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Background
The distance measure of images plays a central role in computer vision and pattern rec-
ognition, which can be either learned from a training set, or specified according to a 
priori domain-specific knowledge. The problem of metric learning, has gained consid-
erable interest in recent years (Hastie and Tibshirani 1996; Xing et al. 2003; Hertz and 
Pavel 2002; Bar-Hillel et  al. 2003; Goldberger et  al. 2005; Shalev-Shwartz et  al. 2004; 
Chopra et al. 2005; Globerson et al. 2006; Weinberger et al. 2005; Lebanon 2006; Davis 
et al. 2007; Li et al. 2007). On the other hand, the fact that the standard Euclidean dis-
tance assumes that pixels are spatially independent yields counter-intuitive results, e.g, a 
perceptually large distortion can produce smaller distance (Jean 1990; Wang et al. 2005). 
By incorporating the spatial correlation of pixels, two classes of image metrics, namely 
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IMED (Wang et al. 2005) and GED (Jean 1990), were designed to deal with the spatial 
dependencies for image distances, which were demonstrated consistent performance 
improvements in many real world problems (Jean 1990; Wang et  al. 2005; Chen et  al. 
2006; Wang et al. 2006; Zhu et al. 2007).

A key advantage of GED and IMED is that they can be embedded in any classification 
technique. The calculation of IMED is equivalent to performing a linear transform called 
the standardizing transform (ST) and then followed by the traditional Euclidean dis-
tance. Hence, feeding the ST-transformed images to a recognition algorithm automati-
cally embeds IMED (Wang et al. 2005). The analogous transform for GED is referred as 
to the generalized Euclidean transform (GET) (Jean 1990).

IMED and GED are invariant to image translation, namely, if the same image transla-
tion is applied to two images, their IMED remains invariant. However, the associated 
transforms (ST and GET) are not translation invariant (TI). This left a problem whether 
IMED can be implemented by a TI transform. In (Sun et al. 2009), the authors gave a 
positive answer to the problem and provided a proof for simple cases, yet a few technical 
problems are left unresolved.

We should emphasize the importance of the translation invariances. Intuitively, as the 
relative distance between images should only depend on the relative position of them, 
translation invariance (TI) should be a fundamental requirement for any reasonable 
image metric. Yet few metric learning or linear subspace methods are aware of the TI 
property when dealing with images.

In this paper, we extend the theory in (Sun et  al. 2009) to the discrete frequency 
domain to cover the practical cases. Based on the metric-transform connection, we 
show that both GED and IMED are essentially low-pass filters. The resulting filters lead 
to the fast implementations of GED and IMED, coinciding the algorithm proposed in 
(Sun et al. 2008), which reduces the space and time complexities significantly. The trans-
form domain metric learning (TDML) proposed in (Sun et al. 2009) is also resembled 
as a translation-invariant counterpart of LDA. Experimental results demonstrate signifi-
cant improvements of algorithm efficiency and performance boosts on the small sample 
size problems.

IMED and GED

Given an image X of size n1 × n2, the vectorization of X is the vector x = vec(X), such 
that the (n2i1 + i2)th component of x is the intensity at the (i1, i2) pixel. This is a common 
technique to manipulate image data.

The assumption made in the standard Euclidean distance that the image pixels are spa-
tially independent sometimes leads to counter-intuitive results (Jean 1990; Wang et al. 
2005). To solve the problem, Wang et al. (2005) proposed the image Euclidean distance 
(IMED) defined as

The entries gij of the metric matrix G are defined by the Gaussian function (Wang et al. 
2005), i.e.,

d2G
(
x, y

)
=

(
x − y

)T
G
(
x − y

)
.
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where Pi = (i1, i2),Pj =
(
j1, j2

)
. The n1n2 × n1n2 metric matrix G solely defines the 

IMED, where the element gij represents how the component xi affects the component xj.
As suggested in (Wang et  al. 2005), the calculation of IMED can be simplified by 

decomposing G to ATA. The standardizing transform (ST) is the special case when 
AT = A, written as A = G

1
2. By incorporating the standardizing transform matrix G

1
2, 

IMED can be easily embedded into almost any recognition algorithm. That is, feeding 
the ST-transformed image G

1
2 x to a recognition algorithm automatically embeds IMED. 

Besides, Wang et al.showed that ST seems to have a smoothing effect (Wang et al. 2005) 
by illustrating a few eigen-vectors associated with the largest eigen-value of G

1
2, and then 

argued that since IMED is equivalent to a transform domain smoothing, it can tolerate 
small deformation and noises and hence improve recognition performances.

Another image metric, called the generalized Euclidean distance (GED) (Jean 1990), is 
essentially the same as IMED, except the distance measure coefficients between Pi and 
Pj . Specifically, the generating function for GED is the probability density function of the 
Laplace distribution

where α is a scale parameter.
As pointed out in (Wang et al. 2005), translation invariance (TI) is a necessary prop-

erty for any intuitively reasonable image metric. Formally, for image X,  Y, a distance 
measure d(·, ·) is translation invariant if and only if

where Xτ ,Yτ is an image translation of X, Y, respectively.
Both IMED and GED depend only on the relative position between pixels Pi and Pj, 

i.e., there exists a discrete function g[·, ·], such that

where

This makes gij invariant to image translation. However, the associated transform (ST 
and GET) are not translation invariant transforms. This left a problem whether IMED 
and GED can be decomposed to translation invariant transforms. That is, for any IMED 
or GED metric matrix G, does there exist a translation-invariant transform H such that 
G = HTH ?

(1)

gij = f
(
�Pi − Pj�

)

= 1

2πσ 2
e
−

|Pi−Pj |2

2σ2

= 1

2πσ 2
e
− (i1−j1)

2+(i2−j2)
2

2σ2 ,

gij = e−α·(|i1−j1|+|i2−j2|),

d(X ,Y ) = d(Xτ ,Yτ ),

gij = g[i1 − j1, i2 − j2],

i = n2i1 + i2, j = n2i1 + i2.
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The translation invariant transform of a translation invariant metric

In (Sun et al. 2009), the authors give a positive answer to the problem whether a transla-
tion invariant metric can be implemented by a translation invariant transform.

Theorem 1 Given a translation invariant metric matrix G of n× n and thus a finitely 
sequence g[i − j] = G(i, j) supported on [−n, n], supposing that ĝ(ω) � 0 (the discrete 
time Fourier transform of g[i]), there exists a translation invariant transform matrix H 
such that

Specifically, define the filter h[i]

which satisfies that

If h[i] is supported on [−m,m], it can be equivalently written as

where H is the (n+ 2m)× n LTI matrix of h[i] defined by

Each diagonal of H is constant, thus H is a Toeplitz matrix (Gray 2006) or diagonal-con-
stant matrix.

A solid requirement of Theorem 1 is ĝ(ω) � 0. The condition is satisfied when G � 0 
is an infinite-sized matrix, as a consequence of the positive operator theorem (Rudin 
1991) or the generalized Bochner’s theorem on groups (Rudin 1990). In practice, G is a 
positive-definite matrix of finite size n× n. Gray (2006) proved that as n approximates 
infinity, ĝ(ω) converges to a non-negative value.

Unlike the case of ST for IMED (Wang et al. 2005) and GET for GED (Jean 1990), the 
constructed translation-invariant transform matrix H is not a square matrix. Specifically, 
H is of size (n+ 2m)× n, where [−m,m) is the support of the sequence g[i].

Methods
Computational aspects

Unfortunately, Theorem 1 is presented in the continuous frequency domain only (Sun 
et al. 2009), which is not easy to be applied directly in practical problems because ĝ(ω) 
is a continuous function that has to be discretized. A naive extension of Theorem 1 can 
be constructed by using the circular convolution (Oppenheim et al. 1999) instead of the 
regular convolution.

G = H∗H .

h[i] = F
−1

(√
ĝ(ω)e

√
−1θ(ω)

)

G(i, j) = �h ∗ δj , h ∗ δi�.

G = H∗H ,

H(i, j) =
{
h[i − j −m], if |i − j −m| � m,
0, else.
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Proposition 2 If Hn is a circulant matrix, then the n× n metric matrix (which is also 
circulant) defined by Gn = HT

n Hn can be determined by

where g [i] is the auto-correlation function of h [i], i.e.,

with h∗[i] = h[−i], where ⊛n denotes the n-point circular convolution, or equivalently in 
frequency domain,

The above extension has problems. The first problem is that, for the same filter h[i], the 
induced metric filters g = h ∗ h and g̃ = h⊛nh are different, i.e.,

because linear convolution and circular convolution don’t equal generally.
The second problem is even worse: to derive a translation-invariant transform in dis-

crete frequency domain, the matrix representation of the metric G must be a circulant 
matrix, which is not true for common cases, including both IMED and GED.

We adopt the following approach to overcome these problems: padding the finitely 
supported sequences to periodic sequences. Given h[i] supported on [−m,m) and x[i] 
supported on [0, n), define h̃[i] and x̃[i] of period-(n+ 2m) by

and

By the circular convolution theorem (Oppenheim et al. 1999), the two types of convolu-
tion coincide:

In other words, the linear convolution of h and x on its support is a period of the circular 
convolution of their periodic expansion h̃ and x̃.

Now consider the two versions of metric filter: g[i] = h ∗ h∗[i] and g̃[i] = h̃⊛n+2mh̃
∗[i] . 

Because

hence g[i] = g̃[i] if and only if

Gn(i, j) = g[i − j],

g[i] = h[i]⊛n h
∗[i],

ĝ[j] = |ĥ[j]|2.

H∗
nHn �= H∗

m,nHm,n,

h̃[i] =
{
h[i], i ∈ [−m,m)

0, i ∈ [m,m+ n)

x̃[i] =
{
x[i], i ∈ [0, n)
0, i ∈ [−m, 0) ∪ [n,m+ n).

h ∗ x[i] =
{
h̃⊛n+2mx̃[i], i ∈ [−m,m+ n);
0, else.

∀i ∈ [0, n+ 2m), h̃[i −m] = h[i −m],

i ∈ [−2m, n)
⋂

(−n,+∞).
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On the other hand, by definition the metric filter is conjugate symmetric, i.e,,

so it can be asserted that g[i] = g̃[i] when i ∈ (−n, n).
The above statements assert that given a finitely supported translation-invariant trans-

form h[x], the induced metric g̃[i] constructed by the padded period filter h̃[i] is also 
translation invariant.

Hence, the analogous version of Theorem 1 can be given as follows.

Theorem 3 Given the [−m,m) supported metric filter g[i], there exists a circular filter 
h̃[i], such that g[i] is equal to h̃⊛n+2mh̃[i] on its support.

Proof Define the period-(n+ 2m) sequence g̃ by

Let h̃[i] = F−1

(√
̂̃g[i]

)
 and the proof is complete.  �

It is beneficial to derive the matrix representation of Theorem 3. Given the n× n met-
ric matrix Gn, by Theorem 1, it determines a filter h[i] supported on [−m,m), and hence 
the (n+ 2m)× n translate-invariant matrix Hm,n; by theorem 3, it determines a filter h̃[i] 
of period n+ 2m, and hence the (n+ 2m)× (n+ 2m) circular matrix H̃m,n. Writing

and it can be checked that Gn is the left-upper n× n block of G̃n+2m.
The results in discrete frequency domain can be easily extended to multi-dimensional 

signal space the same as in continuous frequency domain (Sun et al. 2009). A convenient 
property of the extension is that the multi-dimensional data (e.g, 2d images) can be pro-
cessed without vectorization.

The translation‑invariant transforms of IMED and GED

To demonstrate that the proposed method can be applied to multi-dimensional cases 
directly, we write the metric matrices of IMED and GED in tenser form.

IMED The metric tensor g for IMED is defined in (Wang et al. 2005) by a Gaussian, i.e., 

where 

 The metric filter for IMED is separable, i.e., 

g[i] = g[−i], g̃[i] = g̃[−i],

g̃[i] =
{
g[i], i ∈ [−m,m)

0, i ∈ [m,m+ n).

Gn = H∗
m,nHm,n

G̃n+2m = H̃∗
n+2mH̃n+2m,

g
i1i2
j1j2

= 1

2π
e−

d2

2 ,

d =
√
(i1 − j1)2 + (i2 − j2)2.
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We choose the support length m1 = m2 = 4 (g[4, 4] ≈ 1.7911× 10−8), i.e., g[i1, i2] 
is supported on [−4, 4] × [−4, 4]. For 52× 52 signals (n1 = n2 = 52), we build the 
period n1 + 2m1 = 60 sequence 

It is easy to validate that ̂̃g0[j] � 0, ∀j. Thus the separated period filter h̃0[i] can be 
constructed by 

 and the overall filter is h̃[i1, i2] = h̃0[i1]h̃0[i2].

GED The metric tensor g for GED is defined in (Jean 1990) by a Laplacian, i.e., 

 where d = |i1 − j1| + |i2 − j2| is the l1 distance of the two pixels and r = 0.6 is a 
decay constant. The metric filter for GED is separable, i.e., 

We choose the support length m1 = m2 = 15 (g[15, 15] ≈ 2.2107× 10−7), i.e., 
g[i1, i2] is supported on [−15, 15] × [−15, 15]. For 30× 30 signals (n1 = n2 = 30), we 
build the period n1 + 2m1 = 60 sequence 

We can validate that ̂̃g0[j] � 0, ∀j. Thus the separated period filter h̃0[i] can be con-
structed by 

 and the overall filter is h̃[i1, i2] = h̃0[i1]h̃0[i2].

The translation-invariant transforms of IMED and GED in space and frequency 
domain are drawn in Fig. 1. It clearly shows that applying the GED or IMED is equiva-
lent to a low-pass filtering process, which is robust to small perturbation of images.

The fast implementation of IMED and GED

The advantages of the filtering decomposition over the GET or ST are not only the phys-
ical explanation but also the time and space complexity. Generally, the computational 
complexity associated with the filtering decomposition can be of O(n log n) due to the 
efficiency of FFT (Oppenheim et al. 1999).

In the case of IMED and GED, since the corresponding filters decay 
rapidly (Fig.  1), e.g, g[4] = 1√

2π
e−

42

2 ≈ 1.34 × 10−4 (IMED), the vector 
g = (g[0], . . . , g[m], 0, . . . , 0, g[−m], . . . , g[−1])T  can be set of length n. Therefore 

g[i1, i2] =
1

2π
e−

i21+i22
2 = 1√

2π
e−

i21
2 · 1√

2π
e−

i22
2 = g0[i1]g0[i2].

g̃0[i] =
{

g0[i] = 1√
2π

e−
i2

2 , i ∈ [−4, 4]
0, i ∈ (4, 56).

h̃0[i] = F
−1

(√
̂̃g[j]

)
,

g
i1i2
j1j2

= rd = ed log r ,

g[i1, i2] = r|i1|+|i2| = r|i1| · r|i2| = g0[i1]g0[i2].

g̃0[i] =
{
g0[i] = r|i|, i ∈ [−15, 15]
0, i ∈ (15, 45).

h̃0[i] = F
−1

(√
̂̃g[j]

)
,
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G ≈ G̃ and the transform can be applied on the original X than the zero-padded 
image X̃ . Finally, the period filter g̃  can be built using only several significant val-
ues. The templates of IMED (σ = 1) and GED (α = 2) are

and

respectively.
Since the filter is of fixed size, the fast implementation can further reduces the space 

complexity from O(n2) to O(1), and the time complexity from O(n2) to O(n).

Transform domain metric learning

Generally, in order to learn a metric G, one can do optimization with respect to G. For 
images of size n1 × n2, G has n21 × n22 elements, making the optimization intractable. 
Another problem is G must satisfy the positive semi-definite constraint, i.e., G � 0, so it 
is not easy to find efficient algorithm to solve problem with such a constraint.

Theorem 1 can be equivalently written




0 0.0012 0.0029 0.0012 0

0.0012 0.0471 0.1198 0.0471 0.0012

0.0029 0.1198 0.3046 0.1198 0.0029

0.0012 0.0471 0.1198 0.0471 0.0012

0 0.0012 0.0029 0.0012 0


 ,




0.0003 0.0025 0.0183 0.0025 0.0003

0.0025 0.0183 0.1353 0.0183 0.0025

0.0183 0.1353 1.0000 0.1353 0.0183

0.0025 0.0183 0.1353 0.0183 0.0025

0.0003 0.0025 0.0183 0.0025 0.0003


 ,

(2)
xTGx = 1

2π

∫ π

−π

ĝ(ω)|x̂(ω)|2dω.

Fig. 1 The underlying filters of GED and IMED. First row space domain; second row frequency domain; first 
column GED; second column IMED
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Equation (2) introduces great simplifications to the optimization problem of metric 
learning. With the translation-invariant assumption on G, things are much simpler. This 
is because the positive semi-definitive constraint G � 0 is reduced to a bound constraint 
ĝ(ω) � 0. Furthermore, the number of parameters is the sampling number on ĝ, which 
is usually chosen to be the same as the size of input data. An additional benefit of the 
translation-invariant approach is that it applies to any dimensionality without modifica-
tions, thus is unnecessary to stack the multi-dimensional data to vectors.

Suppose we have some data {xi}, and are given the data label 
{
yi
}
. Let fi be the Fourier 

transform of xi, we compute the total “similar” and “dissimilar” power spectrum:

The criterion here is that the filtered within-class distance is minimized, and the filtered 
between-class distance is maximized, simultaneously. This gives the objective functional

The objective (3) resembles the idea of LDA (Duda et al. 2000). In fact, TDML can be 
viewed as a translate-invariant solution to LDA.

Results
Experiments on the transform implementations of IMED

In this section, the standardizing transform (ST) and the translation invariant imple-
mentation of IMED are evaluated using the US postal service (USPS) and the FERET 
database. The USPS database consists of 16 by 16 pixel size normalized images of hand-
written digits, divided into a training set of 7291 prototypes and a test set of 2007 pat-
tern. The FERET database consists of 384 by 256 pixel size images of human faces, in 
which th ’fa’ subset is chosen, including 1762 images.

The following algorithms are going to be compared, divided into 2 gourps:

1 The ST group

Algorithm 1 U = G
1
2 vec(X), the original ST. It is memory expensive, and sometimes 

unfeasible, e.g, for the FERET database, the G
1
2 is of size 98304 × 98304, yielding a 

36GiB usage of memory (4 bytes per element).

Algorithm 2 Since G is separable Wang et al. (2005), it can be shown G
1
2
1 XG

1
2
2  is equiva-

lent to Algorithm 1. This solves the memory problem. For the FERET database, only a 
384 × 384 and a 256× 256 matrices are needed.

2 The CST group (translation invariant transforms)

Algorithm 3 (h1 ⊗ h∗2) ∗ X, we need only a pre-computed 5× 5 template.

pw(ω) =
∑

i,j,yi=yj

|fi(ω)− fj(ω)|2, pb(ω) =
∑

i,j,yi �=yj

|fi(ω)− fj(ω)|2.

(3)J0
(
g
)
=

∫
Td ĝ(ω)pw(ω)dω∫
Td ĝ(ω)pb(ω)dω

.
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Algorithm 4 Apply the template h1 to each column of X, then h2 to each row of X. This 
is the separated equivalent to Algorithm 3, in compared with Algorithm 2. Because 
h1 = h2, only one copy is in memory.

These algorithms were evaluated over the 7291+ 2007 USPS images, and the 1762 
FERET-fa images using MATLAB on a Dell PowerEdge 1950. The results (Table  1) 
demonstrate that the CST does improve the time efficiency significantly, especially in 
the case of large size images.

Also, we computed the Euclidean distance of CST-ed images, which has an error rate 
of ∼ 1% comparing to the IMED of the original images, due to the approximate property 
of the convolution template.

Experiments on the transform domain metric learning

In this section, we conduct several sets of experiments. The experiments are performed 
on 3 face data sets (UMIST, Yale and ORL database). The images in UMIST, Yale and 
ORL data sets are resized to 28× 23, 40× 30 and 28× 23, respectively.1 We randomly 
select two images from each class as the training set, and use the remaining images for 
test. We repeat the process 20 times independently and the average results are 
calculated.

We first compare TDML with several other metrics, including the standard Euclidean 
distance (ED), IMED, GED, and a metric learning method XNZ (Xiang et al. 2008). The 
performances are evaluated in terms of recognition rate using a nearest neighbor clas-
sifier. The recognition results are shown in Table 2. TDML significantly outperforms all 
metrics.

Another set of experiments was to test whether embedding the learned TI metric in 
an image recognition technique, e.g., SVM (Vapnik 1998), can improve that algorithm’s 
accuracy. Embedding a TI metric in an algorithm is simple: first, transform all images 

1 The resization is necessary for traditional subspace and metric learning methods since they are vulnerable to the com-
putational issue and small sample size problem from the curse of dimensionality. Our method doesn’t suffer from it.

Table 1 Time complexities

Algorithm USPS (s) FERET‑fa (s)

ST(1) 0.3283 n/a

ST(2) 0.0970 130.13

CST(3) 0.7330 10.26

CST(4) 0.0584 15.34

Table 2 Comparison of image metrics on various databases (%)

ED IMED GED XNZ TDML

UMIST 60.88 60.90 62.05 60.96 73.92

Yale 71.41 71.41 71.11 67.73 75.26

ORL 81.95 81.63 80.88 81.24 84.06
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by the corresponding TI transform, and then run the algorithm with the transformed 
images as input data.

Table 3 gives the results of the metric when embedded to SVM. It can be found that 
TDML improves the performance of SVM better than IMED and GED.

Conclusion
In this paper, we extend the equivalency in (Sun et al. 2009) to the discrete frequency 
domain. We show that GED and IMED are low-pass filters, resulting in fast implementa-
tions which reduce the space and time complexities significantly. The transform domain 
metric learning (TDML) proposed in (Sun et al. 2009) is also resembled as a translation-
invariant counterpart of LDA. Experimental results demonstrate significant improve-
ment of algorithm efficiency and performance boosts on small sample size problems.

One possible future direction is the search for more effective metric learning algo-
rithm. TDML is a simple and intuitive attempt and we expect novel methods that com-
bine the concepts of margins, kernels, locality and non-linearity.
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