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Background: Despite the development of various modeling approaches to predict gene network activity, a time
dynamic stochastic model taking into account real-time changes in cell volume and cell cycle stages is still missing.

Results: Here we present a stochastic single-cell model that can be applied to any eukaryotic gene network with
any number of components. The model tracks changes in cell volume, DNA replication, and cell division, and
dynamically adjusts rates of stochastic reactions based on this information. By tracking cell division, the model can
maintain cell lineage information, allowing the researcher to trace the descendants of any single cell and therefore
study cell lineage effects. To test the predictive power of our model, we applied it to the canonical galactose
network of the yeast Saccharomyces cerevisiae. Using a minimal set of free parameters and across several galactose
induction conditions, the model effectively captured several details of the experimentally-obtained single-cell
network activity levels as well as phenotypic switching rates.

Conclusion: Our model can readily be customized to model any gene network in any of the commonly used cells
types, offering a novel and user-friendly stochastic modeling capability to the systems biology field.
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Background

It is well established that gene expression can vary signifi-
cantly from cell to cell, even in the same clonal population
[1-4], in no small part due to the stochastic nature of tran-
scription events in any single cell [5]. Much work has been
done to computationally model gene expression networks,
including the well-characterized galactose utilization net-
work (GAL network) in yeast. Many of those models [6-9],
however, are deterministic models and therefore could pro-
vide only limited insights on what happens at the single-cell
level. The shortcomings of this approach is demonstrated
by previous work [10] that showed that stochastic noise
could generate bimodality in a system whose deterministic
models predict no bistability.
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Therefore, to understand these inherently stochastic
processes at the single-cell level, stochastic models are
all but required. Many such models in recently published
works [10, 11], however, suffer from several deficiencies.
These models usually do not take into account variations
in rates of transcription, translation, or cell growth
among isogenic cells. Nor do they take into account the
cell cycle, whose impact on transcription has recently
been suggested to be capable of accounting for most of
the noise in gene expression [12]. In essence, they model
a cell that is stuck indefinitely in the G1 phase of the cell
cycle. Such approximations could be acceptable if the
simulations lasted for a time period much shorter than
the duration of the cell cycle, but they would be ques-
tionable for longer simulation durations.

Here we introduce a detailed stochastic model of gene
network activity that can be applied to any eukaryotic
gene network. The model takes into account real-time
changes in cell volume and cell cycle, and it can time-
dynamically track the lineage of individual cells while
each cell changes its size and gene expression content.
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To show the efficiency and predictive power of our
model, we applied it to the well-characterized GAL net-
work. Using the yellow fluorescent protein (YFP) driven
by the GAL1 promoter (Pgar1-YFP) as a reporter, we ex-
perimentally quantified its expression levels from single
cells at two different time points and used these data for
fitting, followed by model predictions without any fit pa-
rameters. Our model could effectively capture several
details of these single cell expression distributions as
well as phenotypic switching rates by using a minimal
set of free parameters.

Results
Modeling cell volume growth and division
Our stochastic single-cell model consists of two interre-
lated modules. The first module models the dynamics of
cell volume growth and division. For this, we modeled cell
growth and division in the asymmetrically growing bud-
ding yeast S. cerevisiae. Based on a previous experimental
characterization [13], we divided the cell cycle into two
stages, one consisting of G1 and the other consisting of S/
G2/M. As illustrated in Fig. 1a, the cell volume grows
linearly in both stages but at different rates. It was previ-
ously shown [13] that the volume at which start is reached
(leading to the ending of G1 and entry into S after a brief
time period) is linearly related to the growth rate in G1,
while the volume growth in S/G2/M is mostly attributable
to the bud, and determines the size of the daughter cell.
The cell cycle is divided into two stages (G1 and S/
G2/M) and three time blocks (T1, T2, T3) (Fig. 1la). T1
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consists of the beginning of G1 until start; T2 from start
until the end of G1; and T3 consists of the entire second
stage of the cell cycle (S/G2/M). The value of T1 for
each cell follows the following equation:

Vi—Vo
r

T1 = min <T1', ) Vi=kri+b

where T1' provides a lower bound to the length of 71,
Vp is the volume of the cell at the beginning of the cell
cycle, Vi is the volume of the cell at start, r; is the rate
of volume growth in G1, and k and b are model parame-
ters relating r; to V. The model parameters consist of
the mean and standard deviations of the initial volume
of the starting cells (V;), the growth rate in G1 (r;), the
overall growth rate in S/G2/M (r), the mother compart-
ment’s growth rate in S/G2/M (ry,), the minimum
length of T1 (T1'), the duration from start to S phase
entry (T2), and the duration of S/G2/M (73), each of
which is assumed to follow a normal distribution, along
with k and b.

At each cell division, daughter cells inherit a certain
degree of the parameters of their parent. The exact level
of inheritance is described by an additional model par-
ameter, ¢, such that for a given parameter p,

Paaughter = €Pparent + (1_C)pﬁesh

where pj.g, is a value sampled from the distribution of p.
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Fig. 1 The two modules of the stochastic single-cell model. a. lllustration of a model of cell growth with asymmetric division [13]. The cell grows
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Modeling the activity of an N-component gene network

The second module of our model is a stochastic model
of an N-component gene network. The genes composing
the network are under the control of a master transcrip-
tion factor that controls the activation rate of the net-
work promoters. We denote the genes inside the
network by G;, G, ..., Gy, and have the activity of the
network be reported by a fluorescent reporter gene de-
noted by Gy. The reporter gene’s activity is determined
by the network’s activity. We model the promoter of
each gene to switch between two states, OFF and ON,
with full-strength transcription only occurring in the
ON state. We denote the mRNA corresponding to G,
(where x=0, I, ..., N) as R,, and the protein as P,. The
number of copies of promoters of gene G, in OFF (ON)
state is denoted as PRorg, (PRop;»)- Then, for each gene
G, including the reporter, we construct a set of seven
stochastic reactions, as illustrated in Fig. 1b. For a cell
with volume V] the reaction rates for each reaction are:

Promoter activation: ron, x PRorrx

Promoter inactivation: rorr » PRon, x
. . . v,
mRNA synthesis from inactive promoter: r,, y by PRorr x Tf

Vier
\4

mRNA synthesis from active promoter: r,, » PRon x

mRNA degradation: d,;, , R, V‘ff

Vier

v
Protein degradation: d, , P, %

Protein synthesis: 7, , R,

Vs is a constant scaling factor equal to the average
volume of the entire population of cells. We introduced
it to make the value of reaction parameters more com-
parable to experimental measurements. The stochastic
reactions are governed by the parameters rorry, Tona
T DVpxs Gimx and d,, . The parameter ropn, is deter-
mined by the following equation:

ronx = x F([inducer], [P1], [Pa], ..., [Pn])

where r, is the maximum activation rate of the promoter
of G,. F is a function relating the concentrations of the in-
ducer and P;, P, ..., Py to the overall activity of the net-
work, and is called the functional form of the network.

We further opted to use as a model parameter not the
promoter inactivation rate rogg,, but instead the fraction
of time a promoter spends active when fully induced.
We define this fraction, f;, as
Tx
S Tx + TOFF x

Both f, and r, are model parameters for all x=0, 1,
.oy N

Further, in our actual model, we use not the actual
mRNA synthesis rate per promoter r,, but the
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observed mRNA synthesis rate r,,,. The two are related
by the equation

r;n‘x = rm.xfx + bxrqu(l_fx)

This implementation reflects that, even in fully in-
duced cells, the promoters are only being transcribed at
maximum rate a portion (f,) of the time. Similarly, we
use the observed basal expression level b, instead of the
actual ratio between OFF-state and ON-state transcrip-
tion rates b,. The two are related by the equation

bx rm,x = bx T'mx

To summarize, for each network component (and the
reporter), there are seven stochastic reactions described
by seven parameters: 7, fo 70 D'xs Tpxr Gyyo and d .

Combining the gene network activity model with the cell
growth and division model

Next, we incorporated cell volume growth and division
into our stochastic gene network model by including cell
volume as an additional stochastic reaction. The rate
at which the reaction fires is determined by the
current cell volume growth rate as calculated by the
volume model, and each time the stochastic reaction
fires, the cell volume is increased by a small, fixed
amount determined by the volume model. This
change in cell volume in turn changes the rates of
the stochastic reactions.

Our model also takes into account the changes in
the number of copies of the genetic material during
cell cycle. During DNA replication, when an active
promoter replicates into two promoters, we assume
that both promoters remain active. Similarly, an in-
active promoter is assumed to replicate into two in-
active promoters during DNA replication. Further,
during cell division, we distribute the mRNA and pro-
tein contents between mother and daughter cells in
accordance with a binomial distribution whose prob-
ability p is equal to the ratio of the volume of the
daughter cell to the total volume.

Simulations using the combined stochastic model

Using this single-cell level model, we simulated pop-
ulations of cells for 22 h and 5 h, which were also
the time periods we used for growing the cells in
our experiments.

However, due to exponential growth of the popula-
tion size, with any reasonable size for the initial
population of cells, it is impractical to simulate all of
its descendants for 22 h. Hence, we added a sampling
step (Fig. 2c). For the 22 h simulation, we started
from an initial population of 1000 cells, ran the simu-
lation for 11 h and randomly sampled 2000 cells from
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Fig. 2 Overview of the GAL network and the simulation process. a. The GAL network in S. cerevisiae with its activity reported by a Pga; ;-YFP
reporter. Transcription of GALT, GAL3, GAL80, and the reporter are controlled by the transcription factor Gal4p. Gal80p represses Gal4p and is in
turn repressed by the inducer Gal3p and Gallp in the presence of galactose. b. As a cell grows, both the volume and the number of gene and
network copies will change. c. The simulation and sampling process for the 22-h simulation. Each cell in the figure represents 1000 cells; the initial
population is simulated for 11 h, resulting in a population of ~42,000 cells; from this population 2000 cells are sampled and simulated for an
additional 11 h to produce the final population of cells

the resulting population of ~42,000 cells, and then
simulated those cells for another 11 h for a final
population of ~84,000 cells.

For the 5 h simulation, to minimize the effect of the
initial state on the result of the simulation (due to the
relatively shorter time period compared to 22 h), an ini-
tial population of 20,000 cells were simulated for 5 h in
basal conditions, a sample of 20,000 cells were taken,
the inducer was introduced to the system, and the sam-
pled cells were simulated for an additional 5 h.

We repeated this simulation and sampling process for
several different inducer concentrations (Fig. 3). The
output of the simulation with a given set of parameters
and inducer concentration was a set of reporter protein
counts in the final population of cells, which we con-
verted to simulated fluorescence measurements by using
a fitting procedure (Methods).

Application of the model to the canonical GAL network
in yeast

We tested the efficiency and predictive power of our
model by applying it to the GAL network of the yeast S.
cerevisiae. The GAL network is arguably the most suit-
able gene network to test our model due to the net-
work’s well-characterized [14—18] nature in terms of its
components and their interaction topology. Choosing a
canonical gene network allows one to study principles
affecting gene network activity that are broadly applic-
able to eukaryotic cells.

The activity of the GAL network is governed by a mas-
ter transcription factor Galdp that binds to the network
promoters to activate their transcription (Fig. 2a). Previ-
ous work has shown that two additional regulatory pro-
teins (Gal80p and Gal3p), as well as the galactokinase
Gallp, play key roles in setting the activity of the GAL
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network [19-22]. Gal80p is a repressor that binds to
Galdp to repress it, Gal3p is an inducer that binds to
Gal80p in the presence of galactose and relieves the re-
pression, and Gallp (which is highly homologous to
Gal3p) is also an inducer, although significantly weaker
than Gal3p.

The dual positive feedback loops formed by GAL1 and
GALS3, together with the inherent nonlinearities of the GAL
network, result in a bimodal expression profile [15, 19, 23].
The functional form that we used for the GAL network
(see Methods) captures all of these interactions.

For the parameters governing the dynamics of the
GAL gene network activity, we fixed several of them in
ranges described in published literature. These included
the rates of RNA synthesis and decay [24], translation
[10, 25, 26], and protein degradation [26], as well as
basal transcription levels for the GAL network pro-
moters [27]. Since inside our model a scaling parameter,
subject to fitting, is applied to each protein, we do not
expect inaccuracies in these values to have substantial
effects on the predictive power of our model.

To simulate global transcriptional noise in cells, we
applied a random perturbation to each rate parameter
for each individual cell. Inside each cell, the rate parame-
ters for each process (e.g., transcription) are perturbed
by the same fraction for all network components, to re-
flect that these perturbations are caused by global noise
extrinsic to the particular gene.

The only free parameters that we used in our model were
the ones governing the transitions of the network pro-
moters between the OFF and ON states, and the parame-
ters setting the scale of action for network proteins, which
were determined by sweeping over discrete values followed
by fitting to experimental data. For this, the Monte Carlo
simulation generated a distribution of reporter protein
levels in the final population of cells and this was then fitted
to experimental measurements obtained from a yeast strain
carrying the Pgar1-YFP reporter construct. The GAL1 pro-
moter is a faithful reporter of the network activity, as it is
bound and activated by the Gal4 proteins.

To experimentally obtain the Pgar;-YFP expression
distributions at the single-cell level, we induced the yeast
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cells for 5 and 22 h in media containing seven different
galactose concentrations. Using a flow cytometer, we then
measured the YFP expression levels from ~10,000 cells
and obtained the expression histograms depicted in Fig. 3.
We then binned the expression levels to obtain 20 regions
on each histogram, and fitted our model to these experi-
mental results obtained at 5 and 22 h, producing the fit re-
sults depicted in Fig. 3. The parameter values obtained
from the fitting procedure are shown in Additional file 1:
Table S2. As can be seen, the fit results are in good agree-
ment with the experimentally obtained values.

To test the predictive power of our model, we per-
formed additional experimental measurements in two
more media conditions containing 0.02 % and 0.04 %
galactose, for both experimental durations (5 and 22 h),
and compared the experimental measurements with the
predictions of the model without using any free parame-
ters. We selected these concentrations because, as
shown in Fig. 4a and c, they are in the ‘linear’ range in
which changes in inducer concentration causes signifi-
cant changes in the fraction of ON cells. As shown in
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Fig. 4, the predictions of our model for those concentra-
tions are in good agreement with the experimental ob-
servations, both in terms of the fraction of ON cells and
in terms of the single-cell fluorescence distributions.

Tracking the lineage-specific changes in cell size and
protein content in real time
Our model also allows users to track lineages of individ-
ual cells and how their size and gene expression con-
tents change as a function of time. In Fig. 5, we selected
a representative cell from a simulation run at 0.03 % gal-
actose using the parameters obtained from the fitting
procedure described above, and tracked the single-cell
reporter content (Fig. 5a) and cell size (Fig. 5b) of all of
its descendants born during the first 660 min of the
simulation. Our model also allows users to perform
more detailed analyses such as comparing the gene ex-
pression and cell size characteristics of the descendants
of different cells.

A final demonstration for the predictive power of our
model was made by experimentally measuring the
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Fig. 4 The predictive power of the model. a, ¢, Fraction of ON cells as a function of galactose concentration for 5-h (a) and 22-h (c) experiments:
experimental (blue dots) vs. fitted (red dots) and predicted (red stars). Error bars represent SEM. b, d, Single-cell fluorescence distributions of S. cerevisiae
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phenotypic switching rates between the OFF and ON
states of the GAL network, followed by predicting the
rates by our model without using any additional fit pa-
rameters. Using a detailed log produced by the simula-
tion, each cell was classified as either ON or OFF at
each time point recorded based on the number of re-
porter proteins in the cell. Then, the rates at which OFF
cells switch to the ON state and ON cells switch to OFF
state were calculated. As shown in Fig. 6, the results of
our model are generally consistent with the estimated
phenotypic switching rates extracted by applying a sim-
ple two-state model (without any free parameters) to ex-
perimental data obtained from two different initial
conditions [28] (see Additional file 1: Note S2). The ex-
perimental method we used to extract the switching
rates is an alternative to the more direct but prohibi-
tively time-taking method of microscopically tracking
thousands of individual cells for multiple hours in the
presence of cell-crowding and focusing issues. We ex-
pected that our experimental method would underesti-
mate the switching rates and indeed the values we
extracted from data were lower than the ones predicted
by the simulation. This expectation was due to the fact
that our method would not count the phenotypic
switching events if, for example, a cell switched between
the two phenotypic states for an even number of times.
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Discussion

Using computational analysis to guide experimental test-
ing has significant advantages over the traditional purely
experimental approach. By using the computational pre-
dictions as a guide, the researcher can avoid the ineffi-
ciencies associated with a purely experimental approach,
while still producing results that can be actually tested
and confirmed in a biological system.

The volume of a cell and the cell cycle stage it goes
through can have significant impact on the activity of a
gene network in that cell. Doubling the volume effectively
halves the gene network dosage, which can signifi-
cantly change the network activity level for non-
dosage-compensated networks [14, 29]. Similarly, it
has been suggested that the cell cycle, and the transcrip-
tion changes it causes, is a major contributor to gene ex-
pression noise observed in a population of cells [12]. To
fully understand the complex interactions at play, one
needs a model that accounts for both the cell volume and
cell cycle, and the network itself.

Here we present such a single-cell level stochastic
model and demonstrate its predictive power by using
the GAL network in S. cerevisiae. We validated our
model by comparing its predictions for single-cell gene
expression distributions with experimental results ob-
tained at different galactose induction levels that were
not used to select model parameter values. Our model is
also able to generate detailed single-cell level lineage-
specific time-course data for gene expression, cell vol-
ume, and cell division. Using this data, we calculated the
phenotypic switching rates for the cells in the simulation
and saw that the results were in reasonably good agree-
ment with the switching rate estimates obtained from
additional experiments.

We note that our volume model results in a steadily
increasing cell volume as the cells age. This is consistent
with experimental observations [30, 31] on S. cerevisiae
cells, whose volume indeed increase steadily until they
reach a relatively constant maximal volume and enter
senescence. Our volume model does not attempt to cap-
ture senescence, for two reasons. First, the time scale of
our simulations (22 h, or ~11 generations) is well below
the average replicative lifespan for yeast cells (24-29
generations [31, 32]), so that few cells would be expected
to reach such a state. Second, in an exponentially grow-
ing population of cells, the fraction of old cells is ex-
tremely small due to geometric distribution (leading to
the population composition of 50 % newborn cells, 25 %
one-generation old cells, and so on), and would not ap-
preciably affect our results.

Conclusion
In this paper, we present a single-cell level stochastic
model that accounts for the cell volume and the cell cycle
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in addition to the gene network it models, and demon-
strate its predictive power by using the GAL network in S.
cerevisiae. Our model can easily be adapted for other gene
networks and other cell types, and can also be easily ex-
tended in other ways. For instance, researchers working
with different cell types (e.g., mammalian cells, or fission
yeast) need only create a volume model reflecting the size-
control mechanism in those cells, without having to re-
invent the gene network part of the model. As another
example, by having the gene network part of the model
affect the volume growth and cell division rates via a fit-
ness function, one can easily modify the model to perform
in silico evolution experiments to track and understand
how gene networks evolve time dynamically.

Methods

Strain construction

We used a BY-background haploid wild-type S. cerevi-
siae strain carrying the Pgaz;-YFP reporter integrated
in its 4o locus. For this, Kpnl- Pga;; — BamHI and
BamHI - YFP - EcoRI fragments were cloned into a plas-
mid upstream of the CYC1I transcriptional terminator. The
plasmid also carried the Prgp;-HISS marker positioned to
the left of the Pg4y;-YFP reporter. Using this plasmid as a
template together with 5-3’ primers having 60 bp-long
homology to the ho locus, the [Prgp;-HISS + Pgar;-YFP]
region of the plasmid was PCR amplified and then trans-
formed into yeast. The Pgaz; promoter sequence corre-
sponds to the 668 base-pair region directly upstream of the
start codon of the S. cerevisiae GALI gene. The genetic
composition of the strain we used is: MATa, his34, leu2A,
LYS2, met15A, ura3A, ho:HIS5-Pg,; ;-YFP.

Growth conditions and media

Cultures were grown in synthetic dropout media with the
appropriate amino-acid supplements. During the over-
night growth period (22 h in 30 °C shaker), 0.1 % mannose
was used as a non-inducing carbon source. The overnight
growth period was followed by the induction period (5 or
22 h in 30 °C shaker), with cultures containing 0.1 % man-
nose and 0-0.1 % galactose as carbon sources. 0.1 % man-
nose was used as a background carbon source ensuring
similar growth rates across different galactose concentra-
tions. After the induction period, the expression distribu-
tions of approximately 10,000 cells were measured by a
flow cytometer (FACS-Verse; Becton Dickinson). The
ODggo values at the end of the overnight and induction
periods were kept low (ODggo ~ 0.1) to prevent nutrient
depletion. The culture volumes were 5 ml during both the
overnight growth and induction periods.

For switching-rate measurement experiments, the over-
night growth media contained either [0.1 % mannose, for
OFF history] or [0.1 % mannose and 0.1 % galactose, for
ON history] as carbon sources, so that we would obtain



Song et al. BMC Systems Biology (2015) 9:91

different initial conditions at the end of the overnight
period. Following the overnight growth, OFF and ON his-
tory cultures were separately induced for 22 h in the same
media containing 0.1 % mannose and 0-0.1 % galactose.
After the overnight and induction periods, the expression
distributions of approximately 10,000 cells were measured
by a flow cytometer. The fractions of ON cells at the be-
ginning and end of the induction period were quantified
and used in extracting the phenotypic switching rates as
described in Additional file 1: Note S2.

Setting parameter values for the cell-growth and division
module

The asymmetric volume model described has the follow-
ing parameters: means and standard deviations of V}, r;,
2 Yo T2, T1) and T3, along with the parameters &, b, and
¢. The values of all parameters except ¢ were taken from
[13], which performed time-course microscopic volume
measurement experiments on the same strain background
as the one we used; the value of ¢ was fixed at 0.25.
Additional file 1: Table S1 shows the values of the parame-
ters we used for the cell growth and division module.

Software for simulations and fitting

All code used for simulation and fitting is custom-
written in C++. Random numbers for the simulation are
generated using the TRNG library [33]. Fitting is per-
formed using the NLopt library [34].

Simulations of the combined stochastic model

For a given set of model parameters, the simulation was
performed using a modified version [35, 36] of the well-
established Gillespie algorithm [37]. We simulate a popu-
lation of cells, with the model parameters for each cell
sampled from a normal distribution with mean equal to
the parameter provided and standard deviation equal to
10 % of the mean. The age of each cell at t =0 is sampled
from an exponential distribution with mean equal to the
average doubling time of the strain (120 min). The initial
state of each cell was set according to the steady state
basal levels calculated from its parameter values.

For the 22 h simulations, we started from an initial
population of 1000 cells. Inducer is introduced at t=0.
The simulation is run for 11 h, and a sample of 2000
cells is taken from the resulting population of ~42,000
cells, to be simulated for another 11 h, for a final popu-
lation of ~84,000 cells.

For the 5 h simulations, we started from an initial popu-
lation of 20,000 cells, which is simulated for 5 h at basal
conditions (no inducer). A sample of 20,000 cells is taken
from the resulting population of cells, the inducer is intro-
duced, and the sample is simulated for another 5 h.

The output of the simulation is a set of reporter pro-
tein counts in # cells R={R; R,, ..., R,}. To match this
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output to the experimentally observed fluorescence data,
we performed the fitting procedure as described below
in the section titled “Fitting procedure for fluorescence”.

Fitting the combined stochastic model to single-cell gene
expression distributions

We use the following functional form to represent the
activity of the GAL network:

1

B
Ss0[Gal80p]
L+ (1+(53g[G;(l)3p]+Slg[Gullp])“)

where S3, S;, Sgp» @ and 5 are model parameters. We note
that this functional form is not generic, but it can be de-
rived from the molecular interactions of the network com-
ponents, as shown in Additional file 1: Note S1.

We set a=1 based on previous work [14], in which
case the functional form becomes

1
1 Ss0[Gal80p] B
+ 1+S5¢[Gal3p]+$1¢[Gallp]

1
= when S3g(Gal3p| + S1g[Gallp]>1
1+ Sg0[Gal80p] B
S3g|Gal3p|+S1g[Gallp]

F =

When S3g[Gal3p] + SiglGallp] > 1, proportionally chan-
ging the values of S3, S; and Sgy does not affect the value of
F. Accordingly, we fixed Sg at the arbitrary number 4500
and fitted S; and S; only.

We fixed 7', 7pr bs» Ay and d,, . for the reporter
(Pgar;-YFP) and all network components (GAL1, GAL3,
and GALSO0) based on values reported in literature (see
Additional file 1: Table S3). The parameters to be fitted
consist of r, and f, for the reporter and network compo-
nents, and S3, S; and f in the functional form of the net-
work, for a total of nine parameters (as the reporter and
the GAL1 gene share the same promoter, they are as-
sumed to have the same r, and f, values).

We performed sweeps over a wide range of possible
parameter values and selected initial values of the pa-
rameters for fitting so that they yielded bimodal fluores-
cence distributions similar to the behavior of the GAL
network. The fitting was performed using the well-
known Nelder-Mead algorithm [38—40]. For each set of
parameters, the simulation as described above is re-
peated a number of times (denoted Ny). Each repeat
consists of a 5-h simulation and a 22-h simulation. The
score of the repeat is obtained as described below; the
mean of the scores of each repeat is taken as the score
for the set of parameters. The fitting algorithm was first
run for 24 h (wall-clock time) with Ny = 32, and then for
an additional 48 h (wall-clock time) with Ny = 128.
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Fitting procedure for fluorescence
Given a set of reporter protein counts in # cells R = {R;,
R, ..., R,}, we generate a set of background fluorescence
values B = {B}, By, ..., B,}, where each B; is sampled from
a normal distribution whose parameters are determined
using a population of uninduced cells (1 =61, 0 =17).
Given R, B, and a particular reporter-to-fluorescence
conversion factor ¢, we define the likelihood function as
follows. For each cell i ={1, ..., n}, we let the cell’s total
fluorescence be F;=cR; + B;. Then, we generate a histo-
gram of log;(F;), with bins [0, 0.2), [0.2, 0.4), ..., [3.8, 4),
normalized to total area of 1. Having H, , denote the
height of the bin [a, b), we define pdf(g) = max(0.0001,
H,;), where [a,b) is the bin containing log;y(g). Then,
given the known experimental observations of # cells
with fluorescence E;, E,, ..., E,, the likelihood function is

given by L(R,B,c) = def(Ei).
i~1

As the simulation as described above generates a set
of R’s (one for each inducer concentration), we generate
a set of B’s, one for each R. The actual likelihood func-
tion L(c) is the product of the values of L(R, B, c¢) de-
scribed above for each pair of R and B. We use the
Nelder-Mead algorithm to find the value ¢ that maxi-
mizes the value of L(c) (or minimizes the value of
-log(L)). The resulting maximized value of L is the likeli-
hood, and the corresponding value ¢ is the optimal
reporter-to-fluorescence conversion factor.

During fitting for the network model, the likelihood
function is computed by multiplying the likelihood func-
tions for the 5-h and the 22-h simulations computed as
described above, and the fitting procedure seeks the
value ¢ that maximized the value of the combined likeli-
hood function. The fluorescence fitting procedure is re-
peated a number of times for each repeat of the
simulation (32 times for the first stage of the fitting, and
120 times for the second stage), and the mean of the ob-
tained values of L is used as the score of the run.

Availability of supporting data
The data sets supporting the results of this article are in-

cluded within the article and its additional file.
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