
SOFTWARE Open Access

Prodigal: prokaryotic gene recognition and
translation initiation site identification
Doug Hyatt1,2*, Gwo-Liang Chen1, Philip F LoCascio1, Miriam L Land1,3, Frank W Larimer1,2, Loren J Hauser1,3

Abstract

Background: The quality of automated gene prediction in microbial organisms has improved steadily over the
past decade, but there is still room for improvement. Increasing the number of correct identifications, both of
genes and of the translation initiation sites for each gene, and reducing the overall number of false positives, are
all desirable goals.

Results: With our years of experience in manually curating genomes for the Joint Genome Institute, we developed
a new gene prediction algorithm called Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm).
With Prodigal, we focused specifically on the three goals of improved gene structure prediction, improved
translation initiation site recognition, and reduced false positives. We compared the results of Prodigal to existing
gene-finding methods to demonstrate that it met each of these objectives.

Conclusion: We built a fast, lightweight, open source gene prediction program called Prodigal http://compbio.ornl.
gov/prodigal/. Prodigal achieved good results compared to existing methods, and we believe it will be a valuable
asset to automated microbial annotation pipelines.

Background
Microbial gene prediction is a well studied, and some
would say solved, problem, but the truth is that there is
still much room for improvement, especially in under-
standing how translation initiation mechanisms work in
prokaryotes. Existing methods for bacterial and archaeal
gene prediction include the popular Glimmer [1] and
GenemarkHMM [2] packages, both of which are
included at NCBI alongside Genbank [3] annotations
(Prodigal is also included), as well as other methods
such as Easygene [4] and MED [5].
Current gene recognition methods perform relatively

well in low GC content genomes, but the accuracy
drops considerably in high GC content genomes. High
GC genomes contain fewer overall stop codons and
more spurious open reading frames (ORFs). These false
ORFs are often selected by programs instead of real
ORFs in the same genomic region. In addition, the
longer ORFs in high GC genomes contain more poten-
tial start codons, thus leading to a drop in accuracy of
the translation initiation site (or TIS) predictions as well.

Translation initiation site prediction in existing micro-
bial gene-finding tools has not proven to be sufficiently
adequate, and this has motivated a number of tools to
be developed specifically to correct the start calls of cur-
rent methods. These tools include GSFinder [6], TiCO
[7], and TriTISA [8]. It is our view that a single gene
prediction algorithm should be able to match the per-
formance of the above methods, rather than needing to
run two programs to attain the desired level of accuracy
in start predictions.
Finally, most methods tend to predict too many genes.

Although many of the short genes predicted by current
programs that have no existing BLAST [9] hits might be
real, the likelihood is that most are false positives. We
base this assertion on the fact that genome-wide proteo-
mics studies that search the entire set of all potential
ORFs do not identify a significant number of peptides in
these genes [10]. In the construction of a novel algo-
rithm, we determined it would be preferable to sacrifice
some genuine predictions if it meant also eliminating a
much larger number of false identifications.
With the advent of faster sequencing technologies, it

is likely that in the future less time will be spent on fin-
ishing microbial genome sequence. It is also likely that

* Correspondence: hyattpd@ornl.gov
1Computational Biology and Bioinformatics Group, Oak Ridge National
Laboratory, Oak Ridge, TN 37831, USA

Hyatt et al. BMC Bioinformatics 2010, 11:119
http://www.biomedcentral.com/1471-2105/11/119

© 2010 Hyatt et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Springer - Publisher Connector

https://core.ac.uk/display/81524958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://compbio.ornl.gov/prodigal/
http://compbio.ornl.gov/prodigal/
mailto:hyattpd@ornl.gov
http://creativecommons.org/licenses/by/2.0

researchers will not often be able to curate manually the
gene predictions delivered by automated pipelines. It is
therefore important to improve the current methodolo-
gies to obtain higher quality gene predictions, better
translation initiation site predictions, and a reduction in
the number of false positives.

Implementation
To address these challenges, we constructed a novel
gene-finding algorithm called Prodigal. In designing
the Prodigal algorithm, we decided to use a “trial and
error” approach. We began by building a set of curated
genomes that had been analyzed using the JGI ORNL
pipeline http://genome.ornl.gov/. This pipeline con-
sisted of a combination of Critica [11] and Glimmer
[1], BLAST [9] to locate missing genes and correct
errors, and a final round of manual expert curation.
To this initial set of ten genomes we added Escherichia
coli K12 (both the Genbank file and the Ecogene Veri-
fied Protein Starts data set [12]), Bacillus subtilis, and
Pseudomonas aeruginosa. With these sets in hand, it
became possible to validate or exclude changes to the
algorithm based on whether or not the performance
on the test set of genes increased or decreased, respec-
tively. In the final stages of validating the rules in the
program, we expanded this set to include over 100
genomes from Genbank.
It should be noted that we only used this set to deter-

mine very general rules about the nature of prokaryotic
genes, such as gene size, maximum overlap between two
genes (both on the same strand and on opposite
strands), and RBS motif usage. In addition, we tuned
several constants in the program based on performance
on this data set. This set was also used to exclude ideas
that caused deterioration in performance across many
genomes. (These failed ideas are too numerous to
include in this publication). Because we intended to vali-
date Prodigal’s performance by examining E. coli, B. sub-
tilis, and P. aeruginosa, we also verified that each of
these decisions we made also maximized performance
on the remaining genomes in our set. Changes were not
retained if they were merely “local” improvements to a
subset of genomes, especially not genomes on which we
intended to test the program’s performance.
In order for Prodigal to run in a completely unsuper-

vised fashion, it needed to be able to learn all the neces-
sary properties of the input organism, including start
codon usage (ATG vs. GTG vs. TTG), ribosomal bind-
ing site (RBS) motif usage, GC frame plot bias, hexamer
coding statistics, and other information necessary to
build a complete training profile. To gather statistics
from a finished sequence or set of sequences, the algo-
rithm first had to determine automatically a set of puta-
tive “real” genes on which to train.

Prodigal constructs its training set of genes by exam-
ining the GC frame plot in the ORFs in the genome.
The program begins by traversing the entire input
sequence and examining the bias for G’s and C’s in each
of the three codon positions in each open reading
frame. The highest GC content codon position for an
ORF is considered the “winner”, and a running sum for
that codon position is incremented. Once all ORFs have
been processed, the sums give an approximate measure
of the preference of each codon position for G and C.
The values for each codon position are normalized
around 1 and divided by 1/3. If 2/3 of the codons in
ORFs prefer G or C in the third position, for example,
then the bias score for that position would be 2. We
tried converting this bias to a log score, but this was
found to decrease the quality of the results.
Using this GC bias information, Prodigal constructs

preliminary coding scores for each gene in the genome.
This is done by multiplying the relative codon bias for
each of the three positions by the number of codons in
the putative gene in which that codon position is the
maximal GC frame (in the 120 bp window centered on
that position). We chose 120 bp for the window size
because that is the default window size for GC frame
plot calculation in Artemis [13], and, in the experience
of our manual curators, this default was an optimal set-
ting. So, for example, if an entire gene contains the
most G’s and C’s in its third codon position, the score
for that gene would be the length of the gene multiplied
by our codon bias score for frame 3. If instead this gene
is too long, then the frame plot information should
change in the spurious upstream region. These bases
would be multiplied by a lower GC frame bias score (for
example, for frame 2, which is seldom the highest GC
content frame in real genes). The score S for a given
gene starting at location n1 and ending at location n2
can be given by:

S n n B i l i
i

(..) ()*(),1 2
1

3

where B(i) is the bias score for codon position i, and l
(i) is the number of bases in the gene where the 120 bp
maximal window at that position corresponds to codon
position i.
With this preliminary coding score measure based on

simple GC codon position statistics, Prodigal scores
every start-stop pair above 90 bp in the entire genome.
(We tried allowing genes smaller than this, but the
number of false positives became problematic.) Prodigal
then performs a dynamic programming [14] across the
whole sequence (or set of sequences) to identify a maxi-
mal “tiling path” of genes to train on. The purpose of

Hyatt et al. BMC Bioinformatics 2010, 11:119
http://www.biomedcentral.com/1471-2105/11/119

Page 2 of 11

http://genome.ornl.gov/

this dynamic programming method is to force the pro-
gram to choose between two heavily overlapping ORFs
in the same genomic context. In theory, one of these
ORFs should match the preferred GC codon position of
the organism, whereas the other one should not.
Prodigal utilizes the same dynamic programming algo-

rithm both for its preliminary training phase and for its
final gene calling phase. Each node in the dynamic pro-
gramming matrix is either a start codon (ATG, GTG, or
TTG only: the program does not consider nonstandard
starts such as ATA, ATT, or CTG) or a valid stop
codon (specified by the translation table code). In addi-
tion, start and stop nodes are added in each frame at
the edges of the sequence to handle cases where genes
run off the edge of contigs, a common occurrence in
draft and metagenomic sequence data. The connection
of a start node to its corresponding stop node represents
a gene, whereas the connection of a 3’ end to a new 5’
end represents intergenic space. The score of a “gene”
connection is the precalculated coding score for that
gene, whereas the score for an intergenic connection is
a small bonus or penalty based on the distance between
the two genes. Figure 1 illustrates these dynamic pro-
gramming connections in action.
Since dynamic programming cannot go backwards (a

partial solution to a given point must also be a part of

the final solution, prohibiting the concept of past infor-
mation suddenly changing), we need a special set of
rules to handle overlapping genes. Prodigal accomplishes
this by pre-calculating the best overlapping genes in all
three frames for each 3’ end in the genome. So, for
example, for a stop codon at position 15,000, the pro-
gram would look 60 bp upstream of position 15,000 and
locate the highest scoring overlapping gene in each
frame (there may not be one). With this information in
hand, a new type of connection can be established, that
of a 3’ end of one gene to a 3’ end of a second gene on
the same strand. In this case, the 5’ end of the second
gene is implied by the connection, since the best start
has already been calculated. A maximal overlap of 60 bp
is allowed between two genes on the same strand. For
opposite strand overlap, we allow 200 bp overlap
between 3’ ends of genes, but 5’ ends of genes are not
permitted to overlap. These connections are represented
by the 3’ end of a forward gene connecting to the 5’ end
of a reverse gene, wherein the 3’ end of the second gene
is implied (there can be only one stop codon for a given
start). These overlap values were determined by record-
ing overlaps between genes in the Genbank files of our
test set. Although we may merely be encouraging Prodi-
gal’s overlap rules to be similar to previous gene predic-
tors, our manual curators also felt these were reasonable

Figure 1 Pseudocode description of the Prodigal algorithm.

Hyatt et al. BMC Bioinformatics 2010, 11:119
http://www.biomedcentral.com/1471-2105/11/119

Page 3 of 11

values for overlap based on their experience examining
finished genomes. Table 1 shows a summary of the dif-
ferent types of dynamic programming connections
allowed in Prodigal.
Once the preliminary dynamic programming algo-

rithm has completed, the next step is to gather statistics
from the putative genes and construct a more rigorous
coding scorer. Prodigal does this in a very simplistic
way, by simply looking at in-frame hexamer coding fre-
quencies for a gene relative to the background. A
lookup table of 4096 values is created, one for each 6-
mer, where the value of a given word w is:

C w G w B w() log(() / ()),

where C is the coding score, G is the percentage
occurrence of that word within our gene training set,
and B is the percentage occurrence of that word across
the entire sequence (irrespective of frames). So, for
example, if a word is twice as likely to occur in a gene
as it is in the background, the score for that word
would be log(2). This corresponds to a 5th-order Markov
model [1,2]. A floor and a ceiling are also established on
this score to handle cases where there is insufficient
data for a given word.
The final coding score for a gene beginning at position

n1 and ending at position n2 can be written as

S n n C w i
i n

n

(..) (()),1 2
1

2

where S is the sum of the coding scores (C) for the in-
frame hexamers (the set of words w) in the gene. In addi-
tion, Prodigal modifies this coding score based on infor-
mation about what lies upstream of the selected start. For
example, if a gene 1000..3000 has a score of 500.0, and the
gene 1200..3000 has a score of 400.0, Prodigal modifies the
score of the second gene to be 400-(500-400) = 300. The

reason for this modification is to penalize choosing a trun-
cated version of a gene when a longer, higher-scoring ver-
sion of the same gene could also be chosen. In the
dynamic programming model, this can be thought of as
penalizing a connection to an interior start by subtracting
the difference between the two potential genes. The pur-
pose for this modification is to discourage the truncation
of genes through choosing a gene on the opposite strand
that overlaps with and erases the beginning of the longer
version of the gene, a common occurrence in current
gene-finders. In addition, Prodigal implements a few more
minor tweaks to the coding score, including boosting the
score of particularly long genes (dependent on the GC
content of the organism: ~700 bp or so in low GC, ~1200
or so in high GC) to be minimally positive if the prelimin-
ary coding score is negative.
Once Prodigal has calculated coding potential scores

for every start-stop pair in the genome, the next step is
to create a translation initiation site scoring system from
the training set. The program constructs a background
of ATG, GTG, and TTG frequencies off all start nodes
in the genome. It also builds a background of RBS
motifs based on the Shine-Dalgarno sequence [15].
Unlike many methods, which use a position-weight
matrix or Gibbs sampling method to find motifs, Prodi-
gal begins by assuming that the SD motif will be utilized
by the organism. If this turns out not to be the case, it
runs a more rigorous motif finder. But, to start with, the
program attempts to determine if the SD motif is widely
utilized by the genome in question.
For RBS motifs, Prodigal utilizes a concept of bins,

each of which corresponds to a set of RBS motifs and
spacer distances (the spacer is the distance between the
motif and the translation initiation codon). Table 2
shows the default priority of these bins, from lowest
scoring to highest scoring.
In the initial background, the motif in a higher num-

bered bin takes priority over one in a lower numbered
bin if both are found upstream of a start site. These
bins were rigorously determined by examining the
detailed data set of curated Genbank files (and the Eco-
Gene Verified Protein Starts [12]). Prodigal examines
the initial coding peaks in every open reading frame
(where the coding peak is the highest scoring start-stop
pair for a given stop codon) with a coding score of 35.0
or higher (a somewhat arbitrary threshold chosen that
would include only longer genes, which are more likely
to be real). From these coding peaks, it builds a log-like-
lihood model similar to the coding score, described by:

S n R n B n() log(() / ()),

where S is the score, R is the observed percentage of
this type in our training set, and B is the percentage

Table 1 Dynamic Programming Connections in Prodigal

Left Node Right Node Connection Type Connection Score

5’ forward 3’ forward Gene Start+coding score

3’ reverse 5’ reverse Gene Start+coding score

3’ forward 5’ forward Intergenic Space Distance modifiers

3’ forward 3’ reverse Intergenic Space Distance modifiers

5’ reverse 3’ reverse Intergenic Space Distance modifiers

5’ reverse 5’ forward Intergenic Space Distance modifiers

3’ forward 3’ forward Overlapping Genes Score of 2nd gene

3’ reverse 3’ reverse Overlapping Genes Score of 2nd gene

3’ forward 5’ reverse Opposite Strand Overlap Score of 2nd gene

Table 1 shows the types of dynamic programming connections in the
algorithm. Each end of a gene is a node, and connections between these
nodes represent either genes or the space between genes. The more
complicated connections indicate overlapping genes.

Hyatt et al. BMC Bioinformatics 2010, 11:119
http://www.biomedcentral.com/1471-2105/11/119

Page 4 of 11

occurrence in the background. This method is used
both for start codon usage (ATG, GTG, or TTG) as
well as for the SD bin motif (from the table above).
These scores are summed together and multiplied by a
constant (4.25, corresponding to about 16 bp of coding
score, determined empirically from maximal perfor-
mance on our test set of genomes, and later verified on
a larger set of genomes from Genbank), then added to
the coding score. Prodigal goes through every start-stop
node and performs this calculation, modifying the
default coding score by the quality of its start codon
information. This leads to a new set of “peaks” for the
set of training ORFs. For example, an ATG with a
slightly lower coding score than a TTG in the same
ORF could overtake it with the additional start score

added (assuming the organism uses ATG as a start
codon more than TTG).
Once a new set of peaks has been determined, Prodi-

gal reconstructs the background for both SD motif and
start codon usage. In this iteration and in subsequent
ones, it no longer assumes a higher numbered bin is
better for RBS motifs, and it instead relies on the log
likelihoods calculated in the previous iteration to find
the best upstream motif for a given start site. Prodigal
performs several iterations of this process, moving the
peaks around based on subsequent information until
they no longer move significantly. When the peaks no
longer move, it determines the final set of weights based
on statistics gathered from this final set of putative
“real” start codons.
The end result is a set of log-likelihood weights for

ATG/GTG/TTG information and for each of the above
RBS bins. If the zero bin for RBS motifs, which corre-
sponds to no SD motif, is positive, or if the zero bin is
above -0.5 and the 4-base motif bins are less than 1.0,
then Prodigal determines that this organism does not
use the SD motif strongly, and it runs a more rigorous
motif finder. In examining over 800 finished genomes in
Genbank, we determined about 10% of them did not
use the SD motif strongly. Most of these genomes were
cyanobacteria, chlorobii, or archaea, which seem to use
different translation mechanisms than the more com-
mon SD motif.
If it is found that the organism does not use the SD

motif, Prodigal searches exhaustively for alternative
motifs. It does so by looking at the occurrence of all 3-
mer motifs in the initial set of peaks, and locating all 3-
mers that occur in at least 20% of the high-scoring gene
models. From these motifs, it then performs an iterative
algorithm similar to the above. The bins instead corre-
spond to every word of size 3-6 bp (mismatches allowed
only in the center of 5-6 bp words, just as in the SD
RBS motif table above) with every potential spacer size
(3-4 bp, 5-10 bp, 11-12 bp, and 13-15 bp). All words 3-
6 bp that do not occur frequently enough are combined
in the “no RBS motif” bin. Prodigal then arrives at a
similar set of weights for no RBS motif, as well as for
each 3-6 bp motif that contains the commonly occur-
ring 3 bp motif as a subset. In Aeropyrum pernix, a
strong GGTG motif is located, whereas in many cyano-
bacteria, Prodigal latches onto AT-rich motifs like
TATA and TAAA.
Finally, we added a scoring system to capture informa-

tion in the regions outside those examined by the RBS
scorer (1-2 bp and 15 bp to 45 bp upstream from the
translation start site). This scoring system builds a posi-
tion weight matrix on the whole region. Although this
scoring system is very crude and captures only general
characteristics (AT-richness, simple base preferences,

Table 2 Shine-Dalgarno RBS Motifs in Prodigal

Bin # RBS Motif RBS Spacer

0 None None

1 GGA, GAG, AGG 3-4 bp

2 GGA, GAG, AGG, AGxAG, GGxGG 13-15 bp

3 AGGA, GGAG, GAGG, AGxAGG, AGGxGG 13-15 bp

4 AGxAG 11-12 bp

5 AGxAG 3-4 bp

6 GGA, GAG, AGG 11-12 bp

7 GGxGG 11-12 bp

8 GGxGG 3-4 bp

9 AGxAG 5-10 bp

10 AGGAG, GGAGG, AGGAGG 13-15 bp

11 AGGA, GGAG, GAGG 3-4 bp

12 AGGA, GGAG, GAGG 11-12 bp

13 GGA, GAG, AGG 5-10 bp

14 GGxGG 5-10 bp

15 AGGA 5-10 bp

16 GGAG, GAGG 5-10 bp

17 AGxAGG, AGGxGG 11-12 bp

18 AGxAGG, AGGxGG 3-4 bp

19 AGxAGG, AGGxGG 5-10 bp

20 AGGAG, GGAGG 11-12 bp

21 AGGAG 3-4 bp

22 AGGAG 5-10 bp

23 GGAGG 3-4 bp

24 GGAGG 5-10 bp

25 AGGAGG 11-12 bp

26 AGGAGG 3-4 bp

27 AGGAGG 5-10 bp

Table 2 shows the default bins for the RBS motifs. An ‘x’ in the middle of a
motif indicates a mismatch is allowed. The right column shows the spacer
distance allowed between the translation start and the motif. The leftmost
column indicates the initial “score” assigned to these bins, i.e. higher bins are
better. In subsequent iterations, however, these values may change, and, in
non-SD-using organisms, bin 0 (no RBS) may emerge as the highest scoring.

Hyatt et al. BMC Bioinformatics 2010, 11:119
http://www.biomedcentral.com/1471-2105/11/119

Page 5 of 11

etc.), it was found to be quite effective in some gen-
omes. This generic upstream scoring system is not part
of the iterative algorithm; the data is instead gathered
from the final iteration of the start training.
Once Prodigal has start score weights for both start

codon type (ATG/GTG/TTG) and RBS motif/spacer
distance, it then scores every start node in the entire
sequence. The final score for a start node is simply

S n R n T n U n C n() . *(() () . * ()) (), 4 25 0 4

in which S is the final score, R is the RBS motif score,
T is the start type score, U is the upstream score, and C
is the coding score. For the RBS weight, Prodigal uses
the SD motif score if it determines that the organism
uses Shine-Dalgarno, the secondary RBS motif score if it
finds a clear-cut secondary motif, and the maximum of
the two systems if neither system located a strong RBS
motif. This latter method was shown to work well in
some genomes such as cyanobacteria and crenarchaea
that tended to have AT-rich upstream regions but still
occasionally used the SD motif for some genes (such as
ribosomal proteins).
A linear combination of the various elements was the

first method we tried, and it worked well enough that
we did not pursue other strategies. It may be that there
exists a better method of integrating the different signals
(perhaps a neural network or some other classifier), but
this will have to be examined in future versions. The
4.25 and 0.4 constants were arrived at by experimenting
with different values and observing the change in results
across our test set of genomes. We chose the values
such that they maximized performance across the entire
set. In order to rule out bias in E. coli, B. subtilis, and P.
aeruginosa, we also verified that the same approximate
constants maximized performance on our set of gen-
omes with those three excluded.
False positive reduction is an important goal in Pro-

digal. In order to reduce the number of overall predic-
tions, Prodigal modifies the above start weight (4.25)
based on the length of the gene. In examination of
numerous genomes, we determined that approximately
250 bp is the point of equilibrium at which a gene
with a positive coding score is equally likely to be a
false positive or a true prediction. Genes less than 250
bp are therefore penalized according to their length
divided by 250. If the start score is greater than 0, it is
reduced to l/250*s, where l is the length of the gene. If
the start score is less than 0, it is instead multiplied by
250/l*s. Finally, for all genes with negative coding
scores, regardless of length, the start score is penalized
by a small amount to prevent genes with moderately
good start scores but bad coding scores from drifting
above zero.

Once the scores have been calculated, the dynamic
programming is performed a second time, using the
more detailed node scores described above for the gene
connections. For intergenic connections, operon dis-
tance provides a stronger weight in the second pass of
dynamic programming. When two genes overlap by 1 or
4 bp, if the second gene lacks an RBS and has a negative
RBS score, the requirement of an RBS is lifted and the
score is increased to 0. In addition, the program adds
small bonuses for distances less than 60 bp, and small
penalties for distances greater than 180 bp. These dis-
tances correspond roughly to observed operon distances
[16]. Although dynamic programming has order n log n,
we limit the valid connections by distance, such that
“long” connections can only be made between the start
of a really long gene and its stop codon. The end result
is that Prodigal must make a connection generally
within 5 kb, so that it must choose a gene in this region,
even if its score is negative. When the dynamic pro-
gramming is complete, however, the program makes a
final sweep through the models and removes any such
genes with negative scores. In addition, the algorithm
makes one final improvement to start calls that proved
to be significant in our test set. When two starts are
separated by a distance of less than 15 bp (determined
empirically from our test set), Prodigal sets the coding
of the two choices to be equivalent and uses only the
start score (based on RBS motif and start type) to deter-
mine which start to choose for the final gene prediction.
The final output of Prodigal consists of a complete list

of gene coordinates and, at the user’s specification, pro-
tein translations and/or detailed information about each
potential start in the genome. Prodigal can be run either
in two steps, with a training phase and a gene prediction
phase, or in a single step where the training is hidden
from the user and only the final genes are printed. A
complete description of the algorithm in pseudocode
can be found in Figure 2.
Prodigal runs very quickly, analyzing a 4 MB genome

in about 20 seconds on a typical workstation. It is also
extremely easy to use relative to other methods, consist-
ing of only a single executable that can be run without
the user needing to supply any organism-specific para-
meters. A web server has also been implemented at
http://compbio.ornl.gov/prodigal/. The latest source
code for Prodigal is available via the same web site, and
version 1.20 has been included as an additional file
[Additional File 1].

Results and Discussion
Assessing the performance of microbial gene-finding
programs remains a difficult task due to the lack of
experimentally verified gene start sets. The EcoGene
Verified Protein Starts set [12] remains the only large

Hyatt et al. BMC Bioinformatics 2010, 11:119
http://www.biomedcentral.com/1471-2105/11/119

Page 6 of 11

http://compbio.ornl.gov/prodigal/

set of experimentally verified genes and translation
start sites for typical bacteria. In addition, another
large set was produced for two archaea, Halobacterium
salinarum and Natronomonas pharaonis, using a spe-
cial proteomics technique for extracting N-terminal
peptides [17]. In addition to the above sets, numerous
smaller sets exist for other genomes, but most of these
are also atypical genomes such as cyanobacteria and
archaea. Nonetheless, these still provide a set of
experimentally verified genes with which to test the
accuracy of start site and gene predictions. For these
genomes, we relied on the data set from the ProTisa
database of confirmed translation initiation sites [18].
However, some of the genes in the Synechocystis set
were inconsistent with annotations in the Genbank
files, and subsequent manual inspection proved the
Genbank files to be correct. Therefore, we removed
genes from this set, as well as a few genes from the
other genomes, that disagreed with the Genbank anno-
tations. We extracted all sets with more than 50
experimentally determined translation initiation sites,
although we excluded numerous relatives of E. coli
(and other genomes) in ProTisa whose starts were ver-
ified only through similarity search.
For purposes of assessing gene prediction quality, a

gene call was considered correct if the algorithm identi-
fied the 3’ end of the experimentally verified gene. Table

3 shows the performance of Prodigal relative to the pro-
grams GeneMarkHMM [2], Glimmer 3 [1], Easygene 1.2
[4], and MED 2.0 [5]. GeneMark [2] and Glimmer [1]
predictions for these genomes were downloaded from
NCBI [ftp://ncbi.nih.gov/genomes/Bacteria]. Easygene
[4] predictions were obtained from the Easygene server.
MED predictions were run locally using default para-
meters. The second number for each program indicates
exactly correct genes (where both the translation initia-
tion site and the stop codon are correctly identified). To
assess the quality of the start site correction programs
TiCo [7] and TriTisa [8], we chose to run these pro-
grams as postprocessors to Prodigal. Although this is
different from the published results for these programs
(which were applied to the final Genbank genes), we
view this method as a more accurate way of assessing
the ab initio value of such tools in an annotation
pipeline.
As can be seen in Table 3, Prodigal proved equal or

better at locating genes in every organism with a few
exceptions: Glimmer 3 [1] and EasyGene [4] in P. aeru-
ginosa, and GenemarkHMM [2] in N. pharaonis. Prodi-
gal also performed equal to or better than the other
tools in translation initiation site prediction with a few
exceptions: GenemarkHMM [2] and TriTisa [8] on B.
subtilis, and TiCo [7], TriTisa [8], and EasyGene [4] on
Haemophilus influenzae. Prodigal performs equal or

Figure 2 Illustration of the dynamic programming connections in Prodigal. The red arrows represent gene connections, and the black
arrows represent intergenic connections. (a) 5’ forward to 3’ forward: Gene on the forward strand. (b) 3’ forward to 5’ forward: Intergenic space
between two forward strand genes. (c) 3’ forward to 3’ forward: Overlapping genes on the forward strand. (d) 3’ forward to 5’ reverse: Forward
and reverse strand genes whose 3’ ends overlap. (e) 5’ reverse to 3’ reverse: Intergenic space between two reverse strand genes. (f) 3’ reverse to
5’ reverse: Gene on the reverse strand. (g) 3’ reverse to 3’ reverse: Overlapping genes on the reverse strand. (h) 5’ reverse to 5’ forward:
Intergenic space between two opposite strand genes. (i) 3’ forward to 3’ reverse: Intergenic space between two opposite strand genes.

Hyatt et al. BMC Bioinformatics 2010, 11:119
http://www.biomedcentral.com/1471-2105/11/119

Page 7 of 11

ftp://ncbi.nih.gov/genomes/Bacteria

better at locating existing genes, while also providing
comparable performance in translation initiation site
prediction to the start correction tools.
The above test set contains many unusual genomes.

Bacillus subtilis is remarkable for its extremely strong
use of the SD motif. Halobacterium salinarum and
Natronomonas pharanois make only limited use of the
SD motif. Aeropyrum pernix contains a different RBS
motif in GGTG. Synechocystis PCC6803, like most cya-
nobacteria, does not seem to use the SD motif at all,
and instead favors AT-rich regions upstream of its
translation start sites. A quick scan of 700 finished gen-
omes in Genbank with Prodigal’s SD-motif routine
revealed that 88% of them used the SD motif. It is our
assertion that E. coli, B. subtilis, and P. aeruginosa from
the table above provide a more typical look at perfor-
mance in the vast majority of sequenced microbial
genomes.

Although Genbank files doubtless contain many
errors, results for these same organisms vs. Genbank
annotations were recorded to capture a “whole genome”
view. Table 4 shows these results. All the genomes in
table 4 have sets of more than 100 experimentally veri-
fied protein starts (in table 3). Although it is likely that
they are still far from perfect, it is an interesting result
nonetheless that Prodigal performed very well compared
to all existing methods. Prodigal’s performances on the
well-studied cyanobacteria Synechocystis PCC6803 and
the highly curated Pseudomonas aeruginosa are particu-
larly interesting, in that the program matches many
more start sites in the Genbank file than the other
methods.
These results cannot be seen as definitive, however, as

it is always possible Prodigal’s algorithm contains a bias
that is shared by whatever methods were used to create
the original Genbank files. In order to rule this bias out,

Table 3 Gene Prediction Performance

Organism %
GC

Verified Prodigal
1.20

Prodigal 1.20
+TriTisa

Prodigal 1.20
+TiCo

GeneMarkHMM
2.6

EasyGene
1.2

Glimmer
3.02

MED 2.0

Escherichia coli K12 50.8 884 884/853
(100%/
96.5%)

884/840
(100.0%/95.0%)

884/843
(100.0%/95.4%)

882/835
(99.8%/94.5%)

880/809
(99.5%/
91.5%)

880/804
(99.6%/
91.0%)

875/810
(99.0%/
91.6%)

Halobacterium salinarum 68.0 550 549/533
(99.8%/
96.9%)

549/525
(99.8%/95.5%)

549/520
(99.8%/94.6%)

548/510
(99.6%/92.7%)

544/494
(98.9%/
89.8%)

549/478
(99.8%/
86.9%)

531/418
(96.6%/
76.0%)

Natronomonas pharaonis 63.4 321 320/314
(99.7%/
97.8%)

320/314
(99.7%/97.8%)

320/313
(99.7%/97.5%)

321/307
(100%/95.6%)

314/300
(97.8%/
93.5%)

320/304
(99.7%/
94.7%)

315/265
(98.1%/
82.6%)

Bacillus subtilis 43.5 148 148/144
(100%/
97.3%)

148/145
(100.0%/98.0%)

148/144
(100.0%/97.3%)

147/145
(99.3%/98.0%)

144/139
(97.3%/
93.9%)

144/140
(97.3%/
94.6%)

146/142
(98.7%/
96.0%)

Aeropyrum pernix 56.3 131 131/128
(100%/
97.7%)

131/127
(100.0%/97.0%)

131/128
(100.0%/97.7%)

130/123
(99.2%/93.9%)

130/124
(99.2%/
94.7%)

130/121
(99.2%/
92.4%)

131/116
(100%/
88.6%)

Synechocystis PCC6803 47.8 102 102/99
(100%/
97.0%)

102/98
(100%/96.1%)

102/93
(100%/91.2%)

102/92
(100%/90.2%)

101/87
(99.0%/
85.3%)

102/84
(100%/
82.4%)

100/88
(98.0%/
86.3%)

Pseudomonas aeruginosa 66.6 122 118/116
(96.7%/
95.1%)

118/113
(96.7%/92.6%)

118/115
(96.7%/94.3%)

115/105
(94.3%/86.1%)

122/112
(100%/
91.8%)

120/113
(98.4%/
92.6%)

117/113
(95.9%/
92.6%)

Mycobacterium
tuberculosis H37Rv

65.6 62 62/58
(100%/
93.6%)

62/58
(100%/93.6%)

62/57
(100%/91.9%)

61/54
(98.4%/87.1%)

62/58
(100%/
93.6%)

61/55
(98.4%/
88.7%)

60/56
(96.8%/
90.3%)

Haemophilus influenzae 38.2 67 67/66
(100%/
98.5%)

67/67
(100%/100%)

67/67
(100%/100%)

67/65
(100%/97.0%)

67/67
(100%/
100%)

67/65
(100%/
97.0%)

66/65
(98.5%/
97.0%)

Sulfolobus solfataricus 35.8 56 56/51
(100%/
91.1%)

56/49
(100%/87.5%)

56/49
(100%/87.5%)

56/48
(100%/85.7%)

56/51
(100%/
91.1%)

56/49
(100%/
87.5%)

56/50
(100%/
89.3%)

All Genomes — 2443 2437/2362
(99.8%/
96.7%)

2437/2336
(99.8%/95.6%)

2437/2329
(99.8%/95.3%)

2429/2284
(99.4%/93.5%)

2420/2241
(99.1%/
91.7%)

2429/2213
(99.4%/
90.6%)

2397/2123
(98.1%/
86.9%)

Table 3 shows the performance of gene-finding algorithms on ten sets of experimentally verified genes with experimentally verified translation initiation sites.
The first number in each entry indicates the number of 3’ ends of genes correctly identified. The second number in each entry indicates the number of 5’+3’
ends (genes and their correct starts) exactly identified. Beneath these numbers are % representations for each of those values. The final row shows the
performance over the entire set of organisms.

Hyatt et al. BMC Bioinformatics 2010, 11:119
http://www.biomedcentral.com/1471-2105/11/119

Page 8 of 11

we examined ATG usage and “leftmost start” usage in
each of the methods, but we could find no obvious bias
shared by Prodigal and Genbank annotations relative to
the other methods. If anything, Prodigal seemed to call
more starts internally and to truncate more genes, than
the other methods. Although the quality of the Genbank
files is impossible to estimate, we included the above
results to demonstrate the concept of “genome-wide”
performance, an important factor in microbial annota-
tion pipelines.
Determining the number of false positives for each

method is an impossible task without knowing the com-
plete set of protein coding genes for each genome.
Instead, we can only measure the number of genes pre-
dicted by each program relative to those retained by
manual curators in the Genbank files. Table 5 shows the
number of genes predicted by each program; the num-
ber in parentheses is normalized around the number of
genes in the Genbank file.
EasyGene [4] predicts fewer genes than all other

methods on every genome, with the one exception of
Pseudomonas aeruginosa; however, Easygene [4] is also
less sensitive than the other programs (as can be seen

in tables 3 and 4). It is likely the program could be
improved on these genomes simply by using a less
stringent R-value threshold, though this would lead to
an increase in the number of genes predicted. Prodigal
predicts equal or fewer genes vs. the remaining meth-
ods (excepting EasyGene) in all cases except Halobac-
terium salinarum vs. Genemark [2], while still
retaining excellent sensitivity in locating genes. The
gaps in B. subtilis and Synechocystis are particularly
noticeable.
In the future, we hope to improve Prodigal’s recogni-

tion of short genes, atypical genes, translation initiation
mechanisms, and genomes. With a more detailed look
at cyanobacteria and archaea, in general, it should be
possible to build a better start site prediction algorithm
than the one currently in place for non-SD motifs. Also,
identifying laterally transferred genes, genes in phage
regions, proteins with signal peptides, and any other
genes that do not match the typical GC frame bias for
the organism in question, are areas where Prodigal can
improve. We will also seek to develop a version of Pro-
digal to address the rapidly growing metagenomic data
for microbial organisms.

Table 4 Comparison with Genbank Annotations

Organism Genbank Genes with
no Joins

Prodigal
1.20

Prodigal 1.20
+TiCo

Prodigal 1.20
+TriTisa

GenemarkHMM
2.6

Glimmer
3.02

EasyGene
1.2

MED 2.0

Escherichia coli
K12

4268 4118/3823
(96.5%/
89.6%)

4118/3779
(96.5%/88.5%)

4118/3778
(96.5%/88.5%)

4122/3685
(96.6%/86.3%)

4076/3563
(95.5%/
83.5%)

3977/3565
(93.2%/
83.5%)

4102/
3711
(96.1%/
86.9%)

Halobacterium
salinarum

2110 2062/1857
(97.7%/
88.0%)

2062/1809
(97.7%/85.7%)

2061/1790
(97.6%/84.8%)

2042/1676
(96.7%/79.4%)

2054/1609
(97.3%/
76.2%)

2018/1692
(95.6%/
80.2%)

2008/
1469
(95.1%/
69.6%)

Natronomonas
pharaonis

2661 2630/2398
(98.8%/
90.1%)

2630/2358
(98.8%/88.6%)

2630/2348
(98.8%/88.2%)

2624/2251
(98.6%/84.6%)

2622/2220
(98.5%/
83.4%)

2548/2271
(95.7%/
85.3%)

2586/
1953
(97.2%/
73.4%)

Bacillus subtilis 4174 4113/3705
(98.5%/
88.8%)

4113/3678
(98.5%/88.1%)

4113/3679
(98.5%/88.1%)

4136/3713
(99.1%/89.0%)

4102/3569
(98.3%/
85.5%)

3977/3578
(95.3%/
85.7%)

4127/
3596
(98.9%/
86.2%)

Aeropyrum pernix 1699 1670/1430
(98.3%/
84.2%)

1670/1363
(98.3%/80.2%)

1670/1353
(98.3%/79.6%)

1672/1364
(98.4%/80.3%)

1671/1317
(98.4%/
77.5%)

1652/1389
(97.2%/
81.8%)

1689/
1309
(99.4%/
77.1%)

Synechocystis
PCC6803

3171 3146/2587
(99.2%/
81.6%)

3146/2364
(99.2%/74.6%)

3146/2447
(99.2%/77.2%)

3124/2337
(98.5%/73.7%)

3123/2236
(98.5%/
70.5%)

3053/2288
(96.3%/
72.2%)

3126/
2192
(98.6%/
69.1%)

Pseudomonas
aeruginosa

5565 5514/5038
(99.1%/
90.5%)

5514/4885
(99.1%/87.8%)

5514/4821
(99.1%/86.6%)

5484/4698
(98.5%/84.4%)

5491/4705
(98.7%/
84.5%)

5522/4761
(99.2%/
85.5%)

5292/
4539
(95.1%/
81.6%)

Table 4 shows the performance of gene-finding algorithms on seven Genbank files. The first number in each entry indicates the number of 3’ ends of genes
correctly identified. The second number in each entry indicates the number of 5’+3’ ends (genes and their correct starts) exactly identified. Beneath these
numbers are % representations for each of those values. It should be noted that Genbank genes are not experimentally verified; this table is just meant to
provide a snapshot of performance over entire genomes.

Hyatt et al. BMC Bioinformatics 2010, 11:119
http://www.biomedcentral.com/1471-2105/11/119

Page 9 of 11

Conclusions
We developed a new gene-finding program for microbial
genomes called Prodigal. The goals of Prodigal were to
attain greater sensitivity in identifying existing genes, to
predict translation initiation sites more accurately, and to
minimize the number of false positive predictions. The
results of Prodigal were compared to existing methods
for both purely experimentally verified genes as well as
curated Genbank files for a number of genomes. Prodi-
gal’s performance was found to be comparable or better
to existing methods in the prediction of genes while also
predicting fewer overall genes. In the prediction of trans-
lation initiation sites, Prodigal performed competitively
with existing methods. Prodigal is currently already in
use at many institutions, and it has been used to annotate
all finished microbial genomes submitted to Genbank by
DOE-JGI in 2008 and onward (a substantial percentage
of the overall finished microbial genomes at NCBI). It is
run regularly at NCBI alongside GenemarkHMM [2] and
Glimmer [1], and it has also been incorporated into the
Swiss Institute of Bioinformatics microbial genomics
browser [19]. In conclusion, Prodigal should prove to be
a valuable resource for genome annotation of either draft
or finished microbial sequence.

Availability and Requirements
Project Name: Prodigal
Project Home Page: http://compbio.ornl.gov/

prodigal/
Operating System: Any
Programming Language: C
License: GNU GPL

Additional file 1: prodigal.v1_20.tar.gz. Archive containing the source
code for Prodigal.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2105-11-
119-S1.GZ]

Acknowledgements
The authors wish to acknowledge Robert W. Cottingham, Edward C.
Uberbacher, Cynthia Jeffries, and Yun-Juan Chang for helpful discussions and
suggestions. The authors also wish to acknowledge Mark Borodovsky for
helpful discussions and the provision of the Genemark software. Support for
this research was provided by the U.S. Department of Energy, Office of
Science, Biological and Environmental Research Programs. Oak Ridge
National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department
of Energy under contract DE-AC05-00OR22725.

Author details
1Computational Biology and Bioinformatics Group, Oak Ridge National
Laboratory, Oak Ridge, TN 37831, USA. 2Genome Science and Technology
Graduate School, The University of Tennessee, Knoxville, TN 37996, USA.
3DOE Joint Genome Institute, Oak Ridge National Laboratory, Oak Ridge TN
37831, USA.

Authors’ contributions
DH wrote the code. DH and LH designed the algorithm. PL and GLC
examined the GC frame plot problem in high GC genomes. GLC also
performed a study on 16s RNAs. ML and FL contributed ideas and
suggestions to the algorithm, as well as practical testing of the code. All
authors read and approved the final manuscript.

Received: 20 July 2009 Accepted: 8 March 2010
Published: 8 March 2010

References
1. Delcher A, Bratke K, Powers E, Salzberg S: Identifying bacterial genes and

endosymbiont DNA with Glimmer. Bioinformatics 2007, 23(6):673-679.
2. Lukashin A, Borodovsky M: GeneMark.hmm: new solutions for gene

finding. Nucleic Acids Res 1998, 26(4):1107-1115.
3. Benson D, Karsch-Mizrachi I, Lipman D, Ostell J, Sayers E: GenBank. Nucleic

Acids Res 2009, , 37 Database: D26-31.
4. Larsen T, Krogh A: EasyGene–a prokaryotic gene finder that ranks ORFs

by statistical significance. BMC Bioinformatics 2003, 4:21.
5. Zhu H, Hu G, Yang Y, Wang J, She Z: MED: a new non-supervised gene

prediction algorithm for bacterial and archaeal genomes. BMC
Bioinformatics 2007, 8:97.

6. Ou H, Guo F, Zhang C: GS-Finder: a program to find bacterial gene start
sites with a self-training method. Int J Biochem Cell Biol 2004,
36(3):535-544.

7. Tech M, Pfeifer N, Morgenstern B, Meinicke P: TICO: a tool for improving
predictions of prokaryotic translation initiation sites. Bioinformatics 2005,
21(17):3568-3569.

8. Hu G, Zheng X, Zhu H, She Z: Prediction of translation initiation site for
microbial genomes with TriTISA. Bioinformatics 2009, 25(1):123-125.

9. Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic local alignment
search tool. J Mol Biol 1990, 215(3):403-410.

Table 5 Number of Genes Predicted By Each Method

Organism Genbank EasyGene 1.2 Prodigal 1.20 GenemarkHMM 2.6 Glimmer 3.02 MED 2.0

Escherichia coli K12 4321 (1.00) 4099 (0.95) 4305 (1.00) 4378 (1.01) 4476 (1.04) 4811 (1.11)

Halobacterium salinarum 2110 (1.00) 2097 (0.99) 2101 (1.00) 2085 (0.99) 2141 (1.01) 2385 (1.13)

Natronomonas pharaonis 2661 (1.00) 2587 (0.97) 2678 (1.01) 2685 (1.01) 2720 (1.02) 3111 (1.17)

Bacillus subtilis 4177 (1.00) 4019 (0.96) 4224 (1.01) 4354 (1.04) 4429 (1.06) 4601 (1.10)

Aeropyrum pernix 1700 (1.00) 1686 (0.99) 1717 (1.01) 1738 (1.02) 1789 (1.05) 2419 (1.42)

Synechocystis PCC6803 3172 (1.00) 3089 (0.97) 3306 (1.04) 3462 (1.09) 3677 (1.16) 3778 (1.19)

Pseudomonas aeruginosa 5566 (1.00) 5910 (1.06) 5679 (1.02) 5712 (1.03) 5878 (1.06) 6709 (1.21)

Table 5 shows the number of genes predicted by each method on seven Genbank files. The Genbank column indicates the number of genes in the Genbank file.
The number in parentheses indicates the number of predicted genes divided by the number of genes in the Genbank file, e.g. 1.10 indicates 10% more genes
predicted than the Genbank file.

Hyatt et al. BMC Bioinformatics 2010, 11:119
http://www.biomedcentral.com/1471-2105/11/119

Page 10 of 11

http://compbio.ornl.gov/prodigal/
http://compbio.ornl.gov/prodigal/
http://www.ncbi.nlm.nih.gov/pubmed/17237039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17237039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9461475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9461475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940867?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12783628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12783628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17367537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17367537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14687930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14687930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15994191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15994191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract

10. VerBerkmoes N, Shah M, Lankford P, Pelletier D, Strader M, Tabb D,
McDonald W, Barton J, Hurst G, Hauser L, et al: Determination and
comparison of the baseline proteomes of the versatile microbe
Rhodopseudomonas palustris under its major metabolic states. J
Proteome Res 2006, 5(2):287-298.

11. Badger J, Olsen G: CRITICA: coding region identification tool invoking
comparative analysis. Mol Bio Evol 1999, 16(4):512-24.

12. Rudd K: EcoGene: a genome sequence database for Escherichia coli K-
12. Nucleic Acids Res 2000, 28(1):60-64.

13. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M, Barrell B:
Artemis: sequence visualization and annotation. Bioinformatics 2000,
16(10):944-5.

14. Bellman R: On the Theory of Dynamic Programming. Proc Natl Acad Sci
USA 1952, 38(8):716-719.

15. Shine J, Dalgarno L: Terminal-sequence analysis of bacterial ribosomal
RNA. Correlation between the 3’-terminal-polypyrimidine sequence of
16-S RNA and translational specificity of the ribosome. Eur J Biochem
1975, 57(1):221-230.

16. Dam P, Olman V, Harris K, Su Z, Xu Y: Operon prediction using both
genome-specific and general genomic information. Nucleic Acids Res
2007, 35(1):288-98.

17. Aivaliotis M, Gevaert K, Falb M, Tebbe A, Konstantinidis K, Bisle B, Klein C,
Martens L, Staes A, Timmerman E, et al: Large-scale identification of N-
terminal peptides in the halophilic archaea Halobacterium salinarum
and Natronomonas pharaonis. J Proteome Res 2007, 6(6):2195-2204.

18. Hu G, Zheng X, Yang Y, Ortet P, She Z, Zhu H: ProTISA: a comprehensive
resource for translation initiation site annotation in prokaryotic
genomes. Nucleic Acids Res 2008, , 36 Database: D114-119.

19. Gattiker A, Dessimoz C, Schneider A, Xenarios I, Pagni M, Rougemont J: The
Microbe browser for comparative genomics. Nucleic Acids Res 2009, , 37
Web server: W296-9.

doi:10.1186/1471-2105-11-119
Cite this article as: Hyatt et al.: Prodigal: prokaryotic gene recognition
and translation initiation site identification. BMC Bioinformatics 2010
11:119.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Hyatt et al. BMC Bioinformatics 2010, 11:119
http://www.biomedcentral.com/1471-2105/11/119

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/16457594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16457594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16457594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11120685?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16589166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/809282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/809282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/809282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17170009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17170009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17444671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17444671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17444671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17942412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17942412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17942412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19406928?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19406928?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Results and Discussion
	Conclusions
	Availability and Requirements
	Acknowledgements
	Author details
	Authors' contributions
	References

