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1. Introduction and summary. Suppose that we observe random variables 
X1, · · · , Xn which are identically and independently distributed according to 
some distribution F where F ranges over a family 5'". 

The following question was posed by J. Steffensen in this abstract context in 
[7] . 

(1) If a functional q is given on 5'", when does there exist a statistic o (X1 , · • · , 

X n) such that, 

(1.1) E,(o (X1, · · · , Xn)) = q(F), 

for all F c 5'"? (As usual E, denotes the expectation under the assumption that F 
is the common distribution of the X; . ) In other words, when does there exist an 
unbiased estimate of q(F) based on n observations? 

A question which naturally follows from question 1 was raised and considered 
by Halmos in [2]. 

(2) Let the degree of q be the smallest n ~ oo such that (1.1) holds for all 
F c 5'" and some o. Characterize the degree of estimable functionals q for various 
families 5'". (By estimable we mean merely that (1.1) should hold for some finite 
nand o.) 

In his paper [2] Halmos dealt with question 2 as well as the more important 
issue of existence of best unbiased estimates in the context of families 5'" which 
are very large, and asked whether anything can be said about more interesting 
families 5'". 

The next two sections of our paper deal exclusively with question 2 for families 
;y which are closed under finite mixtures (convex combinations). In Section 2, 
some examples lead to our main result, Theorem 2.1, which gives an elementary 
characterization of degree for functionals defined on families 5'" as above. The 
theorem is followed by further examples which illustrate its utility. (However, 
the required convexity property excludes the usual parametric families.) Theorem 
2.2, an extension of a theorem of Halmos [2], characterizes the degree of a product 
of estimable functionals. It is applied to give the degree of the rth cumulant of a 
distribution when 5'" is the family of all distributions with moments of all orders. 

The third section deals with the problem of degree when we observe samples 
from two or more populations with different distributions. Theorem 3.1 shows 
that the notion of degree can be successfully extended in this situation. The 
theorem is followed by several examples in which the degree of various functionals 
such as two-sample distance criteria is computed. 
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Finally, in Section 4 we address ourselves to question 1. Theorem 4.1 gives a 
simple characterization of estimable functionals when the family 5" is 5" (IJ.) where, 

(1.2) 5" (~J.) = jF:F is absolutely continuous with respect to 11-l 

for a fixed u finite measure 1-'· The characterization is suggested by Theorem 2.1. 
After some examples we state without proof a further theorem (4.2) along these 
lines and illustrate its applicability. 

2. Degree. We begin with some definitions. Throughout, 5" denotes a family of 
distribution functions (usually on the real line). 

DEFINITION 2.1. Suppose that q is a functional on 5". We say q is estimable with 
n observations if there exists o such that (1.1) is satisfied for all F c 5" and that q is 
estimable if it is estimable with n observations for some n. The degree of an esti­
mable functional q is the smallest n for which q is estimable. 

Do estimability and degree depend on the domain 5" over which q is defined? 
Consider, for example, the class 5" of all distributions with finite variance o-2 (F) 
and let q be the standard deviation u (F). As we shall show shortly q is nGt esti­
mabie. It becomes estimable, however, if we restrict the domain to 5"o consisting 
of a single distribution F 0 c 5". Similarly o-2 (F) itself will be seen to be of degree 
2 in 5"; it is clearly of degree 0 in 5"o while it is of degree 1 in the class 5't of all 
distributions F c 5" with I x dF (x) = a where a is any given constant. 

DEFINITION 2.2. 5" is convex if for every F, G c 5" and 0 ~ a ~ 1, 
aF + (1 - a )G c 5". 

Given 5" convex and a functional q on 5" we define for fixed F and G in 5" a 
function QF.a on [0, 1] by 

(2.1) QF,a(a) = q[aF + (1 - a)G]. 

If q is estimable then QF.a is a polynomial for every F and G. For if (1.1) holds, 
then 

q[aF + (1 - a)G] 

(2.2) = I~"' ... I~"' o(Xt' ... 'Xn)[a dF(xt) + (1 - a) dG(xt)] 

· · · [a dF(xn) + (1 -a) dG(xn)]. 

It should now be clear that if 5" is convex and the distributions F c 5" have finite 
variance o-2 (F) then the standard deviation u (F) is not estimable for any n. 
The above remark and the further considerations of this paper do not require the 
distributions F to be univariate. Suppose, for example, that 5" is the class of all 
bivariate distributions F, whose components have finite variances. Then the 
correlation coefficient of the components considered as a functional of F is not 
estimable. Similarly, if A and B denote fixed sets on the real line and (U, V) is a 
pair of random variables with joint distribution F and 5" is the class of all F for 
which P(V c B) > 0, then the conditional probability P(U c A I V c B) is not 
estimable. 

We shall return to the question of estimability in Section 4. In the present sec-
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tion we assume that q is estimable and try to determine its degree. In this con­
nection (2.2) is again helpful. It shows that if there exists a pair F, G for which 
QF.a is a polynomial of degree n, then the degree of q cannot be less than n. If 
then an estimate of q can be found, which is based on n observations, this estab­
lishes n as the degree of q. 

ExAMPLE 2.1. As an example, consider the variance ri (F) of a univariate 
distribution, with 5" the class of all distributions with finite variance. Then Q is of 
degree 2 and hence q cannot be estimated with one observation. Since t (X2 - X1 ) 2 

is an unbiased estimate based on two observations, this shows ri (F) to be of 
degree 2. 

ExAMPLE 2.2. For a second example let q(F) = f F dF. The associated Q is, 

(2.3) QF.a(a) = a2 f (F- G) d(F- G)+ a[f(F- G) dG+ fGd(F -G)] 

+ f G dG. 

If 5' is the class of all univariate continuous distributions q (F) is identically 
equal to~ and hence of degree 0. On the other hand, if 5" is the class of all distribu­
tions, Q is easily seen to be of degree 2 for suitable F, G. Since o (Xt, X2) = 1 or 0 
as X1 ~ X 2 or X1 > X2 is an estimate of Q(F) based on two observations this 
shows that q is of degree 2. One can similarly show that if 5" is the family of all 
continuous bivariate distributions then the degree of q is again 2. 

The above examples suggest that, roughly speaking, a functional q is of degree 
n provided Q is a polynomial of degree n. This is made precise by the following 
theorem. 

THEOREM 2.1. Suppose 5" is convex and q is an estimable functional on 5". Then 
q is of degree n if and only if 

(i) for every F and G c 5", QF.a is a polynomial in a of degree ~n; 
and 

(ii) for every F c 5" there exists some G for which Qa ,,(a) is a polynomial of 
degree n in a. 

The essence of the proof is contained in the following lemma. 
LEMMA 2.1. (i) If q is of degree ~n, then QF,a is a polynomial of degree ~n for 

all F and G. 
(ii) If there exists an F such that Q,,a is a polynomial of degree < n for all G and 

if q is estimable, then q is of degree < n. 
PRooF. (i) By (2.2) if q is estimable with n observations, and o (x1, · · · , Xn) 

is an estimate of q, then, 

(2.4) 

is a polynomial of degree ~ n and (i) is immediate. 
(ii) We identify the coefficients C. by, 

(2.5) C,(F, G)= L::=oLtiv·.i,! f~.., · · · f~.., o(xt, ·· ·, x,.) 

· Ilt=l dF(x.;.) Ili<B,.(i1 , ... ,;,> dG(x;), 
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where Bn(il, · · ·, i,) = {1, · · ·, n} - {i1, · · ·, i,} and fi1, · · ·, i,} ranges over 
all distinct subsets of size r of { 1, · · · , n}. 

The hypothesis of (ii) implies that for a fixed F 

(2.6) 

Now let us define, 

(2.7) O(i 1 , ... • •.> (xh , · · · , x;,) = J:=.., · · · J:=.., o (x1, · · · , Xn) dF (Xi1 ) • • • dF (x •• ), 

where {j1, · · · ,j,) = Bn{il, ·· · , i,}. O(i1 , ... ,i,) is defined a.s. (F) by (2.7) and 
may be set equal to 0 when the right hand side of (2.7) is undefined. In terms of 
the O(i 1 ... . ... >, (2.6) may be rewritten as 

J:=.., ··· J:=""o(xl, ··· ,xn) dG(xi) ··· dG(xn) 

(2.8) J:="" ... J:="" L~.::::-1 ( -l)n-r+l L<•l• " ' , ir) O(ilo"',ir) (xh' x;.)] 
· dG(xi) · · · dG(xn) 

which in turn may be read, 

(2.9) Ea(o(Xl, · · · ,Xn)) = Ea(L;=l (-1r-r+lO(i1 , ... ,i.>(Xl, ···,X,)] 

for all G c ;J. Since r ;?; 1, sis less than nand we see that 

L;=l (-1r-•+10(i[o" ·,i.>(Xl, ···,X,) 

is an estimate of q based on at most n - 1 observations. Assertion (ii) of the 
lemma follows. 

PROOF OF THEOREM 2.1. (a) Let q be of degree n. Then for every F there 
exists G such that Q is of degree n. If there did not, it would follow from part (i) 
of the lemma that there exists an F for which Q is of degree < n for all G and 
hence by part (ii) of the lemma, q would be of degree < n. 

(b) Suppose that conditions (i) and (ii) of the theorem hold and that q is 
estimable. Then it follows from part (i) of the lemma that q cannot be of 
degree <nand from part (ii) that q cannot be of degree >n. 

We have considered several examples in which condition (i) of Theorem 2.1 
proved useful. Here are some further illustrations in which the full force of the 
theorem is used. 

EXAMPLE 2.3. Let ;J be the family of all distributions F which are absolutely 
continuous with continuous densiti~ f and suppose that we wish to estimate 
q (F) = f(a) for some fixed known a. In this situation Q is evidently of degree ~ 1 
for all F, G. Yet q is not estimable. To see this, note that in view of Theorem 2.1, 
if q is estimable it must be estimable with 1 observation. Therefore, it suffices to 
exhibit a subfamily ;Ja c ;r for which q is not estimable with 1 observation. Let 
;yo = {f:f (t) = !A exp (-A /t/) for some A > 0 and all t}. If q were estimable with 
1 observation in ;Jo we would have, 

(2.10) J:="" o(t)[exp { -A(/t/- /a/)IJ dt = 1 
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for some estimate o and all A > 0. Differentiating both sides we get, 

(2.11) f~oo o (t) [It I - jaiJ[exp { -A (it I - Ia I) l dt] = 0. 

The uniqueness of the Laplace transform implies, 

(2.12) o (t )[itl - iaiJ = 0 a.e. 

and this is inconsistent with (2.10). (This result was proved in a different manner 
by Rosenblatt (1956) in [6] . The present proof is no simpler but has the slight 
advantage of not being restricted to nonnegative estimates.) 

EXAMPLE 2.4. Consider the following generalization of Tukey's [9]grosserror 
model. 
Let~ = {F:F = (1 - E)~+ EH, H c JC, 0 ~ E ~ 1j where~ is the standard 

normal distribution, JC is a convex, complete (in the sense of [4]) family of dis­
tributions equivalent to ~. Suppose, moreover, that ~ is identifiable in the sense 
that, 

(2.13) 

implies E1 = E:z and H1 = H2. The identifiability and completeness conditions are 
satisfied by taking for JC all mixtures of rectangular distributions, all distributions 
with support bounded from below etc. 

The functional to be estimated is q( (1 - E)cf> + ill) = E. Clearly,~ is convex 
and Q is linear. Again, q is not estimable. For were it estimable by Theorem 2.1 
it would be of degree 1. But, 

(2.14) (1 - E) J~ o (x) d~ (x) + E J~oo o (x) dH (x) = E 

implies 

(2.15) 

and 

(2.16) f~oo o(x) dH(x) = 1. 

It follows from the completeness of JC that these equations cannot be satisfied 
if JC is equivalent to ~. 

EXAMPLE 2.5. For our final example let ~o be the location parameter family of 
distributions generated by the standard Cauchy distribution Fo whose density is 
given by, 

(2.17) 

Let ~ = e (~0 ) be the smallest convex family of distributions containing ~o. 
Suppose that for some F c ~ 

(2.18) F(t) = Li-laiFo(t- ei) = Ll=l#jFo(t- rJ;) 

for all t, where the a's and #'s are ~ 0 and Li=l ai = Li-1 # 1 = 1. Then it 
follows easily from a consideration of the associated characteristic functions that 
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r = s and the set of a's must coincide with the set of {j's as must the set of 8's 
with the set of 71's. In view of this we can define the "center of symmetry" q (F) 
of a distribution F given by (2.18) by, 

(2.19) 

The Q function corresponding to q is linear, but again q is not estimable since q 
is of degree > 1 on 5'o. This was shown in [1] by Ghosh and Singh using some 
results by Pollard. 

Similar examples in which Q is of degree > 1 for each pair F, G and q is not 
estimable, can easily be constructed. 

Before proving our next result, we need an elementary lemma. 
LEMMA 2.2. Let 5' be convex and q1 , q2 defined on 5' be estimable with n observations. 

Then either there exists F t :Y such that q1(F)q2(F) r6 0 or one of q1, q2 is identi­
cally 0. 

PROOF. Either the second alternative of the lemma holds or we may assume 
there exist F*, G* such that q1(F*) r6 0, qz(G*) r6 0. Then, 

qi(aF* + (1 - a)G*)q2(aF* + (1- a)G*) 

is a product of two polynomials of degree at most n neither of which vanishes 
identically. Hence there exists ao such that 

qi(aoF* + (1 - ao)G*)q2(aoF* + (1 - ao)G*) r6 0 

and the lemma is proved. 
We now establish a generalization of Theorem 2 of [2]. 
THEOREM 2.2. Suppose qi , · · · , qr are estimable junctions of degree ki , · · · , kr 

respectively, defined on a convex domain 5'. Then, q = q1 · · · qr is estimable of degree 
ki + · • • + kr. 

PROOF. It suffices to check the result for r = 2 since the general case then 
follows by induction. 

Clearly, q has degree at most k1 + kz. To see this, note that if o <I> (X1, · · · , XkJ 
and o <2> (XI, · · · , Xk 2 ) are unbiased estmates of q1 and q2 based on k1 and k2 ob­
servations respectively, then o(XI, · · · , Xk1+k2 ) = o o> (XI, · · ·, XkJ · 
o <z> (Xk1+I, · · · , Xk 1+k 2 ) is an unbiased estimate q based on k1 + k2 observations. 

To show that the degree of q cannot be less than k1 + k2let K (F, G), Kt (F, G), 
K 2 (F, G) denote the coefficients of ak1+k\ ak1 and ak2 in the Q<F.G> polynomials 
corresponding to q, q1 and q2 respectively. From (2.5) we see that for fixed F, 
Kt (F, G) and K2 (F, G) treated as functions of G are estimable with k1 and k2 ob­
servations respectively. Since ql and qz are of degree k1 and kz respectively 
Theorem 2.1 implies that whatever be F, neither Kt(F, G) nor Kz(F, G) vanish 
identically. Hence, by Lemma 2.2 neither does K(F, G) = Kt(F, G)Kz(F, G). 
Therefore, whatever be F, q(aF + (1 - a)G) is of degree (kt + kz) for some G 
and the theorem follows from Theorem 2.1. 

Along the same lines it is easy to see that if 5' is convex, q1 is of degree m on 5' 
and q2 is of degree n of 5' with m < n then q1 + q2 is of degree n on 5'. 
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ExAMPLE 2.6. As an application of this remark and Theorem 2.1, consider 
·oc k 

5' = { F: J -.., !x! dF (x) < oo for all kl. The rth cumulant of F, Kr (F) is defined 
as the coefficient of (itr/r! in the formal expansion of log J~::.o eitx dF(x). Clearly, 

(:2 .20) Kr(F) = Ll<it. ·· ·,;,):l:ii;~r) c(jl' ... ,jr)ath(F) ... a/'(F) 

where ak (F) = f~.., xk dF (x ). Since c (r, 0, · · · , 0) ¢. 0 and since ak (F) is of 
degree 1, Theorem 2.2 and our remark show that Kr(F) is of degree r. 

3. Degree: Two-sample problem. Let us now extend the definition and char­
acterization of degree to functionals of two distributions. The further extension 
to an arbitrary number of distributions is trivial. Suppose that we observe 
Xt, · · · , Xm independently and identically distributed according toFt c 5't and 
Yt, · · · , Yn independently and identically distributed according to F2 c 5z where 
5't and 5'z are convex. 

DEFJNJTION 3.1. A real functional q on 51 X 52 is said to be estimable with 
(m, n) observations if there exists a statistic o(Xt, · · · , Xm; Yt, · · · , Yn) such 
that 

(3.1) E(F1 ,F1)[o(Xt, · · ·, Xm; Yt, · · ·, Yn)J = q(Ft, F2) 

for all F1 l: 5't , Fz E 5'z . 
In generalization of (2.1) it is useful to introduce a function Q through 

(3.2) Q (at, az) = q[a1F1 + (1 - at)Gt, azFz + (1 - az)Gz] 

where 0 ~ at, az ~ 1 and where we suppress the dependence of Q on Fi, G;, 
i = 1, 2. 

If q is estimable, it is seen as in Section 2 that Q (at , az) is a polynomial for 
every F1 and Fz . This remark is again enough to establish the non-estimability of 
many functions such as, for example, q (F 1 , F 2) = IF 1 (x) - F 2 (x) I for fixed x, or 
q(Ft, Fz) = f !Ft(x)- Fz(x)l d(Ft(X) + F2(x))j2. 

Let us now consider how to define the degree of an estimable functional q. We 
might for example determine the smallest value n0 of n for which there exists an 
m such that q is estimable with (m, n0 ) observations and then the smallest value 
m 0 of m for \vhich q is estimable with (m, no) observations, and define the degree of 
q on (mo, no). If we interchange the role of m and n in this definition, it is not 
clear a priori that we shall arrive at the same answer. To show that this is so, and 
at the same time arrive at a more symmetric definition of degree, consider the 
partial ordering among pairs of integers (m, n) according to which (m, n) < 
(m', n') provided m ~ m' and n ~ n' with at least one of the two inequalities 
being strict. If q is an estimable function, denote by sq the set of all pairs (m, n) 
for which q is estimable. Then we shall show below that the set Sq has a least 
element with respect to the ordering ~ ; that is, there exists a pair of integers 
(mo, no) in S 9 such that m ~ mo, n ~ no for all (m, n) E: Sq and that in fact Sq 
consists exactly of all pairs (m, n) with m ;;:::; mo and n ;;:::; no. This pair (mo, no) 
will be called the degree of the functional q. 
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The existence of a least element easily follows from the following properties 
of sq: 

(i) (m,n)F:Sq=} (m + a,n + b)F:Sqforalla,b;;:;; 0; 
(ii) (m,n + 1)£Sqand (m + 1,n)£Sq=} (m,n)£Sq. 
PROOF OF (ii). If q is estimable with (a, b) observations, then Q defined by 

(3.2) is a polynomial in a1, a2 of degree at most (a, b). (We say that the degree 
of a polynomial in a1, a2 is (a, b) if the maximum power of a1 that is present is a 
and the maximum power of a2 that is present is b.) Thus for q to be estimable 
both with (m, n + 1) and (m + 1, n) observations, Q must be a polynomial of 
degree at most (m, n) whatever be F,, Gi. Writing Q out explicitly, taking the 
a1m+l terms into account for the moment, we have 

(3.3) Q (ai, a2) 

= L~;~o L:2-o Ck 1,k2 (F1, F2, G1, G2)a/1 (1 - ai)m+I-k1a/2 (1 - a2t-k2 

where the Ck 1 ,k2 are defined by formulae analogous to (2.5) in terms of the esti­
mate 0 (XI' ... 'xm+1' yl' . .. ' Y .. ) based on (m + 1, n) observations. Since 
Q is of degree at most (m, n) the coefficient of a1m+I must vanish so that, 

(3.'1:) L:;s=oa/2 (1- a2)"-k2 (Lk'1-o (-l)m-kr+1Ck 1 ,k2 (F1, F2, G1, G2)) = 0. 

By the completeness of the binomial family of distributions this implies that, 

(3.5) 

for all k2 and in particular for k2 = 0. By using the resulting equation, the result 
follows as did Lemma 2.1 from equation (2.6). 

As in the univariate case, to determine the degree of a functional q, it is often 
enough to note that if Q is a polynomial of degree (m, n ), the degree of q cannot 
be less than (m, n ). If an estimate of q can then be found based on (m, n) ob­
servations, this establishes (m, n) as the degree of q. As an illustration, let 
q = I F1 dF2 with :Y1 = :Y2 , the class of all continuous distributions. Here 

Q(a1,a2) = a1a2I (Fl- G1)d(F2- G2) 

+ 0:1 I (F1 - GI) dG2 + 0:2 I G1d(F2 - G2) + I Gl dG2 

is clearly of degree (1, 1 ). Since 

o (X1 , YI) = 1 or 0 as X1 ~ Y1 as X1 > Y1 

is an unbiased estimate of q, the degree of q is (1, 1 ). 
As another example, consider q = F1 (c) - F2 (c) where c is any constant. 

Then 

Q(a1, a2) = a1[FI(c) - G1(c)] - a2[F2(c) - G2(c)] + G1(c) - G2(c) 

is of degree (1 , 1 ). Also l[x 1 ;:;;cl = I!Yr;:;icl where I!Bl denotes the indicator func­
tion of the event E, is an unbiased estimate of q, and hence shows q to be of degree 
(1, 1 ). In the present case, it is noteworthy that the a1a2-term is missing in Q; 
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this makes it possible to estimate q effectively with one observation rather than 
two. For let X1 or Y1 be observed with probability teach, and let o' = I[x 1 ~cJ 
when the observed random variable is X1 and o' = IcY 1>cJ when the observed 
variable is Y1. Then if o = 20' - 1, we find 

E(o') = ![F1(c) + 1 - F2(c)] and hence E(o) = q. 

Of course, the variance of o is larger, (in fact exactly twice as large), than that of 
the earlier estimate. (Such a reduction of the effective number of observations 
required to obtain an unbiased estimate of q is possible whenever q is the sum of 
a number of estimable functions qi each of which has a total degree mi + n; less 
than the total degree m + n of q. ) 

As another example, suppose that X1, X2 and Y1, Y2 are independently dis­
tributed according to continuous distributions F1 and F2 and let q denote the 
probability that the two X's are either both smaller or both larger than the 
two Y's 

q(F1, F2) = P(X1, X2 < Y1, Y2 or Y1, Y2 < X1, X2) 

= f (1- F2)2 dF12 + f (1- F1)2dF2. 

Here it is easily seen that the coefficients of a12a2 and of a1a22 are in general differ­
ent from zero while the coefficient of a12a22 is zero. The latter fact follows immedi­
ately from the well-known representation (Lehmann (1951)) 

q(F1, F2) = t + t f CF1- F2)2 d(F1 + F2). 

It is clear in the present case that q can be estimated by observing with prob­
ability t each, either two X's and one Y or two Y's and one X. This fact is 
related to an unbiased estimate of q proposed by Renyi (1953). 

The above remarks extend in the obvious way to more than two samples, 
and the natural generalizations of Theorem 2.1 and 2.2 hold trivially also in the 
case of two or more samples. 

4. Existence of unbiased estimates. In Theorem 2.1 we have shown that if q 
is estimable on a convex ~ the Q functions must be polynomials. On the other 
hand, Examples 2.3-2.5 show that this condition is not sufficient for estimability. 
In this section we shall show that this requirement is essentially sufficient if ~ 
is large enough. Our main result deals with the case ~ = ~ (,.,.) defined in the 
introduction. 

THEOREM 4 .1. If q is a real functional on ~ (,.,.) then q is estimable with n observa­
tions if and only if, 

(i) q is uniformly bounded on ~ (,.,.) ; 
(ii) Q<F.a> is a polynomial of degree at most n in a for each F, G c ~ (1-' ). 
We note that since ~ (,.,.) is convex it follows from Theorem 2.1 that q is of 

degree n if and only if (i) and (ii) hold and QF,a(a) is of degree n for every F 
and some G. 

We need some preliminary definitions and results. Let £1 (,.,.) = {f: J lfl d,.,. < oo } 
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andLt+(J.L) = lfcLt(IJ.):f~ O}.Evidently~(IJ.) = lfcLt+(IJ.):ffdi-L = 1} in 
the sense of the natural 1-1 correspondence between a distribution and its 
density. 

DEFINITION 4.1. A functional B on L1 + (IJ.) to R is said to be linear if B (0) = 0 
and B(aJ + azg) = a1B(j) + azB(g) for j, g c Lt+(IJ.), a1, az ~ 0. 

Similarly, a functional B on L1 + (IJ.) x · · · x ~ + (IJ.) is said to be n-linear if 
B is linear in each argument when the others are held fixed. 

DEFINITION 4.2. An n linear functional on L1 + (IJ.) x · · · x L1 + (IJ.) is said to 
be bounded if, 

(4.1) sup {jB(ft, ··· ,fn)l:llft ll 

= II!,. II = 1, f; c L + (IJ.), i = 1, . . . , n} < oo • 

DEFINITION 4.3. A functional q on Lt+(IJ.) is said to be a polynomial if for 
every, j, g c Lt+(J.L), q(f + ag) is a polynomial in a for a ~ 0. 

DEFINITION 4.4. A functional q on L1 + (IJ.) is said to be homogeneous of degree n 
if q(cf) = c"q(f) for every f c L/(1-L), c ~ 0. 

These definitions are all slight modifications of the standard definitions given 
for these terms when L1 (J.L) rather than just Lt + (IJ.) is the domain of interest ( cf. 
Hille and Phillips [3], pages 40, 760). The following results established in [3], 
pages 76Q-764 for homogeneous polynomials on L1 (IJ.) and n linear functionals on 
L1 (IJ.) x · · · x L1 (IJ.) can easily be seen to continue to hold for the objects we 
have defined. 

LEMMA 4.1. If q is a polynomial, homogeneous of degree non Lt+(IJ.), there exists 
an n linear functional B on L1 + (IJ.) x · · · x Lt + (IJ.) such that q (f) = B (f,j, ... , f). 

This is Theorem 26.2.2 of [3] specialized and modified. 
LEMMA 4.2. Suppose B is an n linear junctional on L/ (1-L) x · · · x Lt+ (J.L) 

such that, 

(4.2) 

whenever all co-ordinates except the ith are fixed) for i = 1) · · · J n. Then) B is 
bounded. 

REMARK. The proof requires an appropriate modification of the principle of 
uniform boundedness which is easily seen to be valid. This is essentially Theorem 
26.2.5 of [3]. 

Finally, we need a deeper result whose statement and proof for the situation 
when the domain of interest is Lt(J.L) may be found, for example, in Treves [8] 
(Corollary 2, page 473). 

LEMMA 4.3. If B is a bounded n linear junctional on L1+(J.L) x · · · x L/(J.L) 
then there exists a measurable function o on R" such that, 

(4.3) B(ft,"",Jn) 

f~.x> "· f~oo o(Xt, "· , X,.)ft(Xt) "' f,.(X,.)IJ.(dxt) "' IJ.(dx,.). 

Furthermore, 

(4.4) (IJ. )ess sup iol < oo 
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where 

(4.5) (.u)ess sup lc5l 

= infB sup { lc5 (xl' ... ' Xn)l: (xl' ... ' Xn) c B, .u (n) (B") = 0} 

and .u <n> is the product measure on Rn each of whose co-ordinate measures is .u 
and Be is the complement of B. 

Finally we define, 
DEFINITION 4.5. The n extension of q, written q <n> is a functional on L1 + (.u) 

given by, 

(4.6) 

It is obvious that the n extension of any functional q on 5= (.u) is homogeneous 
of degree n. 

We now proceed to the proof of Theorem 4.1. 
PROOF. 

Sufficiency. Construct q <n>. 

(4.7) q (n) (f + ag) = llf + aglln q(f + ag/llf + agll ). 

Sincef, g and a are ~0, II!+ agll = 11!11 +a IIYII· 
Now if (ii) holds, 

( 4.8) ( f + ag ) _ ( f ( 11!11 ) g ( a!!YI! )) 
q l!f + agll - q TI1lf II!+ agll + M II!+ agll 

is a polynomial of degree at most nina llgll/llf + agll. Expanding both factors in 
(4.7) suitably we conclude that q <n> is a polynomial. Since q <n> is homogeneous 
of degree n Lemma 4.1 yields ann linear functional B on L1 + (J.L) x · · · x L1 + (J.L) 
such that q <n> (f) = B(f, · · · , f). From (i) we see that 

sup {/B (f, · · · , f) I: 11!11 = II < oo 

and hence, by linearity, that B is bounded. Lemma 4.3 completes the proof of the 
sufficiency of our conditions. 

Necessity. The necessity of (ii) is obvious. Given an estimate c5 of q define ann 
linear functional B on L1 + (J.L) x · · · x L1 + (J.L) by, 

(4.9) B(fl, '' " 1 fn) 

= J~., · · · J~ c5(xl, · · ·, Xn)fl(Xl) · · · fn(Xn)J.L(dxl) · · · J.L(dxn). 

B is well defined at least for !1 = · · · = fn . Showing that B is finite on all 
£1 + (J.L) x · · · x L1 + (J.L) merely involves breaking c5 up into its positive and nega­
tive parts and then noting that B (cJ1 + · · · + cnfn , · · · , cJ1 + · · · + cnfn) 
is finite for all c1 , · · · , en ~ 0. By Lemma 4.3 we see that our necessity assertion 
is equivalent to showing that B is bounded. By Lemma 4.2 and the Fubini 
Theorem we see that we need only prove the result for n = 1. But, in this case, 
define Bm(f) = J~., c5m(x)f(x)J.L(dx) 
where c5m = c5 if lc5l ~ m., 

= 0 otherwise. 
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Then, Bm (f) is a bounded linear functional and Bm (f) ~ B (f) for each f. The 
Banach-Steinhaus Theorem yields that B is bounded and the theorem follows. 

Extension of the theorem to the k-sample case is easy. 
We turn to some examples to which the theorem or its k-sample extension may 

be applied. 
ExAMPLE 4.1. Let Fo be a fixed distribution. Take Jl. to be Lebesgue measure 

and let q (F) be the "goodness of fit" statistic. 

(4.10) q(F) = f~"' (F - Fo)2h(Fo) dFo 

where h is positive and bounded. 
The requirements of the theorem are satisfied for n = 2 and q is estimable on 

5' (p.) with two observations. Of course here, as is typically the case in a "natural' 
situation, direct construction of the estimate of q is easy. Theorem 2.1 guarantees 
that the degree is indeed 2 since the coefficient of a2 in QP,a(a) is 

f~"' (F - G)2h(Fo) dFo. 

EXAMPLE 4.2. On the other hand, if Jl. is Lebesgue measure, 

(4.11) q(F) f~"' (F - Fo)2 dF 

= f~"' F2 dF - 2 f~"' FFo dF + f~ ... Fo2 dF 

is also of degree 2 since J~"' F2 dF = -ft. and the coefficient of a2 in QP,a(a) is 
f~"' (F - G)2 dFo. 

The same considerations can be applied to two-sample distance criteria such 
as, 

(4.12) 

a functional we have already encountered in Section 3. Theorem 4.1 (or rather 
its extension) shows that q is estimable with (3,3) observations. Closer examina­
tion of Q in this case shows that the degree is in fact (2,2), and as was noted in 
Section 3, if an extraneous randomization is permitted only one observation from 
one population and two from the other are needed. 

Finally, we give a theorem extending Theorem 4.1 to "unbounded" functionals 
defined on subdomains of 5' (p.). 

Let I Aml be a nested sequence of measurable subsets of Rn, with A1 c A2 C · · _. 

such that Jl. (Rn - Um Am) = 0. 
Let 5',. (p.) be the set of all members of 5' (p.) which vanish off Am . 
THEOREM 4.2. Let q be a functional defined on a domain 5' such that, 

(4.13) 

and 

(4.14) q ~ 0. 

Then q is estimable with n observations if and only if, 
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(i) q is bounded on each 0:,. (J.L). 
(ii) QF,a(a) is a polynomial of degree at most n for each F, G e 0:. 

(iii) For any f e 0:, 

(4.15) 

where 1/lm is the indicator of Am. 
The proof is straightforward. That (4.14) is needed inconjunction with the 

other conditions may be shown by example. 
Using this result we can, for instance, drop the boundedness restriction on 

h(Fo) in Example 4.1 and need only require that the functional q defined by 
(4.10) be defined on the set of all densities f such that the right hand side of 
(4.10) is finite. 

Acknowledgment. We are indebted to L. LeCam for the simple proof of ne­
cessity in Theorem 4.1 we have given, and to G. Bredon and C. Moore for an 
earlier (unused) proof of the same part. 
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