ∈ Fix(T) = Fix(V ), and

‖Tw – z‖ =
∥∥βw + ( – β)Vw – z

∥∥

≤ β‖w – z‖ + ( – β)‖Vw – z‖ – β( – β)‖Vw –w‖

≤ β‖w – z‖ + ( – β)‖w – z‖ – β( – β)‖Vw –w‖

= ‖w – z‖ – β( – β)‖Vw –w‖. �
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Theorem . The sequence {wn} generated by algorithm (.) converges strongly to a so-
lution of SEP (.).

Proof For any solution of SEP ŵ, according to Lemma., ŵ ∈ Fix(PST) = Fix(PS)∩Fix(T),
where T = I – γG∗G, and

‖wn+ – ŵ‖ =
∥∥( – βn)wn + βnPS

[
( – αn)T

]
wn – ŵ

∥∥
=

∥∥( – βn)(wn – ŵ) + βn
(
PS

[
( – αn)T

]
wn – ŵ

)∥∥
≤ ( – βn)‖wn – ŵ‖ + βn

∥∥PS
[
( – αn)T

]
wn – ŵ

∥∥
≤ ( – βn)‖wn – ŵ‖

+ βn
∥∥PS

[
( – αn)T

]
wn – PS

[
( – αn)T

]
ŵ

∥∥
+ βn

∥∥PS
[
( – αn)T

]
ŵ – ŵ

∥∥
≤ ( – βn)‖wn – ŵ‖ + βn( – αn)‖wn – ŵ‖ + βnαn‖ŵ‖
= ( – βnαn)‖wn – ŵ‖ + βnαn‖ŵ‖
≤ max

{‖wn – ŵ‖,‖ŵ‖}.
By induction,

‖wn – ŵ‖ ≤max
{‖w – ŵ‖,‖ŵ‖}.

Hence, {wn} is bounded and so is {Twn}. Moreover,

∥∥PS
[
( – αn)T

]
wn – ŵ

∥∥ ≤ ∥∥( – αn)Twn – ŵ
∥∥

=
∥∥( – αn)[Twn – ŵ] – αnŵ

∥∥
≤ ( – αn)‖wn – ŵ‖ + αn‖ŵ‖
≤ max

{‖wn – ŵ‖,‖ŵ‖}.
Since {wn} is bounded, we have that {Twn}, ( – αn)Twn and {PS[( – αn)T]wn} are also
bounded.
Let zn = PS[( – αn)T]wn, andM >  such thatM = supn≥{Twn}. We observe that

∥∥PS
[
( – αn+)T

]
wn – PS

[
( – αn)T

]
wn

∥∥ ≤ ∥∥( – αn+)Twn – ( – αn)Twn
∥∥

=
∥∥(αn – αn+)Twn

∥∥
≤ M|αn – αn+|.

Hence,

‖zn+ – zn‖ =
∥∥PS

[
( – αn+)T

]
wn+ – PS

[
( – αn)T

]
wn

∥∥
≤ ∥∥PS

[
( – αn+)T

]
wn+ – PS

[
( – αn+)T

]
wn

∥∥
+

∥∥PS
[
( – αn+)T

]
wn – PS

[
( – αn)T

]
wn

∥∥
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≤ ( – αn+)‖wn+ –wn‖ +
∥∥PS

[
( – αn+)T

]
wn – PS

[
( – αn)T

]
wn

∥∥
≤ ( – αn+)‖wn+ –wn‖ +M|αn – αn+|.

Since  < αn <  and limn→∞ |αn+ – αn| = , we obtain that

‖zn+ – zn‖ – ‖wn+ –wn‖ ≤M|αn – αn+|

and

lim sup
n→∞

‖zn+ – zn‖ – ‖wn+ –wn‖ ≤ .

Using Lemma ., we get that

lim
n→∞

∥∥PS
[
( – αn)T

]
wn –wn

∥∥ = lim
n→∞‖zn –wn‖ = .

Therefore,

‖wn+ –wn‖ =
∥∥( – βn)wn + βnPS

[
( – αn)T

]
wn –wn

∥∥
= βn

∥∥PS
[
( – αn)T

]
wn –wn

∥∥ → .

Let Rn and R be defined by

Rnw := PS
{
( – αn)

[
I – γG∗G

]}
w = PS

[
( – αn)Tw

]
,

Rw := PS
(
I – γG∗G

)
w = PS(Tw).

We find

‖wn – Rwn‖ ≤ ‖wn –wn+‖ + ‖wn+ – Rwn‖
= ‖wn –wn+‖ +

∥∥( – βn)wn + βnRnwn – Rwn
∥∥

≤ ‖wn –wn+‖ + ( – βn)‖wn – Rwn‖ + βn‖Rnwn – Rwn‖.

So, we have

‖wn – Rwn‖ ≤ ‖wn –wn+‖/βn + ‖Rnwn – Rwn‖
= ‖wn –wn+‖/βn +

∥∥PS
[
( – αn)T

]
wn – PSTwn

∥∥
≤ ‖wn –wn+‖/βn +

∥∥( – αn)Twn – Twn
∥∥

≤ ‖wn –wn+‖/βn +Mαn.

By assumption, we have

lim
n→∞‖wn – Rwn‖ = .

On the other hand, {wn} is bounded, there exists a subsequence of {wn}which converges
weakly to a point w̌. Without loss of generality, wemay assume that {wn} converges weakly
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to w̌. Since ‖Rwn–wn‖ → , using the demiclosedness principlewe know that w̌ ∈ Fix(R) =
Fix(PST) = Fix(PS)∩ Fix(T) = �.
At last, we will prove that limn ‖wn+ – w̌‖ = . To do this, we calculate

‖wn+ – w̌‖ =
∥∥( – βn)wn + βnPS

[
( – αn)T

]
wn – PSTw̌

∥∥

≤ ( – βn)‖wn – w̌‖ + βn
∥∥PS

[
( – αn)T

]
wn – PSTw̌

∥∥

≤ ( – βn)‖wn – w̌‖ + βn
∥∥( – αn)Twn – w̌

∥∥

= ( – βn)‖wn – w̌‖ + βn
∥∥( – αn)(Twn – w̌) + αnw̌

∥∥

= ( – βn)‖wn – w̌‖ + βn
[
( – αn)‖Twn – w̌‖ + α

n‖w̌‖

+ αn( – αn)〈Twn – w̌, –w̌〉]
≤ ( – βn)‖wn – w̌‖ + βn

[
( – αn)‖wn – w̌‖ + α

n‖w̌‖

+ αn( – αn)〈Twn – w̌, –w̌〉]
= ( – αnβn)‖wn – w̌‖ + αnβn

[
( – αn)〈Twn – w̌, –w̌〉 + αn‖w̌‖].

By Lemma ., we only need to prove that

lim sup
n→∞

〈Twn – w̌, –w̌〉 ≤ .

By Lemma ., T is averaged, that is, T = βI + ( – β)V , where  < β <  and V is non-
expansive. Then, for z ∈ Fix(PST), we have

‖wn+ – z‖ =
∥∥( – βn)wn + βnPS

[
( – αn)T

]
wn – z

∥∥

≤ ( – βn)‖wn – z‖ + βn
∥∥( – αn)Twn – z

∥∥

= ( – βn)‖wn – z‖ + βn
∥∥( – αn)(Twn – z) – αnz

∥∥

≤ ( – βn)‖wn – z‖ + βn
[
( – αn)‖Twn – z‖ + αn‖z‖

]
≤ ( – βn)‖wn – z‖ + βn

[‖Twn – z‖ + αn‖z‖
]
.

By Lemma ., we can get

‖wn+ – z‖ ≤ ( – βn)‖wn – z‖

+ βn
[‖wn – z‖ – β( – β)‖Vwn –wn‖ + αn‖z‖

]
≤ ‖wn – z‖ – βnβ( – β)‖Vwn –wn‖ + βnαn‖z‖.

Let K >  such that ‖wn – z‖ ≤ K for all n, then we have

βnβ( – β)‖Vwn –wn‖ ≤ ‖wn – z‖ – ‖wn+ – z‖ + βnαn‖z‖

≤ N
∣∣‖wn – z‖ – ‖wn+ – z‖∣∣ + βnαn‖z‖

≤ N‖wn –wn+‖ + βnαn‖z‖.
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Hence,

β( – β)‖Vwn –wn‖ ≤ N‖wn –wn+‖
βn

+ αn‖z‖.

Since ‖wn –wn+‖ → , we can get that

‖Vwn –wn‖ → .

Therefore,

‖Twn –wn‖ → .

It follows that

lim sup
n→∞

〈Twn – w̌, –w̌〉 = lim sup
n→∞

〈wn – w̌, –w̌〉.

Since {wn} converges weakly to w̌, it follows that

lim sup
n→∞

〈Twn – w̌, –w̌〉 ≤ . �

Similar to the proof of Theorem ., we can get that the following iterative algorithm
converges strongly to a solution of SEP also. Since the proof is similar to Theorem ., we
omit it.

Algorithm . For an arbitrary initial point w = (x, y), the sequence {wn = (xn, yn)} is
generated by the iteration

wn+ = ( – βn)( – αn)
(
I – γG∗G

)
wn + βnPS

[
( – αn)

(
I – γG∗G

)]
wn, (.)

i.e.,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
xn+ = ( – βn)( – αn)[xn – γA∗(Axn – Byn)]

+ βnPC{( – αn)[xn – γA∗(Axn – Byn)]};
yn+ = ( – βn)( – αn)[yn + γB∗(Axn – Byn)]

+ βnPQ{( – αn)[yn + γB∗(Axn – Byn)]},

where αn >  is a sequence in (, ) such that
(i) limn→∞ αn = ,

∑∞
n= αn =∞;

(ii) limn→∞ |αn+ – αn| = ;
(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

5 Other iterative methods
In this section, we introduce some other iterative algorithms which converge strongly to
a solution of SEP.
According to Lemma., we know thatw = (x, y) belongs to the solution set� of SEP (.)

if and only if w ∈ Fix(PS(I – γG∗G)). Moreover, PS(I – γG∗G) is a nonexpansive mapping.
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That is to say, the essence of SEP is to find a fixed point for the nonexpansive mapping
PS(I – γG∗G).
For the fixed point of a nonexpansivemapping, the following results have been obtained.
In , Ishikawa [] gave the Ishikawa iteration as follows:

⎧⎪⎨
⎪⎩
x ∈ C,
yn = ( – βn)xn + βnTxn, n≥ ,
xn+ = ( – αn)xn + αnTyn, n ≥ ,

where x ∈ C is an arbitrary (but fixed) element in C, and {αn}, {βn} are two sequences
in (, ). He proved that if  ≤ αn ≤ βn ≤ , βn → ,

∑∞
n= αnβn = ∞, then {xn} converges

strongly to a fixed point of T .
In , Xu [] gave the viscosity iteration for nonexpansive mappings. He considered

the iteration process

xn+ = αnf (xn) + ( – αn)Txn, n≥ ,

where f is a contraction on C and x is an arbitrary (but fixed) element in C. He proved
that if αn → ,

∑∞
n= αn = ∞, either

∑∞
n= |αn+ – αn| < ∞ or limn→∞(αn+/αn) = , then

{xn} converges strongly to a fixed point of T .
Halpern’s iteration is as follows:

xn+ = αnu + ( – αn)Txn, n≥ ,

where u ∈ C is an arbitrary (but fixed) element in C.
Mann’s iteration method that produces a sequence {xn} via the recursive manner is as

follows:

xn+ = αnxn + ( – αn)Txn, n ≥ ,

where the initial guess x ∈ C is chosen arbitrarily. However, this scheme has only weak
convergence even in a Hilbert space.
In , Kim and Xu [] modified Mann’s iteration scheme and the modified itera-

tion method still works in a Banach space. Let C be a closed convex subset of a Banach
space and T : C → C be a nonexpansive mapping such that Fix(T) 
= ∅. Define {xn} in the
following way:

⎧⎪⎨
⎪⎩
x ∈ C,
yn = αnxn + ( – αn)Txn, n≥ ,
xn+ = βnu + ( – βn)Tyn, n≥ ,

where u ∈ C is an arbitrary (but fixed) element in C, and {αn}, {βn} are two sequences in
(, ). They proved that if αn → ,βn → ,

∑∞
n= αn = ∞,

∑∞
n= βn = ∞, and

∑∞
n= |αn+ –

αn| < ∞,
∑∞

n= |βn+ – βn| < ∞, then {xn} converges strongly to a fixed point of T .
Therefore, we have the following iterative algorithms which converge strongly to a so-

lution of SEP.
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Algorithm .

⎧⎪⎨
⎪⎩
w = (x, y) ∈H =H ×H,
vn = ( – βn)wn + βnPSTwn, n≥ ,
wn+ = ( – αn)wn + αnPSTvn, n≥ ,

particulars:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈H, y ∈H,
zn = xn – γA∗(Axn – Byn),
hn = yn + γB∗(Axn – Byn),
jn = xn –A∗(γAxn – Byn),
kn = yn + B∗(Axn – γByn),
xn+ = ( – αn)xn + αnPC[( – βn)jn + βn(I – γA∗A)PCzn + βnA∗BPQhn],
yn+ = ( – αn)yn + αnPQ[( – βn)kn + βnB∗APCzn + βn(I – γB∗B)PQhn],

wherew = (x, y) is an arbitrary (but fixed) element inH ,T = I–γG∗G and {αn}, {βn} are
two sequences in (, ). If  ≤ αn ≤ βn ≤ , βn → ,

∑∞
n= αnβn = ∞, then {wn} converges

strongly to a solution of SEP.

Algorithm .

wn+ = αnf (wn) + ( – αn)PSTwn, n≥ ,

particulars:

{
xn+ = αnPH f (xn, yn) + ( – αn)PC[xn – γA∗(Axn – Byn)],
yn+ = αnPH f (xn, yn) + ( – αn)PQ[yn + γB∗(Axn – Byn)],

where f is a contraction on H = H × H and w = (x, y) is an arbitrary (but fixed) el-
ement in H , and T = I – γG∗G. If αn → ,

∑∞
n= αn = ∞, either

∑∞
n= |αn+ – αn| < ∞ or

limn→∞(αn+/αn) = , then {wn} converges strongly to a solution of SEP.

Algorithm .

⎧⎪⎨
⎪⎩
w = (x, y),u = (x, y) ∈H =H ×H,
vn = αnwn + ( – αn)PSTwn, n≥ ,
wn+ = βnu + ( – βn)PSTvn, n≥ ,

particulars:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x,x ∈H, y, y ∈H,
zn = xn – γA∗(Axn – Byn),
hn = yn + γB∗(Axn – Byn),
jn = xn –A∗(γAxn – Byn),
kn = yn + B∗(Axn – γByn),
xn+ = αnx + ( – αn)PC[βnjn + ( – βn)(I – γA∗A)PCzn + ( – βn)A∗BPQhn],
yn+ = αny + ( – αn)PQ[βnkn + ( – βn)B∗APCzn + ( – βn)(I – γB∗B)PQhn],
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where u, w are arbitrary (but fixed) elements in H , T = I – γG∗G, and {αn}, {βn} are two
sequences in (, ). They proved that if αn → , βn → ,

∑∞
n= αn = ∞,

∑∞
n= βn = ∞ and∑∞

n= |αn+ – αn| < ∞,
∑∞

n= |βn+ – βn| < ∞, then {wn} converges strongly to a solution of
SEP.
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