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Abstract

Recent findings have led to a renewed interest and support for an active role of inflammation in neurodegenerative
dementias and related neurologic disorders. Detection of neuroinflammation in vivo throughout the course of
neurodegenerative diseases is of great clinical interest. Studies have shown that microglia activation (an indicator of
neuroinflammation) may present at early stages of frontotemporal dementia (FTD), but the role of neuroinflammation
in the pathogenesis of FTD is largely unknown. The first-generation translocator protein (TSPO) ligand ([11C]-PK11195)
has been used to detect microglia activation in FTD, and the second-generation TSPO ligands have imaged
neuroinflammation in vivo with improved pharmacokinetic properties. This paper reviews related literature and
technical issues on mapping neuroinflammation in FTD with positron-emission tomography (PET) imaging.
Early detection of neuroinflammation in FTD may identify new tools for diagnosis, novel treatment targets, and
means to monitor therapeutic efficacy. More studies are needed to image and track neuroinflammation in FTD.
It is anticipated that the advances of TSPO PET imaging will overcome technical difficulties, and molecular imaging
of neuroinflammation will aid in the characterization of neuroinflammation in FTD. Such knowledge has the potential
to shed light on the poorly understood pathogenesis of FTD and related dementias, and provide imaging markers to
guide the development and assessment of new therapies.
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Background
Frontotemporal dementia (FTD) is a devastating neuro-
degenerative disorder, primarily affecting the frontal
and/or temporal lobes of the brain. It is the second most
frequent cause of presenile neurodegenerative dementia
in those less than 65 years of age [1]. The prevalence is
around 15 per 100,000 in people between 45 and 65
years of age, and the mean survival varies from 3 to 10
years from diagnosis [2]. There are mainly three types of
FTD: behavioral variant FTD (bv-FTD), semantic de-
mentia (SD), and progressive non-fluent aphasia (PNFA),
and they are common in the aggregation of neuronal
proteins such as the microtubule-associated protein tau
(MAPT), the transactive response DNA-binding protein
with molecular weight 43 kDa (TDP-43), and the fused
in sarcoma protein (FUS) [3]. Of the FTD cases, 25% to
50% are inherited [4], and the mutations are in the genes
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for MAPT, progranulin (GRN), and in the chromosome
9 open reading frame 72 (C9orf72) [3].
The clinical diagnosis of FTD is a challenge. In general,

from symptom onset, it takes 4 years for bv-FTD and SD,
and 3 years for PNFA to reach a correct diagnosis [5].
FTD is often misdiagnosed as Alzheimer’s disease (AD) or
psychiatric disorders. Abnormalities in structural imaging
may be very subtle at early stages, while functional
imaging changes may not be specific enough to differenti-
ate FTD from AD at individual patient level. For example,
failure to correctly diagnose FTD and AD often occurs in
cases that present with temporoparietal hypometabolism
[6]. Currently, there is no effective pharmacological treat-
ment to slow the progression of FTD. Prognosis is there-
fore poor, and dependency on caregivers and eventual
death typically occurs in a few years after diagnosis [2,3].
Leading models have highlighted the potential neuro-

toxic properties of tau aggregation in FTD [7] and related
neurodegenerative dementias [8,9]. Recent findings have
led to a renewed interest and support for an active role of
inflammation in neurodegenerative processes [10]. In AD,
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chronic neuroinflammation appears to be a central process
in AD pathophysiology [11,12], and there are promising tar-
gets in modulation of neuroinflammation for AD treatment
[12]. Further, a link has been proposed recently between
neuroinflammation and specific forms of FTD, suggesting
that neuroinflammation is an important component of
FTD [10,13]. Consequently, early detection of neuroinflam-
mation in FTD may identify new tools for diagnosis, novel
treatment targets, and means to monitor therapeutic
efficacy.
Pathological protein aggregation and neuroinflammatory

responses may begin before patients start experiencing
AD or FTD symptoms [10,11]; thus, neuroinflammation
could be an early marker for neurodegenerative demen-
tias. Since the neuroinflammatory response may mediate
the outcome of brain tissue in many neurologic diseases
including stroke, epilepsy, and neurodegenerative disor-
ders, it is of great clinical interest to detect neuroinflam-
mation accurately and reliably [14]. Positron-emission
tomography (PET) imaging with radioligands that label
activated microglia, a key cellular component of the
neuroinflammatory response, offers a potential means
to characterize neuroinflammation in vivo. Increases in
the translocator protein (TSPO, 18 kDa) expression
detected by PET imaging with radioligands of TSPO
or peripheral benzodiazepine receptor (PBR) is recog-
nized as a biomarker of activated microglia [15], which
might aid in the diagnosis of early FTD. In this paper,
the existing evidence on neuroinflammation in FTD
and PET imaging of neuroinflammation in FTD with
TSPO ligands is reviewed and related technical issues
are discussed.

Neuroinflammation in FTD
Compared with healthy subjects and AD patients, an
increased prevalence of related autoimmune diseases
has been reported in FTD patients with semantic vari-
ant primary progressive aphasia (svPPA) who were GRN
mutation carriers [13,16]. It has also been found that a
proapoptotic protein (regulated partially by vasoactive
neuropeptides) in astrocytes called Bax showed immuno-
reactivity in FTD, which suggested autoimmunity in the
pathology of FTD [17]. In tau-negative FTD, neuroinflam-
mation may play a more important role in the pathogen-
esis of FTD because mutations in the progranulin (GRN)
genes lead to tau-negative FTD [10]. Progranulin acts as a
mediator of the inflammatory response [18], and defi-
ciency in progranulin may lead to greater microglial acti-
vation and a dysregulated inflammatory response in
microglia that could cause neuron death and disease
progression in FTD [10]. In addition, head trauma that
triggers neuroinflammation has been associated with
behavioral variant FTD [19]. Furthermore, some bio-
markers of inflammation, such as elevated cytokines
(for example, tumor necrosis factor (TNF)-α) in the
cerebrospinal fluid (CSF), have been observed in patients
with FTD [20]. These findings support the hypothesis that
neuroinflammation has a detrimental role in FTD [10].
However, the pathogenesis of FTD, in particular the role
of neuroinflammation, is still poorly understood.
Microglia are the resident immune cells in the central

nervous system (CNS), representing the first line of
defense against pathogens: they sense subtle pathological
changes and become activated before obvious functional
or anatomical abnormalities occur. Normal protective
microglia mediate clearance of abnormal protein (such as
Aβ or tau) aggregates, remove cell debris, and promote
neuroregeneration. However, activated microglia secrete
inflammatory mediators (for example, interleukin (IL)-1β),
coactivate astrocytes, and induce neuronal death, which
further increases brain tissue damage with amplified
microglial activation [14]. The neuroinflammatory reac-
tion involves dramatic upregulation of a mitochondrial
transmembrane protein, TSPO, which is a marker for
microglial activation and a target for imaging neuroin-
flammation with PET ligands designed to bind TPSO.
It has been reported that PET imaging with the widely
used first-generation TSPO ligand [11C]-PK11195 de-
tected neuroinflammation in patients with mild cognitive
impairment (MCI) [21]. This and other evidence [22-25]
suggests that neuroinflammation is an early and continu-
ous process in neurodegenerative dementias [26]. It is
now known that microglia detect pathogen-associated
molecular patterns (PAMPs) and danger-associated mo-
lecular patterns (DAMPs) through pattern recognition
receptors (PRRs), and in neurodegenerative disorders,
microglia cannot discriminate between invading patho-
gens and aberrant molecules (or abnormal proteins) of
the host, which leads to DAMP-triggered neuroinflam-
mation through sustained and excessive release of pro-
inflammatory cytokines such as IL-1β [10]. In addition,
age-related microglia priming is crucial in exaggerated
neuroinflammation [27], and microglial activation may
be related to dementia progression [28].
Genes related to microglial activation (for example, a

variant of the triggering receptor expressed on myeloid
cells 2 (TREM2)) have now been associated with FTD
[29,30]. Abnormal protein aggregates such as amyloid or
tau deposition could cause microglial activation. New
hypothesis has suggested that microglia could be func-
tionally impaired by abnormal protein aggregates, lead-
ing to reduced microglial motility and phagocytic
activity in vivo [31]. There is evidence that sustained
exposure to bacterial lipopolysaccharide (LPS) or other
pro-inflammatory mediators restricts microglial phago-
cytosis of protein aggregation and suppresses axonal
transportation [10]. Several animal studies and post-
mortem studies have revealed that neuroinflammation
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stimulated neuronal degeneration [32,33]. On the other
hand, microglia-driven neuroinflammation could lead to
the formation of tau aggregation [34]. In FTD, the neur-
onal and axonal degeneration are sufficient to induce
microglial activation [19].
Few studies to date have examined neuroinflammation

in vivo in FTD patients. Molecular PET imaging with
[11C]-PK11195 has found that compared with controls,
the mean [11C]-PK11195 binding was significantly in-
creased in patients with FTD (n = 5, including four pa-
tients with progressive non-fluent aphasia and one
patient with behavioral variant FTD) in regions such as
the left dorsolateral prefrontal cortex and the right
hippocampus and parahippocampus [35]. The pattern of
microglial activation partially overlapped with the pat-
tern of brain atrophy, but there was also increased
[11C](R)-PK11195 binding in regions contralateral to
predominant lobar atrophy suggesting that microglial ac-
tivation was present at early stages of FTD prior to ana-
tomical changes [19]. Using postmortem brain tissues,
Vennetic et al. found that [11C]-PK11195 binded specif-
ically to activated microglia in FTD, and the binding was
correlated with microglial activation identified by immu-
nohistochemistry in situ [36]. Postmortem immunohisto-
chemistry study further demonstrated that compared
with controls, higher level of microglial activation de-
tected by [11C]-PK11195 was found in the frontal and
temporal cortex in patients with FTD (n = 78), and
greater microglial activation was found in the temporal
subcortical white matter in FTD-MART than in other
FTD genetic types [37].
In neurodegenerative disorders such as FTD, there is a

common pattern in the mechanisms of sensing abnor-
mal protein aggregates, activating microglia, transducing
to the release of cytokines, and amplifying the neuro-
toxic effects in a chronic inflammatory process [14]. A
better understanding of the immune response in the
brain is critical for possible modulation of microglial
activity to slow down or reverse the course of neurode-
generation [14]. Further development of PET imaging
with TSPO ligands represents a potential in vivo tool for
tracking the progression of neuroinflammation in neuro-
degenerative disorders such as FTD.

Molecular PET imaging with second-generation TSPO
ligands
The value of TSPO PET imaging is in detecting microglia
activation in the diseased brain, visualizing neuroinflam-
mation and its progression, and monitoring treatment
effect, which is highly needed in the diagnosis and treat-
ment of FTD. TSPO is an interesting target for molecular
PET imaging because it is involved in a number of neuro-
degenerative disorders (such as AD, FTD, and Parkinson’s
disease (PD)) and neuroinflammatory disorders (such as
ischemic stroke and multiple sclerosis). However, there
are several limitations in the first-generation TSPO ligand
[11C]-PK11195, mainly high non-specific binding, low
brain penetration, and high plasma protein binding, which
may explain the negative findings in several studies using
[11C]-PK11195 [38,39]. In recent years, novel tracers such
as [11C]-DAA1106, [11C]vinpocetine, [11C]-DPA-713, [11C]-
PBR28, [18F]-FEDAA1106, [18F]-PBR06, [18F]-PBR111,
[18F]-DPA-714, and [18F]-FEPPA have been developed as
the second-generation TSPO radioligands. Comparative
studies showed that novel TSPO ligands such as [18F]-
DPA-714 have higher specific binding and lower non-
specific binding than [11C]-PK11195 in rodent models
[40,41]. Further, Venneti et al. reported that [3H]-
DAA1106 showed a higher binding affinity than [11C]-
PK11195 in postmortem brain tissues of patients with
neurodegenerative disorders such as FTD [36]. Similarly,
Vas et al. found higher binding of [11C]vinpocetine than
[11C]-PK11195 in patients with multiple sclerosis [42].
These findings suggest that the second-generation TSPO
ligands are better than the first-generation TSPO ligand
[11C]-PK11195 in imaging activated microglia in vivo in
neurodegenerative disorders due to improved pharmaco-
kinetic properties [36].
In recent years, PET imaging with novel TSPO radioli-

gands has been applied to visualizing neuroinflammation
in neurodegenerative disorders, although there is very
limited data on in vivo PET imaging with the second-
generation TSPO tracers in FTD. Using PET imaging
with [11C]-DAA1106, Miyoshi et al. examined patients
with FTD (n = 3) who were presymptomatic MART gene
carriers with parkinsonism linked to chromosome 17
(FTDP-17) and found increased microglial activation in
regions such as frontal cortex in patients compared with
controls, although such increase was not overt through-
out the diseased brain in FTD [43]. In addition, regional
increased [11C]-DAA1106 binding has been found in pa-
tients with MCI (n = 7) compared to healthy controls [22],
and patients with AD (n = 19) had greater regional [11C]-
PBR28 binding than controls, which was correlated with
severity of the disease [44]. These findings suggest that
neuroinflammation is an intrinsic process in tau path-
ology, which exists even at a presymptomatic stage.
However, research on imaging neuroinflammation with

the second-generation TSPO ligands is still in its infancy,
and the sample sizes of such research are usually small. In
vivo and in vitro studies with the second-generation TSPO
ligands have shown significant inter-subject variability
because of differences in binding affinity in individual sub-
jects [44-47]. Three affinity patterns of binding variations
have been reported: high-affinity binders (HABs), low-
affinity binders (LABs), and mixed-affinity binders (MABs)
[47,48]. A single polymorphism (rs6971) located in the
exon 4 of the TSPO gene determines the binding affinity
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of the second-generation ligands and causes large inter-
subject variation [44,49,50], while for the first-generation
TSPO ligand [11C]-PK11195, the inter-subject variation in
binding affinity is little.
Compared with carbon-11-labeled TSPO ligands

(for example, [11C]-PK11195), tracers labeled with
fluorine 18 have a longer half-life ([18F] vs. [11C]: ap-
proximately 110 min vs. approximately 20 min),
which is suitable for long-distance dissemination and
larger clinical studies. Among the fluorine-18-labeled
second-generation TSPO ligands, [18F]-FEDAA1106
has proved ineffective [51,52] and [18F]-PBR06 pro-
duces a metabolite that confounds quantification of
TSPO binding [53], but [18F]-FEPPA (FEPPA) and
[18F]-DPA-714 (DPA714) may be promising [54-56].
FEPPA PET imaging has been applied to animals
[54,57-62] and humans [63-70] and has demonstrated
that increased neuroinflammation was not associated
with normal aging, but regional increased FEPPA
uptake was associated with AD or PD [67-70]. Simi-
larly, there are a number of PET imaging studies with
[18F]-DPA-714 [40,56,71-79], and focal increase in
DPA714 uptake has been found in patients with neu-
rodegenerative disorders such as amyotrophic lateral
sclerosis (ALS) [78].
Taken together, although in its infancy, research on

PET imaging with the second-generation TSPO ligands
is in progress and has shown increased uptake in brain
regions associated with neuroinflammation in early
FTD and other neurodegenerative disorders such as
those of tau pathology (even at a presymptomatic
stage), suggesting that TSPO imaging is useful in
detecting neuroinflammation in vivo from the early
stage of the disease.

Discussion
In neurodegenerative and neuroinflammatory disorders,
microglia activation may be an early phenomenon,
which can be visualized by PET imaging with TSPO
ligands, and the second-generation TSPO ligands have
shown improved pharmacokinetic properties. However,
to image neuroinflammation in FTD using PET with the
second-generation TSPO ligands, several practical issues
or technical details need to be considered.
First, since PET imaging with the second-generation

TSPO ligands display inter-subject variability in binding
affinity, the genotype at the polymorphism (rs6971) in
the TSPO gene needs to be determined. Subjects may
need to be screened for LABs because the second-
generation TSPO ligands do not provide a measureable
signal in PET studies involving LABs. The ratio of LABs
in healthy subjects varies from 0% [66] to 13.3% [80],
and the ratio of LABs in one sample of AD patients was
15.4% [67]. Therefore, genotype analysis for polymorphism
(rs6971) in the TSPO gene is needed before PET imaging
scan, and a small portion of subjects with LABs may need
to be excluded from PET imaging with the second-
generation TSPO ligand.
Second, most of the human studies with fluorine-18-

labeled second-generation TSPO ligands used scan ac-
quisition times of 1.5 to 2 h which might be long for
patients with FTD. In attempts to reduce FEPPA PET
scan time, Rusjan et al. have found increased variabil-
ity and decreased identifiability (with the average coef-
ficient of variance ratio 14% for total distribution
volume V(T)) with 1.5-h scan time [64]. However, the
average of V(T) were not significantly biased compared
with those of 2-h scanning, and the V(T) values at 1.5
h were correlated with the values at 3 h (r2 = 0.91)
[64], suggesting that 1.5-h or shorter scan time might
be possible if relative measures (for example, distribu-
tion volume ratio) are used.
Third, current PET imaging with the second-generation

TSPO ligands usually requires arterial blood sampling
to determine the blood radioactivity time-activity curve
(TAC) and plasma radioactivity curve so that the input
function for the kinetic analysis can be created to
compute the ligand uptake and binding potential. Such
invasive kinetic analysis is technically demanding, and
uncomfortable and potentially painful to patients. To
avoid the need for arterial blood sampling, it is neces-
sary to apply non-invasive quantitative models that use
radioactivity concentration in a reference region (that
is, brain area with negligible binding) to approximate
concentration of tracer in the non-displaceable com-
partment as an indirect input function [80-86]. How-
ever, microglia cells and the TPSO ligand binding sites
are distributed throughout the entire brain, and a ref-
erence region can hardly be found in the brain.
In the past, the first-generation TSPO ligand [11C]-

PK11195 (PK11195) faced similar difficulties. Turkheimer
et al. developed a non-invasive analysis method for
PK11195 PET using reference and target region modeling
where predefined kinetic classes were used to extract a
gray matter reference tissue [87]. They found that
binding potential values obtained by a plasma input
were highly correlated with those of a reference input
[86]. Since then, non-invasive kinetic analysis has been
increasingly adopted in PK11195 PET imaging, and
arterial blood sampling is no longer needed. Therefore,
it is possible to apply non-invasive kinetic analyses
such as the reference approach to PET imaging with
the second-generation TSPO ligands [87]. However,
there are mainly two challenges: (1) Since the kinetics
of HAB and MAB genetic groups may differ, a data-
base of reference for both HAB and MAB groups may
be needed; (2) The second-generation TSPO ligands
show high level of vascular binding [88], which may
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make it difficult to separate the normal gray matter
from other tissue classes.
Finally, it is unclear how accurate TSPO PET imaging is

in detecting neuroinflammation in neurodegenerative
dementias. There are on-going clinical trials with TSPO
ligands such as FEPPA [89-91], [11C]PBR28 [92], and
[18F]PDA-714 [93] in neurodegenerative disorders (one
study including FTD). However, published results of these
studies are not available yet. There is a need not only for
tracking neuroinflammation in FTD with TSPO PET
imaging, but also for assessing the accuracy of TSPO
imaging in detecting neuroinflammation in FTD. This is
especially needed for subtypes within FTD that may have
unique molecular mechanisms related to neuroinflamma-
tion (that is, progranulin mutations).

Conclusions
Recent molecular advances in the pathophysiology of the
FTD have led to new disease models highlighting the
potential role of pathologic neuroinflammation in disease
onset and progression. PET imaging with the second-
generation TSPO ligands offers a potentially powerful
means to identify neuroinflammatory patterns in vivo
across the FTD subtypes. More studies are needed to
image and track neuroinflammation in FTD, which
may aid in the diagnosis of early FTD. It is antici-
pated that the advances of molecular imaging of brain
TSPO will overcome technical difficulties and that
molecular imaging of neuroinflammation could aid in
the characterization of neuroinflammation in FTD,
increase our understanding of disease pathogenesis,
and inform development and testing of novel thera-
peutic interventions.
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