
J
H
E
P
0
4
(
2
0
1
0
)
1
3
1

Published for SISSA by Springer

Received: February 25, 2010

Accepted: April 8, 2010

Published: April 30, 2010

Geometric flows in Hǒrava-Lifshitz gravity
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1 Introduction

Based on ideas that were originally developed in condensed matter physics [1] and later
applied to the description of aspects of particle interactions [2–5], a modification of general
relativity was recently proposed in [6, 7] and further studied under the name of Hořava-
Lifshitz gravity. In this theory, which includes higher-order curvature terms on spatial
slices, the diffeomorphism invariance of general relativity is broken explicitly setting a
privileged time direction. This affects the ultra-violet behavior of the quantum theory,
which, hence, looks power-counting renormalizable. Some efforts have been made to prove
consistency of the quantum theory [8, 9], but the number of propagating degrees of free-
dom seems to invalidate the matching with Einstein’s gravity in the infrared regime, and
hence seems to disprove this theory as a viable alternative to general relativity [10–15].
The investigation of these issues is still going on. Despite the difficulties and reservations,
the Hořava-Lifshitz gravity still provides an interesting classical and quantum field theory
framework, where one can address some interesting questions and explore several connec-
tions to ordinary gravity or string theory. These also include the appearance and relevance
of geometric flows, which is the main subject of the present work.

Geometric flows, and, in particular, Ricci flows are interesting in their own right. In
mathematics they turned out to play a crucial role in implementing Hamilton’s program
for proving Poincaré’s and Thurston’s conjectures [16–19] (but see also [20] and [21] and
references therein). In physics they originally appeared in off-critical string theory via the
renormalization-group equations of two-dimensional non-linear sigma models, where the
evolution of the metric under the Ricci flow equations provides the running of the bulk
coupling to lowest order in perturbation theory (see [22, 23] for the original result). In this
context, the renormalization-group time is provided by the logarithmic length scale of the
world-sheet, but in some cases it can also assume the role of genuine time, describing real-
time evolution in string theory in regimes where the friction due to the motion of the dilaton
effectively reduces the second-order evolution equations to the first-order renormalization-
group flow equations [24, 25].

Ricci flow models also appear in the framework of four-dimensional gravitational in-
stantons of general relativity. Solving Einstein’s equations is, in general, an impossible
task. It is substantially simplified under the assumption of self-duality as a sufficient con-
dition to find vacuum solutions in the Euclidean sector of the theory. Homogeneity of
spatial sections is often a further simplification to find explicit solutions. Although what
we call space is somewhat arbitrary in Euclidean gravity, the latter statement can be
made precise by assuming a foliation in three-dimensional leaves that are invariant under
an isometry group of motions. For these particular vacuum solutions, it turns out that
the Euclidean time evolution of the homogeneous leaves inside the gravitational instanton
can be recast as Ricci flow equations for the corresponding geometry on the homogeneous
model spaces [25–29].

The modification of gravity proposed by Hořava in [6, 7] shares some features with the
previous setting that allow to define the analogue of gravitational-instanton configurations.
In particular, a foliation of the four-dimensional space is assumed from the very beginning
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with a privileged time direction at the level of the action. Furthermore, a condition called
detailed balance, which is borrowed from non-equilibrium thermodynamics, requires that
the dynamics follows from an appropriately chosen three-dimensional superpotential action.
In the Euclidean version of the theory, this resembles the self-duality condition with similar
consequences: for a class of configurations that minimize the action, the time evolution
becomes first-order and describes a geometric flow on the leaves of the foliation. Unlike
general relativity, where Ricci flow is equivalent to self-duality only for configurations with
homogeneous leaves, the description of instanton-like solutions by geometric flows is generic
in Hořava-Lifshitz gravity. The nature of the corresponding flow depends on the choice of
the three-dimensional action used for detailed balance and it is driven, in general, by
a certain combination of Ricci and Cotton tensors as well as the cosmological constant
term. It is not our concern, and it will not be pursued here at all, to find whether such
combinations of curvature tensors can also arise from the renormalization- group equations
of some quantum field theory.

Our aim in this paper is to investigate aspects of the Euclidean dynamics of Hořava-
Lifshitz gravity with detailed balance. Our motivations are diverse. First, classical instanton-
like solutions are important for the determination of transition amplitudes in quantum grav-
ity. They are also useful in the Hartle-Hawking formulation of quantum cosmology [30],
even though classical cosmology per se requires the analysis of real-time equations. The
geometric flows that emerge in this framework involve tensors with higher-order spatial
derivatives terms, and, as such, they are new in the literature; they reduce to previously
studied examples only for some special values of their parameters. Thus, it is instructive to
formulate the flow equations in all generality, determine the nature of the fixed points and
their stability properties, obtain explicit solutions, as well as study general questions such
as the monotonicity of the evolution, the possible formation of singularities, the occurrence
of bounces and so on. These questions arise naturally in the general theory of geometric
flows and they are bound to be relevant for the space-time interpretation of the analogue
of gravitational instantons in Hořava-Lifshitz theory.

The answer to these questions will be accomplished partially using some ansatz for
the underlying three-dimensional spaces, leading to mini-superspace truncation of the flow
equations. Otherwise, it does not be seem possible to draw general conclusions for the gen-
eral system of equations, at least at the current level of our understanding of this problem.
Still, the results that will be described are indicative of what should be expected in gen-
eral. More systematic investigation of the infinite-dimensional dynamical system at hand
requires substantial mathematical work that is not contained in this paper. Following the
paradigm of gravitational instantons with isometry groups in Euclidean Einstein gravity,
we will consider homogeneous geometries on the three-dimensional spatial slices of Hořava-
Lifshitz gravity and focus, in particular, to the case of Bianchi IX geometry as a class of
homogeneous but generally non-isotropic deformation of S3; this model is often referred to
as mixmaster universe in the Lorentzian (real-time) approach to cosmology [31–35], and
was recently discussed in the framework of Hořava-Lifshitz gravity [36, 37]. Other Bianchi
classes as well as more general inhomogeneous deformations of the three-sphere (under
appropriate ansatz) can also be studied along similar lines, but they will not be discussed.
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We set up the general problem using the Bianchi IX model geometry and study in detail
some specific examples of the flow for different couplings in Hořava-Lifshitz gravity. Even
in this case the resulting equations in mini-superspace are not easily tractable for generic
values of the couplings. First, we will consider the Ricci flow and some of its variants that
describe solutions of the modified theory of gravity with anisotropy scaling parameter z = 2
(see next section for this and other definitions) and compare them to instantons with SU(2)
isometry in ordinary gravity. We will also consider the Cotton flow, separately, and use it
to construct solutions of Hořava-Lifshitz theory with anisotropy scaling parameter z = 3 by
ignoring all Ricci curvature terms that become subdominant when the volume of S3 is very
small. We will also consider the combined Ricci-Cotton flow and explore the equations in
detail first in the limit that the speed of light vanishes or equivalently Newton’s constant
becomes infinite (it is often called Carroll limit after [38]). The normalized Ricci-Cotton
flow and the unnormalized variant of it with vanishing cosmological constant provide the
relevant equations in this limit. Finally, we will consider the general Ricci-Cotton flow with
arbitrary couplings and obtain several qualitative results for its solutions.

In all cases it is assumed that the parameter of the superspace metric of the theory
is restricted to values λ < 1/3 (in which case the cosmological constant will also be taken
non-negative) so that the flow equations extremize the classical action, up to important
boundary terms. Proper account of the boundary terms leads to the definition of instanton
solutions as finite-action trajectories that interpolate between fixed points. Our analysis
shows that the Ricci and the Cotton tensor terms can compete with each other, and,
depending on the relative sign between the two, the flow equations can exhibit symmetric
as well as anisotropic fixed points. The nature of these fixed points and their stability
properties also have implications for the space-time interpretation of the corresponding
gravitational instanton solutions. Axisymmetric solutions are associated with spaces with
SU(2)×U(1) isometries, and, hence they are easier to describe in closed form.

Instanton solutions of Hořava-Lifshitz gravity, as they are defined, are rather special
configurations that rely on the existence of multiple-degenerate vacua and correspond to
special flow lines, which guarantee finiteness of their action. As it will turn out, they are also
free of singularities and their space-time metrics are regular and complete. Note, however,
that other flow lines, possibly with infinite action, also describe solutions of the second-
order equations of motion, but they may have singularities. Although we are primarily
interested in the class of instanton solutions, one should be open-minded for other more
general possibilities too. For this reason, as well as for mathematical completeness, we
will investigate the phase portraits of the flow equations in all generality. The selection of
special trajectories that correspond to instantons will be made much later together with
their space-time interpretation.

In section 2, we first briefly review the formulation of Hořava-Lifshitz gravity with
detailed balance condition putting emphasis on the structure of the potential term and
its associated superpotential. This analysis is then carried to the Euclidean regime where
“zero-energy” (i.e., self-dual-like) configurations exist satisfying the flow equations. Re-
strictions on the parameter λ are also obtained together with an entropy functional that
changes monotonically along the flow lines. The results are then used to define instan-
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ton solutions as in ordinary point particle systems. The Bianchi IX model geometry is
introduced in section 3 where the truncation of the Ricci and Cotton flows are studied
separately in detail. Section 4 is entirely devoted to the analysis of the normalized Ricci-
Cotton flow and the explicit construction of its axisymmetric solutions. Section 5 discusses
the case of unnormalized Ricci-Cotton flow obtained for general couplings. It contains
the case study of positive and zero cosmological constant for axisymmetric configurations
with λ < 1/3. Section 6 is devoted to the space-time interpretation of the flow line, as
gravitational instantons, making comparisons with the analogous instanton solutions aris-
ing in general relativity. Complete classification of all gravitational-instanton metrics with
SU(2) isometry is also obtained. In section 7 we outline generalizations of the framework
to higher-dimensional Hořava-Lifshitz gravities, which, for instance, in 4 + 1 dimensions
give rise to a new system of flow equations on four-manifolds driven by the Bach tensor.
Finally, section 8 contains our conclusions and poses several questions for future work.

2 Non-relativistic gravity, detailed balance and flows

2.1 Non-relativistic gravity: a reminder

The theory of non-relativistic gravity developed in [6, 7] is valid for general space-time
dimension D + 1. It has three main features:

• Space-time is assumed to be topologically MD+1 = R × MD, leading to a natu-
ral codimension-one foliation. Diffeormorphism invariance is broken down to the
subgroup of foliation-preserving transformations. This breaking is controlled by a
parameter λ.

• Scaling properties of space and time are different and captured by an integer z. Power
counting renormalizability of the theory requires z = D.

• The interactions are determined by a detailed balance condition following from a Eu-
clidean D-dimensional diffeomorphism-invariant action, which gives rise to marginal
and relevant terms in D + 1 dimensions.

The last item above is not generic in Hořava-Lifshitz gravity and it can be relaxed by
allowing more arbitrary coefficients for the various marginal and relevant terms. However,
it is a necessary ingredient in our study to connect it naturally with the theory of geometric
flows. Thus, detailed balance will be assumed in the following.

Let us adopt the ADM (Arnowitt-Deser-Misner) decomposition of the metric (see, for
instance, [39]), which is suitable for the D + 1 foliation of space-time,

ds2 = −N2dt2 + gij
(
dxi +N idt

) (
dxj +N jdt

)
, (2.1)

where N i and N are the shift and lapse functions respectively. Here, i, j, . . . run in D

dimensions and all tensors that will appear in the following are D-dimensional.
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Using this decomposition, the Einstein-Hilbert action in D+ 1 dimensions (up to total
derivative terms that may contribute in topologically non-trivial spaces) reads as follows,

SEH =
1

16πGN

∫
dD+1x

√
gN

(
KijK

ij −K2 +R− 2Λ
)
, (2.2)

where Λ is the genuine cosmological constant in D + 1 dimensions. In this expression,
Kij is the second fundamental form that measures the extrinsic curvature of the leaves
at constant t,

Kij =
1

2N
(∂tgij −∇iNj −∇jNi) , (2.3)

and its trace K = gijKij is the mean curvature. The first two terms in equation (2.2)
provide the kinetic energy, since they include time derivatives of the field gij . Their specific
combination can be recast in the form

KijG
ijk`
DWKk` = KijK

ij −K2 (2.4)

using the DeWitt metric in superspace

Gijk`DW =
1
2

(
gikgj` + gi`gjk

)
− gijgk`. (2.5)

The potential term in Einstein gravity is provided by the three-dimensional Ricci scalar
curvature R and the four-dimensional cosmological constant term Λ (when it is present),
as shown in (2.2).

In non-relativistic gravity, space and time scale as [t] = −z, [x] = −1 and it is further
assumed1 that [Ni] = z−1, [N ] = 0 and [gij ] = 0 so that [K2] = 2z; it should be contrasted
to general relativity where space and time scale the same with z = 1. This asymmetry is
further implemented in the action, both in the kinetic and the potential terms by requiring
foliation preserving covariance. The kinetic term is generalized as

SK =
2
κ2

∫
dt dDx

√
gNKijG

ijk`Kk` =
2
κ2

∫
dt dDx

√
gN

(
KijK

ij − λK2
)
, (2.6)

where
[
κ2
]

= z −D and λ is a dimensionless coupling measuring the breaking of the full
diffeomorphism group. Here, Gijk` is the generalized metric in superspace

Gijk` =
1
2

(
gikgj` + gi`gjk

)
− λgijgk`. (2.7)

that coincides with the DeWitt metric when λ = 1. It is worth stressing that this metric
can be positive-definite or indefinite depending on λ. Indeed, gk` is an “eigenvector”,

Gijk`gk` = (1− λD)gij , (2.8)

with eigenvalue 1 − λD. The sign of the latter changes at λ = 1/D where the inverse no
longer exists. Thus, for λ < 1/D the metric is positive-definite and it becomes indefinite

1Proper restoration of the speed of light, which scales as [c] = z− 1, explains the various dimensions, as

described in detail in the original works [6, 7].
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for all λ > 1/D that include, in particular, λ = 1. This behavior and the fact that λ is
ultimately an unprotected parameter of the theory, which, in principle can take any real
value, should be kept in mind when considering quantum corrections.

The potential term of the theory has the general form

SV = −
∫

dtdDx
√
gN V [g] (2.9)

and can also contribute in various ways to the breaking of diffeomorphism invariance. Note
that [V ] = z +D and there is a large freedom to choose V so that it includes operators of
dimension less than or equal to z+D (called relevant and marginal operators, respectively).
In order to reduce this freedom and take advantage of the renormalization properties of a
D-dimensional system, it was proposed in [6, 7] to introduce a detailed balance condition
that allows to express the potential in terms of a “superpotential” as follows:

V =
κ2

2
EijGijk`Ek`, (2.10)

where
Eij = − 1

2
√
g

δW [g]
δgij

(2.11)

and W a D-dimensional action so that [Eij ] = D. The tensor Gijk` is defined as

Gijk` =
1
2

(gikgj` + gi`gjk)−
λ

Dλ− 1
gijgk` (2.12)

and coincides with the inverse of the metric in superspace with generic λ, i.e.,

Gijk`Gk`mn =
1
2

(δimδ
j
n + δinδ

j
m) . (2.13)

The resulting theory is not invariant under general coordinate transformations of space-
time. Indeed, since MD+1 is topologically R ×MD, it is only appropriate to consider
invariance of the action under the restricted class of foliation-preserving diffeomorphisms,

t̃ = t̃(t) , x̃i = x̃i(t, x) . (2.14)

Then, the lapse function N associated with the freedom of time reparametrization is re-
stricted to be a function of t alone, whereas the shift functions Ni associated with dif-
feomorphisms of MD can depend on all space-time coordinates. This is often called the
projectable case of Hořava-Lifshitz gravity and it will be assumed in the following. The
non-projectable version of the theory leads to dynamical inconsistencies [40].

The choice of W depends on the dimension D. Here, we recall the choice for D = 3
with z = 3 that ensures power-counting renormalizability of the four-dimensional theory;
generalization to higher dimensions will be discussed later in section 7. Then, the marginal
operators in question are obtained from the three-dimensional gravitational Chern-Simons
action, which is familiar from topologically massive gravity [41, 42],

WCS =
1
wCS

∫
ω3(ω) , (2.15)
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with density given in terms of the connection one-form ω by

ω3(ω) =
1
2

Tr
(
ω ∧ dω +

2
3
ω ∧ ω ∧ ω

)
. (2.16)

The corresponding variation gives

Ek`CS = − 1
wCS

εijk
√
g
∇i
(
R`j −

1
4
Rδ`j

)
≡ − 1

wCS
Ck`, (2.17)

where Ck` is the Cotton tensor and ε123 = 1. The Cotton tensor is traceless, conserved
and it vanishes identically for conformally flat metrics.

Relevant operators in four dimensions are generated by the Einstein-Hilbert three-
dimensional action

WEH =
2
κ2
W

∫
dDx
√
g(R− 2ΛW ). (2.18)

Note that neither κ2
W is the four-dimensional Newton’s constant nor ΛW is the four-

dimensional cosmological constant, but they will be identified shortly. The variation of
this action leads to

Ek`EH =
1
κ2
W

(
Rk` − R

2
gk` + ΛW gk`

)
. (2.19)

Combining the Chern-Simons and Einstein-Hilbert contributions to Ek`, with their
respective couplings, the full potential of Hořava-Lifshitz gravity reads

V =
κ2

2w2
CS

CijCij−
κ2

wCSκ2
W

CijRij+
κ2

2κ4
W

(
RijRij−

4λ− 1
4(3λ− 1)

R2

)
+

κ2ΛW
2(3λ− 1)κ4

W

(R− 3ΛW ) .

(2.20)
The ultra-violet behavior of the resulting theory is dictated by the quadratic Cotton curva-
ture term, which is marginal with dimension 2z = 6, and corresponds to z = 3. It improves
a lot the ultra-violet behavior of ordinary Einstein gravity at the expense of breaking gen-
eral covariance of the theory at short distances. When the Cotton term is absent, the
resulting theory has a potential with quadratic Ricci curvature terms that become dom-
inant in the ultra-violet regime and so z = 2. In either case, in the infrared limit one
expects to flow by the most relevant operators (of dimension 2 and zero), which corre-
spond to the last terms in equation (2.20), and recover general relativity provided that λ
also flows to 1. However, no rigorous proof of any of these statements is yet available in the
literature. Also, the counting of physical degrees of freedom of the theory, which is crucial
for viewing it as viable modification of general relativity, is obscured by the outcome of
local invariances and their potential restoration.

We also recall for completeness, using the relativistic coordinate x0 = ct, that the
effective speed of light for general λ is given by

c =
κ2

2κ2
W

√
ΛW

1− 3λ
(2.21)

with [c] = z − 1. This shows that ΛW must be negative when λ > 1/3 to ensure reality
of c; likewise, ΛW must be positive when λ < 1/3. Also, the four-dimensional effective
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cosmological constant is given by

Λ =
3
2

ΛW (2.22)

and, therefore, the range λ > 1/3 does not allow for de Sitter-like backgrounds in Hořava-
Lifshitz gravity. These identifications are necessary in order to compare the infrared limit
of the deformed theory to ordinary gravity so that the effective Newton constant reads as

GN =
κ2

32πc
. (2.23)

Furthermore, λ should approach (flow to) 1 in the infrared limit in order to recover the
full reparametrization invariance of general relativity, but this particular problem will not
concern us at all here.

The search for classical solutions requires the use of the potential (2.20) and it is
impossible to solve in full generality. Symmetry ansatz such as spatial homogeneity makes
the problem more tractable, but still not exactly solvable. This includes, for example, the
case of Bianchi IX geometry leading to the mixmaster universe model in four space-time
dimensions with Lorentzian signature. We will not pursue this line of investigation here
(see [36] for a detailed analysis and comparison with the mixmaster universe in general
relativity [31–34]), but elaborate on the Euclidean version of Hořava-Lifshitz gravity and
then analyze its instanton solutions for Bianchi IX spatial geometries.

2.2 Euclidean action and flow equations

Besides the various physical motivations pertaining to the analysis of the Euclidean version
of Hořava-Lifshitz theory, there is also a technical advantage for constructing solutions
that satisfy first-order equations in time. This possibility is also encountered in general
relativity when self-duality on the Riemann (and more generally on the Weyl) tensor is
imposed leading to gravitational-instanton solutions in the Euclidean regime.2 Although
there is no direct analogue of self-duality in gravitational theories with anisotropic scaling,
the detailed balance condition offers the appropriate replacement for defining instanton-like
configurations. This is in fact possible in all dimensions unlike gravitational instantons of
ordinary gravity that are only defined in four space-time dimensions.

The Euclidean action is obtained by setting t→ −it, N j → iN j , whereas iS is traded
for −S. Using equations (2.6) and (2.9) one obtains

S =
∫

dtdDx
√
gN

(
2
κ2

(
KijK

ij − λK2
)

+ V

)
. (2.24)

The expression for the potential (2.10) allows to rewrite the Euclidean action (2.24) in the
form S = S′ + S′′, where

S′ =
2
κ2

∫
dt dDx

√
gN

(
Kij ±

κ2

2
GijmnEmn

)
Gijk`

(
Kk` ±

κ2

2
Gk`rsErs

)
(2.25)

2Self-duality is best described in terms of the curvature two-form, as Rab = ±R̃ab in an orthonormal

frame [43]. These equations are second-order in time, but they can be integrated once to yield first-

order equations [44] that will be paralleled to the instanton solutions of Hořava-Lifshitz gravity; for further

details see also [29], where this analogy is made even sharper for gravitational instantons with homogeneous

spatial sections.
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and S′′ is a total-derivative contribution to the action [6]. This boundary term will be
considered later in detail (see equation (2.33)). The different signs correspond to the
choice of time direction.

The action (2.25) is bounded below by zero provided that the superspace metric Gijk`

is positive-definite. Then, configurations that obey the first-order differential equations

Kij = ∓κ
2

2
Gijk`Ek`, (2.26)

are extrema of the action and as such they provide solutions of the Euclidean theory S′; the
leaves of the corresponding space-time foliations have prescribed extrinsic curvature. This
possibility arises only when λ < 1/D, in which case we must also demand that ΛW is non-
negative so that the speed of light in the Lorentzian version of the theory is real. Otherwise,
for λ > 1/D, the action is non-bounded below by zero and the first-order equations are
not guaranteed to provide classical solutions. Thus, from now on, we restrict ourselves
to λ < 1/D and ΛW ≥ 0, where the first-order equations (2.26) provide extrema of S′.
They are also extrema of the action S provided that the boundary term S′′ is properly
accounted. This problem will be treated carefully in section 2.3 and lead to the precise
definition of instantons.

The solutions that we will investigate can be expressed in the form of geometric
gradient flow equations for the metric gij modulo reparametrizations generated by the
shift functions,

∂tgij = ∓κ2NGijk`Ek` +∇iNj +∇jNi . (2.27)

Since we are only considering the projectable case of Hořava-Lifshitz gravity, N is only a
function of t and can be absorbed by redefining time, as N(t)dt→ dt. It is also natural to
define vector fields with components ξi = Ni/N that generally depend on space and time
coordinates. Then, the geometric-flow equations assume the more standard form that will
be used in the following,

1
N(t)

∂tgij = ± κ2

2
√
g
Gijk`

δW [g]
δgk`

+∇iξj +∇jξi . (2.28)

Specializing to D = 3, we write down explicitly the flow equations obtained by com-
bining the variation of the Chern-Simons and Einstein-Hilbert actions,

1
N
∂tgij = − κ2

κ2
W

(
Rij −

2λ− 1
2(3λ− 1)

Rgij +
ΛW

1− 3λ
gij

)
+

κ2

wCS
Cij +∇iξj +∇jξi (2.29)

choosing for definiteness one of the two sign options; the other follows by time reversal.
These equations describe the parametric evolution of a family of three-dimensional geome-
tries

ds2t = gij(x; t)dxidxj (2.30)
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driven by the Ricci and Cotton tensors and the cosmological constant term, and, as such,
they will be called Ricci-Cotton flow equations.3

The fixed points are determined (modulo reparametrization terms) by the solutions of
three-dimensional topologically massive gravity:

κ2
W

wCS
Cij = Rij − 2ΛW gij , with R = 6ΛW . (2.31)

They include Einstein metrics with vanishing Cotton tensor, like the round sphere metric
on S3 (for ΛW > 0), which is homogeneous and isotropic. There are other fixed points,
however, with constant scalar curvature but with non-vanishing Cotton tensor. We will
see later, as example, that they correspond to particular homogeneous but non-isotropic
metrics on S3. The coexistence of fixed points from different conformal classes of the metric
make this flow particularly complex.

The driving terms of the Ricci-Cotton flow involve, in general, third-order derivatives
in space coordinates (originating from the Cotton tensor), and, therefore, it is not possible
to apply standard results from the mathematics literature to prove even the short-time
existence of solutions. Nevertheless, the mini-superspace models that will be studied later
show that these flow equations are well-behaved and the trajectories converge to fixed
points after sufficiently long time.

Some special cases are worth noting, since they have already appeared in the literature
for different reasons:

• wCS →∞: the Cotton tensor contribution drops out and one obtains a variant of the
Ricci flow on three-manifolds, which is second-order and well studied in the literature.
Its trajectories describe solutions of z = 2 Hořava-Lifshitz gravity in 3+1 dimensions,
whereas the fixed points are Einstein metrics Rij = 2ΛW gij .

• κ2
W → ∞: the Ricci and cosmological constant terms drop out and one obtains the

pure Cotton flow that was recently introduced in the literature [46]. Its trajectories
describe solutions of z = 3 Hořava-Lifshitz gravity in 3 + 1 dimensions, in the limit
under consideration. The fixed points are conformally flat metrics, Cij = 0.

Even these simpler cases are impossible to solve in all generality. Mini-superspace models
have been used to study the long time behavior of the Ricci and Cotton flows for homoge-
neous geometries [46, 47].

Apart from the Ricci and Cotton flows that will studied separately in the next section,
there are also some other special cases of the combined Ricci-Cotton flow that are relatively
easier to study. First, by considering that limiting case λ→ −∞, which lies in the allowed
range λ < 1/3, one obtains the normalized Ricci-Cotton flow, which is driven by a traceless
tensor, and, thus, preserves the volume of space; the cosmological constant decouples in

3Perhaps a more appropriate name is Ricci-Yamabe-Cotton flow, since Rgij is the driving term of the

so called Yamabe flow, ∂tgij = −Rgij . The latter was introduced in the literature [45] to solve Yamabe’s

conjecture stating that any metric is conformally equivalent to a metric of constant curvature. Its effect is

complementary to the Cotton term of the flow, which changes the conformal class of the metric. Thus, the

combined flow equations we have obtained contain several competing deformations of the metric.
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this case. It becomes relevant in the Carroll limit of Hořava-Lifshitz gravity, where the
effective speed of light vanishes.4 The effective speed of light vanishes also when ΛW = 0,
irrespective of λ, and the corresponding flow equations will be studied separately. The
general case, with arbitrary coefficients, is much more complex. The pattern of fixed
points and specific trajectories will only be discussed for axially symmetric deformations
of S3, which correspond to solutions with SU(2)×U(1) isometry.

2.3 Entropy functional and action bound

From now on, and in all examples that will be studied later, we consider flows without the
effect of space reparametrizations, setting Ni = 0. Also, we will take advantage of time
reparametrizations to set N(t) = 1 for convenience. We will also assume that the spatial
slices are compact spaces without boundary. Here, we provide an entropy functional for the
geometric flows arising in Hořava-Lifshitz gravity in arbitrary dimensions. This functional
is also be related to the lower bound of the Euclidean action S (rather than S′) when
boundary terms S′′ are properly taken into account.

When the metric in superspace is positive-definite (choosing λ < 1/D in D spatial
dimensions), the superpotential functional W changes monotonically along the flow. This
follows easily by considering

dW
dt

= −2
∫

dDx
√
gEij∂tgij = ±2κ2

∫
dDx
√
gEijGijk`Ek` , (2.32)

which is the integral of a quadratic quantity, and, therefore, increases or decreases mono-
tonically depending on the overall sign. Thus, W is an entropy functional for the flows
under consideration.

With this in mind, let us revisit the original Euclidean action S of the theory
and its lower bound taking into proper account the boundary terms. Equations (2.24)
and (2.10) yield

S =
2
κ2

∫
dtdDx

√
gKijG

ijk`Kk` +
κ2

2

∫
dtdDx

√
gEijGijk`Ek`

=
2
κ2

∫
dt dDx

√
g

(
Kij ±

κ2

2
GijmnEmn

)
Gijk`

(
Kk` ±

κ2

2
Gk`rsErs

)
∓2
∫

dtdDx
√
gKijE

ij . (2.33)

The first term in (2.33) is S′, given in equation (2.25), and the last term is the advertised
boundary contribution S′′. For positive-definite superspace metric, the Euclidean action S
is bounded from below by the boundary term S′′, because S′ ≥ 0. Thus,

S ≥ ∓2
∫

dtdDx
√
gKijE

ij = ∓
∫

dtdDx
√
gEij∂tgij = ±1

2

∫
dt

dW
dt

, (2.34)

4When λ → −∞, the metric in superspace becomes singular as its inverse has zero eigenvalues. Yet

the flow equations are well-defined and so is the potential term SV of the gravity action. It is opposite to

the case λ = 1/3 for which the metric in superspace has zero eigenvalues and its inverse becomes singular;

the latter case corresponds to the limit of infinite speed of light, where the theory develops anisotropic

Weyl invariance.
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having set N(t) = 1. The time integral of equation (2.32) shows that the lower bound of
S is always positive, as expected.

The flow equations (2.26) provide time-dependent extrema of the action S′. They are
actually its ground states, since they make S′ vanish. Since S′′ is a boundary term, these
ground states are also extrema of S under appropriate boundary conditions that make
the variational problem well-posed. This can be easily verified for the class of flows with
finite action (i.e. finite S′′). Note for this purpose that the fixed points of the flow are
static solutions of both S and S′, since they are, by construction, critical points of the
D-dimensional action functional W sitting at the minima of the Hořava-Lifshitz potential.
If different minima exist, they will be all degenerate with zero potential energy. Hence,
time-dependent solutions that interpolate between any two fixed points are guaranteed to
satisfy the equations of motion following from the Hořava-Lifshitz action S. These solutions
have finite action, given by the value of the boundary term, and is natural to call them
instantons as they interpolate between two different static minima, which are connected
by trajectories of the geometric flow. Their action is simply given by

Sinstanton =
1
2
|∆W | , (2.35)

where ∆W is the difference of the corresponding values of W at the two critical points.
Note that ∆W 6= 0, in general, since W changes monotonically along the flow lines and the
instanton action is finite. Then, this yields the standard description of instanton solutions
of a point particle moving in Euclidean time, but the number of degrees of freedom is
infinite now, as the evolution takes place in superspace.

Finally, let us consider the evolution of the volume of spatial slices under the flow. In
general, it takes the form

d
dt

vol(MD) =
1
2

∫
dDx
√
ggij∂tgij = ∓ κ2

2(1− 3λ)

∫
dDx
√
ggijE

ij (2.36)

and, therefore, the trace-free part of the driving curvature terms do not contribute to the
evolution. Otherwise, the volume changes without definite sign. Thus, in principle, the
volume can bounce along the flow. At the fixed points, where gijE

ij = 0, the volume
reaches a local maximum or minimum depending on circumstances.

As an example, let us consider the Ricci-Cotton flow described by equation (2.29).
Then, since the Cotton tensor is traceless, the volume of space changes as

d
dt

vol(M3) =
κ2

4(1− 3λ)κ2
W

∫
dDx
√
g(R− 6ΛW ) (2.37)

and it can have either sign. Of course, it is possible to normalize this (or any other flow
that arises in this context) by rescaling the metric with a function of time followed by a
suitably chosen time reparametrization t→ t̃(t) so that the volume is preserved in time t̃.
This does not resolve the problem, however, since t̃(t) is not a monotonic function of t in
general. Thus, the volume does not provide an entropy functional.

Other entropy functionals might also exist for these flows, generalizing Perelman’s
functional for the Ricci flow [17–19], but we have not been able to find them.
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3 Bianchi IX model geometry

All homogeneous space geometries in three dimensions provide consistent ansatz for the
mini-superspace truncation of the Ricci and Cotton flows and their combination thereof.
Such spaces follow the Bianchi classification, but for practical reasons we will only consider
the case of Bianchi IX model geometries that describe homogeneous but generally non-
isotropic metrics on S3. The corresponding gravitational instantons of the four-dimensional
Euclidean theory are special in that they admit an SU(2) isometry group and they provide
the simplest examples in our study. In this section, we set up the notation and present some
useful formulas that will enable us to formulate the problem as an autonomous system of
ordinary differential equations. The Ricci and Cotton flows are studied separately here for
Bianchi IX geometries. Comparison with the gravitational instantons of ordinary gravity
will also be made at the appropriate places.

3.1 Some basic facts

We consider four-dimensional Riemannian manifolds that are foliated by homogeneous
three-dimensional spaces of the form

ds2 = dt2 +
∑
i

γi(t)
(
σi
)2
, (3.1)

setting N = 1 and Ni = 0. The coefficients γi are taken to depend only on t and σi are
the left-invariant Maurer-Cartan one-forms of SU(2)

σ1 = sinϑ sinψ dϕ+ cosψ dϑ

σ2 = sinϑ cosψ dϕ− sinψ dϑ (3.2)

σ3 = cosϑ dϕ+ dψ

with Euler angles ranging as 0 ≤ ϑ ≤ π, 0 ≤ ϕ ≤ 2π, 0 ≤ ψ ≤ 4π, which satisfy

dσi +
1
2
εijkσ

j ∧ σk = 0. (3.3)

The three-dimensional leaves are, in general, homogeneous but non-isotropic three-
spheres. The isometry group is enhanced to SU(2) × U(1) when any two γi’s coincide by
imposing axial symmetry. Full isotropy requires all γi’s to be equal, in which case the
symmetry of the model is promoted to SU(2)× SU(2). The volume of the three-sphere is

V = 16π2√γ1γ2γ3 (3.4)

and when all coefficients γi are equal to L2/4 the volume is expressed in terms of the radius
L as V = 2π2L3.

The Ricci and Cotton tensors are diagonal for all homogeneous geometries and this
ensures consistency of the reduced models. They take the following form for the Bianchi
IX class,

R11 =
1

2γ2γ3

[
γ2

1 − (γ2 − γ3)2
]
, (3.5)

C11 = − γ1

2(γ1γ2γ3)3/2

[
γ2

1 (2γ1 − γ2 − γ3)− (γ2 + γ3) (γ2 − γ3)2
]
, (3.6)
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and similarly for the other two components that follow by cyclic permutation of the indices.
Also, the Ricci scalar curvature is given by

R =
1

2γ1γ2γ3

[
2γ1γ2 + 2γ2γ3 + 2γ3γ1 − γ2

1 − γ2
2 − γ2

3

]
, (3.7)

whereas the trace of the Cotton tensor vanishes, as it can be readily checked.
With these explanations in mind, we arrive at the following system of ordinary differ-

ential equations for the metric coefficients γi(t)

dγi
dt

= − κ2

κ2
W

(
Rii −

2λ− 1
2(3λ− 1)

Rγi +
ΛW

1− 3λ
γi

)
+

κ2

wCS
Cii (3.8)

as the Bianchi IX mini-superspace model of the combined Ricci-Cotton flow with gen-
eral couplings.

3.2 Ricci flow

When wCS →∞ the Cotton term decouples and one arrives at a variant of the Ricci flow as
the relevant equation for Hořava-Lifshitz gravity with anisotropy scaling parameter z = 2.
In this case, the system becomes

dγi
dt

= − κ2

κ2
W

(
Rii −

2λ− 1
2(3λ− 1)

Rγi +
ΛW

1− 3λ
γi

)
(3.9)

and its properties resemble the ordinary Ricci flow on S3

dγi
dt

= −Rii(γ) . (3.10)

Formally, one follows from the other by rescaling the metric with a function of time and
changing time variable by suitable reparametrization; in such case, the components of the
Ricci tensor remain invariant and they assume the same form for the rescaled components
of the metric.

The Ricci flow equations (3.10) for homogeneous geometries are well studied in the
literature following the original work [47]. For Bianchi IX geometries they take the form

2
γ1

dγ1

dt
=

1
γ1γ2γ3

[
(γ2 − γ3)2 − γ2

1

]
,

2
γ2

dγ2

dt
=

1
γ1γ2γ3

[
(γ3 − γ1)2 − γ2

2

]
, (3.11)

2
γ3

dγ3

dt
=

1
γ1γ2γ3

[
(γ1 − γ2)2 − γ2

3

]
and coincide with the celebrated Darboux-Halphen system that was introduced by Darboux
in the nineteenth century [48] and subsequently solved by Halphen [49, 50].5 In principle,
solutions of these equations can be translated into solutions of the original system (3.9).

5For the comparison one must consider the variables ω1 = γ2γ3, ω2 = γ1γ3, ω3 = γ1γ2 and change the

time coordinate to dT = dt/γ1γ2γ3. Then, the equations take the equivalent form

dω1

dT
= ω2ω3 − ω1(ω2 + ω3)

with cyclic permutations for ω2 and ω3. The identification of the Ricci flow equations for Bianchi IX

geometry with the Darboux-Halphen system has escaped attention in the mathematics literature.
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It can be shown quite generally that for given initial data γ(0)
i the metric will evolve

towards the configuration γ1 = γ2 = γ3 = 0 by making S3 rounder and rounder until the
whole space collapses to a point. A particularly simple solution that exhibits this behavior
is provided by

γ1(t) = γ2(t) = γ3(t) =
1
2

(t0 − t) (3.12)

and describes an isotropic metric on S3 whose radius evolves from infinitely large size to
zero as t varies from −∞ to t0.

Actually, following the literature [47], the convergence of the flow lines is best described
in terms of the normalized Ricci flow equation on S3

dγi
dt

= −Rii +
1
3
Rγi , (3.13)

which follows directly from equation (3.9) in the limit λ→ −∞, and which can be obtained
from the ordinary Ricci flow by (yet another) suitable rescaling of the metric and time
reparametrization. Then, the volume is preserved along the flow and the round metric
(fully isotropic model with finite radius) arises as fixed point that is exponentially reached
after infinitely long time, regardless of initial conditions. The normalized Ricci flow will
also be in focus later in section 4 for different reasons.

The Darboux-Halphen system is not algebraically integrable when γ1 6= γ2 6= γ3. All its
solutions, however, can be expressed in terms of modular forms (see, for instance, [51]). The
system becomes algebraically integrable when two γi’s are equal. Then, the corresponding
three-dimensional space is a three-sphere with axially symmetric metric. Setting γ1 = γ2 ≥
γ3, the system (3.11) simplifies and exhibits a first integral

1
γ2

3

− 1
γ1γ3

=
1

4m2
(3.14)

with arbitrary parameter m. The solution is subsequently described as

γ1

m
+ arcsinh

γ1

m
=
−t+ t0
m

= log
2m+ γ3

2m− γ3
− 2m

(
1

2m+ γ3
− 1

2m− γ3

)
, (3.15)

using another integration constant t0. The fully isotropic solution with SU(2) × SU(2)
isometry is obtained by taking the limit m→∞.

Remarkably, the same system of equations arises in the description of a class of self-
dual instantons with SU(2) isometry in ordinary gravity [44], as well as in the description
of the moduli space of SU(2) BPS monopoles with magnetic charge 2 [52–54]. In these two
cases, which share many features with each other, the ansatz for the Bianchi IX geometries
takes the form

ds2 = dt2 + a2(t)
(
σ1
)2 + b2(t)

(
σ2
)2 + c2(t)

(
σ3
)2 (3.16)

with a(t) = γ1(t), b(t) = γ2(t) and c(t) = γ3(t) satisfying the same system of equations
(3.11) above. Then, the corresponding axially symmetric gravitational instanton with
γ1 = γ2 is the self-dual Taub-NUT metric with NUT parameter m. It can be brought into
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standard form using a radial coordinate r ≥ m with m arcosh(r/m) +
√

(r −m)(r +m) =
−t+ t0 so that the solution (3.15) becomes

γ1 = γ2 =
√

(r −m)(r +m) , γ3 = 2m
√
r −m
r +m

. (3.17)

The fully anisotropic instantons of Einstein gravity with SU(2) isometry correspond to
the so called Atiyah-Hitchin metric [52–54], which is also the metric on the moduli space
of charge 2 BPS SU(2) monopoles in general position. These metrics will be discussed
further in section 6 while comparing instanton solutions of general relativity with those of
Hořava-Lifshitz theory.

3.3 Cotton flow

Next, we consider the pure Cotton flow equations6 that arise in the limit κW →∞. They
describe solutions of z = 3 Hořava-Lifshitz theory when the volume of space is very small,
i.e., in the deep ultra-violet regime where the Cotton term dominates and all subleading
relevant operators can be safely dropped from the potential. Then, the equations for
Bianchi IX geometries take the form

2wCS

κ2γ1

dγ1

dt
= − 1

(γ1γ2γ3)3/2

[
γ2

1 (2γ1 − γ2 − γ3)− (γ2 + γ3) (γ2 − γ3)2
]
,

2wCS

κ2γ2

dγ2

dt
= − 1

(γ1γ2γ3)3/2

[
γ2

2 (2γ2 − γ3 − γ1)− (γ3 + γ1) (γ3 − γ1)2
]
, (3.18)

2wCS

κ2γ3

dγ3

dt
= − 1

(γ1γ2γ3)3/2

[
γ2

3 (2γ3 − γ1 − γ2)− (γ1 + γ2) (γ1 − γ2)2
]
,

and clearly they are much more complicated than the Darboux-Halphen system. It is not
known whether they are algebraically integrable when γ1 6= γ2 6= γ3, but it can be easily
shown that, under any initial data γ(0)

i , they flow exponentially fast towards the fixed point
which is the round metric on S3 and it is conformally flat [46]. Since the Cotton tensor
is odd under parity (because of the fully antisymmetric epsilon symbol appearing in its
definition), there is always an ambiguity in the overall sign of the flow equations. Here, we
have chosen the sign that takes any metric towards the fixed point rather than away from
it when wCS > 0.

The behavior of the Cotton flow is similar to the normalized Ricci flow, as they both
preserve the volume of space V = 2π2L3, but the convergence rate is different. To compare
the two it is sufficient to linearize the corresponding equations around the fixed point

γ1 = γ2 = γ3 =
L2

4
(3.19)

by considering small perturbations of the metric coefficients

γ1(t) =
L2

4
(1 + δx(t)) , γ2(t) =

L2

4
(1 + δy(t)) , (3.20)

6The Cotton flow was originally introduced in the literature [46] as an alternative to the Ricci flow for

studying the existence of constant curvature metrics on three-manifolds. So far it has only been applied to

homogeneous geometries and its general utility for proving the Poincaré conjecture remains questionable.
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whereas γ3(t) changes accordingly,

γ3(t) =
L2

4
(1− δx(t)− δy(t)) , (3.21)

so that the volume of space is preserved. Then, the autonomous system of Cotton flow
equations (3.18) becomes to linear order

d
dt

(
δx

δy

)
= − 12κ2

wCS L3

(
1 0
0 1

)(
δx

δy

)
(3.22)

and the two eigenvalues are equal and negative for wCS > 0,

ζ1 = ζ2 = − 12κ2

wCSL3
, (3.23)

ensuring stability in all directions around the fixed point.
The perturbations diminish exponentially fast, as

δx(t) = Ae−t/τC , δy(t) = Be−t/τC , (3.24)

using arbitrary integration constants A, B and the characteristic time scale of dissipation

τC =
wCSL

3

12κ2
. (3.25)

Thus, when wCS is very small compared to κ2
W so that the Cotton tensor dominates the flow

over the Ricci curvature and the cosmological constant terms, or equivalently when L is
very small so that the volume of space is tiny, τC is very small and the metric perturbations
dissipate very fast at late times.7

There is an additional fixed point, which is unique, up to permutation of the axes, that
arises when γ1 = γ2 = ∞ and γ3 = 0 (correlated limit with V held fixed). It corresponds
to a squashed S3 that is completely flattened and has zero Cotton tensor, as it can be
explicitly checked. Although this configuration is degenerate in one principal direction, it
has no curvature singularities and it is legitimate to consider.

Axisymmetric solutions of the Cotton flow can be constructed in closed form, as for
the Ricci flow. Assuming

γ1 = γ2 ≡ x
L2

4
, γ3 =

L2

4x2
, (3.26)

so that the volume of space is held fixed to V = 2π2L3, the Cotton flow equations (3.18)
reduce to a single equation

dx
dt

=
4κ2

wCSL3

1− x3

x5
, (3.27)

7We note here for completeness, and it will be used in the next section, that the normalized Ricci flow

dγi/dt = −Rii + Rγi/3 can be similarly analyzed by considering small perturbations around the fully

isotropic fixed point. The two eigenvalues also turn out to be equal and negative, but the corresponding

characteristic time scale for dissipation depends quadratically on L as τR = L2/4 with respect to the

appropriate time coordinate. Comparison with the dissipation rate of the Cotton flow will become relevant

in section 4.
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which is solved as follows,

−t+ t?
τC

= x3 − 1 + log
∣∣x3 − 1

∣∣ (3.28)

with integration constant t?.
This solution has two branches. For x ≥ 1, x(t) changes from +∞ to 1 as t varies from

−∞ to +∞; the three-sphere deforms starting from the singular configuration γ1 = γ2 =∞,
γ3 = 0 and gradually becomes rounder until it reaches the isotropic fixed point after
infinitely long time. For x ≤ 1, x(t) changes from 0 to 1 as t varies from t0 = t? + τC to
+∞; in this case, the three-sphere evolves from the singular configuration γ1 = γ2 = 0,
γ3 =∞ towards the isotropic fixed point.

Finally, we point out that there is no known solution for the fully anisotropic model
geometry that is analogous to the general solution of the Darboux-Halphen system. It re-
mains an open question whether the system is algebraically integrable and find its solution.

4 Normalized Ricci-Cotton flow

We will now investigate the combined Ricci-Cotton flow when the effective speed of light
vanishes by letting λ → −∞. In this case, the flow equations take the following gen-
eral form,

∂tgij = − κ2

κ2
W

(
Rij −

1
3
Rgij

)
+

κ2

wCS
Cij (4.1)

and they become independent of ΛW . The driving curvature term is traceless and the
deformations preserve the volume of space. Thus, the resulting normalized Ricci-Cotton
flow is a superposition of the Cotton and the normalized Ricci flow with competing effects,
in general, that depend on the sign of wCS.

4.1 The general system of Bianchi IX equations

Using the Bianchi IX ansatz for the three-dimensional geometry, the normalized Ricci-
Cotton flow equations form an autonomous system of equations for the coefficients γ1, γ2,
γ3. Since the volume V = 2π2L3 is conserved, it is convenient to use two independent
variables x(t) and y(t),

γ1 =
xL2

4
, γ2 =

yL2

4
, γ3 =

L2

4xy
, (4.2)

and also set

τ =
4κ2

κ2
WL

2
t , µ =

wCSL

κ2
W

. (4.3)

Then, the general system of Bianchi IX equations takes the form

dx
dτ

=
1

µx2y3

{(
1 +

µ

3
xy + xy2

) (
1− xy2

)2 +
(µ

3
+ x
) (

1 + xy2 − 2x2y
)
x3y2

}
, (4.4)

dy
dτ

=
1

µx3y2

{(
1 +

µ

3
xy + x2y

) (
1− x2y

)2 +
(µ

3
+ y
) (

1 + x2y − 2xy2
)
x2y3

}
. (4.5)
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Figure 1. The lines of enhanced SU(2)×U(1) symmetry in the (x, y) plane.

It is not known whether this system of equations is integrable, in general. However, we
will be able to characterize its fixed points and study their stability on general grounds in
order to infer the qualitative behavior of the flow lines. Note that the individual components
of our system, the normalized Ricci flow and the Cotton flow, can compete with each
other. When µ > 0 (wCS > 0), they both work in the same direction, but when µ < 0
(wCS < 0) they work against each other and can affect the form and stability properties of
the fixed points.

It will also be seen later that these equations can be solved exactly in the axially
symmetric case x = y. Actually, there are three curves of axial symmetry in the problem,
but, in practice, it is sufficient to consider only one of these axially symmetric cases, since
the other two follow by permutation of the principal axes of S3. Thus, apart from x = y,
we also have x2y = 1 and xy2 = 1, depending on the pair of γi’s that become equal and
reduce the flow equations to a single one. They correspond to metrics on S3 with enhanced
symmetry SU(2) × U(1) and they all intersect at the fully isotropic point x = y = 1.
These curves are by themselves flow lines, which, however, cannot be crossed by other flow
lines; if any two γi’s become equal at a given (finite) time they will remain equal for ever.
Therefore, these three curves provide the barriers for six regions in the (x, y) plane where
the generic flow lines are confined depending on initial conditions. The maximal time range
of any given flow line also depends on the region in which the flow is confined. Finally,
the flow lines along the three curves of axial symmetry can reach the fully isotropic point
but cannot continue running beyond it. The three curves of axial symmetry are depicted
in figure 1, which is restricted to the first quadrant of the (x, y) plane so that the metric
has physical signature, and they intersect at (1, 1).
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These general qualitative remarks are sufficient to illustrate the evolution of any given
initial data on the (x, y) plane, provided that all fixed points are found and the arrows
of flow lines around them are correctly identified by stability analysis. The same remarks
apply equally well to the normalized Ricci and Cotton flows which can arise separately as
special cases.

4.2 Classification of the fixed points

We are going now to classify all fixed points of the system (4.4) and (4.5) and find the
critical values of µ that separate their behavior into different phases of stability.

The isotropic fixed point. The metric on the round sphere is a fixed point of the
normalized Ricci-Cotton flow for all values of µ (positive and negative) and corresponds to
the point

x? = y? = 1 (4.6)

on the (x, y) plane. Its stability, however, depends on the values of the parameter µ.
By considering small perturbations around this fixed point, as

x(t) = x? + δx(t) , y(t) = y? + δy(t) , (4.7)

we find that the linearized system of equations takes the form

d
dτ

(
δx

δy

)
= −

(
1 +

3
µ

)(
1 0
0 1

)(
δx

δy

)
. (4.8)

The two eigenvalues are equal

ζ1 = ζ2 = −
(

1 +
3
µ

)
(4.9)

and follow by linear superposition of the corresponding eigenvalues of the normalized Ricci
and Cotton flows discussed in the previous section.

The fixed point is absolutely stable when µ satisfies the bound 3/µ > −1, i.e., µ > 0 or
µ < −3. In these cases, the flow line converge towards the fixed point from all directions.
Otherwise, for −3 < µ < 0, the isotropic point is absolutely unstable and the flow lines
diverge away from it in all directions. Finally, when µ = −3, the eigenvalues are zero and
all points in the vicinity of the fixed point are at equilibrium. Thus,

• µ > 0 or µ < −3: absolutely stable fixed point,

• −3 < µ < 0: absolutely unstable fixed point.

These results are in exact agreement with the competition between the Ricci and
Cotton components of the flow and can be understood by comparing the characteristic
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time scales τR and τC that govern metric perturbations at late times.8 For µ > 0 both
components dissipate all metric perturbations exponentially fast, but for µ < 0 the Cotton
flow contributes differently leading to exponential growth of the perturbations. For the
critical value µ = −3, the dissipation of the normalized Ricci flow is canceled by the
exponential growth of the Cotton flow, making zero the characteristic matrix of metric
perturbations.

Anisotropic fixed points. For negative µ there are additional fixed points that corre-
spond to particular axisymmetric metrics. As such, they appear in three copies related by
permutation of the axes of S3 and they are located on the lines of axial symmetry in the
(x, y) plane. In particular, they arise

• on the diagonal x = y with x? =
√
−3/µ ,

• on the branch x2y = 1 with x? =
√
−3/µ ,

• on the branch xy2 = 1 with y? =
√
−3/µ .

Note that all these points coalesce with the fully isotropic point when µ assumes the critical
value µ = −3.

It suffices to perform stability analysis around one of these fixed points, say the one
located on the diagonal line, since the results will be identical for all of them by the
symmetry of the problem. Using small fluctuations around the fixed point

x? = y? =
√
− 3
µ
, (4.10)

so that x(t) = x? + δx(t) and y(t) = y? + δy(t), the linearized system takes the form,

d
dτ

(
δx

δy

)
=

1
2

(
ζ1 + ζ2 ζ1 − ζ2
ζ1 − ζ2 ζ1 + ζ2

)(
δx

δy

)
, (4.11)

where

ζ1 =
2
3

√
−µ

3

[(
−µ

3

)3/2
− 1
]
, (4.12)

ζ2 =
2
3

√
−µ

3

[(
− 3
µ

)3/2

− 1

][
4
(
− 3
µ

)3/2

− 1

]
. (4.13)

8According to definitions we have the following relations

µ =
wCSL

κ2
W

= 3
τC
τR

with τC =
wCSL

3

12κ2
, τR =

κ2
WL

2

4κ2
.

The characteristic time scales τR and τC refer to the original time coordinate t but their ratio is the same

in the time coordinate τ .
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The two eigenvalues are ζ1 and ζ2 and they are unequal offering various possibilities in
general. They both vanish for µ = −3. Otherwise, we have the following cases depending
on the sign of the eigenvalues:

• −3 < µ < 0: saddle fixed point with ζ1 < 0 < ζ2 ,

• −6 3
√

2 < µ < −3: saddle fixed point with ζ2 < 0 < ζ1 ,

• µ < −6 3
√

2: absolutely unstable fixed point with ζi > 0 .

Thus, the axisymmetric fixed points are never absolutely stable. They are saddle or un-
stable depending on µ.

Totally anisotropic fixed points. It is not obvious from the beginning whether there
are any fixed points with γ1 6= γ2 6= γ3. Close inspection of the equations, assisted by
numerical scanning, reveals the presence of two totally anisotropic fixed points that coexist
with the axially symmetric anisotropic fixed point9 when µ < −6 3

√
2. In fact, by the Z3

symmetry of the problem, there are six such additional fixed points, but we only focus
attention on two of them appearing symmetrically left and right of the diagonal line x = y

in the lower two (out of the six disconnected) regions shown in figure1; their presence
should not be confused with the mirror images of the axially symmetric anisotropic fixed
point discussed earlier.

The characteristic property of the totally anisotropic fixed points is that their Ricci
scalar curvature vanishes and their location on the (x, y) plane is given by

x+
1√
x

= −µ
4

= y +
1
√
y

with x 6= y . (4.14)

Of course, one can always find Bianchi IX metrics with zero scalar curvature by imposing
the appropriate algebraic condition on the metric coefficients, but these are not fixed points
of the flow lines for general values of µ. Remarkably, they are real solutions of dx/dτ =
0 = dy/dτ with x 6= y, which coexist with the axially symmetric anisotropic fixed point
when µ < −6 3

√
2. They are not present when µ > −6 3

√
2, since there are no real solutions

to equation (4.14) in that case. We also note that when µ = −6 3
√

2 the totally anisotropic
fixed points coalesce with the axially symmetric anisotropic fixed point. Furthermore, there
are no other fixed points in the problem.

The location of these fixed points is depicted in figure 2. Here, we plot the ratio
x/y of the anisotropic fixed points as function of µ (actually −µ). The horizontal line
represents the axially symmetric anisotropic fixed point that exists below and above the
critical value of µ.

At this point, it is instructive to consider the Ricci scalar curvature of the axially
symmetric anisotropic fixed point x? = y? =

√
−3/µ, which turns out to be

R = − 2µ
9L2

(
µ+ 12

√
− 3
µ

)
. (4.15)

9We thank Christos Sourdis for pointing out the presence of these additional fixed points and thoroughly

investigating their properties. This analysis was missed in a previous version of our paper and we are

indebted to him for providing all the details. Similar results also appeared in [55].
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Figure 2. Relative location of all anisotropic fixed points for µ < 0.

When µ = 0 this point is at infinity and the curvature is zero. As µ varies from 0 to −3
the axially symmetric anisotropic fixed point is approaching the isotropic fixed point and
the curvature increases monotonically. The curvature becomes maximal when these two
points coincide at the critical value µ = −3, and, then it decreases monotonically as µ
varies from −3 to −6 3

√
2. It becomes zero at the other critical value µ = −6 3

√
2, and, then,

it turns negative for µ < −6 3
√

2. The value µ = −6 3
√

2 is also critical for the creation of
the totally anisotropic fixed points, which pop out symmetrically from the diagonal and
have zero curvature for all lower values of the parameter µ.

These additional fixed points appear to be saddle points, as can be verified by nu-
merical investigation for different values of µ. It is not easy to obtain closed formulas for
the eigenvalues of the characteristic matrix describing small perturbations around them.
However, their stability properties are important for constructing instanton solutions of
Hořava-Lifshitz gravity, as will be seen in detail later in section 6. Another character-
istic property of these points that will also be used later is the universal value of the
gravitational Chern-Simons functional. Explicit calculation shows that WCS for the fully
anisotropic fixed points is

WCS =
80π2

wCS
, (4.16)

which is independent of µ! It actually coincides with the value of WCS for the axially
symmetric anisotropic fixed point when µ = −6 3

√
2 and it is ten times larger than the

value of WCS evaluated at the totally isotropic fixed point.
An important remark is in order at this point. The equations that determine the fixed

points of the normalized Ricci-Cotton flow provide only the traceless part of the classical
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equations of motion of topologically massive gravity, leaving the trace undetermined. Then,
depending on the value of their Ricci scalar curvature, these points also satisfy the trace
equation R = 6ΛW for appropriately chosen effective value of ΛW. Fixed points with
positive, negative or zero Ricci scalar curvature are vacua of topologically massive gravity
with positive, negative or zero cosmological constant, respectively. As a result, the fixed
points of the Ricci-Cotton flow with general couplings, which are the vacua of topologically
massive gravity, are expected to be less than the fixed points of the normalized flow, and,
in fact, they can be obtained from them in certain ways.10 This, however, does not make
our analysis in section 5 redundant since their location, volume and stability properties
also depend crucially on the flow equations we are considering in each case.

Summarizing the results for the normalized Ricci-Cotton flow, we note that the fully
isotropic metric on S3 is the unique fixed point for µ > 0 that attracts all trajectories
starting from any point in the first quadrant of the (x, y) plane. For µ < 0, there are
various possibilities that result to attractive or repelling directions around the fixed points.
Note that the isotropic point becomes absolutely unstable when −3 < µ < 0, in which
case the anisotropic fixed point is a saddle that attracts partially the flow lines. For
−6 3
√

2 ≤ µ < 0 there are four in total fixed points, including their Z3 mirrors, whereas for
µ < −6 3

√
2 the total number of fixed points is ten.

4.3 Phase portraits of the flow

The qualitative behavior of the flow lines is illustrated by the phase portraits shown below
for all possible values of µ.

For positive µ, which is qualitatively the same as for the normalized Ricci flow and the
Cotton flow, the phase portrait is given in figure 3.

For negative µ the stability properties of the fixed points is different in the intervals
−3 < µ < 0, −6 3

√
2 < µ < −3 and µ < −6 3

√
2 and all these possibilities are represented in

figures 4, 5 and 6, respectively. For later reference, it is important to realize the existence
of trajectories interpolating between different fixed points. In figure 4 there is only one
such flow line since one fixed point is unstable and the other a saddle. The same applies to
figure 5 where the interpolating flow line connects a stable fixed point with a saddle. The
picture changes drastically in figure 6 since there are infinitely many flow lines interpolating
between an unstable and a stable fixed point. Also, in this case, there are additional fixed
points away from the diagonal, which are saddle points. Figure 6 contains two such totally
anisotropic fixed points located at x ' 0.19, y ' 1.75 (and x ' 1.75, y ' 0.19) for
µ = −10 < −6 3

√
2 ' −7.56. There are flow lines connecting these fixed points with the

other two lying on the diagonal, but they are not easily seen on the phase portrait due to
numerical deficiency.

10The mathematical problem one has to solve to determine the set of fixed points of massive gravity for

given ΛW is to fix R instead of the volume of the normalized fixed points, as functions of µ and L, and

deduce from it the allowed range of µ for the selected set of fewer points.
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Figure 3. The flow lines for µ > 0; here, µ = 2.
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Figure 4. The flow lines for −3 < µ < 0; here, µ = −2.
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Figure 5. The flow lines for −6 3
√

2 < µ < −3; here, µ = −5.
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Figure 6. The flow lines for µ < −6 3
√

2; here, µ = −10.
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4.4 Axisymmetric solutions

Here, we present the exact axially symmetric solution of the normalized Ricci-Cotton flow,
setting x = y. As such, it generalizes the axially symmetric solutions of the normalized
Ricci and the Cotton flows discussed in the previous section. The system (4.4) and (4.5)
reduces to a single equation

dx
dτ

=
1
µ

(
1
x3
− 1
)(

1
x2

+
µ

3

)
, (4.17)

and the flow takes place on the diagonal line of the (x, y) plane. The flow connects either
the origin or infinity with a fixed point or it can extend between two different fixed points.
These regions do not communicate with each other and the time interval that supports the
solutions depends on µ and the choice of trajectory.

The behavior around x = 0 and x→∞ is universal and can be extracted directly from
equation (4.17),

• x ≈
(

6
µ(τ − τ0)

)1/6
, as x→ 0,

• x ≈ −1
3τ , as x→∞.

Around the fixed points the time dependence is exponential and determined by the eigen-
values ζ as x − x? ≈ exp(ζτ). The relevant eigenvalue for the isotropic point is given
by (4.9) and for the anisotropic by (4.12).

Case I: µ > 0. The solution behaves similarly for all positive values of µ, but it looks
different on the two sides of the isotropic fixed point x? = 1. We find that

x > 1 : −∞ < τ < +∞ as x decreases from +∞ to 1 ,

x < 1 : τ0 < τ < +∞ as x increases from x(τ0) = 0 to 1 .

The exact solution reads

τ − τ? = −3x+
µ (µ− 6)

2 (µ2 − 3µ+ 9)
log
(
x2 + x+ 1

)
+

√
3µ2

µ2 − 3µ+ 9
arctan

2x+ 1√
3

− µ

µ+ 3
log |x− 1|+ 27µ

2 (µ3 + 27)
log
(
µx2 + 3

)
+

81
µ3 + 27

√
3
µ

arctan
(
x

√
µ

3

)
(4.18)

and it is represented by figure 7 with appropriately chosen integration constant τ?.

Case II: µ < 0. In this case the solution depends on the particular value of µ. First,
we present the result for the critical value µ = −3, which is simpler,

τ − τ? = −3x+
1

2(x− 1)
+

1√
3

arctan
2x+ 1√

3
− 7

4
log |x− 1|

+
3
4

log(x+ 1) +
1
2

log
(
x2 + x+ 1

)
. (4.19)
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Figure 7. The dependence τ(x) for positive µ; here, µ = 1.

Figure 8. The dependence τ(x) for the critical value critical µ = −3.

All fixed points coalesce to the isotropic and the eigenvalues vanish, so that there are
no arrows infinitesimally close to this point. However, this behavior is lifted at second order
in perturbation theory and there are arrows pointing from large to small values of τ . This
particular case is depicted in figure 8, which also shows the range of τ in the two branches.

For µ 6= −3 the expression becomes much more involved and reads

τ − τ? = −3x+
µ (µ− 6)

2(µ2 − 3µ+ 9)
log
(
x2 + x+ 1

)
+

√
3µ2

µ2 − 3µ+ 9
arctan

2x+ 1√
3

− µ

µ+ 3
log |x− 1|+ 27µ

2(µ3 + 27)
log
∣∣µx2 + 3

∣∣
− 81

2(µ3 + 27)

√
− 3
µ

[
log
∣∣∣∣1− x√−µ3

∣∣∣∣− log
∣∣∣∣1 + x

√
−µ

3

∣∣∣∣] . (4.20)

Then, depending on whether −3 < µ < 0 or µ < −3, the function τ(x) looks different.
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Figure 9. The dependence τ(x) for −3 < µ < 0; here, µ = −1.

Figure 10. The dependence τ(x) for µ < −3; here, µ = −5.

In all these cases the solution has three branches but the range of time is not the same.
We have, in particular, the following behavior depending on µ:

• For −3 < µ < 0 the two fixed points are ordered as xiso
? = 1 < xaniso

? =
√
−3/µ

with the isotropic being repulsive and the anisotropic attractive. The exact solution
is represented by figure 9.

• For µ < −3 the two fixed points are ordered differently, as xaniso
? =

√
−3/µ < xiso

? = 1.
The isotropic point is now attractive whereas the anisotropic is repulsive. Then, the
exact solution along the diagonal is represented by figure 10 and there is no essential
difference for µ below or above the value −6 3

√
2 .

Note that the three branches shown in figures 9 and 10 range differently: the first has
support on a semi-infinite time interval, whereas the second and third to the right
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are eternal solutions that exist for all time −∞ < τ < +∞. (Despite appearances,
caused by numerical deficiency, the spike at x = 1 extends to infinity in figure 9).

5 Ricci-Cotton flow with general couplings

Let us now examine the Ricci-Cotton flow equations for Bianchi IX model geometries with
arbitrary couplings by letting λ and ΛW take arbitrary values. The system of equations
that needs to be studied is provided by (3.8)

dγi
dτ

= −Rii +
2λ− 1

2(3λ− 1)
Rγi +

ΛW
3λ− 1

γi +
1
µ
Cii (5.1)

with

τ =
κ2

κ2
W

t , µ =
wCS

κ2
W

. (5.2)

The definition of τ and µ resembles that for the normalized flow in section 4, but it does
not include the rescaling by the characteristic length of space.

Since λ < 1/3, we will confine our discussion to the case of non-negative cosmological
constant, ΛW ≥ 0, so that the effective speed of light is real, and investigate the structure
of the fixed points and their stability properties. The choices ΛW > 0 and ΛW = 0
will be discussed separately, although the latter can be obtained as limiting case of the
former. Mathematically it is also interesting to consider the more general situation, without
imposing any restrictions on λ and ΛW , but these cases will not be included here.11

5.1 The axisymmetric Bianchi IX model

The flow of the metric coefficients γi(t) does not preserve the volume of S3 in this case, and,
therefore, the three coupled equations are rather difficult to investigate in all generality with
γ1 6= γ2 6= γ3. Restricting attention to axially symmetric configurations simplifies matters
without shadowing too much the rich structure of the system. Our analysis will be based
on the qualitative theory of dynamical systems, as in previous sections, but because of
the mathematical complexity of the equations it is not possible to obtain explicit solutions
in closed form, apart from the isotropic solution. Also, the reader should be aware of the
limitations: the fixed points can become unstable in other directions, when axial symmetry
is relaxed, and the conclusions drawn here may be altered and not be as general. Of course,
this is part of a more general criticism for mini-superspace models compared to metric
deformations with an infinite number of moduli taking place in the entire superspace.

With these explanations in mind, we are going to study the system of two equations

1
γ1

dγ1

dτ
= −

√
γ1

µ γ3
2

(γ1 − γ2)− 8λ− 3
4(3λ− 1)

γ1

γ2
2

+
2λ− 1
3λ− 1

1
γ2

+
ΛW

3λ− 1
, (5.3)

1
γ2

dγ2

dτ
=
√
γ1

2µ γ3
2

(γ1 − γ2) +
4λ− 1

4(3λ− 1)
γ1

γ2
2

− λ

3λ− 1
1
γ2

+
ΛW

3λ− 1
, (5.4)

11The nature of the corresponding fixed points changes drastically compared to the cases that are discussed

in this paper. However, when ΛW < 0 it is more appropriate to consider Bianchi type VIII model geometries

rather than Bianchi IX.
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which is obtained from (5.1) by setting γ2 = γ3. The existence and properties of the fixed
points depends crucially on the values of µ, as in other examples considered so far. In
particular, for µ < 0, an anisotropic fixed point will coexist with the isotropic one.

There is an exact solution of these equations which is available for all ΛW ≥ 0 and
describes the evolution of the isotropic metric on S3. This possibility does not arise for
the normalized Ricci-Cotton flow, since the isotropic metric is a fixed point. In particular,
setting all γi ≡ γ, we have the following result:

γ(t) = A exp
(

ΛW
3λ− 1

τ

)
+

1
4ΛW

for ΛW > 0 (5.5)

and

γ(t) = − 1
4(3λ− 1)

(τ − τ0) for ΛW = 0 (5.6)

with A and τ0 being arbitrary integration constant. Since λ < 1/3, the metric flows to
the isotropic fixed point (to be discussed next in detail for more general trajectories) as
τ → +∞.

The difference between ΛW > 0 and ΛW = 0 is reflected in the life-time of the solutions.
When ΛW > 0 the solution has two branches: on the first branch A > 0 and the solution
is eternal existing for all −∞ < τ < +∞; it describes a round sphere with infinite radius
in the infinite past flowing towards a round sphere with radius set by ΛW in the infinite
future. The second branch corresponds to A < 0 in which case the solution exists for
τ? ≤ t < +∞, with appropriately chosen τ?, so that the sphere starts from zero radius
and reaches the fixed point as t → +∞. On the other hand, when ΛW = 0, there is only
one branch as the solution exists for τ0 ≤ τ < +∞, interpolating between a fully collapsed
configuration at τ = τ0 to a sphere of infinite radius in the infinite future.

5.2 Classification of the fixed points

First, we consider the case of non-vanishing cosmological constant and reserve the last
subsection to study ΛW = 0 separately.

The isotropic fixed point. For ΛW > 0, there is a natural length scale in the problem
that gives rise to the isotropic fixed point of the flow, irrespective of the sign of µ,

γ1 = γ2 = γ3 =
1

4ΛW
. (5.7)

This follows easily from the system of equations without assuming any restrictions on γ1

and γ2; it can also be shown that it is a fixed point of the more general system of equations
with γ1 6= γ2 6= γ3.

Linearizing around it as

γ1(t) =
1

4ΛW
(1 + δx(t)) , γ2(t) =

1
4ΛW

(1 + δy(t)) , (5.8)
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we find that the small perturbations satisfy the characteristic matrix equation

d
dτ

δx
δy

 = ΛW


− 8
µ

√
ΛW −

8λ− 3
3λ− 1

8
µ

√
ΛW + 2

4λ− 1
3λ− 1

4
µ

√
ΛW +

4λ− 1
3λ− 1

− 4
µ

√
ΛW − 2

2λ− 1
3λ− 1


δx
δy

 . (5.9)

The eigenvalues are

ζ1 =
ΛW

3λ− 1
, ζ2 = −4ΛW

(
1 +

3
µ

√
ΛW

)
(5.10)

and so ζ1 < 0 whereas ζ2 can take all values, positive or negative, depending on µ.
Keeping ΛW fixed and varying µ we obtain the following characterization of the

isotropic fixed point:

• µ > 0 or µ < −3
√

ΛW : absolutely stable,

• −3
√

ΛW < µ < 0: saddle point.

Note the emergence of a critical value, µ = −3
√

ΛW , where the two eigenvalues ζ1 and
ζ2 vanish, separating stability from instability along the corresponding eigen-directions.12

Also note for completeness that if we were allowing λ > 1/3, the isotropic point would never
be absolutely stable (it would be absolutely unstable or a saddle point in the respective
intervals of the µ-line.).

Actually, one can go further and investigate whether the exact isotropic running solu-
tion γ(t), given by (5.5), is stable against small fluctuations,

γi(t) = γ(t) + δγi(t) , (5.11)

acting as attractor of nearby trajectories. Thus, given a small tube around the trajectory
γ(t), one is interested to know if any other trajectory with initial conditions inside this
tube will remain there after some time and what is the size of tube that guarantees this
attractor property. The differential equations for δγi(t) are most conveniently stated using
γ(t) rather that t as flow time. Then, within the axially symmetric ansatz (5.3), the
linearized equations take the following form,

d
dγ(t)

δγ1(t) = − 2(δγ1 − δγ2)
γ(4ΛWγ − 1)

[
2(3λ− 1)
µ
√
γ

+ 4λ− 1
]

+
4ΛW δγ1

4ΛWγ − 1
, (5.12)

d
dγ(t)

δγ2(t) =
δγ1 − δγ2

γ(4ΛWγ − 1)

[
2(3λ− 1)
µ
√
γ

+ 4λ− 1
]

+
4ΛW δγ2

4ΛWγ − 1
, (5.13)

generalizing the characteristic matrix equations of small perturbations around the isotropic
fixed point. These equations apply for all ΛW including the special case ΛW = 0 that will
be discussed separately.

12The critical value of µ is similar to that found for the normalized Ricci-Cotton flow; direct comparison

can be made by replacing
√

ΛW with 1/L and rescaling µ with the characteristic length of space. In both

cases, the critical value of µ occurs when the competing effects of the Ricci and Cotton deformations are

balanced exactly.
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Solutions of this system can be expressed as functions of t through γ(t). Since δγi are
required to be small, for validity of the linearized analysis, the attractor property of the
isotropic trajectory appears to be very limited. This behavior can be seen schematically in
the phase portraits of the flow that will appear in the next two subsections.

Anisotropic fixed point. When µ < 0, there is an additional fixed point associated
with the axially symmetric metric with coefficients

γ1 =
36µ2

(µ2 + 27ΛW )2
, γ2 = γ3 =

9
µ2 + 27ΛW

. (5.14)

There are no other restrictions on the values of µ for the existence of this second fixed
point.

Notice that this new fixed point and the isotropic one will coalesce if µ = −3
√

ΛW .
For −3

√
ΛW < µ < 0, the anisotropic fixed point has γ1 < γ2, whereas for µ < −3

√
ΛW it

has γ1 > γ2. Thus, −3
√

ΛW appears as a critical value of µ.
By considering small perturbations around the anisotropic fixed point, as

γ1(t) =
36µ2

(µ2 + 27ΛW )2
(1 + δx(t)) , γ2(t) =

9
µ2 + 27ΛW

(1 + δy(t)) , (5.15)

we find the characteristic matrix of the linearized system with respect to τ

1
27(3λ− 1)

(
(9λ− 2)µ2 − 27ΛW (3λ− 1) −(18λ− 5)µ2 + 27ΛW (6λ− 1)
−1

2(9λ− 5)µ2 + 27
2 ΛW (3λ− 1) (9λ− 4)µ2 − 27ΛW (3λ− 2)

)
. (5.16)

The corresponding eigenvalues are

ζ± =
1

18(3λ− 1)

[
2(3λ− 1)µ2 − 27ΛW (2λ− 1)±

√
∆
]
, (5.17)

where

∆ = 6(3λ− 1)(2λ− 1)µ4 − 72ΛWµ2(3λ− 1)2 + 243Λ2
W

(
12λ2 − 6λ+ 1

)
. (5.18)

The eigenvalues ζ± are real.13 Since their product is given by

ζ+ζ− =

(
µ2 − 9ΛW

) (
µ2 + 27ΛW

)
162(3λ− 1)

, (5.19)

we note the appearance of a critical value µ, which is the same as for the isotropic fixed
point, µ = −3

√
ΛW . Then, for µ < −3

√
ΛW the anisotropic point is saddle. On the other

13It follows by noting that the two roots of ∆ occur at

µ2
± =

3ΛW
2(3λ− 1)(2λ− 1)

h
4(3λ− 1)2 ±

p
2(3λ− 1)

i
and they are complex for λ < 1/3. Thus, ∆ has the same sign as the coefficient of its µ4-term, which

is positive.

– 34 –



J
H
E
P
0
4
(
2
0
1
0
)
1
3
1

hand, in order to examine the stability of this fixed point for −3
√

ΛW < µ < 0, we consider
the sum of the two eigenvalues,

ζ+ + ζ− =
1

9(3λ− 1)
[
2(3λ− 1)µ2 − 27Λ(2λ− 1)

]
, (5.20)

which is now negative. Therefore, for −3
√

ΛW < µ < 0, the anisotropic fixed point is
absolutely stable. Summarizing all results obtained above, we have the following:

• An isotropic fixed point exists for all µ and it is absolute stable when µ > 0 or
µ < −3

√
ΛW . For −3

√
ΛW < µ < 0 it is a saddle point.

• An anisotropic fixed point exists for all µ < 0. It is absolutely stable for −3
√

ΛW <

µ < 0 and saddle for µ < −3
√

ΛW , which is reverse to the behavior of the isotropic
fixed point.

As can be seen there are similarities as well as some differences with the classification
of fixed points of the normalized Ricci-Cotton flow.

5.3 Phase portraits of the flow

A qualitative picture of the flow lines is provided by three consecutive phase portraits for
different values of the parameter µ. In all drawings we choose ΛW = 0.25 and λ = 0.1, and
so the three regimes are µ > 0 or −1.5 < µ < 0 or µ < −1.5. The isotropic fixed point
appears at γ1 = γ2 = 1/4ΛW = 1.

First, we consider the case µ > 0 that exhibits only one (isotropic) fixed point, as
shown in figure 11.

Next, we consider the case µ < 0 that exhibits an additional (anisotropic) fixed point
and make the following choices for the plots shown in figures 12 and 13:

• µ = −1: the anisotropic fixed point occurs at γ1 ' 0.60, γ2 = γ3 ' 1.16.

• µ = −2: the anisotropic fixed point occurs at γ1 ' 1.24, γ2 = γ3 ' 0.84.

5.4 The special case ΛW = 0

Setting ΛW = 0 corresponds to taking the effective speed of light equal to zero, while
keeping λ < 1/3 arbitrary. It should be contrasted with the normalized Ricci-Cotton flow,
which is independent of ΛW and has also zero effective speed of light.

The isotropic fixed point is now pushed to infinity and corresponds to a round S3 with
infinite radius. This is also apparent from the exact isotropic solution (5.6) that converges
to it after infinitely long time. However, it is not strictly speaking a fixed point of the flow
lines, since dγ1/dt and dγ2/dt do not vanish there when ΛW = 0.

When µ < 0 there is an anisotropic fixed point of the axially symmetric flow for

γ1 =
36
µ2

= 4γ2 = 4γ3 . (5.21)
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Figure 11. The flow lines for µ > 0; here, µ = 1.

This is always a saddle point because the corresponding eigenvalues of the characteristic
matrix of small perturbations are real for λ < 1/3 and their product is negative. The
results follow setting ΛW = 0 in the expressions we had before (see e.g. (5.19)).

We include two phase portraits of the flow lines that are characteristic for µ > 0 and
µ < 0, respectively, choosing λ = 0.1. The case µ > 0 is shown first in figure 14. Next, we
consider the case µ < 0 that exhibits an additional (anisotropic) fixed point and make the
choice µ = −5. The anisotropic fixed point occurs at γ1 ' 1.44, γ2 = γ3 ' 0.36 as shown
in figure 15.

Finally, concluding this section, we end up with an interesting observation that arose
in our study of the flow lines. Along these lines, the volume of space changes, but the
dependence on t is not monotonic in general. It is therefore interesting to inquire in this
context for the existence of bouncing solutions for which the volume reaches a minimum
and then increases in time. Although this behavior is not generic, it seems to arise along
particular flow lines that can be found by numerical scanning. An example of this kind is
provided in figure 16 for an appropriate choice of initial data and couplings. Cases with
full anisotropy, but with initial conditions close to axial symmetry, also seem to lead to
bounces, including minima with very small volume. Similar conclusions hold when ΛW > 0,
with or without axial symmetry, but we have not been able to obtain any quantitative
characterization of the phenomenon so far.
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Figure 12. The flow lines for −1.5 = −3
√

ΛW < µ < 0; here, µ = −1.
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Figure 13. The flow lines for µ < −3
√

ΛW = −1.5; here, µ = −2.

– 37 –



J
H
E
P
0
4
(
2
0
1
0
)
1
3
1

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

γ
2

γ
1

Figure 14. The flow lines for µ > 0; here, µ = 1.
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Figure 15. The flow lines for µ < 0; here, µ = −5.
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Figure 16. Bouncing solution with initial data γ(0)
1 = 28, γ(0)

2 = γ
(0)
3 = 4 for λ = 0.26, ΛW = 0

and µ = −5.

The bouncing solutions can be regarded (in some sense) as the Euclidean space ana-
logue of bouncing models in standard cosmology, which provide a viable alternative to
inflation. Matter bounces have already appeared in studies of Hořava-Lifshitz cosmology
(see, for instance, [56–58]), but they are also non-generic. It remains to be seen whether
they have any special meaning and implications for the models we study here, although
their occurrence does not require any matter couplings, as they are purely geometric, and,
hence, different from those arising in cosmology.

6 Space-time interpretation of the flow lines

The solutions of geometric flows are shown as flow lines in the various phase portraits
that have been drawn. Explicit solutions were obtained in special cases, whereas more
general solutions can only be described pictorially. The problems that will be addressed in
this section are the selection of flow lines that can qualify as regular gravitational-instanton
solutions in four dimensions and the completeness of the corresponding space-time metrics.
It will also be useful in this context to compare SU(2) instanton solutions of Hořava-Lifshitz
theory with those of ordinary Einstein gravity.

According to the analysis of section 2.3, only the flow lines that interpolate between two
fixed points (when more than one fixed point is present in our models) qualify as instantons.
They are indeed finite-action solutions, and this property is sufficient to determine the
global structure of space-time and its asymptotic behavior, and render the corresponding
metrics complete. Our main result in a nut-shell is that all gravitational instantons with
SU(2) isometry are globally R× S3 describing a smooth deformation of S3 as t runs from
−∞ to +∞, without ever encountering a singularity. The details are given below together
with the complete classification of gravitational instantons with SU(2) isometry in Hořava-
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Lifshitz gravity with anisotropy parameter z = 3. We will also compute their Euclidean
action and determine their moduli spaces. In most cases we have explicit solutions. There
are also a few other solutions that are shown to exist, but we have not (yet) been able to
obtain expressions for their metric in closed form.

The variant of the theory with anisotropy parameter z = 2 will not be especially dis-
cussed, since it is clear that it exhibits no instanton solutions (of the type we are considering
here) with SU(2) isometry. Recall in this case that the relevant equations are provided by
the Ricci flow on S3, which takes the form (3.9) in proper time with arbitrary parameters
λ < 1/3 and ΛW > 0. Its fixed points are determined by the equations

Rii −
2λ− 1

2(3λ− 1)
Rγi +

ΛW
1− 3λ

γi = 0 , i = 1, 2, 3 (6.1)

and clearly there is a unique solution given by the constant-curvature metric with R =
6ΛW . The absence of other fixed points, which is also implied on more general grounds by
Poincaré’s conjecture for S3, shows that there can be no finite-action instanton solutions
in this case.

Thus, in the following, we focus on instanton solutions of the z = 3 theory and explain
their properties, as outlined above.

6.1 Global structure and completeness of the metrics

First of all we examine the occurrence of singularities that can appear at finite proper time
t (or τ , since the two are simply related by rescaling) and render the Euclidean space-
time manifold incomplete. Singularities arise when some or all of the metric coefficients
of the Bianchi IX model geometry vanish and they are classified, in general, as nuts and
bolts. Such singularities are intimately related to the fixed points of Killing vector fields
by geometrical reasoning and they are independent of the gravitational equations. Follow-
ing [43, 59] we recall that the structure of the fixed point set of a Killing vector field ξµ
acting on any four-dimensional Riemannian manifold with metric gµν is determined by the
rank of the 4× 4 matrix ∇µξν . This is an anti-symmetric matrix (since its symmetric part
vanishes identically by definition of a Killing vector) which can have rank 4 or 2; rank 0 is
excluded for, otherwise, the vector field vanishes everywhere. In the former case there are
no directions left invariant at the tangent space of the fixed point, which, thus, appears to
be isolated and it is called nut. In the latter case only a two-dimensional subspace of the
tangent space at the fixed point remains invariant under the action of the Killing vector
field, whereas the two-dimensional orthogonal complement rotates into itself. Then, the
fixed point set is provided by this invariant two-dimensional subspace and it is naturally
called bolt (it is typically a two-sphere, as in Bianchi IX geometries).

Nuts and bolts lead to incomplete manifolds, in general, but in certain cases the
apparent singularities can be removed and provide regular and complete metrics with no
curvature singularities. It all depends on the form of the metric as these singularities
are approached. A removable nut singularity contributes one unit to the Euler number
χ of the four-manifold and a removable S2 bolt singularity contributes two units [59],
following the theorems on fixed points. This counting applies to compact four-manifolds
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without boundary, but it also generalizes to non-compact spaces when the Killing vector
field is either everywhere tangential to the boundary (as in space-times with homogeneous
spatial sections that we are considering here) or is everywhere transverse. Thus, if χ 6= 0,
any Killing vector field will have at least one fixed point. No fixed points imply that
χ = 0. Instanton solutions of Einstein and Hořava-Lifshitz gravity are quite different
in this respect, as will be seen shortly, having important implications for their global
topological structure.

Let us briefly review when such singularities can be removed from a Riemannian four-
manifold without referring to any specific theory or any solutions at the moment. Using
locally the Bianchi IX form of the metric (3.16)

ds2 = dt2 + a2(t)
(
σ1
)2 + b2(t)

(
σ2
)2 + c2(t)

(
σ3
)2
, (6.2)

we suppose that a singularity (nut or bolt) occurs at some finite proper distance, say t = 0.
It is well known that the metric has a removable nut singularity provided that near t = 0
all metric coefficients vanish as

a2(t) = b2(t) = c2(t) =
1
4
t2 as t→ 0 . (6.3)

In this case we have a coordinate singularity of the polar coordinate system in R4 centered
at t = 0, which is simply removed by changing to a local Cartesian coordinate system near
the point t = 0 and adding it to the manifold. Also, it is well known that the metric has
a removable bolt singularity provided that near t = 0 two of the metric coefficients (say a2

and b2) become equal and the third vanishes as

a2(t) = b2(t) = finite , c2(t) =
1
4
n2t2 as t→ 0 with n ∈ Z . (6.4)

Then, a2 = b2 = R2
0 implies a2(σ1)2+b2(σ2)2 = R2

0(dϑ2+sin2 ϑdϕ2), which is the canonical
S2 metric, while the dt2 + c2(σ3)2 part of the four-dimensional metric becomes dt2 +
(n2t2/4)dψ2 near t = 0, keeping ϑ and ϕ constant. In this case, the topology of the
manifold is locally R2 × S2 and the R2 factor shrinks to a point on S2 as t → 0. By
adjusting the range of ψ so that nψ/2 runs from 0 to 2π, the apparent singularity at t = 0
becomes a coordinate singularity of the polar system in R2 and can be removed as before.
In all other cases the singularities cannot be removed and the manifold is incomplete.

The above reasoning is purely geometrical without reference to any field equations.
Thus, different gravitational theories for Euclidean space-times of the form (6.2) may or
may not lead to removable singularities at the fixed points of a Killing vector field. This
depends on the way that the metric coefficients approach zero in the vicinity of a singularity
and it is sensitive to the dynamics. The space-time singularities of Euclidean Einstein and
Hořava-Lifshitz gravity (if they are present) will follow different power-law behavior, which,
in turn, will affect the completeness of the corresponding metrics. Thus, the absence of non-
removable singularities provides a natural selection for the physically admissible solutions
in those theories.

In Euclidean Hořava-Lifshitz gravity, a singularity can only arise if an eligible flow
line reaches the boundaries — including the origin — of the physical parameter space,
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namely the two wedges of the first quadrant in the (x, y) (or (γ1, γ2)) plane used in the
phase portraits. Then, the flow becomes extinct as it cannot be continued beyond that
point. Such singularities, if they are present, will arise at finite proper time (say t = t0,
but we can always set t0 = 0 without loss of generality). This is obviously so because
such singular points can also act as initial data for the time-reversed flow at a given finite
instance of (proper) time.14 Such possibilities should be ruled out by the theory, unless
the singularities are removable nuts or bolts, for, otherwise, the space-time metric will be
singular. Using the Bianchi IX form of the metric (6.2) with a2 = γ1, b2 = γ2 and c2 = γ3

(like in (3.1)), which is the appropriate choice in this case, we may set (as in nuts)

γ1 = β1t
p1 , γ2 = β2t

p2 , γ3 = β3t
p3 (6.5)

or alternatively (as in bolts)

γ1 = β1 , γ2 = β2 , γ3 = β3t
p3 (6.6)

and determine the allowed values of the coefficients βi and the exponents pi as t→ 0. In all
cases we find that the first-order system of Bianchi IX equations for Hořava-Lifshitz gravity
with general couplings does not lead to removable nuts or bolts. Only non-removable sin-
gularities can arise along the flow lines and they seem troublesome.15 Recall, however, that
instanton solutions are rather restrictive, since they are described only by those trajectories
that interpolate between two fixed points. Therefore, their metrics would be singular if
any one of the fixed points were singular. But this is a contradiction of terms and cannot
happen, since a fixed point, unlike a singularity, is only reached at infinite proper time,
t→ ±∞ (with sign that depends on the direction of the flow), and not at at finite time.16

Thus, the instanton solutions protect themselves from the singularities that may otherwise
arise by moving along generic flow lines. Whenever instanton solutions exist, their spaces
will be always complete without any singularities.

In Euclidean Einstein gravity nuts and bolts are important elements in the theory of
gravitational instantons, since all known solutions exist thanks to their presence. In this
case, there is a certain class of gravitational instantons (6.2) that follows from the Ricci
flow equations (3.11) in proper time t with γ1 = a, γ2 = b and γ3 = c, as explained in
section 3.2. They include the trivial flat-space metric associated with the isotropic solution
(3.12), having a2 = b2 = c2 = t2/4 everywhere (with t0 = 0), as well as the Taub-NUT
metric as the next non-trivial example with an additional axial symmetry a(t) = b(t) and
a removable nut singularity at the origin.17 The Atiyah-Hitchin metric provides an even

14Proving finiteness of extinction time for the solutions of geometric flow on certain three-manifolds is an

intricate mathematical problem that will not be addressed in all generality, since we are only considering

homogeneous geometries on S3. It is a key point in Perelman’s proof of the Poincaré conjecture based on

Ricci flow [17–19] and it is not yet clear how it may generalize to the Ricci-Cotton flow.
15The power-law behavior of solutions as the flow lines approach the origin can also be read off from the

exact solutions we have presented in various cases.
16This is also implied by the stability analysis around the fixed points, which shows that the time

dependence of small fluctuations varies exponentially as t goes to infinity.
17The gravitational field equations determine the Taub-NUT metric in the form shown in section 3.2,

a(t)

m
+ arcsinh

a(t)

m
=
−t+ t0
m

= log
2m+ c(t)

2m− c(t) − 2m

„
1

2m+ c(t)
− 1

2m− c(t)

«
.
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more complicated solution, which is fully anisotropic and complete [52–54]. It exhibits a
removable bolt singularity at the origin, where b = −c and it comes asymptotically close
to Taub-NUT metric with a = b as t → ∞; we skip the details as they are not important
for the present work. It turns out that these are the only complete gravitational instantons
with SU(2) isometry that satisfy the Ricci flow equations (3.11); there is another complete
metric with SU(2) isometry, the Eguchi-Hanson instanton, which has a = b everywhere
and a removable bolt singularity at the origin, but its coefficients satisfy a different system
of first-order equations. Finally, we note for completeness, that exactly the same reasoning
applies to gravitational instantons of Einstein gravity with cosmological constant [43, 59]
that have removable nut and bolt singularities (e.g., CP 2 as a gravitational instanton).

Thus, on the one hand, in Euclidean Einstein gravity the instanton spaces have non-
vanishing Euler number and, in many cases, they also have non-vanishing signature (given
roughly, but without any further explanation here, by the number of nuts minus the num-
ber of anti-nuts [59] that may be present). On the other hand, the instanton solutions
of Hořava-Lifshitz gravity are globally R × S3 having zero Euler number and signature.
They simply describe the evolution of a three-sphere from t = −∞ to t = +∞ which
deforms geometrically by the flow without ever becoming singular along the way; as such
they resemble closer the behavior of ordinary instantons in particle theories rather than
the instantons of Einstein gravity. This is not surprising in retrospect, since consistency
of the Hořava-Lifshitz gravity is not questionable in the projectable case for space-times
with global cross-product foliation structure. In either case, the corresponding metrics
are regular everywhere and complete and their Euclidean gravitational action is finite —
though the reasoning is different for each theory. The finiteness of the action, which will be
discussed more extensively shortly, makes these solutions mostly relevant in the quantum
theory using, for instance, the path integral approach.

Let us also discuss the asymptotic structure of the solutions and compare them to those
of ordinary gravity, since there are also important differences between the two theories. In
Einstein gravity, the physical boundary conditions are largely determined by the positive-
action conjecture that requires that the action of any asymptotically Euclidean four-metric
be positive, vanishing if and only if the space is flat [43, 44, 60]. Then, using the Bianchi
IX form of the metric (6.2), the following possibilities arise at infinite proper distance t:
either there is a Euclidean infinity

a2(t) = b2(t) = c2(t) =
1
4
t2 as t→ ±∞ (6.7)

when 0 ≤ ψ ≤ 4π (it is a conical infinity when 0 ≤ ψ ≤ 2π) or a Taubian infinity

a2(t) = b2(t) = t2 , c2 = finite as t→ ±∞ (6.8)

that encompasses the Taub-NUT metric. Combining all distinct boundary conditions that
are available at t = 0 and t = ±∞, one ends up with a few viable solutions that pro-
vide the list of all complete gravitational instanton metrics with SU(2) isometry. Similar
considerations may apply to solutions with cosmological constant.

Setting t0 = 0 for convenience, the power-law behavior of the coefficients close to the origin t = 0 turns out

to be a2(t) = b2(t) = c2(t) = t2/4 and describes a removable nut singularity.
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In Hořava-Lifshitz theory the situation is different. The Euclidean action is always
positive-definite (at least for λ < 1/3 that we are considering here) and vanishes when the
three-dimensional metrics are vacua of topologically massive gravity without any time de-
pendence. Thus, there are no a priori conditions on the asymptotic structure of instantons
other than the mere existence of multiple vacua in three dimensions that serve as fixed
points of the flow. Then, the asymptotic structure of space-time as t→ ±∞ is simply de-
termined by the specific form of the metric coefficients γ1, γ2 and γ3 at the initial and final
fixed points, respectively. Their time dependence is exponential and it is completely de-
termined by the eigenvalues of the characteristic matrix of small fluctuations around these
fixed points. The departure from usual asymptotics (with zero or positive cosmological
constant) is inherited to the solutions from the detailed balance condition and seems to be
rather universal. It inflicts other classes of solutions, such as the construction of black-hole
solutions whose right asymptotic structure requires departure from detailed balance using
more general couplings [61–63] (otherwise there is no match with observations at large dis-
tances). This is also closely related to the problem of obtaining ordinary gravity by arguing
(naively) that all higher-order curvature terms are suppressed in the infrared regime of the
theory.18 However, it is not necessarily a big problem in the ultra-violet regime relevant
to early time cosmology, where our discussion is applicable keeping λ < 1/3. Abandoning
detailed balance will ruin our general construction of instanton solutions.

6.2 The action and moduli of SU(2) instanton metrics

Let us now give some examples of instantons, based on the results described in previous
sections, and compute their action Sinstanton = |∆W |/2 in each case separately (see (2.35)).
In general, the superpotential consists of two terms W = WCS +WEH, which are given by
the following expressions for Bianchi IX model geometries,

WCS =
16π2

wCS

[
1 +

1
2γ1γ2γ3

(γ1 + γ2 − γ3)(γ1 − γ2 + γ3)(γ1 − γ2 − γ3)
]

(6.9)

and

WEH = −16π2

κ2
W

[
1

√
γ1γ2γ3

(γ2
1 + γ2

2 + γ2
3 − 2γ1γ2 − 2γ2γ3 − 2γ3γ1) + 4ΛW

√
γ1γ2γ3

]
(6.10)

and will be used next to evaluate the instanton action.
The cases below refer to instantons constructed from interpolating trajectories of

the Ricci-Cotton flow for different couplings, changing as the complexity of the equa-
tions increases.

18For the same reason we cannot obtain the instantons of Einstein gravity from those of Hořava-Lifshitz

theory. The first arise by dropping all higher-curvature terms and setting λ = 1, whereas the latter exist

in the full theory only for λ < 1/3. Bianchi type IX models may offer a glimpse at this problem since the

gravitational potential is derived from a superpotential in both cases (see, for instance, [44] for the derivation

of the superpotential that governs SU(2) instantons in ordinary gravity; this reference also provides a neat

qualitative picture for the completeness of their metrics using Hamiltonian methods). It should be easier

to explore the renormalization of the coefficients of the superpotential and the parameter λ for this class of

mini-superspace models, as the theory is taken from the ultra-violet to the infrared domain.
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Cotton flow. For the pure Cotton flow treated in section 3.3 there are two fixed points:
the isotropic point with γ1 = γ2 = γ3 = L2/4 and the anisotropic fixed point with γ1 =
γ2 = xL2/4, and γ3 = L2/4x2 that arises for x = ∞; two more anisotropic fixed points
are obtained from it by permuting the three principal axes of S3. The corresponding
instanton, which is given in closed form by (3.28), describes the evolution of a fully squashed
(flattened) sphere towards the round sphere as t varies from −∞ to +∞; the anti-instanton
follows by reversing the time direction.

Note that a natural entropy function associated with the volume-preserving deforma-
tion of S3 (other than W ) can be defined in this case.19 It is important for the mathematics
of the Cotton flow, but, unlike W that determines the action of the instanton, this entropy
has no deeper meaning in space-time (as far as we can tell now). Also, there is no (yet)
known analogue of it for the combined Ricci-Cotton flow.

The instanton solution has enhanced isometry SU(2)×U(1), since the deformation line
possesses axial symmetry. Also, since the interpolating trajectory is unique, the instanton
has no moduli other than the radius of the sphere at the fixed point. In this case, W = WCS

and one finds that the superpotential takes the following values at the two fixed points,

W iso =
8π2

wCS
, W aniso =

16π2

wCS
. (6.11)

Therefore, the action is

Sinstanton =
4π2

|wCS|
(6.12)

and it is independent of the modulus L. Obviously, there are no other instantons derived
from the Cotton flow equations.

Normalized Ricci-Cotton flow. The normalized Ricci-Cotton flow has more than one
fixed points when µ < 0, in which case there are instantons with SU(2) isometry interpo-
lating between them as t varies for −∞ to +∞.

Let us first consider the instantons connecting the two axially symmetric fixed points.
Recall that the isotropic fixed point appears at γ1 = γ2 = γ3 = L2/4 and the anisotropic
point at γ1 = γ2 = L2/4a and γ3 = a2L2/4 (up to permutations of the axes of S3), setting

19For Bianchi IX model geometries one can define in general an additional function (other than W ) that

changes monotonically under the Cotton flow. We consider

F (t) =
1

γ2
1

+
1

γ2
2

+
1

γ2
3

,

which is bounded from below by 3/(γ1γ2γ3)
2/3 = 3(16π2/V )

4/3 for a three-sphere with volume V . The

lower bound is attained in the fully isotropic case γ1 = γ2 = γ3. F (t) becomes infinite when the sphere is

completely squashed in one or more directions; as such, it is a measure of the “shape entropy” of S3. Using

the Cotton flow (3.18), we obtain

dF

dt
= − κ2

wCS(γ1γ2γ3)3/2

»
(γ2 + γ3)(γ2 − γ3)2

γ2
1

+
(γ3 + γ1)(γ3 − γ1)2

γ2
2

+
(γ1 + γ2)(γ1 − γ2)2

γ2
3

–
and, therefore, F (t) changes monotonically. For wCS > 0, these properties of F (t) suffice to prove the

convergence of the flow lines to the fully isotropic fixed point regardless of initial conditions [46].
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for notational convenience

a =
√
−µ

3
. (6.13)

Then, explicit calculation shows that W = WCS + WEH (with µ = wCSL/κ
2
W ) takes the

following form at the two fixed points,

W iso =
8π2

wCS

(
1− 9a2 + 3a2ΛWL2

)
(6.14)

and

W aniso =
8π2

wCS

(
2 + 4a6 − 14a3 + 3a2ΛWL2

)
. (6.15)

Although ΛW does not appear in the normalized Ricci-Cotton flow equations, it enters into
W by contributing the same at all points (recall that the volume V is preserved in this
case). Consequently, the instanton action takes the value

Sinstanton =
4π2

|wCS|
(a− 1)2

(
4a4 + 8a3 + 12a2 + 2a+ 1

)
(6.16)

and it is independent of L, as expected. Notice that it vanishes when a = 1 (µ = −3),
as required, since the two fixed point coalesce and there is no instanton in this case. The
action is non-zero and positive for all other values µ < 0.

The axisymmetric solutions of the normalized Ricci-Cotton flow have been constructed
explicitly in section 4.4, but one should only use those branches that interpolate between
the two fixed points. The stability analysis performed in section 4.2 shows that for −3 <
µ < 0 the isotropic fixed point is absolutely unstable and the anisotropic is a saddle
point. Therefore, there can be only one flow line interpolating between the two fixed points
(corresponding to the axisymmetric solution we obtained) and the instanton has no moduli
other than L. Exactly the same conclusion holds for −6 3

√
2 < µ < −3, since the isotropic

fixed point is now absolutely stable and the anisotropic is a saddle point. The absence
of moduli in these cases can also be seen schematically in figures 4 and 5, respectively.
Thus, for all −6 3

√
2 < µ < 0 the instantons have enhanced SU(2) × U(1) isometry. The

situation changes drastically when µ < −6 3
√

2, since the isotropic fixed point is absolutely
stable and the anisotropic is absolutely unstable. In this case, we have several flow lines
interpolating between the two fixed points, as can also be seen schematically in figure 6,
and the instantons have an additional (real) modulus that labels these trajectories. The
physical interpretation of this modulus is nothing else but the geometric shape of S3 (there
is only one shape modulus, since the volume of space is held fixed by specifying L). Of
course, the instanton action is independent of all moduli.

The axisymmetric solution we have obtained in this case has enhanced SU(2) × U(1)
isometry, whereas the other ones should only have an SU(2) isometry group. They all
correspond to regular and complete metrics on R × S3, but we have not been able to
find them in closed form. They should be the analogue of the Atiyah-Hitchin metric for
Hořava-Lifshitz gravity when λ = −∞. Their explicit construction is an interesting open
mathematical problem.
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Finally, we turn to instantons that owe their existence to the presence of totally
anisotropic fixed points in the problem when µ < −6 3

√
2. They have no moduli (other

than their volume) since they connect a saddle point with a stable or an unstable fixed
point. These instantons also have SU(2) isometry but no higher symmetry.

The value of the superpotential for the totally anisotropic fixed points (see also sec-
tion 4.2) turns out to be

W total aniso =
8π2

wCS
(10 + 3a2ΛWL2) . (6.17)

Therefore, the instanton that interpolates between these points and the totally isotropic
fixed point has action

Sinstanton =
72π2

|wCS|
(a2 + 1) . (6.18)

It never becomes zero because these points cease to exist before they have the chance to
meet with the isotropic point. Similarly, the instanton that interpolates between the totally
anisotropic and the axially symmetric anisotropic fixed points has action

Sinstanton =
16π2

|wCS|
(a3 − 4)(2a3 + 1) . (6.19)

The latter vanishes when a3 = 4 (µ = −6 3
√

2), as the end-points coalesce in this case, and
it is positive definite otherwise.

General Ricci-Cotton flow. The Ricci-Cotton flow with general couplings (provided
that λ < 1/3 and ΛW is non-negative) was found to exhibit two fixed points when µ < 0,
in which case there are instanton solutions in Hořava-Lifshitz gravity. Recall that the
isotropic point appears at γ1 = γ2 = γ3 = 1/4ΛW and the anisotropic point at γ1 =
36µ2/

(
µ2 + 27ΛW

)2 and γ2 = γ3 = 9/
(
µ2 + 27ΛW

)
, assuming the presence of an axial

symmetry γ2 = γ3 for all time.
Taking µ < 0, we define, for notational convenience, the non-negative number

a = − µ

3
√

ΛW
(6.20)

and evaluate the superpotential W = WCS + WEH at the two fixed points. Using µ =
wCS/κ

2
W , as defined in section 5, we obtain the following results

W iso =
8π2

wCS
(1− 6a) , W aniso =

16π2
(
5a4 − 54a2 + 9

)
wCS (a2 + 3)2

. (6.21)

Therefore, the instanton action turns out to be

Sinstanton =
12π2

|wCS|
(a− 1)2

(a2 + 3)2
(
2a3 + 7a2 + 24a+ 3

)
. (6.22)

Note that the action is manifestly positive-definite, as required, and vanishes when a = 1
(µ = −3

√
ΛW ), in which case the two fixed points coalesce and there is no instanton.
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Even in the presence of axial symmetry, which was used to simplify the analysis of
the general Ricci-Cotton flow equations, we have not been able to obtain the interpolating
solutions in closed form. Nevertheless, it is clear that a unique solution exists in this case,
for all µ < 0, which interpolates between the two fixed points. For 0 < a < 1 (−3

√
ΛW <

µ < 0) the isotropic fixed point is saddle and the anisotropic is absolutely stable, and,
therefore, there is a single flow line that connects the two. For a > 1 (µ < −3

√
ΛW ) the

isotropic fixed point is now absolutely stable and the anisotropic is a saddle point and,
therefore, the interpolating flow line is again unique. This can also be seen by inspecting
figures 12 and 13.

The solutions at hand have no moduli at all.20 They correspond to instantons with
SU(2)×U(1) isometry. It will be very interesting to construct them explicitly. Also, other
more general solutions with strict SU(2) isometry are expected to exist in the general case,
with γ1 6= γ2 6= γ3, but their investigation will not be pursued in the present work. We only
note here that all anisotropic fixed points of the Ricci-Cotton flow equations with general
couplings seem to be axially symmetric even when γ1 6= γ2 6= γ3 at generic points. Thus,
we expect to have instanton solutions without axial symmetry that interpolate between
these fixed points, serving as the Hořava-Lifshitz analogue of the Atiyah-Hitchin metric.
They should depend only on one free parameter.

The special case ΛW = 0. Finally, note that as ΛW is taken to zero, while keeping
µ fixed in the general system of Ricci-Cotton flow equations, W iso blows up to infinity,
whereas W aniso remains finite, tending to the value 80π2/wCS. Consequently, Sinstanton

becomes infinite and one may consider it a problem, since instantons must have finite
action. However, in this case, there is no contradiction, since the isotropic configuration
ceases to be (strictly speaking) a fixed point when it is pushed away to infinity by setting
ΛW = 0 and, therefore, the flow line that interpolates between the two points (see figure 15)
does not qualify as instanton solution of the theory. In conclusion, there are no instanton
solutions when ΛW = 0.

This completes our analysis of SU(2) gravitational instantons of Hořava-Lifshitz theory
with anisotropy scaling parameter z = 3. We have obtained complete classification of all
explicit and implicit solutions that exist for all different couplings of the theory satisfying
the detailed balance condition, provided that λ < 1/3 and ΛW > 0. By the same token,
the variant of the theory with scaling parameter z = 2 does not exhibit any such instanton
solutions. The results are on par with the classification of instantons with SU(2) isometry
in Einstein gravity. The only missing technical part is the explicit construction of some of
these instanton metrics.

We end this section with some general remarks concerning the existence and descrip-
tion of instanton metrics in Hořava-Lifshitz gravity without relying on isometry groups,
such as SU(2). According to definition, they should be trajectories of the Ricci-Cotton
flow equations interpolating between any two solutions of three-dimensional topologically

20Even the size of S3 at the isotropic fixed point is not free, as L was free to vary in the normalized flow,

but it is determined by the parameters of the differential equations. Thus, it is not surprising that the

instanton action depends on ΛW (through a) in this case.
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massive gravity that provide the fixed points. The landscape of vacua of topologically
massive gravity is not known completely21 and, therefore, it is difficult to make explicit
general constructions. Also, it is rather difficult to investigate the general behavior of the
flow equations by standard mathematical techniques, since they are third-order in space
derivatives and even the short-time existence of solutions is difficult to establish in all
generality. The formation and characterization of singularities is another related general
open problem for these flow equations. Addressing these issues successfully will lead to
further advances.

7 Generalization to higher dimensions

In this section we make a few remarks concerning higher-dimensional generalizations of
Hořava-Lifshitz theory and the correspondence of its instanton solutions to the theory of
higher-order geometric flows.

7.1 Hořava-Lifshitz gravity in 4 + 1 dimensions

The general aspects have been reviewed in section 2 for all space-time dimensions. The
theory is power-counting renormalizable when z = D using the appropriate superpotential
W . Let us concentrate onD = 4 for definiteness, so thatW is the action of four-dimensional
gravity with higher-order corrections of the general form [7]

W [g] =
∫

d4x
√
g
(
αCijk`C

ijk` + βR2 + γ(R− 2ΛW )
)
. (7.1)

Here, Cijk` is the Weyl tensor and R is the Ricci scalar curvature of a four-dimensional
Riemannian metric g that describes the geometry of spatial slices in a five-dimensional
space-time with topologyM5 = R×M4. Here, there is no need to include the term RijR

ij

because it can be removed by a Gauss-Bonnet topological term, adjusting the coefficients
α and β.

Thus, Hořava-Lifshitz gravity in 4 + 1 dimensions with anisotropic scaling z = 4 is
defined by the action

S =
2
κ2

∫
dt d4x

√
gNKijG

ijk`Kk` −
κ2

8

∫
dtd4x

√
gN

(
1
√
g

δW

δgij

)
Gijk`

(
1
√
g

δW

δgk`

)
(7.2)

using the extrinsic curvature Kij ofM4 and the metric Gijk` of superspace with parameter
λ. Also, following the general discussion of section 2, we will also take λ < 1/4 so that the
Euclidean counterpart of this action is manifestly bounded from below.

The theory with detailed balance is completely specified by the choice of W [g]. It is
given by the general expression (7.1) in D = 4; other appropriate choices of W should be
made in higher dimensions to render the theory power-counting renormalizable. We also

21Note, however, the recent work [64] that develops techniques to solve the field equations of topologically

massive gravity (and other massive-gravity models) for three-dimensional geometries admitting a Killing

vector field. Older results in this direction are neatly summarized in [65] although most of them focus on

vacua with negative cosmological constant.
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note for completeness that if higher-order curvature functionals are chosen in D spatial
dimensions so that z > D, the resulting gravitational theory will be power-counting su-
perenormalizable [7]. Such generalizations will not be considered at all in the present work.

Next, we illustrate the structure of the resulting equations by considering the simplest
higher-dimensional case with z = D = 4.

7.2 Bach flow and its variants

Solutions of the Euclidean five-dimensional Hořava-Lifshitz gravity can be obtained from
the geometric-flow equation

1
N(t)

∂tgij = ± κ2

2
√
g
Gijk`

δW [g]
δgk`

+∇iξj +∇jξi (7.3)

that describes deformations of the four-dimensional Riemannian metric gij . The lapse
function N(t) can be set equal to 1 by time redefinition.

The details can be worked out using the following identity, which is well known among
people working in conformal Weyl gravity,

Bij = − 1
√
g

δWWeyl

δgij
, (7.4)

where
WWeyl =

∫
d4x
√
g Cijk`C

ijk` (7.5)

is the quadratic Weyl tensor action functional and

Bij = ∇k∇`Cikj` +
1
2
Rk`C

ikj` (7.6)

is the so called Bach tensor [66]. It is a fourth-order symmetric and traceless tensor that
clearly vanishes when the four-dimensional metric is conformally flat. The Bach tensor
provides the analogue of the Einstein tensor in the field equations of conformal Weyl
gravity, and, as such, it is also covariantly conserved.

Thus, for this particular choice of superpotential W , the corresponding geometric flow
takes the form

∂tgij = ∓κ
2

2
Bij +∇iξj +∇jξi , (7.7)

and it can be naturally called Bach flow. Its fixed points (modulo reparametrizations)
are the vacuum solutions of conformal Weyl gravity and include the isotropic (constant
curvature) metric on S4. It is mathematically more interesting to pick the sign that drives
the evolution towards the fixed points rather that away from them. Although this is a
higher-order flow, it is better behaved mathematically than the third-order Cotton flow.
Thus, one should investigate it in detail and attempt to construct solutions. It is a new
geometric flow that has not appeared in the mathematics literature before, to the best
of our knowledge. By restricting it to Kähler manifolds, it might be also interesting to
compare it (and the variants which are discussed below) with other well known geometric
flows of fourth-order, such as the Calabi flow [67].
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If there is an additional contribution to W given by the quadratic Ricci scalar curva-
ture action,

WR2 =
∫

d4x
√
g R2 , (7.8)

it will account for the gradient term

H ij = − 1
√
g

δWR2

δgij
(7.9)

with
H ij = 2gij∇k∇kR− 2∇i∇jR− 2RRij +

1
2
gijR2 . (7.10)

This tensor is symmetric but not traceless. Then, the complete flow equation will be a vari-
ant of the Bach flow receiving contributions from Bij and H ij , which are both fourth-order.
Of course, in the general case, there will also be subleading curvature terms associated with
the Einstein tensor Gij by adding the four-dimensional Einstein-Hilbert action (possibly
with a cosmological constant) to the superpotential W .

Instanton solutions will correspond to flow lines interpolating between different vacua of
four-dimensional conformal Weyl gravity (and its deformations thereof), but again it seems
rather difficult to derive explicit general results. Using four-dimensional model geometries
may provide some simple and tractable mini-superspace models that are worth studying
in the future.

Similar considerations apply to all higher-dimensional generalizations of Hořava-
Lifshitz gravity. In D + 1 dimensions, the non-relativistic gravitational theory becomes
power-counting renormalizable when the anisotropic scaling parameter is z = D. Then, for
the appropriate choice of W , we obtain geometric flows of order D that describe instanton-
like configurations of the Euclidean (D + 1)-dimensional theory when λ < 1/D. This
framework hosts very naturally a whole hierarchy of geometric flows and provides a reason
to study them.

8 Conclusions and discussion

We examined the Euclidean version of Hořava-Lifshitz gravity satisfying the detailed bal-
ance condition and described its instanton solutions as flow lines interpolating between
different fixed points of a new class of geometric evolution equations, which are first-order
in time. Although the specific couplings implied by detailed balance are rather restric-
tive (and sometimes appear to be problematic), the general connection between instanton
solutions and geometric flows is rather interesting in many respects. Focusing to 3 + 1 di-
mensions, where the potential term is derived from a superpotential W given by the action
functional of three-dimensional topologically massive gravity and the anisotropy scaling
parameter of the theory is z = 3, the driving curvature terms are provided by a certain
combination of the Cotton and Ricci tensors as well as the cosmological constant term.
The geometric-flow equations, called Ricci-Cotton flow, were shown to exhibit an entropy
functional that is given by W and can be used to put a lower bound on the Euclidean
Hořava-Lifshitz gravitational action.
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Our construction requires λ < 1/3 and ΛW > 0, but otherwise the parameters of the
theory can be arbitrary within the class of detailed balance couplings. Fixed points of
the flow are provided by classical solutions of the three-dimensional topologically massive
gravity and they correspond to static solutions of the (3 + 1)-dimensional theory. As such,
they include constant-curvature isotropic metrics in three dimensions as well as anisotropic
configurations obtained by balancing the deformation effect of the Cotton and Ricci ten-
sors. Since there is no general classification of these metrics, the landscape of fixed points
remains largely unexplored to the best of our knowledge. Running solutions represent gen-
uine time-dependent configurations, but they are even more difficult to investigate in exact
terms. Thus, the Ricci-Cotton flow appears to be a rather complex system of equations
that deserves proper mathematical study on general grounds. Addressing these problems in
all generality remains out of reach at the moment, but some simple mini-superspace trun-
cations of the equations help to obtain concrete results in simple cases that are interesting
both physically and mathematically.

We found that the homogeneous model geometries on three-manifolds provide consis-
tent truncation of the Ricci-Cotton flow equations. In particular, focusing on the Bianchi
IX model geometries on S3, so that the corresponding gravitational instantons exhibit
SU(2) group of isometries, we were able to classify the fixed points of the flow (isotropic as
well as anisotropic) and study their stability properties for a variety of different couplings.
Some special solutions with axial symmetry (associated with SU(2)×U(1) isometry group)
were constructed explicitly and their space-time interpretation was discussed in analogy
with the gravitational instanton solutions of ordinary gravity. In particular, we have arrived
at complete classification of the instanton solutions with SU(2) isometry. It remains to be
seen whether more general running solutions can be constructed explicitly beyond their
qualitative description based on the phase portraits of the flow. Also, it will be interesting
to find other consistent reductions of the flow equations beyond the class of homogeneous
geometries, but we have not yet been able to obtain any concrete results in this direction.

Another possibility that has not been discussed at all in this paper is to consider super-
renormalizable versions of Hořava-Lifshitz gravity in 3 + 1 dimensions with anisotropic
scaling z = 4. These are generated by a superpotential W — other than the action func-
tional of topologically massive gravity — which contains higher-order Ricci curvature terms
such as RijRij and R2 on top of the cosmological Einstein-Hilbert action in three dimen-
sions [7]. In this case, the instanton solutions will be described by geometric flows in three
dimensions with fourth-order derivatives in their driving curvature terms. The resulting
equations appear to have some nice mathematical properties (compared to the third-order
Ricci-Cotton flow) and they also seem to admit consistent reduction to an autonomous
system of ordinary differential equations for homogeneous model geometries. A particular
choice of such W is provided by the action of the so called “new massive gravity” in three
dimensions that contains both terms RijRij and R2 with relative coefficient −3/8 [68].
We intend to investigate elsewhere the corresponding fourth-order flows [69], together with
the associated instanton solutions, and examine the privileged role (if any) of new massive
gravity in this context.

Higher-dimensional generalizations were also briefly discussed. It was pointed out that
instanton solutions exist in all dimensions and their defining equations provide new classes
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of geometric-flow equations, such as the Bach flow in four dimensions. In general, the
driving curvature terms of such flows contain spatial derivatives of order z (equal to the
anisotropy scale parameter that renders the higher-dimensional Hořava-Lifshitz gravity
power-counting renormalizable) and they describe metric deformations on spatial slices of
dimension D = z. The hierarchy of such flows has not been considered in the literature
before and they certainly pose several interesting questions that are worth studying in
the details. They should also be of interest to the mathematics community working on
geometric analysis. In all cases, the non-relativistic theory of gravity provides a general
framework to embed geometric evolution equations. The situation should be compared to
general relativity and string theory, where such embedding is only possible in some very
special cases, such as the Ricci flow on homogeneous three-geometries that can be inter-
preted as self-dual gravitational instantons in four dimensions or using some appropriately
chosen higher-dimensional plane-wave gravitational backgrounds.

The off-shell formulation of string theory based on the world-sheet renormalization
group equations provides a natural framework for the appearance of the Ricci flow (and
other closely related geometric-flow equations) in gravitational physics. In this context,
closed string tachyon condensation is described by transitions from one fixed point to
another more stable fixed point. Thus, the lines of the Ricci flow resemble instanton
transitions among different vacua of the string landscape. In Hořava-Lifshitz gravity, on
the other hand, the Ricci flow (and its variants) describe the instantons of the theory
when the anisotropic scaling is z = 2. Therefore, it seems interesting to investigate further
this aspect while searching for possible embedding of the non-relativistic theory of gravity
into a more fundamental theory. Likewise, non-relativistic theories of gravity with higher
anisotropic scaling, in particular z = D, and their instanton solutions may admit a similar
description and interpretation in terms of a more fundamental theory. It is not yet known,
however, whether the geometric evolution equations we are considering here can also arise
as renormalization-group equations in a class of quantum field theories.

Finally, another interesting problem is the use of instantons for the quantization of
Hořava-Lifshitz gravity. One possible line of work in this direction is the path integral
approach over Euclidean space-times with applications to quantum cosmology in the spirit
of Hartle-Hawking proposal. The quantization of mini-superspace models appears to be
tractable, at least for homogeneous (but generally non-isotropic) geometries, and requires
special attention. They can also provide some non-perturbative information about the
quantum theory and a testing bed for comparison with the quantization of ordinary gravity.

It remains to be seen whether the non-relativistic theory of gravity is a viable alter-
native to Einstein gravity at very short distances. However, the simplified version of the
theory with detailed balance can also play another role in physics, serving as landscape
explorer of the vacuum structure of relativistic field theories determined by W (with topo-
logically massive gravity being just an example). It provides an effective particle model to
describe transitions among different vacua through instantons. It also offers a dynamical
principle for vacuum selection that is worth exploring further in all generality using the
powerful tools of geometric flows and associated entropy functions. Advocating this point
of view introduces a new twist to the subject and departs from the idea (and the problems
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that seem to accompany it) that Hořava-Lifshitz gravity is the ultra-violet completion of a
fundamental theory. It could have also been used from the very beginning as an alternative
motivation for the present work.

We hope to return to these topics elsewhere in the near future.
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[36] I. Bakas, F. Bourliot, D. Lüst and M. Petropoulos, Mixmaster universe in Hořava-Lifshitz
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