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Abstract The apple cultivar Honeycrisp is emerging in North
American markets due to its outstanding eating quality. A set
of three ‘Honeycrisp’ progeny populations from the
University ofMinnesota apple breeding programwere utilized
to construct parental and consensus ‘Honeycrisp’ linkage
maps to enable marker-assisted breeding. Two populations
were segregated for fruit texture traits and a third was of
interest in examining disease resistance. All available individ-
uals were genotyped with the International RosBREED SNP
Consortium (IRSC) apple 8K SNP array v1, for a total of 318
progeny individuals. Three unique ‘Honeycrisp’ parental
maps (‘Honeycrisp’ × ‘Monark,’ ‘Honeycrisp’ × ‘Gala,’ and
‘Honeycrisp’ × MN1764) were developed, consisting of
1,018, 1,042, and 1,041 single-nucleotide polymorphism
(SNP) markers, respectively. Among all three ‘Honeycrisp’
parental maps, 951 SNP markers were in common.
Combining these maps with the MergeMap tool, a consensus
‘Honeycrisp’ linkage map with 1,091 SNP markers was de-
veloped with an average distance of 1.36 cM between

consecutive markers. The ‘Honeycrisp’ consensus map was
largely in agreement with the physical position of markers in
the ‘Golden Delicious’ reference genome sequence (v1.0, as
of February 2013). The consensus linkage map is informative
for an elite cultivar that is being utilized in breeding programs
worldwide for its superb fruit quality traits.
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Introduction

‘Honeycrisp’ is an emerging apple cultivar with increased
importance in North America due to its outstanding flavor
and textural traits (Hoover et al. 2000; Luby and Bedford
1992; Tong et al. 1999). Although it is prone to some storage
disorders, ‘Honeycrisp’ canmaintain crispness for 6–9months
in storage (Luby and Bedford 1992; Tong et al. 1999).
‘Honeycrisp’ has been shown to exhibit field resistance to
foliar apple scab infection when grown under organic disease
management practices (Berkett et al. 2009), a characteristic
important for growers who may be able to reduce fungicide
inputs in their orchards. For the apple breeder, using
‘Honeycrisp’ as a parent offers the genetic background for
superb fruit quality and disease resistance traits that should be
leveraged in breeding (McKay et al. 2011). Identifying the
marker-locus-trait associations in ‘Honeycrisp’ progeny will
give plant breeders additional tools for marker-assisted breed-
ing (MAB), in developing new cultivars. The development of
a ‘Honeycrisp’ linkage map will add to the toolbox available
to apple breeders and geneticists.

Fruit quality traits are among the most important charac-
teristics evaluated and the most crucial component of a breed-
ing project as the fruit are the saleable product driven by
consumer demand. These quality traits include texture (King
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et al. 2000) and its components firmness (Pre-Aymard et al.
2005), juiciness, and crispness. The development of scab-
resistant cultivars faces genetic challenges (linkage drag) and
marketing challenges. Any new cultivar must be an outstand-
ing alternative or replacement to an existing, consumer-
recognized cultivar. Consumer familiarity with a cultivar and
previous purchase of a particular apple cultivar rank as top
determinants in selecting fruit to purchase (Kelley et al. 2010).

Cultivar development is hindered by long juvenility and
self-incompatibility which constrain crossing decisions. The
development of a single cultivar can take as long as 20–
25 years. Due to the large size of mature trees, orchard space
is limiting, and the maintenance of individual trees from
juvenility to fruit-bearing age is expensive and requires a large
amount of space. The development of genetic markers to
screen important traits at the seedling stage and for parental
selection will result in the enrichment of the target trait among
seedlings that are grown to maturity for phenotypic evalua-
tion. Accurate phenotyping of the traits of interest predicates
detection of robust marker-trait associations to enable MAB
(Luby and Shaw 2001). The traits must be well defined and
also objectively measurable.

Genetic studies in apple can be challenging due to its
highly heterozygous genome, high levels of inbreeding de-
pression, and self-incompatibility (Lawson et al. 1995).
Linkage maps for self-incompatible species, including apple,
are created using the two-way pseudo-testcross method within
a single progeny (Grattapaglia and Sederoff 1994). In this
approach, a map for the first parent is made using markers
heterozygous in the first parent and homozygous in the sec-
ond, and conversely, the second parental map consists of
markers homozygous in the first parent and heterozygous in
the second. These maps can then be integrated using markers
heterozygous in both parents, creating a population map.
Genetic mapping using biparental mapping populations is
common in apple genetics, especially in developingmolecular
markers for monogenic traits such as disease resistance
(Schenato et al. 2008; Tartarini and Sansavini 2003). A num-
ber of linkage maps have been developed and were used to
detect quantitative trait loci (QTLs) and map genes for a range
of important traits including disease resistance (Vf for apple
scab) (Gianfranceshi et al. 1996), acidity (Ma) (Maliepaard
et al. 1998), and growth habit and developmental traits
(Lawson et al. 1995). Mapping populations typically use
parents divergent for an important trait. This approach is
illustrated by recently published microsatellite and single-
nucleotide polymorphism (SNP) maps in Malus species
(Antanaviciute et al. 2012; Fernández-Fernández et al. 2012;
Wang et al. 2012). The advantage of a consensus ‘Honeycrisp’
linkage map, constructed across different populations, is that
marker alleles in this cultivar would yield a novel map that
would be informative for MAB in breeding programs using
this cultivar.

Recently, the apple genome was sequenced (Velasco et al.
2010), and additional supporting tools have been developed,
including a physical map, BLAST search engine, and genome
browser available on Genome Database for Rosaceae (GDR,
http://www.rosaceae.org) (Jung et al. 2008). High-throughput
SNP genotyping allows for efficient genotyping of large num-
bers of individuals or populations with a relatively low cost
per marker. An 8K SNP array v1 was developed by the
International RosBREED SNP Consortium (IRSC). Based
on the Illumina Infinium platform, the BeadChip is a small,
portable, highly repeatable assay that allows for rapid scoring
of individuals, providing even coverage throughout the apple
genome, including SNPs within putative expressed genes
(Chagné et al. 2012). The array was designed using a cluster-
ing strategy with a cluster of 4–10 closely positioned SNPs
spaced at 1-cM intervals between clusters (Chagné et al.
2012). Clustered markers should provide local information
for diverse apple populations representing unique haplotypes,
and recombination is rarely expected within a cluster. The
result is a SNP array that is not population dependent and is
applicable across cultivars and progeny populations
(Micheletti et al. 2011).

Linkage maps with dense marker coverage and with
markers evenly spaced across the genome are ideal for QTL
analysis. Increased density and coverage of markers helps
increase power and precision of QTL analysis, thereby help-
ing in gene discovery. Khan et al. (2012) created a highly
saturated map of apple bymerging five biparental maps by use
of single sequence repeat (SSR) and SNP markers shared
among the linkage maps. The construction and analysis of
genetic linkage maps provide support for the placement of
molecular markers into the correct order and position. The
correct order and position is very important to precisely locate
QTLs. A constraint in map construction is marker checking to
validate and correct automated SNP genotyping calls, espe-
cially in cases of expected paralogous regions from local or
whole-genome duplication events, which are common in plant
genomes, including those of Malus species (Velasco et al.
2010). A comparative analysis of maps from different
populations and development of a consensus map help
to determine whether large genome rearrangements are
present and to establish consensus order and positions
of mapped markers.

The objective of this study was to develop a high-density
SNP consensus linkage map for ‘Honeycrisp’ utilizing several
‘Honeycrisp’ full-sib progeny populations that segregate for
fruit quality and apple scab resistance. This map will provide
the framework for future genetic studies in ‘Honeycrisp’-
specific progeny to identify marker-locus-trait associations
for important fruit quality and disease resistance traits, thus
enabling MAB. It will also provide additional support in map
construction (marker order and position) for pedigree-based
analysis and in resolving potential issues in the apple physical
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map v1 (GDR database: http://www.rosaceae.org) (Jung et al.
2008).

Materials and methods

Plant materials

A portion of the genotypic data in this study was produced as
part of the RosBREED crop reference set (rosbreed.org). The
corresponding apple genotypes, hereafter referred to as
“RosBREED samples,” included the parents (‘Honeycrisp,’
‘Gala,’ ‘Monark,’ MN1764, and 21 individuals of the
‘Honeycrisp’ × ‘Monark’ population (described below). The
majority of individuals described in this paper were genotyped
independently of the RosBREED crop reference set, and these
individuals are hereafter referred to as “UMN samples.”

The UMN samples comprise three full-sib families sharing
‘Honeycrisp’ as a common parent and were utilized in the
development of the ‘Honeycrisp’ consensus map. Two ad hoc
populations [‘Honeycrisp’ × MN 1764 (n=130) and
‘Honeycrisp’ × ‘Monark’ (n=88)] were selected from breed-
ing populations growing at the University of Minnesota
Horticultural Research Center (Excelsior and Chanhassen,
MN) that were developed from crosses made in 1992–1998.
These ad hoc populations have been described previously by
McKay et al. (2011). A third population was created in 2010
from a cross of ‘Honeycrisp’ × ‘Twin Bee Gala’ (n=128, this
population is referred to as ‘Honeycrisp’ × ‘Gala’ throughout)
and grown in greenhouses at the University of Minnesota-
Twin Cities (St. Paul, MN).

DNA extraction protocol

For RosBREED samples, stems with newly expanding leaf
tissue were collected in the field in 2010 and 2011 and placed
in labeled plastic bags on ice. Into a cluster tube (Corning,
Tewksbury, MA), 30 to 50 mg of leaf tissue was later harvest-
ed. These RosBREED tissue samples were frozen in liquid
nitrogen and held at −80 °C until DNA extraction. For the
UMN samples, newly expanding or youngest leaves were
collected from individual trees in 2012, frozen at −80 °C,
lyophilized, and held at −80 °C until DNA extraction.
Approximately 10 to 15 mg of lyophilized leaf tissue from
each sample was placed into a cluster tube.

The day of DNA extraction, leaf tissue was homogenized
by grinding lyophilized (UMN) or frozen (RosBREED) sam-
ples. A 4-mm stainless steel bead (McGuire Bearing
Company, Salem, OR) was added to each cluster tube, caps
were applied, and the 96-tube rack was submerged in liquid
nitrogen. The rack was then placed into a Retsch MM301
Mixer Mill (Retch, Haan, Germany) and shaken for 30 s.
Sample racks were re-submerged in liquid nitrogen and

shaken two additional times, disrupting the leaf tissue into a
fine powder. The homogenized RosBREED and UMN tissue
was stored at −80 °C until 10 min prior to extraction.

Extraction was conducted using the E-Z 96® Plant DNA
Kit (Omega Bio-Tek, Norcross, GA) with modifications
(Gilmore et al. 2011). Modifications included using SP1 so-
lution equilibrated to 65 °C in a water bath. The supernatant
(580 μL) for each sample was transferred in one step to a new
cluster tube containing 10 μL of RNase solution (2.5 μL
RNase and 7.4 μL Tris-EDTA (TE) pH 8). After the drying
step, DNAwas eluted in 100 μL elution buffer, and samples
were stored at 4 °C and quantitated within seven days or
stored at −20 °C. DNA samples were quantified using the
Quant-iT™ PicoGreen® dsDNA Assay Kit (Invitrogen,
Eugene, OR) and a VICTOR multiplate reader (PerkinElmer
Inc., San Jose, CA). Samples with DNA concentrations of
>100 ng/μLwere diluted with the addition of an equal volume
of TE to achieve concentrations between 50 and 100 ng/μL.
Fifteen microliters of each DNA sample was aliquoted into
PCR plates comprising 96–0.2-mL wells, sealed with adhe-
sive aluminum foil seals, and shipped to the genotyping
facility on dry ice.

Marker data generation and analysis

The UMN DNA samples were submitted to the SNP
Genotyping Facility at Michigan State University (East
Lansing, MI). The RosBREED samples were analyzed at the
University of Western Cape, South Africa. Using previously
published protocols (Illumina 2006), samples were hybridized
onto the IRSC apple 8K SNP array v1 (Chagné et al. 2012)
following a whole-genome amplification reaction. BeadChips
were imaged by the iScan system and converted into intensity
data. The intensity data from the two data sets were combined
for analysis and interpretation in the genotyping module of
GenomeStudio for genotype clustering (Illumina Inc. 2010a).

The iScan data from both genotyping facilities were loaded
into a single project file for data analysis. SNP genotype
scoring employed the genotyping module of GenomeStudio
(Illumina Inc. 2010b) software version v2010.3.0.30128. The
software normalizes the intensity values across BeadChips to
allow for uniformity in allele calling. To ensure high-quality
reads, stringent initial parameters were set as follows:
GenTrain >0.60 and AB Freq from 0.45 to 0.55. The SNPs
were clustered by marker locus using the clustering algorithm
Gentrain2 (Illumina Inc. 2010c), and all SNPs were visually
examined for an expected maximum of three clusters (AA,
AB, and BB) and then classified as failed, monomorphic, or
polymorphic.

Automated allele calling with visual checking to confirm
clustering of individuals into appropriate classes was utilized.
Manual clustering was performed for some markers, when
automated clustering was not satisfactory. Markers with more
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than three distinctly spaced clusters, presumably the result of
annealing to more than one genomic region (i.e., paralogs),
were excluded. The ‘Honeycrisp’ ×MN1764 population, with
the largest number of progeny, was utilized to select nearly
2,000 high-quality markers for the development of a saturated
linkage map as suggested by Micheletti et al. (2011). A
preliminary map was developed to evaluate genome coverage
and relative positions in comparison to the physical map
(Clark et al. 2013). For the preliminary map, the default
settings of the maximum likelihood method in JoinMap 4.1
(Kyazma B.V., Wageningen, Netherlands) (Van Ooijen 2006)
were used to map 1,952 SNP markers. Marker grouping
during map construction utilized a published SNP map
(Antanaviciute et al. 2012). These ~2,000 markers were then
scored for the ‘Honeycrisp’ × ‘Gala’ and ‘Honeycrisp’ ×
‘Monark’ populations.

Marker loci at which missing parental genotypes
could not be positively determined based on progeny
segregation in two or more families were removed.
Markers with >10 % missing data were eliminated.
Progeny that did not conform to the parental genotypes
was removed, as they were expected to be outcrosses,
non-progeny, or contaminated samples. The identity by
descent (IBD) analysis program within FlexQTL (Bink
et al. 2008) was used to identify miscalled alleles and
impute parental genotypes using the ‘Golden Delicious’
physical map positions. This tool allowed for the ag-
gressive detection of errors (missing markers, null al-
leles, other anomalies), but required additional manual
correction or imputation of parental genotypic scores
based on the progeny SNP calls.

Linkage mapping

The codominant SNP markers from each outbreeding, full-
sib population were coded for linkage map construction
according to JoinMap 4.1 conventions as heterozygous in
either first or second parent (<nn × np>, <lm × ll>) or
both parents (<hk × hk>) (Van Ooijen 2011). The three
populations were mapped separately using the high-quality
polymorphic SNPs (‘Honeycrisp’ × ‘Monark,’ 1,428;
‘Honeycrisp’ × ‘Gala,’ 1,421; and ‘Honeycrisp’ ×
MN1764, 1,885). The initial grouping procedure in
JoinMap was completed using the published M432 prog-
eny linkage map (Antanaviciute et al. 2012), resulting in a
large proportion of the called SNPs remaining ungrouped.
The strongest crosslink values (SCLs) were applied repeat-
edly using restrictively lower values in an iterative process
to assign ungrouped loci to the correct linkage group (Van
Ooijen 2006). Markers with suspected linkage (recombina-
tion frequency estimate >0.6) were removed before map-
ping. Then, map order was calculated using the maximum

likelihood option which calculates both parental maps and
an integrated map. For this study, only the single parent
‘Honeycrisp’ map from each population was used for the
construction of the consensus map. Maps were then
constructed de novo using the independence logarithm
of odds (LOD) calculation for grouping based on
pairwise recombination frequencies between loci. The
significant LOD threshold for grouping was LOD=3
for ‘Honeycrisp’ × ‘Gala’ and ‘Honeycrisp’ ×
‘Monark’ populations and LOD=4 for the ‘Honeycrisp’
× MN1764 population.

Each of the three ‘Honeycrisp’ maps based on the M432
grouping and the corresponding progeny genotypic data sets
was assembled for analysis in FlexQTL (Bink et al. 2008) to
detect observed double recombinants versus expected double
recombinants provided the newly constructed linkage map.
The FlexQTL program calculated observed double
recombinants (oDRs) minus the expected double
recombinants (eDRs) for the two parents at each marker
position. This helped to identify markers that had high
genotyping error rates or that are misplaced by the mapping
algorithm. Markers with oDRs−eDRs≥0.03 were removed
from the subsequent round of JoinMap mapping, eliminating
100 (‘Honeycrisp’ × MN1764), 80 (‘Honeycrisp’ × ‘Gala’),
and 105 (‘Honeycrisp’ × ‘Monark’) spurious markers. After
two rounds of mapping and removal of suspect markers
identified with FlexQTL, maps were inspected for large gaps
(> 15 cM) and markers creating unusual large gaps were
identified. Markers creating unusually large gaps at linkage
group ends were referred to as “lone wolf” markers as the
gaps suggest poor linkage to the marker group. If a
large gap existed at the end of a linkage group (LG)
in a single population map and the causative marker
was not found in the corresponding LG in either of the
other two maps, it was removed. After marker removal
from any map, the map was recalculated in JoinMap
4.1. The resulting three ‘Honeycrisp’ maps were com-
bined into a consensus map with the MergeMap (2012
version) software tool (Wu et al. 2011). Maps were
weighted based on population size (‘Honeycrisp’ ×
‘Monark,’ 0.255; ‘Honeycrisp’ × ‘Gala,’ 0.393;
‘Honeycrisp’ × MN1764, 0.352).

The consensus ‘Honeycrisp’ linkage map was compared to
the available physical map of apple. SNP map positions for
each of the 17 linkage groups were plotted against marker
positions in the respective pseudo-chromosomes of the
‘Golden Delicious’ genome sequence with R v2.15.1 (R
Core Team 2012). Base pair positions were those of the
mapped IRSC apple markers, and these data are available at
the Genome Database for Rosaceae (http://www.rosaceae.org;
accessed 28 Feb 2013). Each marker included in the
consensus ‘Honeycrisp’ map was checked for significant
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segregation distortion (χ2, p<0.005) in each of the three
families using JoinMap.

Results

A diagram describing the work flow and remaining
high-quality SNP markers at each phase are shown in
Fig. 1. For each of the populations, individuals were
removed whose genotype did not conform to the paren-
tal genotypes, suggesting it was an outcross, non-
progeny, or contaminated sample (‘Monark,’ 7; ‘Gala,’
3; and MN1764, 18). Three ‘Honeycrisp’ linkage maps
were constructed which varied due to different high-
quality markers in each population. Figure 2 details
heterozygosity for each parent (‘Honeycrisp’ is hetero-
zygous at each marker position) along the consensus
map. MN1764 had the lowest proportion of heterozy-
gous markers (34 .5 %) in the cor responding
‘Honeycrisp’ parental map, and MN1764 additionally
had the lowest proportion of heterozygous markers in
the consensus map (32.9 %, Table 1). The highest
proportion of heterozygous markers was in the

‘Honeycrisp’ × ‘Monark’ population with 48.4 % in
the parental map and 45.2 % in the consensus map.
The ‘Honeycrisp’ × ‘Gala’ population had 33.0 % het-
erozygous markers in the parental map and 31.0 % in
the consensus map.

Parental linkage maps

Three ‘Honeycrisp’ (single parent) linkage maps were con-
structed from segregating populations with SNP markers
using grouping methods in JoinMap that utilized the previ-
ously published M432 linkage map (Antanaviciute et al.
2012) and a de novo grouping algorithm. Both methods
produced identical assignments of SNPs to linkage groups,
and the M432 grouped maps were selected for the remaining
mapping procedures. The final ‘Honeycrisp’ linkage map for
each population is visualized with homology among maps in
Fig. 3 (markers and positions provided in Table S1). The maps
each contain 17 linkage groups representing the 17 known
chromosomes that comprise the Malus × domestica genome.
The shortest map was 1,097.55 cM and was constructed from
the ‘Honeycrisp’ × ‘Gala’ population from 1,042markers with
an average spacing of 1.05 cM between markers. The next

Fig. 1 Work flow describing the
mapping process including the
number of SNP markers retained
at each stage
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longest map was 1340.20 cM and was constructed from the
‘Honeycrisp’ × ‘Monark’ population with 1,018 SNP markers
and an average marker spacing of 1.32 cM between markers
(Table 2). The ‘Honeycrisp’ ×MN1764mapwas 1,350.29 cM
in length and was constructed from 1,041 SNP markers, with
an average marker spacing of 1.30 cM. The marker coverage
for the linkage groups ranged from 23 markers [LG7
(‘Honeycrisp ’ × MN1764)] to 88 markers [LG4

(‘Honeycrisp’ × MN1764 and ‘Honeycrisp’ × ‘Monark’)].
The maximum gap size for any linkage group ranged from
5.13 cM (LG9 ‘Honeycrisp’ × ‘Gala’) to 129.64 cM (LG17
‘Honeycrisp’ × ‘Monark’). The “lone wolf” marker on LG17
(refer to Fig. 3) was retained as it met the parameters described
above and was resolved in the consensus map.

Consensus linkage map

The three ‘Honeycrisp’ linkage maps were merged to create
one consensus linkage map comprising markers segregating
in one or more of the ‘Honeycrisp’ mapping populations
(Fig. 4). The consensus map was constructed using 1,091
SNP markers (13.9 % of the IRSC 8K SNP array v1,
Table 2, Table S2). Figure 5 details the 951 markers in com-
mon across all three populations and the 140 SNP markers
segregating in only one or two populations. The consensus
map is 1,481.72 cM with an average distance of 1.36 cM
between markers (Table 2). The sizes of the linkage groups
range from 61.58 cM (LG8) to 130.48 cM (LG15). The largest
gap in the consensus map was 34.21 cM on LG7.

Fig. 2 Homozygosity plot indicating polymorphism in the parents from
the three mapping populations (‘Honeycrisp’ × ‘Gala,’ ‘Honeycrisp’ ×
MN1764, and ‘Honeycrisp’ × ‘Monark’) plotted on the consensus map

(X-axis). ‘Honeycrisp’ is heterozygous at all loci. Multiple open circles at
a locus indicate more than one SNP marker mapped to that locus for the
given parent

Table 1 Number and percentage of heterozygous markers of the
non-‘Honeycrisp’ parent for its corresponding parental map and in the
consensus map for three mapping populations (‘Honeycrisp’ × ‘Gala,’
‘Honeycrisp’ ×MN1764, and ‘Honeycrisp’ × ‘Monark’). ‘Honeycrisp’ is
heterozygous at all mapped loci

Parent Heterozygous
markers in
parent

Markers in
parental
map

Proportion
of parental
map (%)

Proportion of
consensus map (%)
(1,091 markers)

Gala 448 1,042 43.0 41.1

MN1764 359 1,041 34.5 32.9

Monark 493 1,018 48.4 45.2
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Comparison of genetic positions to physical map

The genetic positions of markers in the consensus
‘Honeycrisp’ map were plotted against the physical posi-
tions of marker loci on the ‘Golden Delicious’ genome
(Fig. 6). Generally, there was agreement in the placement
of the markers between the ‘Honeycrisp’ map and the
genome sequence as evidenced by the linearity in the
plots. The majority of the markers revealed direct corre-
spondence between the linkage groups and the ‘Golden
Delicious’ pseudo-chromosomes. Across the linkage map,
110 (10.1 %) markers mapped to linkage groups other
than the corresponding pseudo-chromosome. Eight markers
that were placed in the consensus ‘Honeycrisp’ map were
classified as “unanchored” in the physical map. Areas of
high recombination, indicated by large horizontal gaps in
Fig. 6, were detected along several of the LGs including
LG1, LG6, LG7, and LG10. Areas of low recombination
are also evident as marker clusters.

Segregation distortion

Of the markers included in the consensus linkage map, 57
showed significant (p<0.005) segregation distortion in the
‘Honeycrisp’ × ‘Gala’ progeny, 58 were significantly
distorted in the ‘Honeycrisp’ × MN1764 progeny, and 41
were significantly distorted in ‘Honeycrisp’ × ‘Monark’
progeny. In total, only nine markers showed a significant
segregation distortion in two families (black points, Fig. 6)
and 138 markers showed a significant segregation distor-
tion in only one family (gray points, Fig. 6). None of the
markers of the consensus map showed a significant seg-
regation distortion at the 0.005 level in all three progenies.
Because segregation distortion was not used as a quality
control measure during marker selection or map construc-
tion, 13.5 % of mapped markers showed a significant
segregation distortion in at least one of the three families.
Significant distortion was primarily clustered to regions on
LG2, LG5, LG6, LG13, LG14, and LG17.
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Fig. 3 Three ‘Honeycrisp’ parental maps (‘Honeycrisp’ × ‘Gala,’ ‘Honeycrisp’ × MN1764, and ‘Honeycrisp’ × ‘Monark’) utilized in consensus map
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Discussion

We have developed a consensus ‘Honeycrisp’ linkage map
spanning 17 linkage groups representing the 17 chromosomes

in the apple genome using the high-throughput IRSC 8K SNP
array v1 (Chagné et al. 2012) and three mapping populations.
The strategy utilized stringent data checking steps to ensure
quality marker data including selection of high-quality SNP
reads, removal of markers demonstrating a high frequency of
double recombination, and examination of “lone wolf”
markers. FlexQTL identified problematic markers that
exceeded the threshold for observed double recombinants
based on the expected frequency in each of the families. We
were not able to position these markers elsewhere in the map
using JoinMap. The double recombination pattern was visu-
alized in Map Chart v2.2 (Voorrips 2002) and also provided a
quick graphical interpretation after each round of mapping.
This method was convenient and intuitive without the added
complexity of graphical genotyping for ordering markers and
identifying spurious markers. This methodology utilizes files
that can be used in QTL analysis with FlexQTL, thus reducing
the burden of creating new files or data for other interfaces.

The mapping approach outlined here drastically reduced
the number of SNP markers to only 13.8 % of those on the 8K
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Fig. 4 Consensus ‘Honeycrisp’ linkage map constructed from three ‘Honeycrisp’ parental maps (‘Honeycrisp’ × ‘Gala,’ ‘Honeycrisp’ × MN1764, and
‘Honeycrisp’ × ‘Monark’). Markers shown in blue were not common to all three parental maps

Fig. 5 Venn diagram showing the number of markers shared in the
‘Honeycrisp’ consensus map (1,091 total SNP markers) and those unique
to each population
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IRSC SNP array. The first reduction to ~2,000 SNP markers
was based on stringent parameters to identify high-quality
reads with visually distinguishable clusters in the
GenomeStudio software. These markers were then scored
for all three populations in accordance with other reports using
similar numbers of markers for linkage mapping in apple
(Antanaviciute et al. 2012; Micheletti et al. 2011). The
FlexQTL inheritance checking algorithm efficiently identified
problematic markers or inheritance errors. Data free of
genotyping errors are very important for the construction of
genetic maps to ensure proper marker ordering.

The detection of functional ‘Honeycrisp’ haplotypes will
provide utility in genetic studies of progeny populations with
the aim of identifying genetic contributions specific to this
parent. The consensus map has an average interval of 1.36 cM
between markers, a much higher marker density than has been
achieved with SSR linkage maps, and provides sufficient
marker coverage for moderate-sized QTL mapping popula-
tions. The often touted advantage of a high-throughput SNP
array is the reduced price per marker. But marker quality and
usefulness are not uniform across all loci or populations.
Homozygosity at a marker locus, genotyping quality, and

genotyping errors all contribute to increasing the cost per
informative marker. Chagné et al. (2012) showed that of the
8K array, only 70.6 % of the markers were polymorphic in
>1,600 individuals, accessions, and segregating populations
that were evaluated. The development of a reduced array that
retains those highly informative polymorphic markers across
the genome could increase the efficiency for MAB.

Linkage mapping in JoinMap 4.1 utilizing the published
M432 map (Antanaviciute et al. 2012) for the grouping step
was computationally efficient and produced equivalent group-
ing assignments as the de novo algorithm. Due to high levels
of sequence similarity resulting from the genome-wide dupli-
cation in Malus, SNP markers may map to more than one
genomic location. This phenomenon was not evident with the
high-quality SNPs used in this study. The method employed
here was designed to select markers for consensus map con-
struction that consistently placed SNPs to common groups.
The multipoint maximum likelihood method for mapping was
faster than the regressionmapping and was thus utilized in this
study of outcrossing populations (Van Ooijen 2011). The
construction of two parental maps and an integrated map for
each population was useful in determining the fate of “lone

Fig. 6 Comparison of ‘Honeycrisp’ consensus map to physical position
on ‘Golden Delicious’ genome sequence for each of the 17 linkage
groups. Each plot directly compares the linkage group (LG1–LG17) to
the pseudo-chromosome (1–17) available in the Genome Database for
Rosaceae (www.rosaceae.org). Markers showing segregation distortion
(p value <0.005) are indicated as follows: open circles, no significant

distortion in any of the three families; gray filled circles, significant
distortion in one family; and black filled circles, significant distortion in
two families. No markers in the consensus ‘Honeycrisp’ linkage maps
showed a significant segregation distortion in all three of the mapping
populations
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wolf” markers although only the ‘Honeycrisp’ parental map
was retained for consensus map construction.

The three ‘Honeycrisp’ parental maps each comprised
shared and unique markers due to observed differences in
heterozygosity in the parents and the quality of SNP calls.
For example, in the consensus map, the distal end of LG15
was greatly extended by the inclusion of the ‘Gala’ and
‘Monark’ populations since the MN1764 population was un-
informative in that region (Fig. 2). Low-quality markers may
have been discarded differently within GenomeStudio among
the populations due to the quality of the reads. Low levels of
heterozygosity were observed even in the consensus map in
some areas such as LG7, similar to the M432 map
(Antanaviciute et al. 2012). To increase the coverage in these
regions, one could return to GenomeStudio and use less
stringent quality parameters for SNP calls. Additionally,
markers developed specifically from pseudo-chromosome 7
could be scored and added to the maps. Genomic regions with
high levels of homozygosity shared among cultivars could be
an artifact of domestication, genetic drift, other intentional or
unintentional selection, or a bottleneck. An exploration of
these genome areas among other cultivars and Malus species
linkage maps could provide insight into the genes that reside
in these areas.

The clustering strategy that was utilized in the development
of the IRSC 8K SNP array resulted in many SNP markers
mapping to the same locus. Low recombination in these areas
makes it difficult to assign the correct map order. Observed
differences in local homology between the parental maps may
be the result of within-cluster ordering. Using the physical
map to order the markers would be one strategy to resolve this
issue; however, the ordering of the physical map may also be
incorrect. Additionally, the physical order of markers may be
different between the three populations due to disruption in
microsynteny and structural variations (Khan et al. 2012).
Because the recombination frequency is so small within a
cluster or tightly mapped clusters/markers, the precise order
may not serve as a barrier to QTL detection. This is especially
true in a pedigree-based approach, in which markers within a
cluster may have different utility for individuals of different
subpopulations. That is, any given individual SNP marker
within a cluster at a single marker locus may segregate for
some individuals or subpopulations and not others, but the
map position is not lost for the entire pedigreed population.
Additionally, local marker order may not be important in
establishing functional haplotypes in a cluster in which low
frequencies of recombination events occur.

Antanaviciute et al. (2012) compared map positions of an
integrated apple rootstock linkage map to the ‘Golden
Delicious’ genome sequence, reporting that 13.7 % of genet-
ically mapped markers did not associate with the predicted
pseudo-chromosome. Our results are consistent with this find-
ing and are supported with the de novo grouping and the use

of the M432 map for grouping of markers to linkage groups.
Over 10 % of markers in the consensus ‘Honeycrisp’ map
were placed to linkage groups other than the corresponding
pseudo-chromosome. These markers should be evaluated for
known homology in the Malus × domestica genome (specif-
ically known genome duplications and possible misalign-
ments of contigs in the development of the ‘Golden
Delicious’ genome sequence). Of the 110 markers of the
consensus map (1091 total SNPs) that mapped to alternate
pseudo-chromosomes, only 10 (9.1 %) were associated with
potential homeologous chromosomes from the genome-wide
duplication event (Velasco et al. 2010). For instance, a cluster
of markers initially associated with pseudo-chromosome 9 of
‘Golden Delicious’ maps to the top of LG4 in both the M432
and ‘Honeycrisp’maps. However, had our data not supported
these placements, it is likely the markers would have been
identified as “suspect linkages” during mapping and thus been
discarded.

A significant segregation distortion was observed for 13.5 %
of the markers in the final ‘Honeycrisp’ consensus map when
no quality control measures regarding segregation distortion
were used duringmarker checking or linkagemap construction.
The choice not to use segregation distortion as a quality control
measure was made because marker segregation distortion could
represent real, biologically relevant segregation distortion and
the inclusion of thesemarkers could be useful in QTL detection.
Largely supporting this hypothesis is the observation that
markers exhibiting segregation distortion mapped in cohesive
clusters along only several linkage groups. Biological reasons
for segregation distortion are those that impose selection upon
the population such as selective fertilization (apple’s gameto-
phytic self-incompatibility), abortion of gametes (Liebhard
et al. 2003), and other unavoidable natural selective pressures
such as field environment (e.g., winter hardiness) that are
inadvertently imposed upon the breeding populations (i.e., the
ad hoc mapping populations utilized in this study). Markers
with observed segregation distortion need not be within the
survival gene, and they may be linked with the gene conferring
survivorship. Segregation distortion observed in this study was
not found in the same linkage groups as that reported by
Antanaviciute et al. (2012) with the exception of that on
LG17 which contains the S-locus (Maliepaard et al. 1998).

The GenomeStudio software and manual calling of SNPs
into biallelic clusters (AA, AB, BB) are constrained by the
quality of reads. Inherent in difficulty with read quality are
errors resulting from DNA quality, contamination, DNA hy-
bridization and extension, and fluorescence signal. Recent
whole-genome duplication, segmental duplication, and a high
degree of homology between some markers result in SNP
markers exhibiting segregation behavior similar to that of
polyploids in the cluster plots (Voorrips et al. 2011, personal
observation). DNA from different genomic regions may hy-
bridize to the same marker, typically resulting in more than
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three clusters. However, not all of these occurrences may be
detected manually or within the automated calling. The spread
of a cluster in automated/manual calling of multiple popula-
tions (pedigrees, diverse sets) may provide statistical support
of a single cluster, but may mask the presence of more than
three clusters within a single population that would have been
identified as a potential homolog and removed.

A high degree of colinearity was observed between the
consensus map and the physical positions along the ‘Golden
Delicious’ pseudo-chromosomes. Large linkage gaps were
observed in regions of low marker coverage, presumably
centromeric and telomeric regions. Colinearity supports the
physical ordering of markers and strengthens the development
of meaningful haplotypes that represent true chromosome
position. Markers that do not align may result in haplotypes
that are a mosaic of different chromosome segments.

The consensus ‘Honeycrisp’ linkage map developed from
three progeny populations consists of 1,091 SNP markers
distributed across the apple genome. These markers were
developed from exonic regions from the ‘Golden Delicious’
genome sequence which adds to their utility in predicting
function in marker-locus-trait associations (Chagné et al.
2012). More importantly, these markers are informative in
an elite cultivar that is being utilized in breeding programs
worldwide for its superb fruit quality traits. QTL analysis in
‘Honeycrisp’will not only focus on identifying the haplotypes
associated with crispness, firmness, and juiciness but will also
focus on identifying deleterious associations with post-harvest
disorders such as soft scald, internal browning, and bitter pit,
to which ‘Honeycrisp’ is prone.
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