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Abstract

The Dialogue for Reverse Engineering Assessments and Methods (DREAM) project was initiated in 2006 as a
community-wide effort for the development of network inference challenges for rigorous assessment of reverse
engineering methods for biological networks. We participated in the in silico network inference challenge of
DREAM3 in 2008. Here we report the details of our approach and its performance on the synthetic challenge
datasets. In our methodology, we first developed a model called relative change ratio (RCR), which took advantage
of the heterozygous knockdown data and null-mutant knockout data provided by the challenge, in order to identify
the potential regulators for the genes. With this information, a time-delayed dynamic Bayesian network (TDBN)
approach was then used to infer gene regulatory networks from time series trajectory datasets. Our approach
considerably reduced the searching space of TDBN; hence, it gained a much higher efficiency and accuracy. The
networks predicted using our approach were evaluated comparatively along with 29 other submissions by two
metrics (area under the ROC curve and area under the precision-recall curve). The overall performance of our
approach ranked the second among all participating teams.

Keywords: Gene regulatory network (GRN); Dialogue for Reverse Engineering Assessments and Methods (DREAM);
Relative change ratio (RCR); Time-delayed dynamic Bayesian network (TDBN)
Introduction
Recent development of high-throughput technologies such
as DNA microarray and RNA-Seq (i.e., next-generation
sequencing of RNA transcripts) has made it possible for bi-
ologists to simultaneously measure gene expression at a
genome scale. High dimensional datasets generated using
such technologies provide a system-wide overview of how
genes interact with each other in a network context. How-
ever, reconstruction of complex networks of genetic inter-
actions and unraveling of unknown relationships among
genes based on such high-throughput datasets remain a
very challenging computational problem.
Various mathematical methods and computational ap-

proaches have been proposed to infer gene regulatory
networks (GRN) from DNA microarray data, including
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Boolean networks [1], information theory [2], differential
equations [3], and Bayesian networks [4-6]. However, the
relative performances among these algorithms are not well
studied because computational biologists must repeatedly
test them on large-scale and high-quality datasets obtained
from different experimental conditions and derived from
different networks. Unfortunately, experimental datasets
of customized size and design are usually unavailable and
most biological networks are unknown or incomplete.
Since each of these methods uses different datasets and
comparison strategies, it is difficult to systematically valid-
ate the interactions predicted by different computational
approaches.
Due to limited knowledge of experimentally validated

biological networks of gene interactions, simulated data
generated artificially from in silico gene networks pro-
vide a ‘gold’ standard to systematically evaluate the
performance of different genetic networks inferring al-
gorithms [7]. In silico networks are composed of a
known network topology that determines the structure
en Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
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and model for each of the interactions among the
genes. In such simulated data, all aspects of the net-
works are under full control and different types of data
and levels of noise are allowed. Many methods have
been proposed for creating in silico genetic networks,
including continuous [8], probabilistic [9], and dynamic
[10] approaches.
The performance of network inference algorithms has

rarely been assessed and compared in terms of their
strength and weakness using rigorous metrics [11,12]. As
a community effort to address the deficiency in GRN re-
construction methodology, a Dialogue for Reverse Engin-
eering Assessments and Methods (DREAM) project was
initiated in 2006 [11] to catalyze the interaction between
experiment and theory, specifically in the area of cellular
network inference and quantitative model building (http://
www.the-dream-project.org/). One of the key goals of
DREAM is the development of community-wide chal-
lenges for objective assessment of reverse engineering
methods for biological networks [13]. The in silico net-
work inference challenge of DREAM3 was designed to ex-
plore the extent to which underlying gene networks of
various sizes and connection densities can be inferred
from simulated data [14]. In participation of this chal-
lenge, we developed a novel approach of combining
relative change ratio (RCR) and time-delayed dynamic
Bayesian network to deduce GRNs from synthetic datasets
for Escherichia coli and Saccharomyces cerevisiae (budding
yeast) provided by the challenge. Among 29 participating
teams, the performance of our approach was second only
to the best performing method in the 10-node and the 50-
node network sub-challenges [14]. Here we present the
details of our approach and its performance on the chal-
lenge datasets.

Materials and methods
Challenge datasets
The in silico network inference challenge was structured
as three separate sub-challenges with networks of 10, 50,
and 100 genes (nodes), respectively [13]. For each sub-
challenge, five in silico networks (two for E. coli and
three for S. cerevisiae) were created as benchmark or
gold standard networks. The rationale for this design
was to evaluate the consistence of inference methods in
predicting the topology of five independent networks of
the same type and size. These benchmark networks were
generated by Daniel Marbach of Ecole Polytechnique Féd-
érale de Lausanne through extracting sub-networks with a
topology of connections from the currently accepted E.
coli and S. cerevisiae GRNs and imbuing the networks
with dynamics using a thermodynamic model of gene
expression [8]. The in silico ‘measurements’ were gener-
ated by continuous differential equations which were
deemed reasonable approximations of gene expression
regulatory functions [8,14]. A small amount of Gaussian
noise was added to these values to simulate measure-
ment error [14].
For each sub-challenge network, three experimental

gene expression datasets were simulated for both E.
coli and S. cerevisiae: heterozygous knockdown, null-
mutants, and time series trajectories. The heterozygous
knockdown dataset contained the steady state gene ex-
pression levels for the wild-type and the heterozygous
knockdown (a gene reduced by half ) strains for each
gene. The null-mutant dataset contained the steady
state levels for the wild-type and the null-mutant (ex-
pression of a gene set to zero) strains. Time series
trajectories dataset contained time courses of the net-
work recovering from several external perturbations.
All of the datasets can be downloaded at the DREAM
Project website: http://wiki.c2b2.columbia.edu/dream/
index.php/D3c4.

Relative change ratio
A GRN represents the interactions of all genes in the
network. For a given GRN structure, the change of the ex-
pression level of one gene results in changes of the expres-
sion levels of all others genes regulated by this gene. If a
gene plays an important role in the GRN, knockout or
null-mutation of an important gene (key gene) leads to
more significant changes of the expression levels of other
genes that are directly interacted with the hub gene. Thus,
the wild-type, knockout, and null-mutant datasets provide
useful information (prior knowledge) that we can use for
improving the accuracy of GRN inference. Here we intro-
duce the RCR method to preprocess and analyze the given
datasets to identify the key genes that can be used for
further GRN inference. The RCR method can reveal the
relationships between a knockout gene and the influ-
enced genes so it can also be directly used for inference
of a GRN.
For each gene in the given dataset, we took the gene ex-

pression value of the wild-type as reference and calculated
the relative change ratios of gene expression levels com-
pared to the change range of the gene, as defined in Equa-
tion 1.
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where, Ri,j represents the relative change ratio of gene j
when gene i is knocked out. Gi,j is the gene expression
value of gene j when gene i is knocked out. Wj is the
wild-type value of gene j, and Max(G:,j) −Min(G:,j) means
the change range of gene j for all knockout genes. If i = j,
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Figure 1 Schematic example for RCR method applied to a gene knockout dataset with an RCR threshold of 0.30.
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Ri,j will be set as 0 since this gene has already been
knocked out.
If the change ratio is more than a chosen threshold

(e.g., 0.30), we select this gene as a potential key gene
and assume that it plays an important role in the
network. If the change in absolute gene expression
value compared to the reference is less than a
threshold (e.g., 0.05) which can be defined by the user,
this gene is considered as noise and ignored from the
potential regulatory genes list. For example, in
Figure 1, when gene 1 has been knocked out (the
expression value will be set as 0), the change ratios of
genes 2, 4, 5, 7, and 8 are more than 30 %, then we
consider these genes as genes potentially regulated by
knockout gene 1.
If the absolute change of gene expression values

compared to their own reference value is less than a
chosen threshold (e.g., 0.05), even though the relative
change ratio is more than 0.30, we still consider these
Figure 2 A basic building block of DBN.
genes as noise and remove them from the regulated
genes list.

Dynamic Bayesian network
Dynamic Bayesian network (DBN) analysis is the tem-
poral extension of Bayesian network analysis. It is a gen-
eral model class that is capable of representing complex
temporal stochastic processes. An example of basic DBN
block is shown in Figure 2.
A DBN is defined as a pair (B0, B1) representing the

joint probability distribution over all possible time series
of variables X = {X1, X2,…Xn}, where Xi(1 ≤ i ≤ n) repre-
sents the binary-valued random variables in the net-
work. In addition, the lowercase xi (1 ≤ i ≤ n) denotes
the values of variable Xi. It is composed of initial states
of a Bayesian network B0 = (G0, Θ0) and a transition
Bayesian network B1 = (G1, Θ1), where B0 specifies the
joint distribution of the variables in X(0) and B1 repre-
sents the transition probabilities Pr{X(t + 1)|X(t)} for all
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t. In slice 0, the parents of Xi(0) are assumed to be those
specified in the prior network B0, which means Pa(Xi

(0))⊆ X(0) for all 1 ≤ i ≤ n; in slice t + 1, the parents of
Xi(t + 1) are nodes in slices t, Pa(Xi(t + 1))⊆ X(t) for all
1 ≤ i ≤ n and t ≥ 0; the connections only exist between
consecutive slices. The joint distribution over a finite
list of random variables X(0) ∪ X(1) ∪ ⋯ ∪ X(T) can be
expressed as [15,16]

Pr x 0ð Þ; x 1ð Þ;…; x Tð Þf g
¼ Pr x 0ð Þf g

YT−1
t¼0

Prfx t þ 1ð Þjx tð Þg

¼
Yn
i¼1

Prfxi 0ð Þjpa Xi 0ð Þð Þg �
YT−1
t¼0

Yn
j¼1

Pr xj Xj t þ 1ð Þ� �� �

ð2Þ

Kevin Murphy and co-workers [17,18] implemented a
Bayesian network toolbox (BNT), in which the actual
structure learning was performed by calling one of the
BNT functions learn_struct_dbn_reveal, which used the
REVEAL algorithm [4].

Time-delayed dynamic Bayesian network
In the traditional DBN proposed by [17,18], the effect-
iveness is not sufficient for two main reasons. The first
is the extremely high computational cost. In Murphy's
implementation, all the genes in the dataset are consid-
ered as parents (regulators) of a given target gene, which
makes it impossible to model large-scale gene networks
because of exponentially increasing computational time
when the algorithm tries to find all of the subsets of
parent genes given a target gene. Usually, the number of
genes is restricted to less than 30, and more genes will
be too much time consuming according to our testing.
The second is that biologically relevant transcriptional
time lags cannot be determined in Murphy's BNT,
which reduces the inference accuracy of gene regulatory
networks.
To address the above limitations of traditional DBN,

Zou and Conzen [9] introduced a time-delayed dynamic
Bayesian network (TDBN)-based analysis method, which
can reconstruct GRNs from time series gene expression
data. The improved method can dramatically reduce com-
putational time and significantly increased accuracy. Ac-
cording to [9,10], most transcriptional regulators exhibit
either an earlier or simultaneous change in the expression
level when compared to their targets. In this way, one can
limit the potential parents of each target gene and thus
dramatically decrease the computational cost. The other
improvement by Zou and Conzen [9] is to perform an es-
timation of the transcriptional time lag between potential
regulators and their target genes. The time difference
between the initial expression change of a potential
regulator and its target gene represents a biologically
relevant time period.
The initial expression change of a potential regula-

tor is expected to allow a more accurate estimation
of the transcriptional time lag between potential
regulators and their targets, because it takes into ac-
count variable expression relationships of different
regulator-target pairs. These improvements in [9] are
related to transcriptional time-delayed lags between
regulators and target genes, so it can also be consid-
ered as a time-delayed DBN and directly used to
predict networks from time series gene expression
data, such as the trajectory time series data in the
DREAM3 challenge.

Inferring networks using a method that combines RCR
and TDBN
In this combined method, we first used the simple RCR
model to find key genes from the given heterozygous
knockdown data and null-mutant knockout data. These
key genes have a higher potential than other genes to
play critical roles in simulated GRNs. After the data was
preprocessed, we constructed a gene interaction network
that indicated potential regulation among the selected
key genes. The TDBN method was then used to infer an-
other GRN from time series trajectory datasets. If gene
interactions exist in both networks inferred by RCR and
TDBN methods, we choose these interactions as our
predicted edges in our final inferred networks. The pre-
dicted networks were assessed against the benchmark
networks [13,14].

Results and discussion
Inferred networks as compared with the true networks
In this work, our approach was applied to inferring
GRNs in three different ways: For in silico networks with
10 genes, the gene regulatory networks were inferred
only by the RCR method from steady state data, in which
we used mainly the gene knockout dataset; for networks
with 50 genes, the networks inferred using RCR and
TDBN separately were combined into the final networks;
for networks with 100 genes, we used only TDBN to re-
construct gene networks from time series trajectory gene
expression dataset. In doing this, we sought to determine
which method had better performance in inferring gene
regulatory networks.
Our approach successfully inferred networks using the

synthetic datasets provided by Marbach and his col-
leagues [8,13,14]. For example, one of the inferred E. coli
10-node GRN is shown in Figure 3, where seven match-
ing edges are correctly identified by our model, in com-
parison to the corresponding true network. Our model
correctly identified directionality in each of the matching



Figure 3 Comparison between a predicted gene regulatory network (A) and the true network (B) for E. coli. Network size = 10 nodes.
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edges. One of the predicted 50-node yeast GRN is
shown in Figure 4, and the matching network is shown
in Figure 5. There are 52 edges correctly inferred by
our method, out of a total of 77 edges in the true
network.
Figure 4 An inferred gene regulatory network for the yeast S. cerevis
Performance of network inference from synthetic
datasets
The performance of each method was evaluated by two
metrics: the area under the precision-recall (AUPR) curve
and the area under the receiver operating characteristic
iae. Network size = 50 nodes.



Figure 5 Matching edges between inferred and true networks. The 52 correct edges in the inferred gene regulatory network (shown in
Figure 4) that matched with the true network of the yeast S. cerevisiae (network size = 50 nodes).
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(AUROC) curve for the whole set of edge predictions for
15 networks [13,14]. Precision is a measure of fidelity,
whereas recall is a measure of completeness. Recall (R)
is defined as Ce

CeþMeð Þ
�

and precision (P) as Ce
CeþFeð Þ

�
,

where Ce is the number of correct edges, Me is the total
number of missed edges (missed errors), and Fe is the
number of false alarm errors. A missed error is defined
as the connection between genes that exists in true
networks, but the inference algorithms miss or make
wrong orientations. A false alarm error is the connection
that the inference algorithms create but does not exist in
true networks.
A P value is the probability that a given or larger area

under the curve value is obtained by random ordering of
the T potential network links. An overall P value is the
geometric mean of the n individual P values, calculated

as p
1
� p

2
�…� p

n

� �1=n
. An overall AUROC P value rep-

resents the geometric mean of the five AUROC P values
(Ecoli1, Ecoli2, Yeast1, Yeast2, and Yeast3). An overall
AUPR P value is the geometric mean of the five AUPR
P values.
To calculate AUPR and AUROC, each predicted net-

work was submitted in the form of ranked lists of pre-
dicted edges. The lists were ordered according to the
confidence of the predictions so that the first entry cor-
responded to the edge predicted with the highest confi-
dence. In other words, the edges at the top of the list
were believed to be present in the network, and the
edges at the bottom of the list were believed to be absent
from the network [13].



Table 1 Assessment metrics for the first set of E. coli and yeast networks inferred using our approach

Metrics Ecoli1_10 Yeast1_10 Ecoli1_50 Yeast1_50 Ecoli1_100 Yeast1_100

AUPR 5.43E − 01 7.71E − 01 6.71E − 01 4.86E − 01 1.45E − 02 1.55E − 02

AUROC 7.94E − 01 9.44E − 01 8.62E − 01 8.35E − 01 5.21E − 01 4.61E − 01

P_AUPR 1.34E − 04 2.09E − 06 8.57E − 55 3.91E − 39 2.27E − 01 8.91E − 01

P_AUROC 5.47E − 04 1.29E − 06 3.19E − 20 4.64E − 18 2.02E − 01 9.60E − 01

Overall AUPR 1.09E − 04 2.54E − 46 4.83E − 03

Overall AUROC 2.10E − 04 8.19E − 18 2.13E − 02

The network name consists of two parts: organism name and network set number (i.e., Ecoli1 or Yeast1) followed by network size (10, 50, or 100 genes). The two
parts are separated by ‘_’.
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The inferred GRNs of different sizes (10, 50, and 100
genes) for both E. coli and yeast were evaluated by the
above metrics. The larger scores of AUPR and AUROC
and the smaller P values of AUPR and AUROC indicate
the greater statistical significance of the prediction
(Table 1). The metrics of RCR and TDBN inferred net-
works from the 10- and 50-gene datasets were ranked
second among all 29 teams participating in the DREAM3
challenge. The RCR and TDBN inferred networks from
the 100-gene dataset were ranked at the 15th place. The
overall performance of our methods for all three-sized
networks ranked second out of all participating teams in
the DREAM3 challenge.

Role of RCR and TDBN in network inference
In general, our predictions of networks with 10 and 50
genes were better than those of 100-gene networks. In
most cases, predictions of E. coli networks were better
than those of the yeast networks, with the exception of
Yeast1 (Table 2). Based on these results, RCR appears to
increase the fidelity of network inference more than
using TDBN alone. This might explain why the per-
formance of inferred networks with 100 genes was not
as good as with size 10 and size 50, because only TDBN
was used to infer networks instead of combining prior
knowledge which would be gained from preprocessing
data by RCR.
To better understand the role of RCR in GRN inference,

we used the networks with 10 genes as an example and
Table 2 Overall performance of our approach for predicting a

Size Metrics Ecoli1 Ecoli2

10 AUPR 0.544 0.748

AUROC 0.794 0.856

50 AUPR 0.671 0.672

AUROC 0.862 0.842

100 AUPR 0.015 0.052

AUROC 0.521 0.544

The AUPR and AUROC metrics for the first set of networks (Ecoli1 and Yeast1) are re
compared the performance of all three methods: RCR
(using only knockout data), TDBN (using time series data
without four perturbations), and the combined method
(using knockout results as prior knowledge and then run-
ning TDBN with time series data). The AUPR, AUROC,
and overall score (−0.5 × log10(P_AUPR × P_AUROC)) re-
sults obtained for the five datasets in the networks with 10
genes are shown in Figure 6A,B,C, respectively. The three
metrics demonstrate that for all five tested datasets, both
RCR and the combined method had better performance
than TDBN. The combined method was expected to have
better performance than the RCR method because the
RCR results could provide prior knowledge for TDBN.
For three testing datasets (Ecoli2, Yeast1, and Yeast3), the
combined method performed better than RCR. But the
combined method did not perform as well for the other
two datasets (Ecoli1 and Yeast2). Therefore, whether RCR
or the combined method has better performance depends
on specific datasets. Such an observation can be explained
by examining the algorithm in the TDBN method. Even
though we specified ‘parent regulators’ as prior knowledge
in TDBN to narrow down the search space of regulators,
TDBN still calculated its own ‘parents’ based on simul-
taneously altered time series genes and combined two
sets of parents as one group. Thus, TDBN in the com-
bined method always inferred more connections than
RCR, which might result in higher false positive rates.
How to take advantage of RCR-inferred prior knowledge
in the method combining RCR and TDBN to improve
ll five sets of networks of different sizes

Yeast1 Yeast2 Yeast3

0.771 0.352 0.493

0.944 0.590 0.715

0.486 0.367 0.381

0.836 0.688 0.728

0.016 0.046 0.044

0.461 0.576 0.428

ported in Table 1.



Figure 6 Performance comparison between RCR, TDBN, and
combined methods for the 10-node network inference. As
evaluated by three metrics. (A) AUPR, (B) AUROC, and (C) an overall
score defined as −0.5 × log10(P_AUPR × P_AUROC).
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the performance of GRN inference remains a challen-
ging research topic that requires further investigations.
Impact of RCR threshold on network inference accuracy
In the above analyses, we chose an empirical value of
0.30 as the RCR threshold, which implies that a gene is a
potential key gene and plays an important role in the
network if its change ratio is greater than 0.30. However,
it is noteworthy that different RCR thresholds may affect
the accuracy of network inference. To investigate the im-
pact of a chosen RCR threshold on the prediction accur-
acy, we used the networks with 10 genes as an example
and calculated both AUPR and AUROC P values, denoted
as P-AUPR and P-AUROC, corresponding to 14 different
RCR thresholds ranging from 0.05 to 0.70. As shown in
Figure 7A,B, both P-AUPR and P-AUROC values were
small when a RCR threshold was between 0.15 and 0.40.
Furthermore, we also calculated the overall score −0.5 ×
log10(P_AUPR × P_AUROC) to evaluate the impact of
RCR values on the performance. This score was used by
the DREAM3 challenges to assess the performance of
all participating teams. As shown in Figure 7C, the RCR
threshold of 0.25 gave the best performance and it was
very close to the empirical RCR threshold we used for
GRN inference for the DREAM3 challenges.
Conclusions
In this study, a novel relative change ratio method was
proposed to preprocess the null-mutant steady state
data in order to find the key genes and build GRNs, in
which these selected key genes have a higher potential
than other genes to play very critical roles. Then, TDBN
was used to infer GRNs from time series trajectory data,
which were combined with previous knowledge gained
in the initial step. Finally, the inferred networks were
evaluated by using AUPR and AUROC metrics for the
whole edge predictions for a network. The overall pre-
diction results suggest that our approach was able to
infer gene regulatory networks from in silico DREAM
challenge data very efficiently and accurately in com-
parison with other participating teams. We have confi-
dence that the DREAM project will eventually lead the
reverse engineering community to resolve technical prob-
lems and overcome barriers between research groups to-
wards reliable and accurate GRN inference from high
dimensional gene expression data.



Figure 7 Impact of RCR thresholds on inference performance of
the 10-node networks. As evaluated by (A) P_AUPR, (B) P_AUROC,
and (C) an overall score defined as −0.5 × log10(P_AUPR × P_AUROC).
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