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Renormalization of the Orientable
Non-commutative Gross–Neveu Model

Fabien Vignes-Tourneret

Abstract. We prove that the non-commutative Gross–Neveu model on the
two-dimensional Moyal plane is renormalizable to all orders. Despite a re-
maining UV/IR mixing, renormalizability can be achieved. However, in the
massive case, this forces us to introduce an additional counterterm of the form
ψ̄ ıγ0γ1ψ. The massless case is renormalizable without such an addition.

1. Introduction

From the rebirth of non-commutative quantum field theories [3,27,28], people were
faced to a major difficulty. A new (with respect to the usual commutative theo-
ries) kind of divergences appeared in non-commutative field theory [1, 23]. This
UV/IR mixing incited people to declare such theories non-renormalizable. Never-
theless H. Grosse and R. Wulkenhaar found recently the way to overcome such a
problem by modifying the propagator. Such a modification will be now called “vul-
canization”. They proved the perturbative renormalizability, to all orders, of the
non-commutative Φ4 theory on the four-dimensional Moyal space [14, 15]. Their
proof is written in the matrix basis. This is a basis for the Schwartz class functions
where the Moyal product becomes a simple matrix product [8,13]. A Moyal based
interaction has a non-local oscillating kernel. The main advantage of the matrix
basis is that the interaction is then of the type Tr Φ4. This form is much easier
to use to get useful bounds. The main drawback is the very complicated propa-
gator (see [17] for a complete study of the Gross–Neveu propagator in the matrix
basis). This is one of the reasons which lead us to recover in a simplified manner
the renormalizability of the non-commutative Φ4 theory in x-space [16]. The di-
rect space has several advantages. First of all, the propagator may be computed
exactly (and used). It has a Mehler-like form in the Φ4, LSZ and Gross–Neveu
theories [16, 17, 29]. The x-space allows to compare the behavior of commutative
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and non-commutative theories. It seems to allow a simpler handling of symme-
tries like parity of integrals. This point is very useful for the renormalization of
the Gross–Neveu model. We also plan to extend renormalizability proofs into the
non-perturbative domain thanks to constructive techniques developed in x-space.
Finally, when we will be able to do Physics with such non-commutative models,
we would like to have some experience with our physical space. Of course x-space
has also drawbacks. It forces to deal with non absolutely convergent integrals. We
have to take care of oscillations. Until now it is much more difficult to get the exact
topological power counting of the known non-commutative field theories in direct
space than in the matrix basis. The non-commutative parametric representation
would certainly provide an other way to get the full power counting [18].

Apart from the Φ4
4, the modified Bosonic LSZ model [16] and supersymmet-

ric theories, we now know several renormalizable non-commutative field theories.
Nevertheless they either are super-renormalizable (Φ4

2 [13]) or (and) studied at a
special point in the parameter space where they are solvable (Φ3

2,Φ3
4,Φ3

6 [10–12],
the LSZ models [20–22]). Although only logarithmically divergent for parity rea-
sons, the non-commutative Gross–Neveu model is a just renormalizable quantum
field theory as Φ4

4. One of its main interesting features is that it can be inter-
preted as a non-local Fermionic field theory in a constant magnetic background.
Then apart from strengthening the “vulcanization” procedure to get renormaliz-
able non-commutative field theories, the Gross–Neveu model may also be useful
for the study of the quantum Hall effect. It is also a good first candidate for a
constructive study [25] of a non-commutative field theory as Fermionic models are
usually easier to construct. Moreover its commutative counterpart being asymp-
totically free and exhibiting dynamical mass generation [9, 19, 24], a study of the
physics of this model would be interesting.

In this paper, we prove the renormalizability of the non-commutative Gross–
Neveu model to all orders. For only technical reasons, we restrict ourselves to the
orientable case. An interesting feature of the model is a kind of remaining UV/IR
mixing. Some (logarithmically) divergent graphs entering the four-point function
are not renormalizable by a “local” counterterm1. Nevertheless these “critical”
components only appear as sub-divergences of two-point graphs. It turns out that
the renormalization of the two-point function makes the (four-point) critical graphs
finite. In the massive case, we have to add to the Lagrangian a counterterm of the
form ψ̄ıγ0γ1ψ. The massless model is also renormalizable without such a coun-
terterm.

In Section 2, we present the model and fix the notations. We state our main
result. Section 3 is devoted to the main technical difficulty of the proof. Here is
explained how to exploit properly the vertex oscillations in order to get the power
counting. In Section 4, we compute this power counting with a multiscale analysis.
In Section 5, we prove that all the divergent subgraphs can be renormalized by

1By “local” we mean “of the form of the initial vertex”.
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counterterms of the form of the initial Lagrangian. Finally, appendices follow about
technical details and additional properties.

2. Model and notations

The non-commutative Gross–Neveu model (GN2
Θ) consists in a Fermionic quarti-

cally interacting field theory on the (two-dimensional) Moyal plane R
2
Θ. The alge-

bra AΘ of “functions on R
2
Θ” may be defined as S(R2) (it may also be extended

to an algebra of tempered distributions, see [6–8, 30] for rigorous descriptions)
endowed with the associative non-commutative Moyal product:

(f �Θ g) (x) =(2π)−2

∫
R2

∫
R2
dydk f(x+ 1

2Θk)g(x+ y)eık·y . (2.1)

The skew-symmetric matrix Θ is

Θ =
(

0 −θ
θ 0

)
(2.2)

where θ is a real parameter of dimension length2. The action of the non-
commutative Gross–Neveu model is

S[ψ̄, ψ] =
∫
dx
(
ψ̄
(
−ı/∂ + Ω/̃x+m+ ıδm θγΘ−1γ

)
ψ + Vo(ψ̄, ψ) + Vno(ψ̄, ψ)

)
(x)

(2.3)

where x̃ = 2Θ−1x and V = Vo + Vno is the interaction part given later. The
term in δm will be treated perturbatively as a counterterm. It appears from the
two-loop order (see Section 5.2.2). Throughout this paper we use the Euclidean
metric and the Feynman convention /a = γµaµ. The matrices γ0 and γ1 constitute
a two-dimensional representation of the Clifford algebra {γµ, γν} = −2δµν . Note
that with such a convention the γµ’s are skew-Hermitian: γµ† = −γµ.

Propagator. The propagator of the theory is given by the following lemma:

Lemma 2.1 (Propagator 1 [17]). The propagator of the Gross–Neveu model is

C(x, y) =
∫
dµC(ψ̄, ψ)ψ(x)ψ̄(y) =

(
−ı/∂ + Ω/̃x+m

)−1
(x, y) (2.4)

=
∫ ∞

0

dtC(t;x, y) ,

C(t;x, y) = − Ω
θπ

e−tm2

sinh(2Ω̃t)
e−

Ω̃
2 coth(2Ω̃t)(x−y)2+ıΩx∧y (2.5)

×
{
ıΩ̃ coth(2Ω̃t)(/x− /y) + Ω(/̃x− /̃y) −m

}
e−2ıΩtγΘ−1γ

with Ω̃ = 2Ω/θ and x ∧ y = 2xΘ−1y.
We also have e−2ıΩtγΘ−1γ = cosh(2Ω̃t)12 − ı θ2 sinh(2Ω̃t)γΘ−1γ.
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The propagator may also be considered as diagonal in some color space in-
dices if we want to study N copies of spin 1/2 fermions.

Interactions. Concerning the interaction part V , first remind that ∀f1, f2, f3, f4 ∈
AΘ,

∫
dx (f1 � f2 � f3 � f4) (x) =

1
π2 detΘ

∫ 4∏
j=1

dxjfj(xj) δ(x1 − x2 + x3 − x4)e−ıϕ ,

(2.6)

ϕ =
4∑

i<j=1

(−1)i+j+1xi ∧ xj . (2.7)

This product is non-local and only cyclically invariant. Then, in contrast to the
commutative Gross–Neveu theory for which there is only one possible (local) in-
teraction, the GN2

Θ model exhibits, at least, six different ones: the orientable in-
teractions

Vo =
λ1

4

∑
a,b

∫
dx

(
ψ̄a � ψa � ψ̄b � ψb

)
(x) (2.8a)

+
λ2

4

∑
a,b

∫
dx

(
ψa � ψ̄a � ψb � ψ̄b

)
(x) (2.8b)

+
λ3

4

∑
a,b

∫
dx

(
ψ̄a � ψb � ψ̄a � ψb

)
(x) , (2.8c)

where ψ’s alternate with ψ̄’s and the non-orientable interactions

Vno =
λ4

4

∑
a,b

∫
dx

(
ψ̄a � ψ̄b � ψa � ψb

)
(x) (2.9a)

+
λ5

4

∑
a,b

∫
dx

(
ψ̄a � ψ̄b � ψb � ψa

)
(x) (2.9b)

+
λ6

4

∑
a,b

∫
dx

(
ψ̄a � ψ̄a � ψb � ψb

)
(x) . (2.9c)

All these interactions have the same x-kernel thanks to (2.6). The indices a, b
are spin indices taking value in {0, 1} (or {↑, ↓}). They may be additionally color
indices between 1 and N . For only technical reasons, we will restrict ourselves to
orientable interactions. Such a qualification will become clear in the next section.
This paper is mainly devoted to the proof of

Theorem 2.2 (BPHZ Theorem for GN2
Θ). The quantum field theory defined by the

action (2.3) with V = Vo is renormalizable to all orders of perturbation theory.
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Multi-scale analysis. In the following we use a multi-scale analysis [25]. The first
step consists in slicing the propagator as

Cl =
∞∑

i=0

Ci
l , C

i
l =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ M−2(i−1)

M−2i

dtCl(t; ) if i ≥ 1

∫ ∞

1

dtCl(t; ) if i = 0 .

(2.10)

We have an associated decomposition of any amplitude of the theory as

AG =
∑

µ

Aµ
G (2.11)

where µ = {il} runs over all possible attributions of a positive integer il for each
line l in G. This index represents the “scale” of the line l. The usual ultraviolet
divergences of field theory becomes, in the multi-scale framework, the divergence
of the sum over attributions µ of indices. To work with well-defined quantities, we
put an ultraviolet cut-off ρ: i ∈ {0, . . . , ρ}. In each slice, the following lemma gives
a bound on the propagator.

Lemma 2.3. For all i ∈ N, there exists K, k ∈ R+ such that
∣∣Ci(x, y)

∣∣ ≤KM ie−kMi|x−y| . (2.12)

This bound also holds in the case m = 0.

To any assignment µ and scale i are associated the standard connected com-
ponents Gi

k, k ∈ {1, . . . , k(i)} of the subgraph Gi made of all lines with scales
j ≥ i. These tree components are partially ordered according to their inclusion
relations and the (abstract) tree describing these inclusion relations is called the
Gallavotti–Nicolò tree [5]; its nodes are the Gi

k’s and its root is the complete
graph G.

More precisely for an arbitrary subgraph g one defines:

ig(µ) = inf
l∈g

il(µ), eg(µ) = sup
l external line of g

il(µ) . (2.13)

The subgraph g is a Gi
k for a given µ if and only if ig(µ) ≥ i > eg(µ). As is

well known in the commutative field theory case, the key to optimize the bound
over spatial integrations is to choose the real tree T compatible with the abstract
Gallavotti–Nicolò tree, which means that the restriction T i

k of T to any Gi
k must

still span Gi
k. This is always possible (by a simple induction from leaves to root).

Let us define iν(µ) as the index of the line of highest scale hooked to the
vertex ν. Then any (amputed) N -point function S has an “effective” expansion:

SN (x1, . . . , xN ; ρ) =
∑

N-point graphs G

∑
µ(G)

∏
ν∈G

λiνA
µ
G(x1, . . . , xN ; ρ) . (2.14)
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Strictly speaking, we prove here that all the orders of the effective series are finite
as the cut-off goes to infinity and that there exists a constant K ∈ R such that:

lim
ρ→∞

∫
R2N

N∏
i=1

dxifi(xi)
∣∣Aµ

G(x1, . . . , xN ; ρ)
∣∣ ≤ Kn(G) (2.15)

where the fi, i ∈ �1, N� are test functions and n(G) is the number of vertices of G.

2.1. Orientation and graph variables

The delta function in (2.6) implies that the vertex is parallelogram shaped. To
simplify the graphs, we will nevertheless draw it either as a lozenge (Fig. 1) or as
a square.

We associate a sign, + or −, to each of the four po-

Figure 1. A vertex

sitions at a vertex. This sign changes from a position to
its neighboring one and reflects the signs entering the delta
function. For example, the delta function associated to the
vertex of Figure 1 has to be thought to be δ(x1−x2+x3−x4)
and not δ(−x1 + x2 − x3 + x4). The vertex being cyclically
invariant, we can freely choose the sign of one among the
four positions. The three other signs are then fixed. Let us
call orientable a line joining a point + to a point −. On

the contrary if it joins two + (or −), we call it clashing. By definition, a graph
is orientable if all its lines are orientable. We will draw orientable lines with an
arrow from its − to its + end. The − positions are then defined as outcoming a
vertex and the + ones as incoming.

Let a graph G. We first choose a (optimal) spanning rooted tree T . The
complete orientation of the graph, which corresponds to the choice of the signs at
each vertex, is fixed by the orientation of the tree. For the root vertex, we choose
an arbitrary position to which we give a + sign. If the graph is not a vacuum
graph, it is convenient to choose an external field for this reference position. We
orient then all the lines of the tree and all the remaining half-loop lines or “loop
fields”, following the cyclicity of the vertices. This means that starting from an
arbitrary reference orientation at the root and inductively climbing into the tree,
at each vertex we follow the cyclic order to alternate incoming and outcoming
lines as in Figure 2a (where the vertices are pictured as points). Let us remark
that with such a procedure, a tree is always orientable (and oriented). The loop
lines may now be orientable or not.

Definition 2.1 (Sets of lines). We define
T = {tree lines} ,
L = {loop lines} = L0 ∪ L+ ∪ L− with
L0 = {loop lines (+,−) or (−,+)} ,
L+ = {loop lines (+,+)} ,
L− = {loop lines (−,−)} .
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(a) Orientation of a tree (b) Total ordering

Figure 2. Orientability and ordering

It is convenient to equip each graph with a total ordering among the vertex
variables. We start from the root and turn around the tree in the trigonometrical
sense. We number all the vertex positions in the order they are met. See Figure 2b.
Then it is possible to order the lines and external positions.

Definition 2.2 (Order relations). Let i < j and p < q. For all lines l = (i, j), l′ =
(p, q) ∈ T ∪ L, for all external position xk, we define

l ≺ l′ if i < j < p < q
l ≺ k i < j < k
l ⊂ l′ p < i < j < q
k ⊂ l i < k < j: “l contracts above xk”
l � l′ i < p < j < q .

We extend these definitions to the sets of lines introduced in Definition 2.1.
For example, we write L0�L+ instead of {(�, �′) ∈ L0 × L+, �� �′}. We also define
the following set. Let S1 and S2 two sets of lines,

S1��S2 = {(l, l′) ∈ S1 × S2, l� l′ or l � l′} . (2.16)

For example, in Figure 2b, �1 ≺ �4, l2 ⊂ �1, l3 � x1. Note also that with such
sign conventions, orientable lines always join an even (−) to an odd (+) numbered
position. It is now convenient to define new variables. These are relative to the
lines of the graph whereas the variables used until now were vertex variables. Each
orientable line l joins an outcoming position xl− to an incoming one xl+. We
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define ul = xl+ − xl− as the difference between the incoming and the outcoming
position. For the clashing lines, ul is also the difference between its two ends but
the sign is arbitrary and chosen in Definition 2.3. The ul are the short variables.
The long ones are defined as the sum of the two ends of the lines. We write them
vl = xl+ + xl− for tree lines and w� = x�+ + x�− for the loops.

Definition 2.3 (Short and long variables). Let i < j. For all line l = (i, j) ∈ T ∪L,

ul =

⎧⎪⎨
⎪⎩

(−1)i+1si + (−1)j+1sj ∀l ∈ T ∪ L0 ,

si − sj ∀l ∈ L+ ,

sj − si ∀l ∈ L− .

(2.17)

vl = si + sj ∀l ∈ T (2.18)

wl = si + sj ∀l ∈ L . (2.19)

Complex quantum field theory on Moyal spaces bears naturally two different
orientations. The first one is defined from the cyclic sign of the vertices. This is
the one we defined with the tree. The second one is related to the complex feature
of the theory: a field only contracts to its complex conjugate. For the Gross–Neveu
model, a line can also be oriented from its ψ end to its ψ̄ end. Then we are lead
to define two different signs for a same line.

Definition 2.4 (Signs of a line). Let i < j. For all line l = (i, j) ∈ T ∪ L,

ε(l) = +1 ∀l ∈ T ∪ L0 if i even
= +1 L−
= −1 T ∪ L0 if i odd
= −1 L+

ε(l) = +1 if ψ(xi)ψ̄(xj)
= −1 if ψ̄(xi)ψ(xj) .

Corollary 2.4 (Propagator 2). From the Definitions 2.3 and 2.4, the propagator
corresponding to a line l may be written as

Cl(ul, vl) =
∫ ∞

0

dtl C(tl;ul, vl) (2.20)

C(tl;ul, vl) =
Ω
θπ

e−tlm
2

sinh(2Ω̃tl)
e−

Ω̃
2 coth(2Ω̃tl)u

2
l −ı Ω

2 ε(l)ε(l)ul∧vl (2.21)

×
{
ıΩ̃ coth(2Ω̃tl)ε(l)ε(l)/ul + Ωε(l)ε(l)/̃ul +m

}
e−2ıΩtlγΘ−1γ

with Ω̃ = 2Ω
θ and where vl will be replaced by w� if the propagator corresponds to

a loop line.
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2.2. Position routing

We give here a rule to solve in an optimal way the vertex delta functions. In
particular this will allow us to factorize the global delta function (see (2.6)) for
each four-point subgraph. There is no canonical way to do it but we can reject
the arbitrariness of the process into the choice of a tree. Then it is convenient to
introduce a branch system. To each tree line l we associate a branch b(l) containing
the vertices above l. Let us define above. At each vertex ν, there exists a unique
tree line going down towards the root. We denote it by lν . A contrario, to each
tree line l corresponds a unique vertex ν such that lν = l. We also define Pν as
the unique set of tree lines joining ν to the root. Then the branch b(l) is the set
of vertices defined by

b(l) = {ν ∈ G| l ∈ Pν} . (2.22)

On Figure 2b, the branch b(l2) = {2, 3, 4}. We can now replace the set of vertex
delta functions by a new set associated to the branches. Let a graph G with n
vertices. A tree is made of n− 1 lines which give raise to n− 1 branches. At each
vertex ν, we replace δν(

∑4
i=1(−1)i+1xνi ) by δlν (

∑
ν′∈b(lν)

∑4
i=1(−1)i+1xν′

i
). To

complete this new system of delta functions, we add to these n− 1 first ones the
“root” delta given by δG(

∑
ν′∈G

∑4
i=1(−1)i+1xν′

i
). We have now a new equivalent

set of n delta functions.
Let us precise the arguments of the branch delta functions in terms of short

and long variables. To this aim, we define the set b(l) of lines contracting inside
a given branch b(l):

b(l) =
{
l′ = (xν , xν′ ) ∈ G|ν, ν′ ∈ b(l)

}
. (2.23)

There also exists lines l = (xν , xν′) with ν ∈ b(l) and ν′ /∈ b(l). Moreover b(l)
may contain external positions. We denote by X (l) the set made of the external
positions in the branch b(l) and of the ends (in b(l)) of lines joining b(l) to an other
branch. From the definition 2.3 of short and long variables, for fixed ν, we have

∑
ν′∈b(lν)

4∑
i=1

(−1)i+1xν′
i
=

∑
l∈(T ∪L0)∩b(lν)

ul +
∑

�∈L+∩b(lν)

w�

−
∑

�∈L−∩b(lν)

w� +
∑

e∈X (lν)

η(e)xe (2.24)

where η(e) = 1 if the position i is incoming and −1 if not. For example, the delta
function associated to the branch b(l2) in the Figure 2b is

δ(y − z + x3 + x4 + ul3 + u�5 + ul6 − w�4) . (2.25)

In the same manner, the delta function of the complete branch is

δ(x1 − x2 + x3 + x4 + u�1 + ul2 + ul3 + u�5 + ul6 − w�4) . (2.26)
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Let us emphasize the particular case of δG

δG

⎛
⎝ ∑

l∈T ∪L0

ul +
∑

�∈L+

w� −
∑

�∈L−

w� +
∑

e∈E(G)

η(e)xe

⎞
⎠ (2.27)

where E(G) is the set of external points in G. Remark that for an orientable
graph G (L+ = L− = ∅), the root delta function (2.27) only contains the external
points and the sum of all the ul variables in G.

Remark. In the Φ4 model [16], these delta functions were used to solve all the
long tree variables vl, l ∈ T . This is the optimal choice. Integrations over the long
variables vl (or wl) cost M2il . Moreover the tree being chosen optimal, the vl are
the most “expensive” long variables. From (2.24), we have

δb(l)

⎛
⎝ ∑

l′∈(T ∪L0)∩b(l)

ul′ +
∑

�∈L+∩b(l)

w� −
∑

�∈L−∩b(l)

w� +
∑

e∈X (l)

η(e)xe

⎞
⎠ . (2.28)

There exists el ∈ X (l) such that xel
= 1

2 (η(el)ul + vl) (see definition 2.3). This
external point is an end of the line l. Thus δb(l) gives

vl = −η(el)ul − 2η(el)

×

⎛
⎝ ∑

l′∈(T ∪L0)∩b(l)

ul′ +
∑

�∈L+∩b(l)

w� −
∑

�∈L−∩b(l)

w� +
∑

e∈X (l)\{el}
η(e)xe

⎞
⎠ .

We have then used n− 1 delta functions (one per tree line). The last one is kept.
It is the equivalent of the global momentum conservation in usual field theories.

Here we won’t solve the branch delta functions. Instead we express them as
oscillating integrals. In the orientable case, we have

δb(l)

⎛
⎝ ∑

l′∈b(l)

ul′ +
∑

e∈X (l)

η(e)xe

⎞
⎠ =

∫
d2pl

(2π)2
eıpl·(

∑
l′∈b(l) ul′+

∑
e∈X(l) η(e)xe) .

(2.29)

After some manipulations on these oscillations (see Section 3.2), we will get de-
creasing functions for the vl’s and pl’s. For each tree line l, we will integrate over
vl and pl, the final result being bounded by O(1).

3. From oscillations to decreasing functions

In the preceding section, we decided to express all the vertex delta functions as
oscillating integrals. Then we have 2 independent variables per internal propagator.
One is integrated over with the exponential decrease of the propagator (see 2.4).
The other uses the propagator and vertices oscillations. Then it is useful to precise
the oscillations in terms of the u’s and v (w)’s variables. This is done in Section 3.1.
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We will see how to use the oscillations to get enough decreasing functions in
Section 3.2.

3.1. The rosette factor

We have seen in the preceding section that the oscillations are expressed in terms
of the vertex variables whereas the propagators are naturally expressed with short
and long line variables. It is not very convenient to deal with two equivalent sets
of variables. We are then going to express the vertex oscillations with the line
variables.

In the following we call rosette factor the set of all the vertex oscillations
plus the root delta function. We also distinguish tree lines l and loop lines �2. The
first step to a complete rewriting of the vertex oscillations is a “tree reduction”. It
consists in expressing all tree variables in terms of u and v variables. Let a graph G
of order n. It has 2(n− 1) tree positions. The remaining 2n+ 2 loop and external
variables are subsequently written sj . By using the cyclic symmetry of the vertices
and the delta functions, we get (see [16] for a proof):

Lemma 3.1 (Tree reduction). The rosette factor after the first Filk move is [4,16]:

δ

(
s1 − s2 + · · · − s2n+2 +

∑
l∈T

ul

)
exp ıϕ (3.1)

where

ϕ =
2n+2∑

i,j=0|i<j

(−1)i+j+1si ∧ sj +
1
2

∑
l∈T

ε(l)vl ∧ ul +
∑
T ≺T

ul′ ∧ ul

+
∑

{l∈T , i≺l}
ul ∧ (−1)i+1si +

∑
{l∈T , i	l}

(−1)i+1si ∧ ul .

The next step is to express all the loop variables with the corresponding u
and w variables. In [16], we computed the result for planar regular graph (g = 0
and B = 1, see appendix A for graphologic definitions and also [14, 26]). Here we
need the general case3. We now denote the (true) external variables by sjk

, k ∈
�1, N�

def= [1, N ] ∩ N. We write �L0
def= L+ ∪ L−.

2In case a line belongs to a set containing both tree and loop lines, we write it l.
3Strictly speaking, we only need, in this paper, the orientable case. Nevertheless the non-
orientable one will follow.



438 F. Vignes-Tourneret Ann. Henri Poincaré

Lemma 3.2. The rosette factor of a general graph is:

δ

⎛
⎝ N∑

k=1

(−1)jk+1sjk
+

∑
l∈T ∪L0

ul +
∑

�∈L+

w� −
∑

�∈L−

w�

⎞
⎠ exp ıϕ , (3.2)

with ϕ = ϕE + ϕX + ϕU + ϕW ,

ϕE =
N∑

k,l=1|k<l

(−1)jk+jl+1sjk
∧ sjl

,

ϕX =
N∑

k=1

∑
((T ∪L0)≺jk)
∪(�L0⊃jk)

(−1)jk+1sjk
∧ ul +

∑
(T ∪L0)	jk

ul ∧ (−1)jk+1sjk
,

ϕU =
1
2

∑
T
ε(l)vl ∧ ul +

1
2

∑
L
ε(�)w� ∧ u�

+
1
2

∑
L0�L0

ε(�)w� ∧ u�′ + ε(�′)w�′ ∧ u�

+
1
2

∑
L0��L0

ε(�)w� ∧ u�′ − ε(�′)w�′ ∧ u�

+
1
2

∑
L0��L0

−ε(�)w� ∧ u�′ + ε(�′)w�′ ∧ u�

+
1
2

∑
(L+��L−)

∪(L+�L+)∪(L−�L−)

u� ∧ ε(�′)w�′ + u�′ ∧ ε(�)w�

+
∑

((T ∪L0)⊂L0)
∪((T ∪L0)	�L0)

ε(�′)w�′ ∧ ul +
∑

(�L0⊂�L0)
∪((T ∪L0)≺�L0)

ul ∧ ε(�′)w�′

+
∑

(T ∪L0)≺(T ∪L0)

ul′ ∧ ul +
∑

(T ∪L0)⊂�L0

ul ∧ u�′

+
1
2

∑
(L0�L0)

∪(L+�L+)∪(L−�L−)

u�′ ∧ u� +
1
2

∑
(L0���L0)

∪(L+�L−)∪(L−�L+)

u� ∧ u�′ ,

ϕW =
∑

(�L0≺jk)
∪(L0⊃jk)

ε(�)w� ∧ (−1)jk+1sjk
+

∑
�L0	jk

(−1)jk+1sjk
∧ ε(�)w�

+
1
2

∑
(L0�L0)

∪(�L0��L0)∪(L0���L0)

ε(�′)w�′ ∧ ε(�)w� +
∑

(L0⊃�L0)
∪(�L0≺�L0)

ε(�′)w�′ ∧ ε(�)w� ,

where l(�) belongs to the set on the left-hand-side.
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Proof. As explained in Section 2.2, the root δ function is given by

δ

⎛
⎝ N∑

k=1

(−1)jk+1sjk
+

∑
l∈T ∪L0

ul +
∑

�∈L+

w� −
∑

�∈L−

w�

⎞
⎠ . (3.3)

We express all the loop field variables with the u and w variables. Then the qua-
dratic term in the external variables is

N∑
k<l=1

(−1)jk+jl+1sjk
∧ sjl

. (3.4)

Let an external variable sjk
. The linear terms with respect to sjk

are

ϕjk
=

∑
i<jK

(−1)i+1si ∧ (−1)jksjk
+
∑
i>jk

(−1)jksjk
∧ (−1)i+1si

+
∑
T 	jk

(−1)jksjk
∧ ul +

∑
T ≺jk

ul ∧ (−1)jksjk
(3.5)

where the si’s are all loop variables. Let a loop line � = (i, j) ≺ jk .
Its contribution to ϕjk

is:[
(−1)i+1si + (−1)j+1sj

]
∧ (−1)jksjk

. (3.6)

The result in terms of the u� and w� variables depends on the orientability of the
loop line. From definitions 2.3 and 2.4, we have[

(−1)i+1si + (−1)j+1sj

]
∧ (−1)jksjk

(3.7)

= u� ∧ (−1)jksjk
if � ∈ L0

= −ε(l)w� ∧ (−1)jksjk
if � ∈ L+ ∪ L− .

In the same way, if a loop line contracts above an external variable sjk
, its contri-

bution to ϕjk
is:[

(−1)i+1si + (−1)jsj

]
∧ (−1)jksjk

(3.8)

= −ε(l)w� ∧ (−1)jksjk
if � ∈ L0

= u� ∧ (−1)jksjk
if � ∈ L+ ∪ L− .

Finally the linear term for sjk
is

ϕjk
=

∑
((T ∪L0)≺jk)
∪(�L0⊃jk)

ul ∧ (−1)jksjk
+

∑
(T ∪L0)	jk

(−1)jksjk
∧ ul (3.9)

+
∑

(�L0≺jk)
∪(L0⊃jk)

(−1)jksjk
∧ ε(�)w� +

∑
�L0	jk

ε(�)w� ∧ (−1)jksjk
.

Let us now consider a loop line � = (p, q). Its contribution to the rosette
factor decomposes into a “loop-loop” term and a “tree-loop” term. We will detail



440 F. Vignes-Tourneret Ann. Henri Poincaré

the first one, the second one being obtained with the same method. The loop-loop
term is:

ϕll =
∑
i<p

(−1)i+1si ∧ (−1)psp +
∑
p<i
i�=q

(−1)psp ∧ (−1)i+1si + (−1)p+q+1sp ∧ sq

+
∑
i<q
i�=p

(−1)i+1si ∧ (−1)qsq +
∑
q<i

(−1)qsq ∧ (−1)i+1si

=
∑
i<p

(−1)i+1si ∧
[
(−1)psp + (−1)qsq

]
+
∑
q<i

[
(−1)psp + (−1)qsq

]
∧ (−1)i+1si

+
∑

p<i<q

(−1)i+1si ∧
[
(−1)p+1sp + (−1)qsq

]
+ (−1)p+q+1sp ∧ sq . (3.10)

An other loop line �′ = (i, j) has now six possibilities. It may follow or precede �,
contain or be contained in �, cross it by the left or the right. Moreover the lines �
and �′ may be orientable or not. I will not exhibit all these different contributions
but will explain our method thanks to two examples.

Let (�, �′) ∈ L2
0 such that �′ � �. The line �′ crosses � by the left as defined

in 2.2. The corresponding term is:

(−1)i+1si ∧
[
(−1)psp + (−1)qsq

]
+ (−1)j+1sj ∧

[
(−1)p+1sp + (−1)qsq

]
= (−1)i+1si ∧ (−u�) + (−1)j+1sj ∧

(
− ε(�)w�

)

=
1
2
(
u� ∧ u�′ + ε(�′)w�′ ∧ u� + ε(�)w� ∧ u�′ + ε(�)w� ∧ ε(�′)w�′

)
.

(3.11)

In the same way, if � ∈ L0, �′ ∈ L+ such that � ⊂ �′, we have:

(−1)i+1si ∧
[
(−1)psp + (−1)qsq

]
+
[
(−1)psp + (−1)qsq

]
∧ (−1)j+1sj

= (−1)i+1si ∧ (−u�) + (−u�) ∧ (−1)j+1sj = u� ∧ u�′ . (3.12)

We do the same for the other contributions and get:

ϕll =
1
2

∑
L
ε(�)w� ∧ u� (3.13)

+
∑

(L0⊂L0)
∪(L0	�L0)

ε(�′)w�′ ∧ u� +
∑

(L0≺�L0)∪(�L0⊂�L0)

u� ∧ ε(�′)w�′

+
1
2

∑
L0�L0

ε(�)w� ∧ u�′ + ε(�′)w�′ ∧ u� +
1
2

∑
L0��L0

ε(�)w� ∧ u�′ − ε(�′)w�′ ∧ u�

+
1
2

∑
L0��L0

−ε(�)w� ∧ u�′ + ε(�′)w�′ ∧ u�
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+
1
2

∑
(L+��L−)

∪(L+�L+)∪(L−�L−)

u� ∧ ε(�′)w�′ + u�′ ∧ ε(�)w�

+
1
2

∑
(L0�L0)∪(�L0��L0)

∪(L0���L0)

ε(�′)w�′ ∧ ε(�)w� +
∑

(L0⊃�L0)
∪(�L0≺�L0)

ε(�′)w�′ ∧ ε(�)w�

+
∑

L0≺L0

u�′ ∧ u� +
∑

L0⊂�L0

u� ∧ u�′

+
1
2

∑
(L0�L0)

∪(L+�L+)∪(L−�L−)

u�′ ∧ u� +
1
2

∑
(L0���L0)

∪(L+�L−)∪(L−�L+)

u� ∧ u�′

The “tree-loop” term is:

ϕtl =
∑

{l′∈T , l′≺p}
ul′ ∧ (−1)psp +

∑
{l′∈T , l′	p}

(−1)psp ∧ ul′ (3.14)

+
∑

{l′∈T , l′≺q}
ul′ ∧ (−1)qsq +

∑
{l′∈T , l′	q}

(−1)qsq ∧ ul′

=
∑

{l′∈T , l′≺p}
ul′ ∧

[
(−1)psp + (−1)qsq

]
+

∑
{l′∈T , l′	q}

[
(−1)psp + (−1)qsq

]
∧ ul′

+
∑

{l′∈T , p≺l′≺q}
ul′ ∧

[
(−1)p+1sp + (−1)qsq

]

=
∑

L0	T
u� ∧ ul′ +

∑
(L0≺T )

∪(�L0⊃T )

ul′ ∧ u�

+
∑

(L0⊃T )
∪(�L0≺T )

ε(�)w� ∧ ul′ +
∑

�L0	T

ul′ ∧ ε(�)w� . �

Corollary 3.3. The rosette factor of an orientable graph is

δ

(
N∑

k=1

(−1)jk+1sjk
+

∑
l∈T ∪L

ul

)
exp ıϕ (3.15)

with
ϕ = ϕE + ϕX + ϕU + ϕW ,

ϕE =
N∑

k,l=1|k<l

(−1)jk+jl+1sjk
∧ sjl

,

ϕX =
N∑

k=1

∑
(T ∪L)≺jk

(−1)jk+1sjk
∧ ul +

∑
(T ∪L)	jk

ul ∧ (−1)jk+1sjk
,
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ϕU =
1
2

∑
T
ε(l)vl ∧ ul +

1
2

∑
L
ε(�)w� ∧ u�

+
1
2

∑
L�L

ε(�)w� ∧ u�′ + ε(�′)w�′ ∧ u� +
∑

(T ∪L)⊂L
ε(�′)w�′ ∧ ul

+
∑

(T ∪L)≺(T ∪L)

ul′ ∧ ul +
1
2

∑
L�L

u�′ ∧ u� ,

ϕW =
∑
L⊃jk

(−1)jksjk
∧ ε(�)w� +

1
2

∑
L�L

ε(�′)w�′ ∧ ε(�)w� .

Proof. It is enough to set L+ = L− = ∅ in the general expression of Lemma 3.2. �

Corollary 3.4. Let a planar regular graph (g = 0 and B = 1). Its rosette factor
is [16]

δ
( N∑

k=1

(−1)k+1xk +
∑

l∈T ∪L
ul

)
exp ıϕ (3.16)

with
ϕ = ϕE + ϕX + ϕU ,

ϕE =
N∑

i,j=1|i<j

(−1)i+j+1xi ∧ xj ,

ϕX =
N∑

k=1

∑
(T ∪L)≺k

(−1)k+1xk ∧ ul +
∑

(T ∪L)	k

ul ∧ (−1)k+1xk ,

ϕU =
1
2

∑
T
ε(l)vl ∧ ul +

1
2

∑
L
ε(�)w� ∧ u�

+
∑

(T ∪L)⊂L
ε(�′)w�′ ∧ ul +

∑
(T ∪L)≺(T ∪L)

ul′ ∧ ul .

Proof. As the graph has only one broken face, there is always an even number of
fields between two external variables. In this case, jk and k have the same parity.
Thus by switching sjk

into xk, the quadratic term in the external variables is:
N∑

i,j=1|i<j

(−1)i+j+1xi ∧ xj . (3.17)

Moreover the constraints g = 0 and B = 1 imply that the graph is orientable
(L = L0). Indeed, let us consider a clashing loop line � joining si to si+2p. These
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two positions have same parity. Between the two ends of � are an odd number of
positions. Then either � contracts above an external variable and B ≥ 2, or an
other loop line crosses it and g ≥ 1.
Finally by skipping from the result of Lemma 3.2 the terms concerning cross-
ing lines, lines contracting above external variables and non-orientable lines, we
get (3.16). �

3.2. The masslets

Contrary to the Φ4 case, the Gross–Neveu propagator Ci (2.21) does not contain
any term of the form exp−M−2iw2 (we call them masslets) [16]. This term is
replaced by an oscillation of the type u ∧ w. Whereas masslets are not in the
propagator, they appear after integration over the u variables:∫

d2u e−M2iu2+ıu∧w = KM−2i e−M−2iw2
. (3.18)

Let G a connected graph. Its amplitude is

AG =
∫ N∏

i=1

dxi fi(xi)δG
∏
l∈T

duldvl δb(l)Cl(ul, vl)
∏
�∈L

du�dw� C�(u�, w�)eiϕ .

(3.19)

The points xi, i ∈ �1, N� are the external positions. For the delta functions, we
use the notations of Section 2.2. The total vertex oscillation ϕ is given by the
Lemma 3.2. It is convenient to split the propagator into two parts. We define, for
all line l ∈ G, C̄l(ul) by Cl(ul, vl) = C̄l(ul) e−ı Ω

2 ε(l)ε(l)ul∧vl . Once more we replace v
by w for loop lines. This splitting allows to gather the propagators oscillations with
the vertex ones. The total oscillation ϕΩ is simply deduced from ϕ by replacing
the terms 1

2ε(l)vl ∧ ul by 1
2 (1 + ε(l)Ω)ε(l)vl ∧ ul. The graph amplitude becomes

AG =
∫ N∏

i=1

dxi fi(xi)δG
∏
l∈T

duldvl δb(l)C̄l(ul)
∏
�∈L

du�dw� C̄�(u�)eiϕΩ . (3.20)

In contrast with the Φ4 theory [16], we won’t solve the branch delta functions.
Instead we keep δG but express the n − 1 other delta functions as oscillating
integrals:

δb(l)

( ∑
l′∈b(l)

ul′ +
∑

e∈X (l)

η(e)xe

)
=
∫

d2pl

(2π)2
eıpl·(

∑
l′∈b(l) ul+

∑
e∈X(l) η(e)xe) . (3.21)

As already explained in Section 2.2, there exists el ∈ X (l) such that xel
=

1
2 (η(el)ul + vl). Remark that η(el) = ε(l). Then

∑
l′∈b(l)

ul′ +
∑

e∈X (l)

η(e)xe =
1
2
(ul + ε(l)vl) +

∑
l′∈b(l)

ul′ +
∑

e∈X (l)\{el}
η(e)xe . (3.22)

In the following we will use an additional notation. For all line l ∈ T , let us define
νl as the unique vertex such that l = lν where lν is defined in Section 2.2. νl is
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the vertex just above l in the tree. We write ϕ′
Ω for the total oscillation where we

add the new oscillations resulting from the delta functions4. The graph amplitude
is now

AG =
∫ N∏

i=1

dxi fi(xi)δG
∏
l∈T

duldvldpl C̄l(ul)
∏
�∈L

du�dw� C̄�(u�)eiϕ′
Ω . (3.23)

Remark that we have omitted the factors 2π as we have done until now and will
go on doing with the −λ

4π2 detΘ vertex factors. To get the masslets, we could, for
example, integrate over the variables ul. This exact computation would be the
equivalent of (3.18). We should integrate 2n − N/2 coupled Gaussian functions.
We would get Gaussian functions in some variables Wl which would be linear
combinations of w�′ . Apart from the difficulty of this computation, we should then
prove that the obtained decreasing functions are independent. For general graphs,
it is somewhat difficult. Then instead of computing an exact result, we get round
the difficulty by exploiting the oscillations before integrating over the u’s, v’s and
w’s. The rest of this section is devoted to the proof of

Lemma 3.5. Let G an orientable graph with n vertices and µ a scale attribution.
For all Ω ∈ [0, 1), there exists K ∈ R such that the amplitude (3.23), amputed,
integrated over test functions, with the µ attribution, is bounded uniformly in n by

|Aµ
G| ≤ Kn

∫
dx1 g1(x1 + {a})δG

N∏
i=2

dxi gi(xi)
∏
l∈G

dalM
2ilΞ(al) (3.24)

∏
l∈T

duldVldplM
ile−M2il (ul−ε(l)al)

2
1∏

µ=0

1
1 +M−2ilV2

l,µ

1
1 +M2ilp2

l,µ

∏
�∈L

du�dW�M
i�e−M2i� (u�+{a})2

1∏
µ=0

1
1 +M−2i�W2

�,µ

with ε(l)Vl =
1
2
(
1 + ε(l)Ω

)
ε(l)vl +

∑
�′⊃l

ε(�′)w�′ − 1
2 p̃l −

∑
l′∈Pvl

p̃l′ , (3.25)

ε(�)W� =
1
2
(
1 + ε(�)Ω

)
ε(�)w� +

∑
�′⊃�

ε(�′)w�′ +
∑
�′��

ε(�′)w�′ (3.26)

and p̃ = 1/2Θp, gi, i ∈ �1, N� and Ξ are test functions such that ‖gi‖ ≤ sup0≤p≤2

‖f (p)
i ‖.

Remind that we restrict our analysis to orientable graphs. We introduce a
Schwartz class function ξ ∈ S(R2) which, conveniently scaled, is going to mimic
the decrease of propagators on a scale M−il . We want to get a decreasing function

4Note that the oscillation is invariant under pl → −pl for all l ∈ G independently.
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in vl without integrating over ul. We use

1 =
∫
d2al coth(2Ω̃tl)ξ

(
al coth1/2(2Ω̃tl)

)
. (3.27)

The coupling between this 1 and the rest of the graph is made by an ad hoc change
of variables. We have two constraints on such a change. On one hand we want in-
dependent decreasing functions. On the other hand, for all line l, the decrease
should be of scale5 M il � coth1/2(2Ω̃tl).

We are going to make masslets line by line. Let us write x1 for the root
position. Let a tree line l. We perform the change of variables

{
ul →ul − ε(l)al ,

x1 →x1 + η(1)ε(l)al .
(3.28)

It is not difficult to check that ϕ′
Ω → ϕ′

Ω + al ∧ Vl + al ∧ (Ul +Al +Xl) where Vl

is given by (3.25) and Ul, Al and Xl are respectively linear combinations of u’s,
a’s and external variables x’s. Please note that such a change of variables let the
global root delta function unchanged. Writing only the terms in the amplitude AG

depending on al, we get

AG,l =
∫
dal

∫ M−2(il−1)

M−2il

dtl coth(2Ω̃tl)ξ
(
al coth1/2(2Ω̃tl)

)
(3.29)

×
{
ıΩ̃ coth(2Ω̃tl)(εε)(l)

(
/ul − ε(l)/al

)
+ Ω(εε)(l)

(
/̃ul − ε(l)/̃al

)
−m

}

× e−
Ω̃
2 coth(2Ω̃tl)(ul−ε(l)al)

2
f1
(
x1 + η(1)ε(l)al

)
eıal∧(Vl+Ul+Al+Xl)

=
∫
daldtl coth(2Ω̃tl)ξ

(
al coth1/2(2Ω̃tl)

)
e−

Ω̃
2 coth(2Ω̃tl)(ul−ε(l)al)

2

× f1
(
x1 + η(1)ε(l)al

)
×
{
ıΩ̃ coth(2Ω̃tl)(εε)(l)

(
/ul − ε(l)/al

)
+ Ω(εε)(l)

(
/̃ul − ε(l)/̃al

)
−m

}

× eıal∧(Ul+Al+Xl)
1∏

µ=0

⎛
⎝ coth1/2(2Ω̃tl) + ∂

∂aµ
l

coth1/2(2Ω̃tl) + ıṼl,µ

⎞
⎠
2

eıal∧Vl . (3.30)

We now integrate by parts over al. The boundary terms vanish. We give here

5In some cases, a line may have a masslet of a scale greater than its own index. These cases are
restricted to a single class of graphs we will detail in Section 3.4.
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the order of magnitude of the result. The details of the computation are given in
Appendix B.

AG,l �
∫
daldtl coth(2Ω̃tl)eıal∧Vl

1∏
µ=0

(
1

coth1/2(2Ω̃tl) + ıṼl,µ

)2

Ξ(al coth1/2(2Ω̃tl))e−
Ω̃
2 coth(2Ω̃tl)(ul−ε(l)al)

2
eıal∧(Ul+Al+Xl)

× g1(x1 + η(1)ε(l)al)O
(
coth5/2(2Ω̃t)

)
. (3.31)

Then we get the following bound

|AG,l| ≤ KM−ile−kM2il (ul−ε(l)al)
2
g1(x1 + η(1)ε(l)al)

∏
µ

1
1 +M−2ilV2

l,µ

. (3.32)

Let us now explain how to get the corresponding decreasing functions for the
pl variables. We begin by performing the change of variables vl → Vl for all tree
line l. The determinant of the corresponding Jacobian matrix is 2−(n−1)

∏
l∈T (1+

ε(l)Ω). It is non-vanishing for all Ω ∈ (0, 1). The total oscillation becomes

ϕ′
Ω = ϕE + ϕX + ϕW +

∑
T
ε(l)Vl ∧

(
ul − ε(l)al

)

+
∑
T
pl ·

( ∑
l′∈L∩b(l)

ul +
∑

e∈X (l)\{el}
η(e)xe

)

+
∑
T

(
1 + ε(l)Ω

)−1
ε(l)Vl ·pl +WR1P + PR2P

+
1
2

∑
L

(
1 + ε(�)Ω

)
ε(�)w� ∧ u� +

1
2

∑
L�L

ε(�)w� ∧ u�′ + ε(�′)w�′ ∧ u�

+
∑
L⊂L

ε(�′)w�′ ∧ u�

+
∑

(T ∪L)≺(T ∪L)

ul′ ∧ ul +
1
2

∑
L�L

u�′ ∧ u� +AR3A+AR4U +AR5X , (3.33)

where we used the notations of corollary 3.3 and Ri, i ∈ �1, 5� are skew-symmetric
matrices. By using

eı(1+ε(l)Ω)−1ε(l)Vl·pl =
M−il + (1 + ε(l)Ω)ε(l) ∂

∂Vl,µ

M−il + ıpl,µ
eı(1+ε(l)Ω)−1ε(l)Vl·pl (3.34)

and integrating by parts over Vl, we get a decreasing function in pl which behaves
like

(
1 +M2ilp2

l

)−1. We now turn to the loop lines. We also want to get decreasing
functions for them. Let a loop line � = (x�, x

′
�) ∈ L of G with x� ≺ x′�. We make
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the following change of variables6⎧⎪⎨
⎪⎩
u� →u� − ε(�)a� ,

w� →w� + a� ,

x1 →x1 + η(1)ε(�)a� .

(3.35)

The changes concerning u� and w� correspond to “move” x�. It is easy to check
that (3.35) implies ϕ′

Ω → ϕ′
Ω + a� ∧ W� + a� ∧ (U� + A� + X� + P�) where W� is

given by (3.26) and U�, A�, X� and P� are respectively linear combinations of u’s,
a’s, external variables x’s and p’s. We can perform the same type of integration by
parts than we used for the tree variables vl and obtain bounds similar to (3.32).
This proves Lemma 3.5.

Independence of the decreasing functions. Remind that the above procedure had
two main goals. First of all we wanted to get decreasing functions of scale il for all
variables vl (wl). This should be clear from the preceding section. The second aim
was the independence of those decreasing functions. Our procedure is designed to
make transparent such an independence.

In Section 2, Definition 2.2 gave a way to partially order the lines. This
ordering was useful to express the vertex oscillations in terms of the u’s, v’s and w’s.
But we can also define a total ordering among the lines of a graph. We say that
l < l′ if the first end (in the trigonometric sense around the tree) of l is met
before the first end of l′. Then for all line l ∈ G, Vl (Wl) depends only on vl′ ’s
and wl′ ’s with l′ < l. Let V (W ) and V ′ (W ′) the vectors containing respectively
the variables ε(l)vl (ε(�)w�) and ε(l)Vl (ε(�)W�). Let M−1 the Jacobian matrix of
the change of variables (εv εw) → (εV εW): (V ′ W ′) = M(V W ). The ordering
introduced just above allows to prove that M is triangular. Its determinant is

detM = 2−(2n−N/2)
∏
l∈G

(1 + ε(l)Ω) . (3.36)

Clearly ∀Ω ∈ [0, 1) , detM �= 0 and M is invertible. The decreasing functions in
Vl (W�) are consequently independent.

Remark. With the non-orientable interactions (2.9), we were not able to find a
procedure making the independence of the masslets transparent.

3.3. Non-planarity

In the preceeding section, we proved that the vertex and propagators oscillations
of the Gross–Neveu model allow to obtain decreasing functions similar to the
masslets of the (non-commutative) Φ4 theory. Here we improve these decreases if
the graph is non-planar. For this the Lemma 3.5 is not sufficient. Before taking
the module of the graph amplitude, we would like to further exploit the oscillations.

6This change of variables is slightly different from the one we used for the tree lines 3.28. This
leads to an easier proof of the independence of the decreasing functions.
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Let T−1 the Jacobian matrix of the change of variables εw → εW : W ′ =
TW . Let us define the skew-symmetric matrix QW with ϕW = WQWW where
ϕW is given by corollary 3.3. After the change of variables W → W ′ = TW ,
ϕW = W ′Q′

WW ′ with Q′
W = tT−1QWT−1. T being invertible, the rank of Q′

W

equals QW ’s. Remark that QW is the intersection matrix of the graph. We have
the following result rankQW = 2g [1, 18]. Let us consider a non-planar graph.
The rank of QW being different from zero, there exists a loop line � such that we
have an oscillation W� ∧W ′

� with W ′
� =

∑
�′ Q

′
W,��′W� + U +A+X + P . Thanks

to Lemma 3.5, we know that W� decreases on a scale M i� with the function
(1 +M−2i�W2

� )−1. By an integration by parts similar to (3.30), we get a decrease
in W ′

� on a scale M−i� . This decrease will be used to integrate over some W�′

contained in W ′
�. The result of such an integration will be of order M−2i� instead

of M2i�′ . The gain is then M−2i�−2i�′ .

3.4. Broken faces

We remind that a broken face is a face to which belongs external points (see
Appendix A for examples). When we do not consider vacuum graphs, there is
always at least one broken face. By definition, it is called the external face. The
broken faces produce oscillations of the type x∧w (see Lemma 3.2). In the planar
case with B ≥ 2 broken faces, we are going to use such oscillations to get better
decreases than the ones of the Lemma 3.5. Let QXW the skew-symmetric matrix
representing the oscillations between the x’s and w’s variables. After the change
of variables W →W ′, this matrix becomes

Q′
XW = QXWT−1 . (3.37)

Then rankQ′
XW = rankQXW . Let I a set of consecutive natural numbers indexing

some external variables xk, k ∈ I. These ones oscillate with the variables w�, � ∈
BI where BI is the set of lines contracting above those variables. Let us now
check that the variables xk, k ∈ I oscillate only with W�, � ∈ BI . To this aim, let
us assume that two sets X and Y of external variables oscillate with two other
different sets A and B of loop lines:

QXW =
(
A 0
0 B

)
, T =

(
C 0
0 D

)
(3.38)

Q′
XW = QXWT−1 =

(
AC−1 0

0 BD−1

)
. (3.39)

In the planar case, W� is only function of w�′ with �′ ⊃ �. T (and T−1) are then
not only (lower) triangular but also bloc diagonal. The oscillations between the
external variables xk and the variables W� are

XIQXWT−1W ′
BI

=
∑
k∈I

η(k)xk ∧ CL(W�, � ∈ BI) , (3.40)

where CL means “linear combination”. After the masslets and non-planar cases,
it should be clear that this new oscillation allows to get a decreasing function of
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scale M−min�∈BI
i� in the external variables. If these points are “true” external

ones (of scale −1, integrated with test functions), we will use it to improve the
power counting. Usually external points are integrated over test functions (the
result is of order 1) so that the gain is here M−2min i� .

4. Power counting

In this section, we use the previous decreases by adapting them to the multi-scale
case. By Lemma 3.5, we know that it is possible to get |L| independent decreasing
functions equivalent to the masslets of the Φ4 theory plus n − 1 masslets for the
tree lines coupled to n − 1 strong decreases. These last two types of decreasing
functions are equivalent to the branch delta functions. The method we use to get
the power counting now depends on the topology of the considered graph7.

We only consider graphs with at least two external legs. The vacuum graphs
are considered in Appendix C. We use the Gallavotti–Nicolò tree. We start from its
leaves and go down towards the root which means from the scale of the ultraviolet
cut-off to the scale 0. Let Gi

k an orientable connected component. For all lines, we
first get all the masslets by the method expounded in Section 3.2. If Gi

k is planar
regular (g = 0, B = 1), we directly use Lemma 3.5. If Gi

k is non-planar (g ≥ 1), we
use the W ∧W oscillations. Thanks to the procedure explained in Section 3.3, we
get an additional decrease in some W ′

�, � ∈ Li
k, at worst of scale M−i. We do the

same in any non-planar “primitive” connected components (i.e., not containing
sub non-planar components). The corresponding improvements are independent.

If a node of the Gallavotti–Nicolò tree is planar but has more than one broken
face (B ≥ 2), we consider its number of external legs8. If N(Gi

k) ≥ 6, we directly
use Lemma 3.5. When N(Gi

k) = 4, the number of broken faces is 1 or 2. Let us
focus on the B = 2 case. At scale i, one or several lines contract above two external
points x′ and y′. In contrast with commutative field theory, the power counting
of this connected component depends on the scales down to 0. Let P the unique
path in the Gallavotti–Nicolò tree linking Gi

k to G. If there exists a scale i0 < i and
a connected component Gi0

k′ on P such that N(Gi0
k′ ) = 2 then there exists lines of

scales between i and i0 joining x′ to y′. Let us call I the set of such lines and im−1

the scale of the first node after Gi
k on P. If card I = 1 then Gi

k is logarithmically
divergent. If card I ≥ 2 then Gi

k will be convergent as M−2(i−im−1). Finally if there
does not exist such a Gi0

k′ then Gi
k will be convergent as M−2(i−im−1).

Let us look at the Figure 3 which is simpler than the general situation but
exhibits all its important features. We define I as the insertion made of the lines
e1, e2 and of the graph GI . Note that I may be empty and GI non-planar. The
different scales entering I are i0 < i1, . . . , im−1 (< im = i). The corresponding

7The main result is Lemma 4.1, in particular in regard to the power counting of the critical
function N = 4, B = 2 which manages the main technical point in providing renormalizability.
8It has been noticed in [2] that orientable graphs can’t have N = 2 and B = 2. A simple argument
on the Filk rosette [4, 16] proves it equally.
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(a) Typical situation (b) Insertion I

Figure 3. Connected component (potentially) critical

connected component at scale i0 is written Gi0
k′ . We also write LI for the set of

loop lines in the insertion I.
We first get all the scaled decreasing functions for all the tree variables vl and

pl except the lowest tree line t in I. Then, down to scale i, we proceed for the loop
masslets as we have done for Lemma 3.5. The total oscillation may be written

ϕ′
Ω = ϕE + ϕX +

∑
T \{t}

ε(l)Vl ∧
(
ul − ε(l)al

)
+

1
2
(
1 + ε(t)Ω

)
ε(t)vt ∧ ut (4.1)

+
∑

T \{t}
(1 + ε(l)Ω)−1ε(l)Vl ·pl

+
∑
Li

k

ε(�)W� ∧
(
u� − ε(�)a�

)
+W ′R1P + PR2P + PR3U

+
1
2

∑
LI

(
1 + ε(�)Ω

)
ε(�)w� ∧ u� +

1
2

∑
LI �LI

ε(�)w� ∧ u�′ + ε(�′)w�′ ∧ u�

+
∑

(LI∪{t})⊂Li
k

Wi
k ∧ ul +

∑
(LI∪{t})⊂LI

ε(�′)w�′ ∧ u�

+
∑

k⊂Li
k

Wi
k ∧ η(k)xk + WIQWXX

+ WIQWWI +
∑

(T ∪L)≺(T ∪L)

ul′ ∧ ul

+
1
2

∑
LI�LI

u�′ ∧ u� +AR4A+AR5U +AR6X
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where we wrote WI (Wi
k) for a linear combination of W�, � ∈ LI (Li

k). Let us pick
one W�, � ∈ Li

k. We use the oscillation W� ∧
(∑

(LI∪{t})⊂� ul +
∑

k⊂� η(k)xk

)
to

get a decreasing function s implementing
∣∣∑

LI∪{t} ul +
∑

k⊂� η(k)xk

∣∣ ≤M−i.

If there are external points overflown by the line �, there exists k such that
xk

def= z ⊂ �. Then for all line in LI ∪{t}, we perform the change of variables (3.28)
and (3.35) but with z in place of x1. These modifications let the function s inde-
pendent the al, l ∈ LI ∪ {t}. This allows to get for all line l ∈ LI ∪ {t} a masslet
of index il.

If there are no external point apart from x and y in Gi0
k′ (see Figure 3), the

function s only depends on
∑

(LI∪{t})⊂� ul and Gi0
k′ is a two-point graph. Let us

write �0 for the lowest line in I, i�0 = i0. Note that it is necessarily a loop line.
For all line � ∈ LI \ {�0}, we perform

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u� →u� − ε(�)a� ,

w� →w� + a� ,

u�0 →u�0 + ε(�)a� ,

w�0 →w� − ε(�0)ε(�)a� .

(4.2)

This let u� + u�0 (and s) fixed. Then for all line � ∈ LI \ {�0}, we get a decreasing
function in W�−ε(�)ε(�0)W�0 of index i�. All these functions are independent. For
�0, we perform

⎧⎪⎨
⎪⎩
u�0 →u�0 − ε(�0)a�0 ,

w�0 →w�0 + a�0 ,

ut →ut + ε(�0)a�0 .

(4.3)

We get a decreasing function allowing to integrate over W�0 at the cost of M it ≥
M i0 . Finally for the tree line t, we use the usual change of variables (3.28). This
introduces at in s. The masslet we get for Vt is then of order M i. Fortunately the
corresponding strong decrease for pt is of order M−i. We recover the fact that the
long tree line variables do not cost anything.

Let us call critical a four-point connected component with N = 4, g = 0, B =
2 and the insertion I reduced to a single line. We are now ready to prove the
following lemma.

Lemma 4.1 (Power counting). Let G an orientable connected graph. For all Ω ∈
(0, 1), there exists K ∈ R such that its amputed amplitude Aµ

G integrated over test
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functions (see (3.23)) is bounded by

|Aµ
G| ≤Kn

∏
i,k

M− 1
2 ω(Gi

k) (4.4)

with ω(Gi
k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N − 4 if (N = 2 or N ≥ 6) and g = 0 ,
if N = 4, g = 0 and B = 1 ,
if Gi

k is critical ,
N if N = 4, g = 0, B = 2 and Gi

k non-critical ,
N + 4 if g ≥ 1 .

(4.5)

Remark. This bound is not optimal but sufficient to prove the perturbative renor-
malizability of the theory. After the study of the propagator in the matrix ba-
sis [17], we could get the true power counting in particular the genus dependence.
Concerning the broken faces, the bound (4.4) is almost optimal. For the four-point
function, it is. But for six (or more)-point functions, we did not try to improve
our bound. Nevertheless remark that for such functions, similar situations to the
four-point one may happen. The “external” points in additional broken faces may
be linked by only one lower line. In this situation, the broken faces do not im-
prove the power counting even for six (or more)-point functions. This is one of the
differences between the Gross–Neveu model and the Φ4’s one.

Proof. Lemma 3.5 allows to bound the amplitude of a connected orientable graph
G by

|Aµ
G| ≤Kn

∫
dx1 g1

(
x1 + {a}

)
δG

N∏
i=2

dxi gi(xi)
∏
l∈G

dal M
2ilΞ(al) (4.6)

×
∏
l∈T

duldVldplM
ile−M2il (ul−ε(l)al)

2
1∏

µ=0

1
1 +M−2ilV2

l,µ

1
1 +M2ilp2

l,µ

×
∏
�∈L

du�dW�M
i�M i�e−M2i� (u�+{a})2

1∏
µ=0

1
1 +M−2i�W2

�,µ

,

where K ∈ R and gi, i ∈ �1, N� and Ξ are Schwartz-class functions. The δG
function corresponding to the root delta function is given by (see Section 2.2)

δG

⎛
⎝ ∑

i∈E(G)

η(i)xi +
∑

l∈T ∪L
ul

⎞
⎠ . (4.7)

We use it to integrate over one of the external positions. The other ones are
integrated with the gi’s functions. The bound (4.6) on the absolute value of the
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amplitude becomes

|Aµ
G| ≤Kn

∫ ∏
l∈G

dal M
2ilΞ(al)

∏
�∈L

du�dW�M
i�M i�e−M2i� (u�+{a})2

×
1∏

µ=0

1
1 +M−2i�W2

�,µ

∏
l∈T

duldVldplM
ile−M2il (ul−ε(l)al)

2

×
1∏

µ=0

1
1 +M−2ilV2

l,µ

1
1 +M2ilp2

l,µ

. (4.8)

The integrations over the a� variables cost O(1). For all line l in the graph, in-
tegration over ul is of order O(M−2il). The integration over vl (resp. wl) is of
order O(M2il). But for tree lines, this is compensated by the integration over pl

which gives O(M−2il). Then the loops only cost O(1) whereas the tree lines earn
O(M−2il). We have the following bound

|Aµ
G| ≤ Kn

∏
l∈G

M il

∏
l∈T

M−2il

≤ K ′n
∏
l∈G

M il+1
∏
l∈T

M−2(il+1) . (4.9)

We may now distribute the power counting among the connected components [25]:

∏
l∈G

M il+1 =
∏
l∈G

il∏
i=0

M =
∏
l∈G

∏
(i,k)∈N

2/

l∈Gi
k

M =
∏

(i,k)∈N2

∏
l∈Gi

k

M , (4.10)

∏
l∈T

M−2(il+1) =
∏
l∈T

∏
(i,k)∈N

2/

l∈Gi
k

M−2 =
∏

(i,k)∈N2

∏
l∈T i

k

M−2 . (4.11)

Then, changing K ′ into K, the amplitude of a connected orientable graph is
bounded by

|Aµ
G| ≤ Kn(G)

∏
(i,k)∈N2

M− 1
2 ω(Gi

k) , (4.12)

where ω(Gi
k) = N(Gi

k) − 4 , (4.13)

which proves the first part of Lemma 4.1.
If a connected component Gi

k is non-planar, there exists �, �′ ∈ Gi
k such that

the integration overW� givesM−2i�′ ≤M−2i instead ofM2i� (see Section 3.3). The
gain with respect to (4.13) is at least M−4i. The superficial degree of convergence
becomes ω(Gi

k) = N(Gi
k) + 4.

Finally let a connected component Gi
k with four external legs and two broken

faces. With the notations previously defined, if Gi0
k′ has more than two external

points, we use the function s to integrate over one of these external positions.
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This brings M−2i instead of O(1). Let us write P for the path in the Gallavotti–
Nicolò tree between Gi

k and G. The factor M−2i improves the superficial degree of
convergence of all the nodes in P with N = 4, B = 2. It becomes ω(Gi

k) = N(Gi
k).

If Gi0
k′ is a two-point graph, we use s to integrate over the u variable of the lowest

line in I. This brings M−2i instead of M−2i0 . The gain with respect to (4.13) is
then M−2(i−i0). But the integration over W�0 costs M2it instead of M2i�0 . The
total gain is then only M−2(i−it). This additional factor allows to improve the
power counting of all the four-point components with B = 2 in P between Gi

k

and the scale it. Their power counting increase from N − 4 to N . But note that
between it (the scale of the lowest tree line in I) and i0, only loop lines may
appear in the subgraphs. Then the number of external points may only strictly
decrease in P from scale it to scale i0. Gi0

k′ being a two-point graph, there may
be only one divergent connected component in P between it and i0. It is a four-
point graph with B = 2 at scale i1 (the lowest scale in I above i0). Moreover this
happens only if there is only one loop line of scale i0. This component is critical
(by definition) and we can’t improve its power counting which remains N−4. This
proves Lemma 4.1. �

5. Renormalization

Thanks to the power counting proved in Lemma 4.1, we know that the only diver-
gent subgraphs are the planar two- and four-point ones. More precisely the only di-
vergent two-point graphs have one broken face. The divergent four-point ones have
either one broken face or are critical which means they have N = 4, g = 0, B = 2
and the two “external” points belonging to the second broken face are linked by
one (and only one) line of lower scale. We are going to prove that the divergent
parts of those graphs are of the form of the initial Lagrangian.

5.1. The four-point function

5.1.1. B = 1. Let a planar four-point subgraph with one broken face needing
renormalization. It is then a node of the Gallavotti–Nicolò tree. There exists (i, k) ∈
N

2 such that N(Gi
k) = 4, g(Gi

k) = 0, B(Gi
k) = 1. The four external points of

this amputed graph are written xj , j ∈ �1, 4�. The amplitude associated to the
connected component Gi

k is

Aµ
Gi

k

(
{xj}

)
=
∫ 4∏

i=1

dxi ψ̄e(x1)ψe(x2)ψ̄e(x3)ψe(x4)δGi
k
eıϕ′

Ω (5.1)

×
∏

l∈T i
k

duldvldpl C̄
il

l (ul)
∏

�∈Li
k

du�dw� C̄
i�

� (u�) ,

where e is the biggest external index of the subgraph Gi
k and ψe, ψ̄e are fields of

indices lower or equal to e < i. We will perform a first order Taylor expansion
which will allow to decouple the external variables xj from the internal ones u
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and p and identify the divergent part of the amplitude. We introduce a parameter
s in three different places. First of all, we expand the delta function δGi

k
as

δGi
k

(
∆ + sU

)∣∣∣
s=1

=δ(∆) +
∫ 1

0

dsU · ∇δ(∆ + sU) (5.2)

where

∆ =x1 − x2 + x3 − x4 and U =
∑
l∈Gi

k

ul .

For orientable graphs, the fields ψ̄ are associated to odd positions and the ψ’s
to even ones. Moreover if the graph is planar regular, Corollary 3.4 gives the
exact value of the root delta function, in particular the alternating signs. This
corollary also gives the external oscillation ϕE . The remaining oscillation ϕ′

Ω is
now expanded. It is given by Corollary 3.4 and by the branch delta functions
oscillations. With (hopefully) self-explaining notations, it may be written

ϕ′
Ω(s = 1) = ϕE +XQXUU +XQXPP + UQUU

+ PQPP + UQUWW + PQPWW . (5.3)

Remark that QXW = QW = 0 for planar regular graphs. We write

exp ı(XQXUU +XQXPP + UQUU + PQPP )

= 1 + ı

∫ 1

0

ds (XQXUU +XQXPP + UQUU + PQPP )

× eıs(XQXU U+XQXP P )+ıUQU U+ıPQP P . (5.4)

Finally we also expand the internal propagators. For all line l ∈ Gi
k,

C̄l(ul, s = 1) =
Ω
θπ

∫ ∞

0

dtl e
−tlm

2

sinh(2Ω̃tl)
e−

Ω̃
2 coth(2Ω̃tl)u

2
l
(
ıΩ̃ coth(2Ω̃tl)ε(l)ε(l)/ul (5.5)

+ sΩε(l)ε(l)/̃ul + sm
)(

cosh(2Ω̃tl)12 − sı θ2 sinh(2Ω̃tl)γΘ−1γ
)∣∣

s=1

=
2ıΩ2

θ2π

∫ ∞

0

dtl e
−tlm

2

tanh(2Ω̃tl)
e−

Ω̃
2 coth(2Ω̃tl)u

2
l coth(2Ω̃tl)ε(l)ε(l)/ul

+
Ω
θπ

∫ 1

0

ds

∫ ∞

0

dtl e
−tlm

2

sinh(2Ω̃tl)
e−

Ω̃
2 coth(2Ω̃tl)u

2
l

×
{(

Ωε(l)ε(l)/̃ul +m
)(

cosh(2Ω̃tl)12 − sı θ2 sinh(2Ω̃tl)γΘ−1γ
)

− ı θ2 sinh(2Ω̃tl)
(
ıΩ̃ coth(2Ω̃tl)ε(l)ε(l)/ul

+ sΩε(l)ε(l)/̃ul + sm
)
γΘ−1γ

}
.
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Let τA be the counterterm associated to the connected component Gi
k. It

corresponds to the zeroth order terms of the three preceding expansions:

τAµ

Gi
k

=
∫ 4∏

i=1

dxi ψ̄e(x1)ψe(x2)ψ̄e(x3)ψe(x4)δ(∆)eıϕE (5.6)

×
∫ ∏

l∈T i
k

duldvldpl C̄
il

l (ul, s = 0)
∏

�∈Li
k

du�dw� C̄
i�

� (u�, s = 0)eıϕ′
Ω(s=0) ,

where ϕE =
∑4

i<j=1(−1)i+j+1xi ∧ xj . Then the counterterm is of the form

τAµ

Gi
k

=
∫
dx

(
ψ̄e � ψe � ψ̄e � ψe

)
(x) (5.7)

×
∫ ∏

l∈T i
k

duldvldpl C̄
il

l (ul, s = 0)
∏

�∈Li
k

du�dw� C̄
i�

� (u�, s = 0)eıϕ′
Ω(s=0) .

To prove that τA looks like the initial vertex, it remains to show that its spinorial
structure is one of those of (2.8). Apart from the oscillations and the exponential
decreases of the propagators, the counterterm τA involves

P =
∏
l∈G

/ul =
∏
l∈G

(
γ0u0

l + γ1u1
l

)
=

2n−N/2∏
i=1

Pi . (5.8)

Each of the 22n−N/2 terms Pi in P consist in choosing for each line l ∈ G either γ0u0
l

or γ1u1
l . Each Pi has n0

i u
0 and n1

i u
1. Note that, apart from P , the counterterm

τA is invariant under: ∀l ∈ G, u0
l → −u0

l and w1
l → −w1

l . Then the only non
vanishing Pi have even n0

i . With a similar argument we prove that n1
i is also even.

Each term in τA then consists in even numbers of γ0 and γ1. For the four-point
function, the Taylor expansion (5.5) is possible because the number of internal
lines is even (it is 2(n− 1)). We now define the notions of chain and cycle.

Definition 5.1 (Chain and cycle). We say that two fields are in the same chain
• if they both belong to a same scalar product at a vertex9,
• if they are linked by a propagator.

A cycle is a closed chain.

The external fields are linked by chains. The other (internal) fields belong
to cycles. The γ0 and γ1 matrices are distributed among chains and cycles. Each
cycle corresponds, up to a sign, to a term Tr

(
(γ0)p(γ1)q

)
. It does not vanish only

if p and q are even. Knowing that the total number of γ0 is even, that the total
number of γ1 is even and that each cycle contains even numbers of γ0 and γ1, the
chains of the graph share an even number of γ0 and an even number of γ1. There
are two chains in the four-point function graphs. There are then four possibilities

9For example, the first two fields in the interaction (2.8a) belong to a same scalar product.
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to distribute the gamma matrices among these two chains. Each may contain an
even or an odd number of γ0 or γ1.

Depending on the number and the type of the vertices in these two chains,
they may link either a ψ to a ψ̄ or two fields of the same kind. We are faced to
twelve different spinorial structures:

ψ �
[(
γ0
)2p (

γ1
)2q

]
ψ̄ � ψ �

[(
γ0
)2p′ (

γ1
)2q′]

ψ̄ = ±ψ � 1ψ̄ � ψ � 1ψ̄ ,
(5.9a)

ψ �
[(
γ0
)2p+1 (

γ1
)2q

]
ψ̄ � ψ �

[(
γ0
)2p′+1 (

γ1
)2q′]

ψ̄ = ±ψ � γ0ψ̄ � ψ � γ0ψ̄ ,

(5.9b)

ψ �
[(
γ0
)2p (

γ1
)2q+1

]
ψ̄ � ψ �

[(
γ0
)2p′ (

γ1
)2q′+1

]
ψ̄ = ±ψ � γ1ψ̄ � ψ � γ1ψ̄ ,

(5.9c)

ψ �
[(
γ0
)2p+1 (

γ1
)2q+1

]
ψ̄ � ψ �

[(
γ0
)2p′+1 (

γ1
)2q′+1

]
ψ̄ = ±ψ �γ0γ1ψ̄ �ψ �γ0γ1ψ̄ .

(5.9d)

In the same way, we can meet

± ψ̄ � 1ψ � ψ̄ � 1ψ , (5.10a)

± ψ̄ � γ0ψ � ψ̄ � γ0ψ , (5.10b)

± ψ̄ � γ1ψ � ψ̄ � γ1ψ , (5.10c)

± ψ̄ � γ0γ1ψ � ψ̄ � γ0γ1ψ , (5.10d)

± ψ̄a � ψc � ψ̄b � ψd1ab1cd , (5.11a)

± ψ̄a � ψc � ψ̄b � ψdγ
0
abγ

0
cd , (5.11b)

± ψ̄a � ψc � ψ̄b � ψdγ
1
abγ

1
cd , (5.11c)

± ψ̄a � ψc � ψ̄b � ψd

(
γ0γ1

)
ab

(
γ0γ1

)
cd
. (5.11d)

(5.11e)

To prove that the divergence of the four-point function is of the form of the original
vertices (2.8), it is convenient to rewrite them in a different way.

Non-commutative Fierz identities. A basis for MD(C) is given by a representation
of the Clifford algebra {γµ, γν} = −Dδµν of dimension D. In dimension 2, B ={
Γ0 = 1,Γ1 = γ0,Γ2 = γ1,Γ3 = γ0γ1

}
is a basis for M2(C). Then let M ∈M2(C),

M = −1
2

3∑
A,B=0

ηAB Tr(MΓA)ΓB , (5.12)

with η = diag(−1, 1, 1, 1) .

We now use such a decomposition to rewrite the interactions of the model under a
different form. For example, let us consider Interaction (2.8b). If we define Mab =
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ψ̄b � ψa and use (5.12), we have

ψ̄b � ψa = − 1
2

∑
A,B

ηABψ̄b′ � ψa′ΓA
b′a′ΓB

ab . (5.13)

This allows to write∫
ψa � ψ̄a � ψb � ψ̄b =

∫
ψ̄b � ψa � ψ̄a � ψb = −1

2

∑
A,B

ηAB

∫
ψ̄ � ΓAψ � ψ̄ � ΓBψ .

(5.14)

In the same way, for Interaction (2.8c), we use the decomposition

Mba = ψ̄a � ψb = −1
2

∑
A,B

ηABψ̄a′ � ψb′ΓA
a′b′Γ

B
ba (5.15)

and write∑
a,b

∫
ψ̄a � ψb � ψ̄a � ψb = −1

2

∑
A,B

ηAB

∫
ψ̄ � ΓAψ � ψ̄ � tΓBψ

= −1
2

∑
A,B

∫
g3

ABψ̄ � ΓAψ � ψ̄ � ΓBψ , (5.16)

with g3
AB = diag(−1, 1, 1,−1). We do the same for the three other interactions.

The six possible interactions are given in Table10 1. As a conclusion, the three
orientable interactions (2.8) may be written as linear combinations of∫

ψ̄ � 1ψ � ψ̄ � 1ψ , (5.17a)
∫
ψ̄ � γµψ � ψ̄ � γµψ and (5.17b)

∫
ψ̄ � γ0γ1ψ � ψ̄ � γ0γ1ψ (5.17c)

whereas the non-orientable ones (2.9) may be written in function of∫
ψ � 1ψ̄ � ψ̄ � 1ψ , (5.18a)

∫
ψ � γµψ̄ � ψ̄ � γµψ and (5.18b)

∫
ψ � γ0γ1ψ̄ � ψ̄ � γ0γ1ψ . (5.18c)

In (5.17b) and (5.18b), the sum over µ is implicit.
We now show that for all ΓC ∈ B, ψ �ΓC ψ̄ � ψ �ΓC ψ̄, ψ̄ �ΓCψ � ψ̄ �ΓCψ and

ψ̄a � ψc � ψ̄b � ψdΓC
abΓ

C
cd may be expressed in function of the orientable interactions

10Remind that we restrict our proof to the orientable case.
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Table 1. The interactions and their different formulations

Interactions of the non-commutative Gross–Neveu model

Orientable Non-orientable

•
∑
a,b

∫
dx

(
ψ̄a � ψa � ψ̄b � ψb

)
(x) •

∑
a,b

∫
dx

(
ψ̄a � ψ̄b � ψb � ψa

)
(x)

= −1
2

∑
A,B

∫
g1

ABψ̄ � ΓAψ � ψ̄ � ΓBψ = −1
2

∑
A,B

∫
g1

ABψ � ΓAψ̄ � ψ̄ � ΓBψ

•
∑
a,b

∫
dx

(
ψa � ψ̄a � ψb � ψ̄b

)
(x) •

∑
a,b

∫
dx

(
ψ̄a � ψ̄a � ψb � ψb

)
(x)

= −1
2

∑
A,B

∫
g2

ABψ̄ � ΓAψ � ψ̄ � ΓBψ = −1
2

∑
A,B

∫
g2

ABψ � ΓAψ̄ � ψ̄ � ΓBψ

•
∑
a,b

∫
dx

(
ψ̄a � ψb � ψ̄a � ψb

)
(x) •

∑
a,b

∫
dx

(
ψ̄a � ψ̄b � ψa � ψb

)
(x)

= −1
2

∑
A,B

∫
g3

ABψ̄ � ΓAψ � ψ̄ � ΓBψ = −1
2

∑
A,B

∫
g3

ABψ � ΓAψ̄ � ψ̄ � ΓBψ

g1 = diag(−2, 0, 0, 0) , g2 = η = diag(−1, 1, 1, 1) , g3 = diag(−1, 1, 1,−1)
∀A ∈ �1, 4� ,ΓA ∈ B =

{
Γ0 = 1 ,Γ1 = γ0,Γ2 = γ1,Γ3 = γ0γ1

}

of Table 1 with the help of a symmetry of the model.

∫
ψ � ΓC ψ̄ � ψ � ΓCψ̄ =

∫
ψ̄d � ψa � ψ̄b � ψcΓC

abΓ
C
cd (5.19)

= −1
2

∑
A,B

ηABψ̄ � ΓAψ � ψ̄ � tΓCΓB tΓCψ

tΓCΓB tΓC =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ΓB if ΓC = 1

gBB′ΓB′
with g = diag(−1, 1, 1 − 1) if ΓC = γ0γ1

gBB′ΓB′
with g = diag(−1,−1, 1, 1) if ΓC = γ0

gBB′ΓB′
with g = diag(−1, 1,−1, 1) if ΓC = γ1 .

(5.20)
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Then we have∫
ψ � ΓC ψ̄ � ψ � ΓC ψ̄ = −1

2

∑
A,B

gABψ̄ � ΓAψ � ψ̄ � ΓBψ (5.21)

with g =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

diag(−1, 1, 1, 1) if ΓC = 1

diag(1, 1, 1 − 1) if ΓC = γ0γ1

diag(1,−1, 1, 1) if ΓC = γ0

diag(1, 1,−1, 1) if ΓC = γ1 .

(5.22)

If ΓC = 1 or γ0γ1, the interaction (5.21) may be written in function of the inter-
actions (5.17). On the contrary, if ΓC = γ0 or γ1 independently, it is impossible.
Fortunately there exists a symmetry implying that the counterterms associated
to interaction (5.21) for ΓC = γ0 and γ1 are equal. Each term Pi in the polyno-
mial P (5.8) consists indeed to choose, for each line in the graph, either γ0 or γ1.
To each of these terms is canonically associated an other term P̄i = Pj , j �= i for
which we have done exactly the inverse choice. Then to get P̄i, we consider Pi and
change γ0 into γ1, u0

l into u1
l and vice-versa. Each counterterm, associated to a Pi,

is made of a product of gamma matrices and of integrals over the variables ul, pl,
vl and wl. The rotation

∀l ∈ G, u0
l → u1

l (5.23)

u1
l → −u0

l

w0
l (v0

l ) → w1
l (v1

l )

w1
l (v1

l ) → −w0
l (−v0

l )

shows that the integrals in P̄i equals the ones in Pi (the total number of u1
l is

even). Let us have a look at the products of gamma matrices. Let N ∈ N and
∀j ∈ �0, 2N + 1�, nj ∈ N.

Pγ =
N∏

i=0

(
γ0
)n2i

(
γ1
)n2i+1

=
N∏

i=0

(−1)[
n2i
2 ]+[n2i+1

2 ] (γ0
) 1−(−1)n2i

2
(
γ1
) 1−(−1)n2i+1

2 . (5.24)

Each product of γ0 (resp. γ1) has been reduced thanks to
(
γ0
)2 =

(
γ1
)2 = −1.

The product Pγ equals, up to a sign, an alternating product P a
γ of γ0 and γ1. In

the same way,

P̄γ =
N∏

i=0

(
γ1
)n2i

(
γ0
)n2i+1

=
N∏

i=0

(−1)[
n2i
2 ]+[n2i+1

2 ] (γ1
) 1−(−1)n2i

2
(
γ0
) 1−(−1)n2i+1

2 . (5.25)
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Let us remark that the signs in front of P a
γ and P̄ a

γ are the same. Let na
0 and na

1

the total number of γ0 (resp. γ1) in P a
γ . This product P a

γ may be

1. γ0γ1 · · · γ0γ1 , na
0 = na

1 .

P a
γ =

{
(−1)p1 if na

0 = na
1 = 2p

(−1)pγ0γ1 if na
0 = na

1 = 2p+ 1
(5.26)

2. γ1γ0 · · · γ1γ0 , na
0 = na

1 .

P a
γ =

{
(−1)p1 if na

0 = na
1 = 2p

(−1)pγ1γ0 if na
0 = na

1 = 2p+ 1
(5.27)

3. γ0γ1 · · · γ0γ1γ0 , na
0 = na

1 + 1 .

P a
γ =

{
(−1)pγ0 if na

1 = 2p
(−1)pγ1 if na

1 = 2p+ 1
(5.28)

4. γ1γ0 · · · γ1γ0γ1 , na
1 = na

0 + 1 .

P a
γ =

{
(−1)pγ1 if na

0 = 2p
(−1)pγ0 if na

0 = 2p+ 1
(5.29)

Let us apply those results to the chains and cycles of a graph. First of all, remark
that the numbers of γ0 and γ1 in the alternating product have the same parity as
the total numbers in Pγ . Each cycle contains an even number of γ0 and γ1 and then
corresponds to situations of the type (5.26) or (5.27). These are exactly symmetric
under the exchange γ0 ↔ γ1. When the two chains of a four-point graph contain
an odd number of γ0 and an even number of γ1, we are faced to situations 3 or 4.
They are symmetric under the exchange γ0 ↔ γ1. The relative sign between the
products P a

γ and P̄ a
γ is + and (especially) only depends on the parities of the

total numbers of γ0 and γ1. This sign doesn’t depend on the configuration of the
products of matrices i.e. it doesn’t depend on the nj in (5.24).

Then the counterterm ψΓC ψ̄ψΓC ψ̄ may only be of the form ψ1ψ̄ψ1ψ̄,
ψγ0γ1ψ̄ψγ0γ1ψ̄ or ψγµψ̄ψγµψ̄. The result is the same for the two others ψ̄ΓCψψ̄
ΓCψ and ψ̄aψcψ̄bψdΓC

abΓ
C
cd. The sum of the last two interactions in (5.22) is a lin-

ear combination of the initial interactions. We would check it in the same way for
ψ̄aψcψ̄bψdΓC

abΓ
C
cd. This proves that τA is of the form of the initial vertices.

As expected for the four-point function, τA is logarithmically divergent. To
check it, it is sufficient to redo the procedure used in Section 3.2 with the change
of variables (3.28) and (3.35) but without x1 (the external variables are decoupled
form the internal ones in the counterterm). The remainder (1 − τ)A is composed
of four different terms. Each improves the power counting and makes (1 − τ)A
convergent as i− e→ ∞:

• U · ∇δ(∆ + sU). Integrating by parts over an external variable, the ∇ acts on
an external field and gives at most M e. U gives at least M−i.

• XQXUU , XQXPP . X brings M e and U (resp. P ) M−i.
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• UQUU , PQPP give at least M−2i,
• the expansion (5.5) of the propagators gives M−i.

As a conclusion, these terms improves the power counting byM−(i−e) which makes
(1 − τ)A convergent and irrelevant for renormalization.

5.1.2. B = 2, critical. The power counting proved in (4.4) let us think that the
critical connected components are logarithmically divergent. Exact computations
on simple graphs and the behavior of the theory in the matrix basis confirm this
fact. But the divergent part of these graphs are not of the form of the initial
Lagrangian and particularly not of a Moyal type. Despite such a divergence, we
won’t renormalize those graphs. In fact, we will prove in Section 5.2.2 that the
renormalization of the corresponding two-point function is sufficient to make the
complete graph convergent, including the critical sub-divergence. Let i the scale of
the critical component and j < i the scale of the corresponding two-point function.
The remainder terms in the renormalization of this two-point function will give
M−(i−e) (< M−(j−e)).

5.2. The two-point function

5.2.1. The regular case. Let a two-point planar subgraph needing renormalization.
There exists (i, k) ∈ N

2 such that N(Gi
k) = 2, g(Gi

k) = 0. The two external points
of the amputed graph are written x, y. The amplitude associated to the connected
component Gi

k is

Aµ
Gi

k

(x, y) =
∫
dxdy ψ̄e(x)ψe(y)δGi

k
eıϕ′

Ω
∏
l∈T i

k

duldvldpl C̄
il

l (ul)
∏

�∈Li
k

du�dw� C̄
i�

� (u�) .

Let us proceed to a second order Taylor expansion. First of all, we expand δGi
k

as

δGi
k

(
x− y + sU

)∣∣∣
s=1

= δ(x− y) + U · ∇δ(x− y) +
∫ 1

0

ds (1 − s)(U · ∇)2δ(∆ + sU) ,

(5.30)

where we used the same notations as in the preceding section. The oscillation be-
tween x and y is exp ıx∧y. Thanks to the delta function, we absorb this oscillation
into a redefined matrix QXU . Then we expand the oscillation:

exp ı(XQXUU +XQXPP + UQUU + PQPP ) = 1 + ı(XQXUU +XQXPP )

−
∫ 1

0

ds
(
(1 − s)(XQXUU +XQXPP )2 − ı(UQUU + PQPP )

)

× eıs(XQXU U+XQXP P+UQU U+PQP P ) . (5.31)
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We also expand the internal propagators. For all line l ∈ Gi
k,

C̄l(ul, s = 1) =
Ω
θπ

∫ ∞

0

dtl e
−tlm

2

sinh(2Ω̃tl)
e−

Ω̃
2 coth(2Ω̃tl)u

2
l
(
ıΩ̃ coth(2Ω̃tl)ε(l)ε(l)/ul

+ sΩε(l)ε(l)/̃ul +m
)(

cosh(2Ω̃tl)12 − s θ
2 ı sinh(2Ω̃tl)γΘ−1γ

)∣∣∣
s=1

=
Ω
θπ

∫ ∞

0

dtl e
−tlm

2

tanh(2Ω̃tl)
e−

Ω̃
2 coth(2Ω̃tl)u

2
l

(
ıΩ̃ coth(2Ω̃tl)ε(l)ε(l)/ul +m

)

+
Ω
θπ

∫ 1

0

ds

∫ ∞

0

dtl e
−tlm

2

sinh(2Ω̃tl)
e−

Ω̃
2 coth(2Ω̃tl)u

2
l

×
{
Ωε(l)ε(l)/̃ul

(
cosh(2Ω̃tl)12 − sı θ2 sinh(2Ω̃tl)γΘ−1γ

)

−ı θ2 sinh(2Ω̃tl)
(
ıΩ̃ coth(2Ω̃tl)ε(l)ε(l)/ul+sΩε(l)ε(l)/̃ul+m

)
γΘ−1γ

}
.

(5.32)

The conscientious reader would have noticed that the expansion (5.32) is different
from the one we used for the four-point function (5.5). Here we allow the mass
term to be part of the zeroth order term. The reason is that the number of internal
lines in a two-point function is odd (it is 2n − 1). For the mass counterterm, if
all the propagators would have contributed by a u term, the counterterm would
have vanished. In fact, the power counting is reached when one propagator uses
its mass term and all the others the term /u. This implies that the mass divergence
is only logarithmic. For the wave function and Ω/̃x counterterm, each propagator
contributes with its dominant term /u. The counterterm τA associated to the con-
nected component Gi

k corresponds to the zeroth and first order terms of the three
preceding expansions:

τAµ
Gi

k

= τAm + τA/p + τA/̃x , (5.33)

τAm =
∫
dxdy ψ̄e(x)ψe(y)δ(x − y)

∫ ∏
l∈T i

k

duldvldpl C̄
il

l (ul, s = 0) (5.34)

×
∏

�∈Li
k

du�dw� C̄
i�

� (u�, s = 0)eıϕ′
Ω(s=0) ,

τA/p =
∫
dxdy ψ̄e(x)ψe(y)U · ∇δ(x − y)

∏
l∈T i

k

duldvldpl C̄
il

l (ul, s = 0) (5.35)

×
∏

�∈Li
k

du�dw� C̄
i�

� (u�, s = 0)eıϕ′
Ω(s=0) ,

τA/̃x = ı

∫
dxdy ψ̄e(x)ψe(y)δ(x− y)(XQXUU +XQXPP ) (5.36)

×
∏

l∈T i
k

duldvldpl C̄
il

l (ul, s = 0)
∏

�∈Li
k

du�dw� C̄
i�

� (u�, s = 0)eıϕ′
Ω(s=0) .
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The counterterm τAm contributes to the mass renormalization. Its divergence is
logarithmic for the parity reasons given above. τA/p is the wave function countert-
erm.

τA/p = −
∫
dx ψ̄e(x)∇µψe(x)Uµ

∏
l∈T i

k

duldvldpl C̄
il

l (ul, s = 0) (5.37)

×
∏

�∈Li
k

du�dw� C̄
i�

� (u�, s = 0)eıϕ′
Ω(s=0)

As for the four-point function, this term contains the polynomial (5.8) here of odd
degree. The gamma matrices in each monomial are distributed among cycles and
a chain (see Definition 5.1). The numbers of u0γ0 and u1γ1 in each cycle are even
so that the number of gamma matrices in the chain linking the external points is
odd. The term ψ̄eU

0∂0ψe is different from zero if the number of u0γ0 in the chain
is odd. Then the number of γ1 is even. The corresponding counterterm is of the
form ψ̄eγ

0∂0ψe. We associate it the term ψ̄eU
1∂1ψe where we chose the inverse

monomial in P (∀l ∈ G, γ0u0
l ↔ γ1u1

l ). Thanks to a rotation of the coordinates,
we show that the complete counterterm looks like ψ̄e /∇ψe. It is logarithmically
divergent.

The counterterm τA/̃x, also logarithmically divergent, contributes to the renor-
malization of the “magnetic field” Ω/̃x. The terms entering such a contribution look
like

∫
ψ̄eψe(x0u1 − x1u0) · · · . Once more we can associate two opposite monomi-

als and perform a rotation to prove that the counterterm is of the form ψ̄e /̃xψe.
Remark that the terms

∫
ψ̄eψe(x0p0 + x1p1) · · · vanish by parity over p (beware

that here pµ is the “momentum” associated to a tree line and not a derivative).
It is easy to check from (5.35) and (5.36) that the counterterms τA/p and τA/̃x are
skew-Hermitian. They are of the form ψ̄/pψ and ψ̄/̃xψ.

The remainder terms, gathered in (1 − τ)A, are convergent:
• (U · ∇)2δ gives M−2i thanks to U2 and M2e by integration by parts over an

external point,
• (XQXUU +XQXPP )2 brings M−2(i−e),
• UQUU + PQPP give at least M−2i,
• The propagators expansion gives at least M−i.

Note that until now the ψ̄γ0γ1ψ counterterm was not useful. Moreover if we set
m = 0 (the bare mass) it remains so under radiative correction (τAm ≡ 0) for
parity reasons over the u’s.

5.2.2. Critical components. Let us consider an orientable two-point graph at scale
j with a critical subgraph at scale i > j (see definition in Section 4). This two-point
component is then made of a four-point subgraph at a scale i with g = 0, B = 2
and of a single (loop) line of scale j. We renormalize the two-point amplitude as
was done in the previous paragraph. We now want to show that the remainder
terms are of order M−2(i−e) (and not M−2(j−e)) which implies the convergence of
the complete remainder amplitude even its four-point sub-divergence.
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We proceed as is explained in Section 4. Down to scale i, we get all the nec-
essary masslets for the v’s and w’s and the corresponding functions for the p’s.
Then we have an oscillation W� ∧ uj where i� = i and uj is the u variable of
the unique loop line of scale j. We use it to get a decreasing function s imple-
menting

∣∣uj
∣∣ ≤ M−i. It remains to obtain the masslet for the variable wj . Its

associated uj variable being now of order M−i there is no mean to get a masslet
of scale M j. We can only achieve M i. The gain we had with the uj variable is
lost by its corresponding masslet and we note once again that the critical com-
ponents are divergent. But now all the u variables in the graph are bounded by
M−i which implies that the remainder terms, except the propagator expansions,
bring M−2(i−e) = M−2(i−j)M−2(j−e). All the propagator expansions except the
one concerning the lowest propagator (of scale j) give at least M−i. There is one
term in the expansion of the lowest propagator (ım θ

2 sinh(2Ω̃t�)γΘ−1γ) which only
brings M−2j . This is not sufficient to renormalize the four-point sub-divergence.
The solution consists in putting that term in the counterterm. Only for this lowest
propagator, we use a different propagator expansion:

C̄l(ul, s = 1) =
Ω
θπ

∫ ∞

0

dtl e
−tlm

2

sinh(2Ω̃tl)
e−

Ω̃
2 coth(2Ω̃tl)u

2
l
(
ıΩ̃ coth(2Ω̃tl)ε(l)ε(l)/ul (5.38)

+ sΩε(l)ε(l)/̃ul +m
)(

cosh(2Ω̃tl)12 −
θ

2
ı sinh(2Ω̃tl)γΘ−1γ

)∣∣∣
s=1

=
Ω
θπ

∫ ∞

0

dtl e
−tlm

2

tanh(2Ω̃tl)
e−

Ω̃
2 coth(2Ω̃tl)u

2
l
(
ıΩ̃ coth(2Ω̃tl)ε(l)ε(l)/ul +m

)

×
(
cosh(2Ω̃tl)12 −

θ

2
ı sinh(2Ω̃tl)γΘ−1γ

)

+
Ω
θπ

∫ 1

0

ds

∫ ∞

0

dtl e
−tlm

2

sinh(2Ω̃tl)
e−

Ω̃
2 coth(2Ω̃tl)u

2
l

× Ωε(l)ε(l)/̃ul

(
cosh(2Ω̃tl)12 − ı

θ

2
sinh(2Ω̃tl)γΘ−1γ

)
.

This makes convergent the four-point subgraph and the two-point one. The price
to pay is a counterterm of the form ıδm θγΘ−1γ. The proof of this last statement
is given in appendix D. Remark finally that if we set m = 0, τAm ≡ 0 and no
ψ̄γ0γ1ψ appear.

6. Conclusion

We proved that the non-commutative Gross–Neveu model, defined by the ac-
tion (2.3) with only orientable interactions, is renormalizable to all orders. We
have first computed a bound on the amputed amplitude of any graph, integrated
over test functions (see Lemma 4.1). This power counting is the one of a renormal-
izable theory. This bound can be obtained at Ω = 0. Then we showed that all the
necessary counterterms are of the form of the initial Lagrangian. This means that
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the non-commutative Gross–Neveu model with orientable interactions is renormal-
izable even without the vulcanization procedure. But without general argument in
favor of orientable interactions, we have to consider also non-orientable ones and
then to vulcanize the Lagrangian.

The orientable Gross–Neveu model is free of (non-renormalizable) UV/IR
mixing [1,23]. Nevertheless it exhibits some remaining one. It concerns some graphs
of the four-point function. These ones have g = 0 and B = 2 (see Lemma 4.1).
This mixing is fortunately renormalizable in the following sense: the divergent part
of the critical four-point graphs is not “local” but the renormalization of the cor-
responding two-point function makes those four-point subgraphs finite. Of course
this was not the case for the usual UV/IR mixing which prevented renormaliza-
tion of non-commutative field theory before [14]. Finally note that the bounds in
Lemma 4.1 may have equally been proved for the full model (with V = Vo + Vno)
but restricted to orientable graphs11. This suggests that the full theory could be
renormalizable if restricted to orientable graphs. Of course the “locality” of the
counterterms should be checked.

Appendix A. Topology of Feynman graphs

Let a graph G with n vertices and I internal lines. Interactions of quantum field
theories on Moyal spaces are only cyclically invariant (see (2.6)). A good way to
keep track of such a reduced invariance is to draw Feynman graphs as ribbon
graphs. Moreover there exists a basis for the Schwartz class functions where the
Moyal product becomes an ordinary matrix product [8, 13]. This further justifies
the ribbon representation.

Let us consider the example of Figure 4. Propagators in a ribbon graph are
made of double lines. Let us call L the number of loops (made of single lines) of
a ribbon graph. The graph of Figure 4b has n = 3, I = 3, L = 2. Each ribbon
graph can be drawn on a manifold of genus g. The genus is computed from the
Euler characteristic χ = L − I + n. For example, the graph of Figure 4b may be
drawn on a manifold of genus 0. Note that some of the L loops of a graph may be
“broken” by external legs. In our example, both loops are broken.

Appendix B. Integration by parts

We reproduce here the details of the computation showing that the procedure
formed by the change of variables (3.28) and the integration by parts (3.30) allows

11Orientable interactions only lead to orientable graphs but orientable graphs are not only made

of orientable interactions. Actually non-orientable interactions produce not only all the non-
orientable graphs but also orientable ones.
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(a) x-space representa-
tion

(b) Ribbon representation

Figure 4. A graph with two broken faces

to get a decreasing function of the desired scale.

AG,l =
∫
daldtl coth(2Ω̃tl)ξ(al coth1/2(2Ω̃tl)) e−

Ω̃
2 coth(2Ω̃tl)(ul−ε(l)al)

2

f1(x1 + η(1)ε(l)al)
{
ıΩ̃ coth(2Ω̃tl)(εε)(l)(/ul − ε(l)/al) + Ω(εε)(l)(/̃ul − ε(l)/̃al) −m

}

eıal∧(Ul+Al+Xl)
1∏

µ=0

⎛
⎝ coth1/2(2Ω̃tl) + ∂

∂aµ
l

coth1/2(2Ω̃tl) + ıṼl,µ

⎞
⎠
2

eıal∧Vl (3.30)

Let us write cl = coth(2Ω̃tl).

AG,l =
∫
dal cl e

ıal∧Vl

1∏
µ=0

(
1

√
cl + ıṼl,µ

)2 (√
cl −

∂

∂aµ
l

)2

ξ(al
√

cl)

f1(x1 + η(1)ε(l)al)
{
ıΩ̃cl(εε)(l)(/ul − ε(l)/al) + Ω(εε)(l)(/̃ul − ε(l)/̃al) −m

}

e−
Ω̃
2 cl(ul−ε(l)al)

2+ıal∧(Ul+Al+Xl) .

We define the following notations:

{l} =ıΩ̃cl(εε)(l)(/ul − ε(l)/al) + Ω(εε)(l)(/̃ul − ε(l)/̃al) −m, (B.1)

{l}′= − ε(l)
(
ıΩ̃clγ

µ + Ω̃(−1)µ+1γµ+1
)
. (B.2)
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Let us compute the first derivative:
∂

∂aµ
l

e−
Ω̃
2 cl(ul−ε(l)al)

2+ıal∧(Ul+Al+Xl)ξ(al
√

cl)f1(x1 + η(1)ε(l)al) {l} (B.3)

= e−
Ω̃
2 cl(ul−ε(l)al)

2+ıal∧(Ul+Al+Xl)
{
{l}

[
Ω̃clε(l)(ul−ε(l)al)µξf1 + ı(Ũl + Ãl + X̃l)µ

ξf1 +
√

clξ
′f1 + η(1)ε(l)ξf ′

1

]
+ {l′} ξf1

}
def= e−

Ω̃
2 cl(ul−ε(l)al)

2+ıal∧(Ul+Al+Xl)
{
{l}B0Ξ0F0 + {l′}Ξ1F1

}
+ subleading terms ,

(B.4)

where B0 does not depend on aµ+1
l and, using a part of the exponential decrease

in ul − ε(l)al, B0 = O(
√

cl). Ξi, i = 0, 1 (resp. Fi) is a linear combination of ξ
(resp. f1) and its derivatives. Then let us compute the second derivative:

∂2

∂(aµ
l )2

e−
Ω̃
2 cl(ul−ε(l)al)

2+ıal∧(Ul+Al+Xl)ξ(al
√

cl)f1(x1 + η(1)ε(l)al) {l} (B.5)

= e−
Ω̃
2 cl(ul−ε(l)al)

2+ıal∧(Ul+Al+Xl)

{
{l}

[(
Ω̃clε(l)(ul − ε(l)al)µξf1 + ı(Ũl + Ãl + X̃l)µξf1

+
√

clξ
′f1 + η(1)ε(l)ξf ′

1

)
×
(
Ω̃clε(l)(ul − ε(l)al)µ + ı(Ũl + Ãl + X̃l)µ

)
− Ω̃clε(l)ξf1 + Ω̃c

3/2
l ε(l)

(
ul − ε(l)al

)µ
ξ′f1 + Ω̃η(1)cl

(
ul − ε(l)al

)µ
ξf ′

1

+ ı
√

cl(Ũl + Ãl + X̃l)µξ
′f1 + ıη(1)ε(l)(Ũl + Ãl + X̃l)µξf

′
1

+ clξ
′′f1 + 2

√
clη(1)ε(l)ξ′f ′

1 + ξf ′′
1

]
+ 2{l′}

[
Ω̃clε(l)

(
ul − ε(l)al

)µ
ξf1

+ ı(Ũl + Ãl + X̃l)µξf1 +
√

clξ
′f1 + η(1)ε(l)ξf ′

1

]}
def= e−

Ω̃
2 cl(ul−ε(l)al)

2+ıal∧(Ul+Al+Xl)
{
{l}

(
B1Ξ2

2F
2
2 +B2Ξ3F3

)
+ 2{l′}B3Ξ4F4

}

+ subleading terms , (B.6)

where B1, B2 = O(cl), B3 = O(
√

cl) and the Ξi’s and Fi’s are defined as above.
Once more the Bi’s do not depend on aµ+1

l . We have
1∏

µ=0

(√
cl −

∂

∂aµ
l

)2

ξf1{l}e−
Ω̃
2 cl(ul−ε(l)al)

2+ıal∧(Ul+Al+Xl) (B.7)

=
(

cl − 2
√

cl

∂

∂a1
l

+
∂2

∂(a1
l )2

)(
cl{l}ξf1 − 2

√
cl

(
{l}B0Ξ0F0 + {l′}Ξ1F1

)

+ {l}
(
B1Ξ2

2F
2
2 +B2Ξ3F3

)
+ 2{l′}B3Ξ4F4

)
e−

Ω̃
2 cl(ul−ε(l)al)

2+ıal∧(Ul+Al+Xl)

+ subleading terms .

Remind that for all i = 0, . . . , 3, Bi does not depend on a1
l . We may now check

that (B.7) is of order O(c5/2
l ) which gives (3.31).
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Appendix C. The vacuum graphs

In this appendix, we compute the power counting of the vacuum graphs of the
orientable Gross–Neveu model. Let us first remind that the translation invariance
of the usual commutative field theories makes them infinite even with both ultravi-
olet and infrared cut-offs (we mean in a given slice). On the contrary, the vacuum
graphs of the (non-commutative) Φ4 theory are finite in a slice but the sum over
their scale attribution diverges as M8i.

The quartic Moyal-type interaction is translation invariant. It can indeed be
written as

δ(x1 − x2 + x3 − x4) exp ı
4∑

i<j=1

(−1)i+j+1xi ∧ xj (C.1)

= δ(x1 − x2 + x3 − x4) exp ı
(
x1 ∧ (x2 − x3) + x2 ∧ x3

)
= δ(x1 − x2 + x3 − x4) exp ı(x1 − x2) ∧ (x2 − x3) .

Such a regularization is then solely due to the breakdown of translation invariance
by the harmonic potential term x̃2 in the Φ4 propagator. The Gross–Neveu propa-
gator, whereas breaking translation invariance, allows to get translation invariant
amplitudes for the vacuum graphs. We verify such an invariance by performing the
change of variables ∀i, xi → xi+a and by checking that the result is independent a.

AG = λn

∫ ∏
l∈G

duldvl Cl(ul, vl) eıϕ (C.2)

= λn

∫ ∏
l∈G

duldvl Cl(ul, vl + 2a) eıϕ .

In (C.2), we wrote vl for all lines to simplify notations. We have already noticed
that the vertex oscillations are translation invariant. That’s why under the change
of variables, ϕ remains unchanged. Let us consider a ψ̄ψψ̄ψ type interaction. In
that case, the propagator oscillations are always exp−ıΩ/2ul∧vl. Then the change
of variables vl → vl + 2al implies the following a dependence for any amplitude

exp ıΩa ∧
∑
l∈G

ul = 1 . (C.3)

which is 1 because the sum of all the u variables vanishes for the vacuum graphs
thanks to the root delta function (2.27) (remind that we only consider orientable
interactions). This proves that the vacuum graphs of the orientable Gross–Neveu
model are infinite. For non-orientable interaction, this is not the case as the reader
may verify on the example of Figure 5.
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Figure 5. Example of non-orientable vacuum graph

Appendix D. (Un)Modified counterterms of the two-point
function

Let us consider a two-point connected component Gj
k′ with a critical sub-divergent

component Gi
k. We prove that, if we put the γΘ−1γ term of the lowest propaga-

tor �0 in Gj
k′ into the counterterm, the divergent part of this two-point function

remains of the form of the initial Lagrangian.
For simplicity we use a lightened notation than until now: exp−2ıΩt�0γΘ−1γ

= cosh(2Ω̃t�0)12 − ı sinh(2Ω̃t�0)γ
0γ1. As explained in Section 5.1, the propagators

in a two-point function are distributed among cycles and a chain. For any given
graph G, let us write C for the set of all cycles and Ch for the set of all chains. We
also write T µ for the number of uµ’s coming from the Taylor expansions12. Each
cycle or chain consists in a product of propagators. Let c ∈ C (Ch),

Pc =

⎧⎪⎨
⎪⎩

∏
l∈c

(
ıΩ̃ coth(2Ω̃tl)/ul +m

)
if �0 /∈ c(

ıΩ̃ coth(2Ω̃t�0)/u�0
+m

)
e−2ıΩ̃t�0γ0γ1

∏
l∈c\{�0}

(
ıΩ̃ coth(2Ω̃tl)/ul +m

)
if �0 ∈ c .

(D.1)

Pc is a sum of different terms: Pc =
∑n

i=1 P
i
c where n = 3|c| if �0 /∈ C and

n = 2.3|c|+1 if �0 ∈ C (|c| = card c). Let us write |γµ|ic for the total number of γµ

in a given term i of c ∈ C (Ch). In the same way, we define |uµ|ic. Let ic ∈ �1, n� for
all c ∈ C∪Ch. The tracelessness of the gamma matrices and the parity properties
of the integrals over the u’s implies two constraints:

∀c ∈ C, ∀i ∈ �1, 2|c|�, ∀µ ∈ {0, 1}, |γµ|ic is even , (D.2)

∀µ ∈ {0, 1},
∑

c∈C∪Ch

|uµ|ic
c + T µ is even . (D.3)

12For example, for the mass term, the Taylor expansion brings no u’s then T 0 = T 1 = 0. The

wave function counterterm brings u0∂0 +u1∂1. The first term has T 0 = 1 and T 1 = 0, the second
the contrary.
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From now on, we fix a N-valued sequence (ic)c∈C∪Ch. Remind that in a two-point
function, |Ch| = 1 and that the total number of internal lines is odd:

∑
c∈C∪Ch |c| is

odd. For �0, we will always choose its γ0γ1 term otherwise the analysis is the same
as in Section 5.2. In the following we call “mass counterterm” the expression (5.34)
with the expansion (5.38), “/p (or /̃x) counterterm” the equation (5.35) (or (5.36))
once more with the expansion (5.38).

1. Let c1 ∈ Ch. If |c1| (the number of lines in the chain) is even
(1.a) and �0 ∈ c1,

∑
c∈C |c| is odd. Equation (D.2) implies ∀µ,

∑
c∈C |uµ|ic

c

even. The total number of lines in the cycles being odd, we chose the
mass for at least one line in C.

• For the mass counterterm, T 0 = T 1 = 0. Equation (D.3) implies
|uµ|ic1

c1 even. This gives |γµ|ic1
c1 both odd. The counterterm may

only be proportional to γ0γ1.
• For the /p or /̃x counterterm, let µ ∈ Z2, T

µ = 1 and T µ+1 = 0.

|γµ|ic1
c1 is even and |γµ+1|ic1

c1 is odd. The number of lines in c1 being
even, at least one line in c1 “chose” the mass. Then this term is of
order M−i. Such terms give /̃p or /x.

(1.b) Let �0 /∈ c1. Equation (D.2) implies ∀µ,
∑

c∈C |uµ|ic
c odd. We chose the

mass term at least once.
• Mass counterterm: |uµ|ic1

c1 is odd. This counterterm is proportional
to γ0γ1.

• /p (/̃x) counterterm: |γµ|ic1
c1 is even and |γµ+1|ic1

c1 is odd. This term
gives /̃p or /x but is convergent as M−i since |c1| is even and at least
one line in c1 bears a mass term.

2. If |c1| is odd
(2.a) Let �0 ∈ c1.

∑
c∈C |uµ|ic

c is even.
• Mass counterterm: |γµ|ic1

c1 ’s are both odd. This gives ψ̄γ0γ1ψ.
• /p (/̃x) counterterm: |γµ|ic1

c1 is even and |γµ+1|ic1
c1 is odd. This term

gives /̃p or /x but is convergent as M−(i−j). The number of lines in
c1 being odd, either all the lines in c1 chose the u term or at least
two of them chose the mass term.

(2.b) Let �0 /∈ c1.
∑

c∈C |γµ|ic
c ’s are both odd. Either all the lines in C chose

the u term (the total number of lines in C is even) or at least two of them
chose the mass term. The corresponding terms are of order M−(i−j).

• Mass counterterm: |γµ|ic1
c1 ’s are both odd. We get ψ̄γ0γ1ψ.

• /p (/̃x) counterterm: |γµ|ic1
c1 is even and |γµ+1|ic1

c1 is odd. This term
gives /̃p or /x.

As a conclusion, the mass term only brings ψ̄γ0γ1ψ. The /p and /̃x counterterms give
ψ̄/̃pψ and ψ̄/xψ, not present in the initial Lagrangian, but these terms are convergent
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and may be let in the remainder term. A way to define the new counterterms is

τ′Am =
1
2

Tr(τAm) , (D.4)

τ′Aδm = −1
2
γ0γ1 Tr(γ0γ1τAm) , (D.5)

τ′A/p = − /p

2p2
Tr(/pτA/p) , (D.6)

τ′A/̃x = −
/̃x

2x̃2
Tr(/̃xτA/̃x) . (D.7)

Remark that if m = 0, τAm ≡ 0. This means that if the bare mass is zero, it
remains zero after radiative corrections and no ψ̄γ0γ1ψ appear.
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