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Abstract In this paper, we analyse single machine scheduling problems with learning and
aging effects to minimize one of the following objectives: the makespan with release dates,
the maximum lateness and the number of late jobs. The phenomena of learning and aging are
modeled by job processing times described by non-increasing (learning) or non-decreasing
(aging) functions dependent on the number of previously processed jobs, i.e., a job position
in a sequence. We prove that the considered problems are strongly NP-hard even if job pro-
cessing times are described by simple linear functions dependent on a number of processed
jobs. Additionally, we show a property of equivalence between problems with learning and
aging models. We also prove that if the function describing decrease/increase of a job pro-
cessing time is the same for each job then the problems with the considered objectives are
polynomially solvable even if the function is arbitrary. Therefore, we determine the bound-
ary between polynomially solvable and strongly NP-hard cases.

Keywords Scheduling · Learning effect · Aging effect · Computational complexity

1 Introduction

Changeability is a characteristic feature of many real-life systems (e.g., manufacturing, in-
dustrial, computer, etc.) that in general can be classified as an improvement or a degradation
of such a system. The improvement was for the first time discovered and described in a
quantitative form in aircraft industry by Wright (1936). He observed that the total hours to
assemble an aircraft decreases as the number of assembled aircrafts increases due to the
increasing experience of workers (the learning effect). Therefore, the same resources allow
to produce more units in a shorter period of time. On this basis, Wright (1936) formulated
a relation, called learning curve, where the time p(v) required to produce the vth unit was
defined as follows:
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p(v) = avα, (1)

where a is the time required to produce the first unit and α ≤ 0 is the learning index.
It is not surprising that the learning effect has attracted particular attention in the aircraft

industry earlier than in any other on account of the high cost of aircrafts (Kerzner 1998).
The benefits following the theory of the learning effect were soon recognized by USA War
Production Board and the methodology proposed by Wright was used to plan the produc-
tion of airplanes for the World War II needs (see Roberts 1983). Further empirical studies
on the learning effect carried out within the last 60 years horizon proved its significant im-
pact on productivity in manufacturing systems specialized in Hi-Tech electronic equipment
(Adler and Clark 1991), memory chips and circuit boards (Webb 1994), electronic guid-
ance systems (Kerzner 1998) and in many others (e.g. Carlson and Rowe 1976; Cochran
1960; Holzer and Riahi-Belkaoui 1986; Jaber and Bonney 1999; Lien and Rasch 2001;
Yelle 1979). Most of these investigations confirmed the high accuracy of (1), however, they
also revealed that some systems are more precisely described by other characteristics (learn-
ing curves), e.g., S-shaped, Stanford-B or DeJong (see Holzer and Riahi-Belkaoui 1986;
Jaber and Bonney 1999; Lien and Rasch 2001).

In general the learning effect takes place in typical human activity environments or in au-
tomatized manufacturing, where a human support for machines is needed during activities
such as operating, controlling, setup, cleaning, maintaining, failure removal, etc. Although
learning can cease with time, it is often aroused by such factors as new inexperienced em-
ployees, extension of an assortment, new machines, more refined equipment, software up-
date or general changes of the production environment (Biskup 2008).

However, the learning effect is not limited to the areas dominated by human. For instance,
highly automatized manufacturing systems may benefit on the fact that if a machine does
the same job repetitively, then the knowledge from the previous iterations can be used to
improve the performance of a system when the job is processed the next time. An example
of such method is iterative learning control that compensates a repetitive error in a robot
motion control (see Arimoto et al. 1984).

The learning effect also occurs in machine learning and artificial intelligence. For
instance, reinforcement learning algorithms, that usually learn and operate on-line (see
Whiteson and Stone 2004), improve their efficiency on the basis of interactions with
an environments (learning-by-doing). Thus, the performances of the systems optimized
by such algorithms improve in their succeeding iterations (e.g., Buşoniu et al. 2008;
Janiak and Rudek 2011).

The described learning effect that is a result of repeating similar operations (learning-
by-doing) is called an autonomous learning (e.g., Yelle 1979). The theory of the learn-
ing effect enables (based on (1)) for efficient estimation of the variable production time
and/or cost caused by learning. Thus, it allows to improve lot-sizes, worker manage-
ment, energy/resource consumption, etc. (e.g., Keachie and Fontana 1966; Kerzner 1998;
Li and Cheng 1994; Webb 1994). Nevertheless, it is not possible to optimize time and/or
cost objectives beyond reductions resulting from learning-by-doing (Biskup 2008). It fol-
lows from the innate nature of autonomous learning and from an assumption of identical
products, therefore, control (management) abilities provided by the theory of the learning
effect are significantly limited.

However, in many manufacturing systems jobs (e.g., products) are not identical, but sim-
ilar and the time required to process each of them can differ. This rigorous constraint on
identical jobs was relaxed by Biskup (1999). Based on (1), he assumed that the time pj (v)

required to process job (e.g., to produce unit) j decreases as the number v of processed
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similar (not necessarily identical) jobs increases and this relation was described as follows:

pj (v) = ajv
α, (2)

where aj is the time required to process job j if no learning exists (i.e., it is processed as the
first one). On this basis, a new model was obtained that offers an additional control variable,
i.e., sequence of processed jobs. Thus, it became possible to optimize production objectives
such as the maximum completion time of jobs, the maximum lateness or the number of late
jobs (e.g. Bachman and Janiak 2004; Cheng and Wang 2000; Cheng et al. 2008; Lee and Lai
2011; Lee et al. 2010; Wu et al. 2007; Wang and Wang 2011; Yang and Kuo 2009; Zhang
et al. 2011), which were beyond control using the theory of the learning effect. Therefore,
fundamental for this approach is that control decisions (schedule) do not influence learning
(that anyway in many cases is impossible), but they allow to efficiently utilize learning
abilities of the system to optimize given objectives. Thus, not surprisingly, this direction
of research has attracted particular attention in the scheduling theory, especially in issues
devoted to manufacturing systems (for survey see Biskup 2008).

On the other hand, degradation of a system can be caused by deterioration/aging of ma-
chines (understood as lathe machines, chemical cleaning baths, etc.) or fatigue of human
workers that affects the production parameters such as time/cost required to produce a sin-
gle unit (e.g. Dababneh et al. 2001; Eilon 1964; Mandich 2003; Stanford and Lister 2004).
Similarly as for learning systems, the objectives of deteriorating systems can also be con-
trolled (in a specified range) by a schedule of processed jobs. In the scheduling theory there
are two approaches to model deterioration. Although both of them describe the dependency
between job processing times and deteriorating factors, for each of them the deteriorating
factor is represented by different parameters. Namely, the first approach, called deterio-
rating effect, assumes that the job processing times are non-decreasing functions of their
starting times and it has been extensively studied in the last decade (see Cheng et al. 2004
and Gawiejnowicz 2008).

However, scheduling models consistent with this approach are not relevant to many
real-life industrial problems. It is especially significant for environments, where deterio-
ration does not take place (or is negligible) during idle times of machines (workers), e.g.,
caused by different release dates of jobs. Such inconveniences are absent in the second
approach, called aging/fatigue effect, in which job processing times are described by non-
decreasing functions dependent on the actual condition (fatigue) of machines affected by al-
ready processed jobs (e.g., Cheng et al. 2010; Janiak and Rudek 2010; Kuo and Yang 2008;
Rudek and Rudek 2011; Yang et al. 2010). Similarity of jobs usually allows to assume
that each of them has the same impact on the fatigue of a machine (e.g. Cheng et al. 2008;
Gawiejnowicz 1996; Mosheiov 2001; Yang and Yang 2010). Therefore, we will focus on this
approach, where the time pj (v) required to process job j increases together with the num-
ber v of processed jobs. This relation can be described by (2), where α ≥ 0 (see Mosheiov
2001).

In this paper, we analyse computational complexity of single machine scheduling prob-
lems with linear models of learning/aging and the following minimization objectives: the
maximum lateness, the makespan with release dates and additionally the number of late jobs.
The main theoretical result of this paper is to prove that the considered problems are strongly
NP-hard with linear functions of job processing times. Although the maximum lateness min-
imization scheduling problems with position dependent job processing times are broadly
discussed (e.g., Bachman and Janiak 2004; Cheng and Wang 2000; Cheng et al. 2008;
Lee and Lai 2011), their computational complexity is not fully determined. Therefore, to
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complement these results and to make their analysis coherent, we will determine their com-
putational complexity. Namely, we will prove that the problems even with the simplest
possible (nontrivial) mathematical models of job processing times are strongly NP-hard.
Moreover, it will be shown that if the models are simpler (then trivial) the related problems
are polynomially solvable. Thus, we will determine the boundary between the polynomial
solvability of the problems and their strong NP-hardness. Thereby, we will complement the
results provided inter alia by Bachman and Janiak (2004) and Cheng and Wang (2000) and
foremost complete the results concerning the maximum lateness minimization with position
dependent job processing times. Since, any NP-hardness proof is more significant if it is
done for the simplest possible problem as it is done in this paper.

On the other hand, the practical aspect of this research is to show that the maximum
acceptable simplification of job processing time functions (by their linearization) does not
lead to decreasing complexity of the considered problems. Therefore, it does not lead to
decreasing effort required to obtain optimal control decisions but rather to decreasing their
accuracy. Additionally, we also prove that the considered problems with an arbitrary func-
tions describing decreasing/increasing of a job processing time are polynomially solvable if
the functions are the same for each job.

The remainder of this paper is organized as follows. Section 2 contains problem formu-
lation. Computational complexity of the considered problems is determined in Sect. 3 and
some polynomially solvable cases are provided in Sect. 4. Finally Sect. 5 concludes the
paper.

2 Problem formulation and notation

In this section, we will formulate scheduling problems with two phenomenon: aging (fa-
tigue) and learning.

There is given a single machine and a set J = {1, . . . , n} of n jobs (e.g., tasks, products,
cleaned items) that have to be processed by a machine; there are no precedence constraints
between jobs. The machine is continuously available and can process at most one job at a
time. Once it begins processing a job it will continue until this job is finished. Each job is
characterized by its aging/learning curve pj (v) that describes increasing/decreasing of the
time required to process this job depending on the number of jobs completed before it. In
other words, we will say that pj (v) is a processing time of job j if it is processed as the
vth job in a sequence. Moreover, each job j is also characterized by the normal processing
time aj that is the time required to process the job if the machine is not influenced by
aging/learning (i.e., aj � pj (1)). Other job parameters are the release date rj that is the time
at which the job is available for processing and the due-date dj when it should be completed.

For the aging effect, the processing time (aging/fatigue curve) of job j is described by a
linear function of its position v in a sequence:

pj (v) = ajv. (3)

On the other hand, for the learning effect the processing time (learning curve) is given as
follows:

pj (v) = a − bjv, (4)

where a is the normal processing time common for all jobs (aj = a for i = 1, . . . , n) and bj

is a learning ratio of job j . Thus, we consider the simplest linear aging/learning models for
processing non-identical jobs (parameters are not common for all jobs).
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We also consider problems where learning/aging curves are identical for all jobs. The
processing times of such jobs are described as follows:

pj (v) = aj + f (v), (5)

where f (v) is an arbitrary function of a job position in a sequence, such that f (1) = 0 and
aj + f (v) > 0 for j, v = 1, . . . , n. Note that f (v) models both learning (f (v) < 0) and
aging (f (v) > 0) for v = 1, . . . , n.

As it was mentioned in the previous section, the objectives of the considered ag-
ing/learning systems can be controlled by the sequence (schedule) of processed jobs (e.g.
manufactured products). Therefore, let us define control variables (schedule) formally.

Let π = 〈π(1), . . . , π(i), . . . , π(n)〉 denote the sequence of jobs (permutation of the el-
ements of the set J ), where π(i) is the job processed in position i in this sequence. By �

we will denote the set of all such permutations. For the given sequence (permutation) π , we
can easily determine the completion time Cπ(i) of a job placed in the ith position in π from
the following recursive formulae:

Cπ(i) = max{Cπ(i−1), rπ(i)} + pπ(i)(i), (6)

where Cπ(0) = 0 and the lateness Lπ(i) is defined as follows:

Lπ(i) = Cπ(i) − dπ(i). (7)

We will say that job π(i) is late if Lπ(i) > 0. The objective is to find such an optimal con-
trol, i.e., sequence (schedule) π∗ ∈ � of jobs on the single machine, which minimizes one
of the following objective functions: the maximum completion time (makespan) Cmax �
maxi=1,...,n{Cπ∗(i)} (i.e., Cmax � Cπ∗(n)), the maximum lateness Lmax � maxi=1,...,n{Lπ∗(i)}
and the number of late jobs

∑n

i=1 Uπ∗(i), where

Uπ∗(i) =
{

0, Cπ∗(i) ≤ dπ∗(i)

1, Cπ∗(i) > dπ∗(i)

and Uπ∗(i) = 1 means that job π∗(i) is late.
Formally the optimal control (schedule) π∗ ∈ � for the considered minimization objec-

tives is defined as follows π∗ � argminπ∈�{Cπ(n)}, π∗ � argminπ∈�{maxi=1,...,n{Lπ(i)}}, and
π∗ � argminπ∈�{∑n

i=1 Uπ(i)}, respectively.
For convenience and to keep an elegant description of the considered problems we will

use the three field notation scheme X|Y |Z (see Graham et al. 1979), where X describes the
machine environment, Y describes job characteristics and constraints and Z represents the
minimization objectives. According to this notation, the problems will be denoted as fol-
lows: 1|rj ,ALE|Cmax, 1|ALE|Lmax and 1|ALE|∑Uj , where ALE ∈ {pj (v) = ajv, pj (v) =
a − bjv, pj (v) = aj + f (v)}. If rj = 0 for j = 1, . . . , n, then it is omitted in the given
notation.

3 Computational complexity

In this section, we will prove that the considered problems are strongly NP-hard. First,
we will determine the computational complexity of the maximum lateness minimization
problem with the aging effect and next with the learning effect. The strong NP-hardness
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proofs for both problems are similar and based on the same idea. However, the problem
with aging is simpler, thus, it is analyzed in the first order. From the results for the maximum
lateness minimization problems follows the strong NP-hardness of the minimization of the
number of late jobs with aging/learning. Next we will prove, on the basis of a problem
equivalency, the makespan minimization with release dates is also strongly NP-hard with
aging/learning models.

3.1 Aging effect

At first note that the problem 1|pj (v) = a′
j + b′

j v|Lmax (where a′
j is the normal process-

ing time of job j and b′
j is its aging ratio) was proved to be strongly NP-hard (Bachman

and Janiak 2004). However, we will show that the simplest (nontrivial) problem 1|pj (v) =
ajv|Lmax is strongly NP-hard. To do it, we will provide the pseudopolynomial time transfor-
mation from the strongly NP-complete problem 3-PARTITION (Garey and Johnson 1979) to
the decision version of the considered scheduling problem, 1|pj (v) = ajv|Lmax.

3-Partition (3PP) (Garey and Johnson 1979) There are given positive integers m, B and
x1, . . . , x3m of 3m positive integers satisfying

∑3m

q=1 xq = mB and B
4 < xq < B

2 for q =
1, . . . ,3m. Does there exist a partition of the set Y = {1, . . . ,3m} into m disjoint subsets
Y1, . . . , Ym such that

∑
q∈Yi

xq = B for i = 1, . . . ,m?

The decision version of the problem 1|pj (v) = ajv|Lmax (DAEL) is given as follows:
Does there exist such a schedule π of jobs on the machine for which Lmax ≤ y?

At first, we will present the main idea of the proof. There are given 3m partition jobs
(constructed on the basis of the elements from the set Y of 3PP) and mN enforcer jobs
(where N = mB). The instances of DAEL are constructed such that the optimal schedules
have the following properties: the enforcer jobs are partitioned into m subsets E1, . . . ,Em

such that each consists of N jobs, partition jobs are partitioned into m subsets X1, . . . ,Xm

such that each consists of exactly 3 jobs and the optimal schedule has the following form
(E1,X1,E2,X2,E3, . . . ,Ei,Xi,Ei+1, . . . ,Xm−1,Em,Xm), where jobs within each subset
are scheduled arbitrary. If a schedule is not consistent with these properties, then the criterion
value Lmax is always greater than a given value y (i.e., it cannot be optimal). On this basis,
we will show that the answer for the constructed instances of DAEL is yes (i.e., Lmax ≤ y)
if and only if it is yes for 3PP (i.e.,

∑
q∈Yi

xq = B for i = 1, . . . ,m).
The formal transformation from 3PP to DAEL is given as follows. The instance of DAEL

contains the set X = {1, . . . ,3m} of 3m partition jobs (constructed on the basis of the el-
ements from the set Y of 3PP) and the set E = {e1, . . . ,EmN } of mN enforcer jobs. The
enforcer jobs can be partitioned into m sets Ei = {eN(i−1)+1, . . . , eNi} for i = 1, . . . ,m, such
that jobs within each set Ei have the same parameters, i.e., ak = al and dk = dl for k, l ∈ Ei

for i = 1, . . . ,m.
The parameters of the enforcer jobs are defined as follows:

aeN(i−1)+1 = · · · = aeNi
= aEi

= aE = 1

m(N + 3)
,

deN(i−1)+1 = · · · = deNi
= dEi

=
i−1∑

l=1

(Wl + Vl) + Wi,

for i = 1, . . . ,m where
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N = mB,

M = (m + 1)2(N + 3)B,

Vi = 3M
(
i(N + 3) − 1

) + i(N + 3)B − 3

4
B, (8)

Wi = aE

(

(i − 1)N(N + 3) +
N∑

l=1

l

)

, (9)

for i = 1, . . . ,m and the parameters of the partition jobs are

aj = (M + xj ),

dj = D =
m∑

i=1

(Wi + Vi),

for j = 1, . . . ,3m and y = 0.
Observe that each parameter of DAEL can be calculated in a time bounded by the poly-

nomial dependent on m and B . Moreover, the maximum value of DAEL does not increase
exponentially in reference to 3PP (i.e., D is O(m6B3)) and the problem size does not de-
crease exponentially in reference to 3PP (i.e., n = O(m2B)). Thus, the transformation from
3PP to DAEL is pseudopolynomial.

Let Xi denote the set of the partition jobs that are processed just after jobs from the
set Ei (for i = 1, . . . ,m). Define a schedule π∗, where jobs are scheduled as follows:
(E1,X1,E2,X2,E3, . . . ,Ei,Xi,Ei+1, . . . ,Xm−1,Em,Xm), where Xi = {3i − 2,3i − 1,3i}
for i = 1, . . . ,m, if it is not a case we can always renumber the partition jobs. Let V (Xi) and
Wi denote the sum of processing times of the partition jobs from Xi and the enforcer jobs
from Ei , respectively, for the schedule π∗. Based on the transformation V (Xi) is defined as:

V (Xi) = 3M
(
i(N + 3) − 1

) + i(N + 3)
∑

q∈Xi

xq − 2x3i−2 − x3i−1,

for i = 1, . . . ,m and it can be estimated as follows:

3M
(
i(N + 3) − 1

) + i(N + 3)
∑

q∈Xi

xq − 3

2
B

< V (Xi) < 3M
(
i(N + 3) − 1

) + i(N + 3)
∑

q∈Xi

xq − 3

4
B. (10)

It is easy to observe that the sum of processing times of the enforcer jobs from the set Ei ,
i.e., Wi , (i = 1, . . . ,m) in schedule π∗ is given by (9). The completion time of the last job
in Ei is CEi

and of the last job in Xi is CXi
for i = 1, . . . ,m.

Let us also define useful inequalities:

V (Xi) > Vi − i(N + 3)B − 3

4
B, (11)

Wi < aEN

(

(m − 1)(N + 3) + N + 1

2

)

< aEmN(N + 3) = N, (12)
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M > m(m + 1)(N + 3)B + mB + N >

m∑

l=1

(

l(N + 3)B + 3

4
B

)

+ Wi, (13)

for i = 1, . . . ,m. Note also that the processing times of the partition jobs can be estimated
as follows pj (v) > M for j = 1, . . . ,3m and v = 1, . . . ,m(N + 3).

On this basis, we will provide properties of an optimal solution for DAEL.

Lemma 1 The optimal sequence of jobs for the problem 1|pj (v) = av, dj = d|Lmax is ar-
bitrary.

Proof Trivial. �

Lemma 2 The problem 1|pj (v) = av|Lmax can be solved in O(n logn) steps by scheduling
jobs according to the non-decreasing order of their due dates (the EDD rule).

Proof Trivial. �

Lemma 3 The problem 1|pj (v) = ajv|Cmax can be solved in O(n logn) steps by scheduling
jobs according to the non-increasing order of their normal processing times (LPT rule).

Proof Trivial. �

Based on the above lemmas we will prove the following.

Lemma 4 There is an optimal schedule π , for the given instance of DAEL, in which, before
the enforcer jobs form Ei (i = 1, . . . ,m) at last 3(i − 1) partition jobs can be scheduled.

Proof See Appendix. �

Lemma 5 Jobs in each block Ei are processed one after another and between Ei and Ei+1

exactly 3 partition jobs are scheduled for i = 1, . . . ,m − 1.

Proof See Appendix. �

Based on the above lemmas, we will prove the following theorem.

Theorem 1 The problem 1|pj (v) = ajv|Lmax is strongly NP-hard.

Proof Based on the given transformation from 3PP to DAEL and on Lemma 5 we construct
a schedule π for DAEL, that is given as follows: (E1,X1,E2,X2,E3, . . . ,Ei,Xi,Ei+1, . . . ,

Xm−1,Em,Xm). Recall that blocks of the enforcer jobs are scheduled according to the EDD
rule and the schedule of jobs within each Ei is immaterial and the sequence of jobs within
each set Xi is arbitrary. To make the calculations easier, renumber the jobs in these sets, i.e.,
Xi = {3i − 2,3i − 1,3i} for i = 1, . . . ,m.

Now we will show that the answer for DAEL is yes (i.e., Lmax ≤ y) if and only if it is yes
for 3PP (i.e.,

∑
q∈Yi

xq = B for i = 1, . . . ,m).
“Only if.” Assume that the answer for 3PP is yes. Thus, for each subset Yi (i = 1, . . . ,m)

holds
∑

q∈Yi
xq = B , thereby, for each Xi also holds

∑
q∈Xi

xq = B . Therefore, V (Xi) < Vi
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for i = 1, . . . ,m. Obviously, CE1 = dE1 for schedule π regardless of a solution of 3PP. The
completion times of the enforcer jobs for the schedule π are as follows:

CE2 = W1 + V (X1) + W2 < W1 + V1 + W2 = dE2 ,

CE3 =
2∑

l=1

(
Wl + V (Xl)

) + W3 <

2∑

l=1

(Wl + Vl) + W3 = dE3 ,

CEi
=

i−1∑

l=1

(
Wl + V (Xl)

) + Wi <

i−1∑

l=1

(Wl + Vl) + Wi = dEi
.

Thus, CEi
< dEi

for i = 1, . . . ,m and

CXm = CEm + V (Xm) < CEm + Vm <

m∑

i=1

(Wi + Vi) = D.

Thus, Lmax(π) ≤ y = 0, thereby DAEL has the answer yes.
“If.” Assume now that the answer for 3PP is no. Therefore, there is no partition of the set

Y such that
∑

q∈Yi
xq = B holds for all i = 1, . . . ,m, thereby

∑
q∈Xi

xq = B does not hold
for i = 1, . . . ,m. Note that |Xi | = 3 for i = 1, . . . ,m (follows from Lemma 5) regardless of
the partition of 3PP.

Let
∑

q∈Xi
xq = B + λi for i = 1, . . . ,m and from the assumption of 3PP B

4 < xq < B
2

(for q = 1, . . . ,3m) follows that 3
4B <

∑
q∈Xi

xq < 3
2B , thereby λi ∈ (−B

4 , B
2 ).

Thus, for any partition of the set {1, . . . ,3m} into disjoint subsets X1, . . . ,Xm, there
must exist at least two subsets Xu and Xw (u 	= w) such that

∑
q∈Xu

xq 	= ∑
q∈Xw

xq for
u,w ∈ {1, . . . ,m} and u < w. For this proof, it is sufficient to consider only two cases, since
any distribution of λi (following the partition of jobs) can be represented by these cases.
They are given as follows:

(a) λu > 0 and λw < 0, such that
∑u−1

i=1 λi = 0 and w is the index of the first set Xw for
which

∑w

l=u λl ≤ 0, i.e.,
∑i

l=u λl > 0 for i = u, . . . ,w − 1,
(b) λu < 0 and λw > 0, such that

∑u−1
i=1 λi = 0 and w is the index of the first set Xw for

which
∑w

l=u λl ≥ 0, i.e.,
∑i

l=u λl < 0 for i = u, . . . ,w − 1,

where u,w ∈ {1, . . . ,m} and u < w. Consider case (a) and assume that Xw is the first one
such that

∑w

i=u λi ≤ 0 and if
∑w

i=u λi +λw+1 < 0 (i.e., λw+1 < 0), then there must exist such
k > w + 1, for which λk > 0 and

∑k

i=w+1 λi ≥ 0, but this is represented by case (b). Thus,
without loss of generality, we assume that λi = 0 for i ∈ {1, . . . , u − 1} ∪ {w + 1, . . . ,m}.

Based on (8) and (10) for i = 1, . . . , u−1 (λi = 0) we have V (Xi) > Vi − 3
4 B . Following

this, we can estimate the completion time of the last job in job Eu+1:

CEu+1 =
u−1∑

l=1

(
Wl + V (Xl)

) + Wu + V (Xu) + Wu+1

>

u−1∑

l=1

(

Wl + Vl − 3

4
B

)

+ Wu + Wu+1

+ 3M
(
u(N + 3) − 1

) + u(N + 3)(B + λu) − 3

2
B
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=
u∑

l=1

(Wl + Vl) + Wu+1 + u(N + 3)λu − 3

4
Bu

= dEu+1 + (N + 3)uλu − 3

4
Bu.

Since λu ∈ [1, B
2 ) and N = mB > 3

4B , then CEu+1 > dEu+1 , thereby Lmax > y = 0.
Consider now case (b). The completion time of the last job in Eu+1 can be estimated as

follows:

CEu+1 > dEu+1 + (N + 3)uλu − 3

4
Bu.

Following this way the completion time of the last job in Ei for i = u + 1, . . . ,w + 1 (and
w ≤ m − 1) can be estimated:

CEi
> dEi

+ (N + 3)

i−1∑

l=u

lλl − 3

4
B(i − 1).

On this basis and taking into consideration
∑w

i=u iλi = w
∑w

i=u λi − ∑w−1
i=u

∑i

l=u λl , the
completion time of the last job in Ew+1 (where w ≤ m − 1) can be estimated:

CEw+1 > dEw+1 + (N + 3)

w∑

i=u

iλi − 3

4
Bw

= dEw+1 + (N + 3)

(

w

w∑

i=u

λi −
w−1∑

i=u

i∑

l=u

λl

)

− 3

4
Bw.

Since
∑w

i=u λi = 0 and
∑i

l=u λl < 0 for u ≤ i < w, then
∑w−1

i=u

∑i

l=u λl < 0, thereby

CEw+1 > dEw+1 + (N + 3) − 3

4
Bw > dEw+1 ,

for w ≤ m − 1. If w = m, then the completion time of the last scheduled job in Xm can be
estimated as follows:

CXm >

m∑

i=1

(Wi + Vi) + (N + 3)

m∑

i=u

iλi − 3

4
Bm

= D + (N + 3)

(

w

m∑

i=u

λi −
m−1∑

i=u

i∑

l=u

λl

)

− 3

4
Bm

> D + (N + 3) − 3

4
Bm > D.

Therefore, for all the cases the criterion value Lmax(π) is greater than y.
We hereby showed that DAEL has an answer yes if and only if the answer for 3PP is

also yes, which means DAEL is strongly NP-complete, thereby the considered scheduling
problem 1|pj (v) = ajv|Lmax is strongly NP-hard. �

Note that any further relaxation of the problem 1|pj (v) = ajv|Lmax is polynomially solv-
able, namely 1|pj (v) = av|Lmax (the EDD rule, see Lemma 2) and 1|pj (v) = ajv, dj =
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d|Lmax that is equivalent to 1|pj (v) = ajv|Cmax (see Lemma 3). Therefore, we also deter-
mine the boundary between polynomially solvable and NP-hard cases.

Since 1|pj (v) = ajv|Lmax is strongly NP-hard, thereby 1|pj (v) = ajv|∑Uj is not less
complex.

3.2 Learning effect

Cheng and Wang (2000) proved that the problem 1|pj (v) = aj − bj min{v − 1, gj }|Lmax

is strongly NP-hard. However, we will show that even the significantly simpler problem
1|pj (v) = a − bjv|Lmax (with linear job processing times) is strongly NP-hard. Thus, we
decrease the boundary between polynomially solvable and NP-hard cases of the maximum
lateness minimization problems with position dependent job processing times.

The strong NP-hardness of 1|pj (v) = a − bjv|Lmax will be proved in the similar manner
as in the case of the problem 1|pj (v) = ajv|Lmax and the main idea of the proof is exactly
the same.

At first, we will provide the pseudopolynomial time transformation from the strongly
NP-complete problem 3-PARTITION (Garey and Johnson 1979) to the decision version of
the considered scheduling problem, 1|pj (v) = a − bjv|Lmax.

The decision version of the problem 1|pj (v) = a −bjv|Lmax (DLEL) is given as follows:
Does there exist such a schedule π of jobs on the machine for which Lmax ≤ y?

The pseudopolynomial time transformation from 3PP to DLEL is given. The constructed
instance of DLEL contains the set X = {1, . . . ,3m} of 3m partition jobs (constructed
on the basis of the elements from the set Y of 3PP) and the set E = {e1, . . . ,EmN } of
mN enforcer jobs, where N = mB . The enforcer jobs can be partitioned into m sets
Ei = {eN(i−1)+1, . . . , eNi} for i = 1, . . . ,m, such that jobs within each set Ei have the same
parameters, i.e., bk = bl and dk = dl for k, l ∈ Ei for i = 1, . . . ,m.

Similarly as in the proof of Theorem 1, the parameters of the enforcer jobs are defined as
follows:

aeN(i−1)+1 = · · · = aeNi
= aEi

= a = 2mM(N + 3) + 2mN(N + 3)bE,

beN(i−1)+1 = · · · = beNi
= bEi

= bE = M(N + 1),

deN(i−1)+1 = · · · = deNi
= dEi

=
i−1∑

l=1

(Wl + Vl) + Wi,

for i = 1, . . . ,m, where

N = mB,

M = (m + 1)2(N + 3)B,

Vi = 3a − 3M
(
i(N + 3) − 1

) + i(N + 3)B − 3

4
B, (14)

Wi = aN − bE

(

(i − 1)N(N + 3) +
N∑

l=1

l

)

, (15)

for i = 1, . . . ,m and of the partition jobs

aj = a,



502 Ann Oper Res (2012) 196:491–516

bj = (M − xj ),

dj = D =
m∑

i=1

(Wi + Vi),

for j = 1, . . . ,3m and y = 0.
Observe that each parameter of DLEL can be calculated in a time bounded by the poly-

nomial dependent on m and B . Moreover, the maximum value of DLEL does not increase
exponentially in reference to 3PP (i.e., D is O(m9B6)) and the problem size does not de-
crease exponentially in reference to 3PP (i.e., n = O(m2B)). Thus, the transformation from
3PP to DLEL is pseudopolynomial.

Let Xi denote the set of the partition jobs that are processed just after jobs from the
set Ei (for i = 1, . . . ,m). Define a schedule π∗, where jobs are scheduled as follows:
(E1,X1,E2,X2,E3, . . . ,Ei,Xi,Ei+1, . . . ,Xm−1,Em,Xm), where Xi = {3i − 2,3i − 1,3i}
for i = 1, . . . ,m, if it is not a case we can always renumber the partition jobs. Let V (Xi) and
Wi denote the sum of processing times of the partition jobs from Xi and the enforcer jobs
from Ei , respectively, for the schedule π∗. Based on the transformation V (Xi) is defined as:

V (Xi) = 3a − 3M
(
i(N + 3) − 1

) + i(N + 3)
∑

q∈Xi

xq − 2x3i−2 − x3i−1,

for i = 1, . . . ,m and it can be estimated as follows:

3a − 3M
(
i(N + 3) − 1

) + i(N + 3)
∑

q∈Xi

xq − 3

2
B

< V (Xi) < 3a − 3M
(
i(N + 3) − 1

) + i(N + 3)
∑

q∈Xi

xq − 3

4
B. (16)

It is easy to observe that the sum of processing times of the enforcer jobs from the set Ei ,
i.e., Wi (i = 1, . . . ,m) in schedule π∗ is given by (15). The completion time of the last job
in Ei is CEi

and of the last job in Xi is CXi
for i = 1, . . . ,m.

Let us also define useful inequalities:

V (Xi) > Vi − i(N + 3)B − 3

4
B, (17)

M >

m∑

l=1

(

l(N + 3)B + 3

4
B

)

, (18)

a > bEmN(N + 3) + MmN(N + 3) +
m∑

l=1

(

l(N + 3)B + 3

4
B

)

, (19)

for i = 1, . . . ,m.
On this basis, we will provide properties of an optimal solution for DLEL.

Lemma 6 The optimal sequence of jobs for the problem 1|pj (v) = a − bv, dj = d|Lmax is
arbitrary.

Proof Trivial. �
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Lemma 7 The problem 1|pj (v) = a−bv|Lmax can be solved in O(n logn) steps by schedul-
ing jobs according to the non-decreasing order of their due dates (the EDD rule).

Proof Trivial. �

Lemma 8 The problem 1|pj (v) = a − bjv|Cmax can be solved in O(n logn) steps by
scheduling jobs according to the non-decreasing order of bj parameters.

Proof Trivial. �

Based on the above lemmas we will prove the following.

Lemma 9 There is an optimal schedule π , for the given instance of DLEL, in which, before
the enforcer jobs from Ei (i = 1, . . . ,m) at last 3(i − 1) partition jobs can be scheduled.

Proof See Appendix. �

Lemma 10 Jobs in each block Ei are processed one after another and between Ei and Ei+1

exactly 3 partition jobs are scheduled for i = 1, . . . ,m − 1.

Proof See Appendix. �

Based on the above considerations, we will prove the following theorem.

Theorem 2 The problem 1|pj (v) = a − bjv|Lmax is strongly NP-hard.

Proof Based on the given transformation from 3PP to DLEL and on Lemma 10 we construct
a schedule π for DLEL, that is given as follows: (E1,X1,E2,X2,E3, . . . ,Ei,Xi,Ei+1, . . . ,

Xm−1,Em,Xm). Recall that blocks of the enforcer jobs are scheduled according to the EDD
rule and the schedule of jobs within each Ei is immaterial and the sequence of jobs within
each set Xi is arbitrary. To make the calculations easier, renumber the jobs in these sets, i.e.,
Xi = {3i − 2,3i − 1,3i} for i = 1, . . . ,m.

The further part of the proof is exactly the same as for Theorem 1. �

Note that any further relaxation of the problem 1|pj (v) = a − bjv|Lmax is polynomially
solvable, namely 1|pj (v) = a − bv|Lmax (the EDD rule, see Lemma 7) and 1|pj (v) = a −
bjv, dj = d|Lmax that is equivalent to 1|pj (v) = a − bjv|Cmax (see Lemma 8). Therefore,
we also determine the boundary between polynomially solvable and NP-hard cases.

Since 1|pj (v) = a − bjv|Lmax is strongly NP-hard, thereby 1|pj (v) = a − bjv|∑Uj is
not less complex.

3.3 Problem equivalency

In the classical scheduling theory, the following problems 1||Lmax and 1|rj |Cmax are equiv-
alent with respect to the criterion value. Moreover, an algorithm solving problem 1||Lmax

can be taken as an algorithm solving the problem 1|rj |Cmax. Now, we will show that this
equivalency still holds in the presence of learning and aging, but if the corresponding job
processing times are symmetric for the both phenomena.
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Theorem 3 The problems 1|pj (v)|Lmax and 1|r ′
j ,p

′
j (v)|C ′

max are equivalent in the fol-
lowing sense: the optimal schedules are inverse and the criterion values differ only by a
constant, if pj (v) is a positive function of a job position and p′

j (v) = pj (n − v + 1) for
v, j = 1, . . . , n.

Proof First, a transformation from 1|pj (v)|Lmax (LP) to 1|r ′
j ,p

′
j (v)|C ′

max (CP) is given:

n′ = n; r ′
j = D − dj ; j = 1, . . . , n,

where D = maxj=1,...,n dj . It is trivial to show that the transformation can be done in poly-
nomial time.

Given a schedule π for the problem LP construct a schedule π ′ for the problem
CP viewed from the reverse direction. It means that for a given permutation π =
〈π(1),π(2), . . . , π(n)〉, the corresponding permutation π ′ is defined as π ′(v) = π(n−v+1)

for v = 1, . . . , n. Since p′
j (v) = pj (n− v + 1) for v, j = 1, . . . , n, then the processing times

of the jobs placed in the vth position in π ′ and in the (n − v + 1)th position in π are equal,
i.e., p′

π ′(v)
(v) = pπ(n−v+1)(n − v + 1) for v = 1, . . . , n.

Let S ′
j denote the starting time of job j . First, we show that if for the given permutation

π of the problem LP the following equality Lπ(n−k+1) = Lmax holds for job π(n − k + 1),
then in the corresponding permutation π ′ of the problem CP, job π ′(k) starts at its release
date (i.e., S ′

π ′(k)
= r ′

π ′(k)
), k = 1, . . . , n.

Observe that for the given job π(n − k + 1) the following equality Lmax = Lπ(n−k+1) ≥
Lπ(n) = Cπ(n) − dπ(n) ≥ Cπ(n) − D holds, thus Cπ(n−k+1) − dπ(n−k+1) ≥ Cπ(n) − D. Note also
that Cπ(n) − Cπ(n−k+1) = ∑n

i=n−k+2 pπ(i)(i) and on this basis:

D − dπ(n−k+1) ≥ Cπ(n) − Cπ(n−k+1) =
n∑

i=n−k+2

pπ(i)(i),

r ′
π(n−k+1) ≥

n∑

i=n−k+2

p′
π(i)(i),

r ′
π ′(k) ≥

k−1∑

i=1

p′
π ′(i)(i) = C ′

π ′(k−1).

Since S ′
π ′(k)

= max{r ′
π ′(k)

,C ′
π ′(k−1)

}, job π ′(k) starts at its release date.
On this basis, we prove that for the constructed permutations π and π ′ the optimal

criterion values for the corresponding problems differ only by a constant. Thus, assume
that n − i + 1 denotes a position of the first job in π for which the following equality
Lmax = Lπ(n−i+1) holds. Therefore, we have S ′

π ′(i) ≥ r ′
π ′(i) for i = k, . . . , n. Thus, the crite-

rion value calculated for CP is equal to

C ′
max = r ′

π ′(k) +
n∑

i=k

p′
π ′(i)(i) = D − dπ(n−k+1) +

n∑

i=k

pπ(n−i+1)(n − i + 1)

= D +
n−k+1∑

i=1

pπ(i)(i) − dπ(n−k+1) = D + Cπ(n−k+1) − dπ(n−k+1) = D + Lmax.

Since the processing times of the jobs placed in appropriate positions in both schedules are
equal, the criterion values calculated for both problems differ only by the constant D. Thus,
we proved that both problems are equivalent. �
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On this basis, we can easily prove the complexity of the following problems.

Corollary 1 The problem 1|rj ,pj (v) = aj (n + 1 − v)|Cmax is strongly NP-hard.

Proof The problem 1|pj (v) = ajv|Lmax is strongly NP-hard (Theorem 1), thus, on the basis
of Theorem 3, the considered problem 1|rj ,pj (v) = aj (n + 1 − v)|Cmax is not less com-
plex. �

Corollary 2 The problem 1|rj ,pj (v) = a′
j + ajv, a′

j = (c − aj (n + 1)), c > ajn|Cmax is
strongly NP-hard.

Proof On the basis of Theorem 2 and Theorem 3, in the similar manner as the previous
proof. �

Note that we prove the strong NP-hardness of the problems with models that are even
simpler than analyzed by Bachman and Janiak (2004).

4 Polynomially solvable cases

The problems defined in Sect. 2 are strongly NP-hard even if job processing times are de-
scribed by simple linear functions, where the decreasing/increasing of a job processing time
is different for each job. However, in this section, we prove that if the decrease/increase of a
job processing time is the same for each job (i.e., pj (v) = aj + f (v)), then the considered
problems can be solved optimally in polynomial time even if the function f (v) is arbitrary.
Therefore, we will determine the boundary between polynomially solvable and NP-hard
cases.

The algorithms presented in this section solve the problems with the learning effect as
well as with the aging effect.

Property 1 The problem 1|rj ,pj (v) = aj +f (v)|Cmax can be solved optimally in O(n logn)

by scheduling jobs according to the non-decreasing order of their release dates (Earliest Re-
lease Dates—the ERD rule).

Property 2 The problem 1|pj (v) = aj + f (v)|Lmax can be solved optimally in O(n logn)

steps by scheduling jobs according to the non-decreasing order of their due dates (Earliest
Due Date—the EDD rule).

Since Property 1 and Property 2 can be proved by simple job interchanging technique the
proofs are omitted.

It is well known that the problem 1||∑Uj (with constant job processing times) can be
solved optimally by Moore’s Algorithm (Moore 1968). We will prove that this algorithm is
still optimal for the problem 1|pj (v) = aj + f (v)|∑Uj .

Property 3 The problem 1|pj (v) = aj + f (v)|∑Uj can be solved optimally in O(n logn)

steps by Moore’s Algorithm.

Proof The proof will be done using the inductive method in the similar manner as by Sturm
(1970). Based on Property 2, we can note that there exists a schedule for 1|pj (v) = aj +
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Algorithm 1 Moore’s Algorithm (MA)

1: SCHEDULE THE JOBS IN NON-DECREASING ORDER OF THEIR DUE DATES (EDD)
2: IF NO JOBS IN THE SEQUENCE ARE LATE GO TO STEP 7
3: FIND THE FIRST LATE JOB, DENOTE THIS JOB BY α

4: FIND A JOB β SUCH THAT aβ = maxi=1,...,α{ai }
5: REMOVE β FROM THE SCHEDULE AND PROCESS IT AFTER ALL THE JOBS THAT

ARE NOT LATE HAVE BEEN PROCESSED

6: GO TO STEP 2
7: THE SCHEDULE IS OPTIMAL

f (v)|∑Uj having no late jobs if and only if the schedule of jobs according to the non-
decreasing order of their due dates (EDD) has no late jobs. On this basis, we will consider
only EDD sequences. To simplify the proof, assume that such a sequence is 1,2, . . . , n (if it
is not a case we can renumber the jobs).

Assume that using Moore’s Algorithm (Algorithm 1) we determine a subset B =
{β1, . . . , βq} of q late jobs. Suppose also that it is possible to choose from the set J =
{1, . . . , n} a subset � = {γ1, . . . , γq−1} of q − 1 jobs, such that the remaining n − q + 1 jobs
J\� are not late. Thus, for all i = 1, . . . , n the following inequality must hold:

di ≥
i∑

j=1

(
aj + f (j)

) −
∑

γj ∈�i

aγj
−

|�i |∑

j=1

f (i − j + 1), (20)

where �i = {γj : γj ≤ i, γj ∈ �} and |�i | is the cardinality of �i . Without loss of generality
we can also assume ∀(i, j)βi 	= γj .

Using Moore’s Algorithm (MA), we find the first late job α1, i.e., that satisfies dα1 <
∑α1

j=1 aj + f (j) and di ≥ ∑i

j=1 aj + f (j) for i = 1, . . . , α1 − 1. From the definition of �

follows that there is at least one job γj ∈ �α1 , i.e., inequality (20) must hold. Let us choose
an element δ1 from �α1 with aδ1 = max{aγi

: γi ∈ �α1}. On the other hand, MA chooses job
β1 (aβ1 ≥ aα1 ) that satisfies

dα1 ≥ dα1−1 ≥
α1−1∑

j=1

(
aj + f (j)

) =
α1∑

j=1

(
aj + f (j)

) − aα1 − f (α1)

≥
α1∑

j=1

(
aj + f (j)

) − aβ1 − f (α1).

Observe that if α1 	= β1, then job α1 is no longer late, since job β1 is skipped. It is easy to
notice that aδ1 ≤ aβ1 . Thus, there must be at least one job in �α1 and δ1 ∈ �α1 .

Suppose now that there is at least l (l < q) jobs in �αl
and we are able to choose among

them l elements δi such that aδi ≤ aβi
for i = 1, . . . , l.

Using MA we find job αl+1 (i.e., the first late job after l jobs are skipped) that satisfies

dαl+1 <

αl+1∑

j=1

(
aj + f (j)

) −
l∑

j=1

aβj
−

l∑

j=1

f (αl+1 − j + 1)

≤
αl+1∑

j=1

(
aj + f (j)

) −
l∑

j=1

aδj −
l∑

j=1

f (αl+1 − j + 1).
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From (20) follows that there must be at least l + 1 jobs in �αl+1 to satisfy

dαl+1 ≥
αl+1∑

j=1

(
aj + f (j)

) −
∑

γj ∈�αl+1

aγj
−

|�αl+1 |
∑

j=1

f (αl+1 − j + 1),

and δi ∈ �αl+1 , i = 1, . . . , l. Thus, we find the (l + 1)th element with aδl+1 = max{aγi
: γi ∈

�αl+1\{δj }, j = 1, . . . , l}. On the other hand, MA finds βl+1 (i.e., the (l + 1)th late job) with
aβl+1 = max{ aβi

: i = 1, . . . , αl+1, i 	= β1, . . . , βl} and it is easy to notice that aδl+1 ≤ aβl+1 .
Therefore, there must be at least l + 1 jobs in �αl+1 and among them l + 1 jobs δi with
aδi ≤ aβi

for i = 1, . . . , l + 1. Concluding in the same way, we can show that when MA
finds job αq , then there must be at least q jobs in �αq and it contradicts the assumption
|�| = q − 1. Thus MA finds the minimum number of late jobs for the considered scheduling
problem. Note that the complexity of MA is O(n logn) if the algorithm is implemented with
a special data structure. �

5 Conclusions

In this paper, we proved that the minimization of the maximum lateness or of the makespan
with release dates is strongly NP-hard even if job processing times are described by simple
linear functions dependent on a number of processed jobs (i.e., a job position in a sequence).
Moreover, we showed that the minimization of the makespan with release dates is equiva-
lent to the minimization of the maximum lateness if job processing times are described by
functions dependent on the number of processed jobs and the functions are monotonically
opposite for these problems.

The main conclusion concerning the proved strong NP-hardness of the considered prob-
lems is that the maximum acceptable simplification of job processing time functions (by
their linearization) does not decrease the complexity of the considered problems. There-
fore, it does not decrease the effort required to obtain optimal control decisions but it rather
decreases their accuracy.

Finally, we also proved that the considered problems with an arbitrary functions describ-
ing decrease/increase of a job processing time are polynomially solvable if the functions are
the same for each job. The proper algorithms were provided.

The future research will concern on the analysis of the scheduling problems with posi-
tion dependent job processing times under additional constraints and different criteria (e.g.,
Leung et al. 2008; Shabtay and Steiner 2008; Steiner and Zhang 2011; Xu et al. 2010).
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Appendix

Proof of Lemma 4 The proof will be done using the inductive method. At first observe that
in the optimal schedule the blocks of the enforcer jobs are scheduled according to the EDD
rule (Lemma 2) and the sequence of jobs within each block is immaterial (Lemma 1).
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Let SEi
denote the start time of the first job in the set Ei (for i = 1, . . . ,m). Obviously

if before jobs in E1 any partition job is scheduled, then SE1 > dE1 . Now, we will show that
if more than 3 jobs are scheduled before E2, then all jobs from E2 are late. Assume that
at least 4 partition jobs are scheduled before E2, then based on (11)–(13) and taking into
consideration that q ∈ X2 and pq(N + 4) > M , we have

CE2 > SE2 > W1 + V (X1) + pq(N + 4) > W1 + V1 − (N + 3)B − 3

4
B + pq(N + 4)

= W1 + V1 + W2 + pq(N + 4) − (N + 3)B − 3

4
B − W2

> W1 + V1 + W2 + M − (N + 3)B − 3

4
B − W2 > W1 + V1 + W2 = dE2 .

Since SE2 > dE2 , then all jobs in E2 are late. Thus, we conclude that in the optimal solution
of DAEL the number of the partition jobs before E2 cannot be greater than 3.

Now we will show that if before E3 more than 6 partition jobs are scheduled, then all
jobs in E3 are late. Assume we have at least 7 partition jobs scheduled before the enforcer
jobs from E3. From Lemma 3 follows that CE3 is minimal if jobs are scheduled according
to LPT rule. Thus, CE3 is minimal if the partition jobs are scheduled first. However, from
the previous considerations follows that the number of the partition jobs before E2 cannot
exceed 3 otherwise jobs from E2 are always late. Therefore, jobs are scheduled as follows
(E1,X1,E2,X2, q,E3, . . .), where q ∈ X3, then we have

CE3 > SE3 >

2∑

l=1

(
Wl + V (Xl)

) + pq

(
2(N + 3) + 1

)

>

2∑

l=1

(

Wl + Vl − l(N + 3)B − 3

4
B

)

+ W3 + M − W3

>

2∑

l=1

(Wl + Vl) + W3 + M −
2∑

l=1

(

l(N + 3)B + 3

4
B

)

− W3

>

2∑

l=1

(Wl + Vl) + W3 = dE3 .

Since SE3 > dE3 , then all jobs from E3 are late. Thus, in the optimal solution of DAEL, the
number of the partition jobs before E3 cannot be greater than 6.

In order to proceed inductively, consider the set Ei . Suppose that before each set El

3(l − 1) partition jobs are scheduled (for l = 1, . . . , i − 1) and before Ei more than 3(i − 1)

jobs are scheduled (i = 2, . . . ,m). On this basis and taking into consideration (11)–(13), we
have

CEi
> SEi

>

i−1∑

l=1

(
Wl + V (Xl)

) + pq

(
(i − 1)(N + 3) + 1

)

>

i−1∑

l=1

(Wl + Vl) + Wi + M −
i−1∑

l=1

(

l(N + 3)B + 3

4
B

)

− WEi
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>

i−1∑

l=1

(Wl + Vl) + Wi = dEi
,

for i = 2, . . . ,m and q ∈ Xi+1. Thus, we conclude that the number of the partition jobs
before Ei (for i = 1, . . . ,m) cannot be greater than 3(i − 1) otherwise all jobs in Ei are
late. �

Proof of Lemma 5 From Lemma 3 follows that the completion time of a job is minimal
if before it jobs are scheduled according to LPT rule. On the other hand from Lemma 4
follows that in the optimal solution the number of the partition jobs before Ei cannot be
greater than 3(i − 1) for i = 1, . . . ,m, otherwise all jobs from Ei are late. Under this as-
sumption the completion time CXm of the last job in the set Xm is minimal if the schedule of
jobs π∗ is as follows: (E1,X1,E2,X2,E3, . . . ,Ei,Xi,Ei+1, . . . ,Xm−1,Em,Xm). Thus, the
completion time of the last job in Xm for π∗ is equal to:

CXm

(
π∗) =

m∑

l=1

(
Wl + V (Xl)

)
.

Now we will show that the optimal schedule is in the form of π∗. To prove it we will use
the inductive principle.

Obviously before E1 no partition jobs are scheduled. First assume that before an enforcer
job from E2 at last 2 partition jobs are scheduled (i.e., E1,1,2, eN+1,3, eN+2, . . . , e2N, . . .).
Note that jobs from Ei are indistinguishable (i = 1, . . . ,m). Observe that in this case the
value V (X1) (where X1 = {1,2,3}) increases by a3 and W2 (where E2 = {eN+1, eN+2, . . . ,

e2N }) decreases by aE . On this basis and taking into consideration (11) and (13), the com-
pletion time of the last job in E2 can be estimated as follows:

CE2 > W1 + V (X1) + a3 + W2 − aE

> W1 + V1 + W2 + M − (N + 3)B − 3

4
B − N

> W1 + V1 + W2 = dE2 .

Since CE2 > dE2 , then the last scheduled job in E2 is late. Observe that this value is greater
if more enforcer jobs from E2 are moved before job 3. Thus, E2 is not late if jobs from E2

are scheduled one after another, i.e., (E1,1,2,E2,3, . . .). However, if before E2 at last 2
partition jobs are scheduled, then CXm can be estimated as follows:

CXm > CXm

(
π∗) + a3 − NaE

>

m∑

l=1

(Wl + Vl) + M −
m∑

l=1

(

l(N + 3)B + 3

4
B

)

− N

>

m∑

l=1

(Wl + Vl) = D.

Since CXm > D, then Lmax > 0. Taking it into consideration and based on Lemma 4, we
conclude that in the optimal solution jobs from E2 are processed one after another and 3
partition jobs are scheduled between E1 and E2, otherwise Lmax > 0.
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Now we will show that if before E3 less than 6 partition jobs are scheduled, then
Lmax > 0. Assume we have at last 5 partition jobs scheduled before an enforcer job from
E3. First we will show that in the optimal solution of DAEL jobs from E3 have to be pro-
cessed one after another. From the previous considerations follows that the schedule is given
as follows: (E1,X1,E2,4,5, e2N+1,6, e2N+2, . . . , e3N, . . .). Thus, the completion time of the
last job in E3 is equal to:

CE3 =
2∑

l=1

(
Wl + V (Xl)

) + a6 + W2 − aE

>

2∑

l=1

(Wl + Vl) + W3 + M −
2∑

l=1

(

l(N + 3)B + 3

4
B

)

− N

>

2∑

l=1

(Wl + Vl) + W3 = dE3 .

Since CE3 > dE3 , then the last scheduled job in E3 is late. Observe that this value is greater
if more enforcer jobs from E3 are moved before job 6. Thus, E3 is not late if jobs from E3

are scheduled one after another, i.e., (E1,X1,E2,4,5,E3,6, . . .). However, if before E3 at
last 5 jobs are scheduled, then CXm can be estimated as follows:

CXm > CXm

(
π∗) + a6 − NaE

>

m∑

l=1

(Vl + Wl) + M −
m∑

l=1

(

l(N + 3)B + 3

4
B

)

− N

>

m∑

l=1

(Vl + Wl) = D.

Taking it into consideration and based on Lemma 4, we conclude that in the optimal solution
jobs from E3 are processed one after another and 3 partition jobs are scheduled between E2

and E3, otherwise Lmax > 0.
In order to proceed inductively consider the set Ei . Suppose that between El and

El+1 exactly 3 partition jobs are scheduled (l = 1, . . . , i − 2). Assume that before Ei

at last 3(i − 1) − 1 partition jobs are scheduled. From the previous considerations fol-
lows that the schedule is given as follows: (E1,X1,E2,X2,E3, . . . ,Ei−1,3(i − 1) −
2,3(i − 1) − 1, eiN+1,3(i − 1), eiN+2, . . . , e(i+1)N , . . .). On this basis and taking into con-
sideration (11) and (13), the completion time of the last job in Ei can be estimated as fol-
lows:

CEi
>

i−1∑

l=1

(
Wl + V (Xl)

) + a3(i−1) + Wi − NaE

>

i−1∑

l=1

(Wl + Vl) + Wi + M −
i−1∑

l=1

(

l(N + 3)B + 3

4
B

)

− N

>

i−1∑

l=1

(Wl + Vl) + Wi = dEi
,
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for i = 2, . . . ,m. Thus, jobs from Ei must be scheduled one after another, i.e., (E1,X1, . . . ,

Ei−1,3(i − 1) − 2,3(i − 1) − 1,Ei,3(i − 1), . . .), otherwise the last job in Ei is late (for
i = 1, . . . ,m). However, if before Ei at last 3(i − 1) jobs are scheduled, then CXm can be
estimated as follows:

CXm > CXm

(
π∗) + a3(i−1) − NaE

>

m∑

l=1

(Vl + Wl) + M −
m∑

l=1

(

l(N + 3)B + 3

4
B

)

− N

>

m∑

l=1

(Vl + Wl) = D.

for i = 1, . . . ,m − 1.
Thus, we conclude that in the optimal solution jobs from the set Ei are scheduled

one after another and between Ei and Ei+1 exactly 3 partition jobs are scheduled (for
i = 1, . . . ,m − 1), otherwise Lmax > 0. �

Proof of Lemma 9 The proof will be done using the inductive method in the similar manner
as the proof of Lemma 4.

At first observe that in the optimal schedule the blocks of the enforcer jobs are scheduled
according to the EDD rule (Lemma 7) and the sequence of jobs within each block is immate-
rial (Lemma 6). Note also that CEi

is minimal if before Ei partition jobs are scheduled first,
since bj < bE for j = 1, . . . ,3m and i = 1, . . . ,m (Lemma 8). However, the sum of pro-
cessing times of the enforcer jobs Ei for an arbitrary schedule π (denoted as W ′

i ) is always
greater than the sum of processing times of the enforcer jobs Ei for schedule π∗ (denoted
as Wi ) decreased by bEmN(N + 3), i.e., W ′

i > Wi − bEmN(N + 3) for i = 1, . . . ,m. Note
that m(N + 3) is the maximum possible position in a schedule for DLEL.

Assume that before E1 at least one partition job is scheduled. Thus, based on (19), the
completion time of the last job in E1 can be estimated as follows:

CE1 > pq(1) + W1 − mN(N + 3)bE > W1 + a − M − mN(N + 3)bE > W1 = dE1 .

Therefore, we conclude that in the optimal solution of DLEL any partition job can be sched-
uled before E1, otherwise Lmax > 0.

Now, we will show that if more than 3 jobs are scheduled before E2, then the last job
from E2 is late. Assume that at least 4 partition jobs are scheduled before E2. Based on (17)
and (19), we have

CE2 > W1 + V (X1) + pq(N + 4) + W2 − mN(N + 3)bE

> W1 + V1 − (N + 3)B − 3

4
B + W2 + a − M(N + 4) − mN(N + 3)bE

> W1 + V1 + W2 + a − M(N + 4) − mN(N + 3)bE − (N + 3)B − 3

4
B

> W1 + V1 + W2 = dE2 ,

where q ∈ X2. Since CE2 > dE2 , then the last job in E2 is late. Thus, we conclude that in
the optimal solution of DLEL the number of the partition jobs before E2 cannot be greater
than 3.
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Now we will show that if before E3 more than 6 partition jobs are scheduled, then all
jobs in E3 are late. Assume we have at least 7 partition jobs scheduled before the enforcer
jobs from E3. From Lemma 8 follows that CE3 is minimal if the partition jobs are scheduled
first. However, from the previous considerations follows that the number of the partition jobs
before E2 cannot exceed 3 otherwise Lmax > 0. Therefore, jobs are scheduled as follows
(E1,X1,E2,X2, q,E3, . . .) (where q ∈ X3 = {7,8,9}) and we have

CE3 >

2∑

l=1

(
Wl + V (Xl)

) + pq

(
2(N + 3) + 1

) + W3 − mN(N + 3)bE

>

2∑

l=1

(Wl + Vl) + W3 + a − M
(
2(N + 3) + 1

) − mN(N + 3)bE

−
2∑

l=1

(

l(N + 3)B + 3

4
B

)

>

2∑

l=1

(Wl + Vl) + W3 = dE3 ,

Thus, in the optimal solution of DAEL, the number of the partition jobs before E3 cannot
be greater than 6.

In order to proceed inductively, consider the set Ei . Suppose that before each set El

3(l − 1) partition jobs are scheduled (for l = 1, . . . , i − 1) and before Ei more than 3(i − 1)

jobs are scheduled (i = 2, . . . ,m). On this basis and taking into consideration (17) and (19),
we have

CEi
>

i−1∑

l=1

(
Wl + V (Xl)

) + pq

(
(i − 1)(N + 3) + 1

) + Wi − mN(N + 3)bE

>

i−1∑

l=1

(Wl + Vl) + Wi + a − M
(
(i − 1)(N + 3) + 1

) − mN(N + 3)bE

−
i−1∑

l=1

(

l(N + 3)B + 3

4
B

)

>

i−1∑

l=1

(Wl + Vl) + Wi = dEi
,

for i = 2, . . . ,m and q ∈ Xi . Thus, we conclude that the number of the partition jobs before
Ei (for i = 1, . . . ,m) cannot be greater than 3(i − 1) otherwise all jobs in Ei are late. �

Proof of Lemma 10 The proof will be done in the similar manner as the proof of Lemma 5.
From Lemma 8 follows the completion time of a job is minimal if jobs before it are

scheduled according to the non-decreasing order of bj . On the other hand from Lemma 9
follows that in the optimal solution the number of the partition jobs before Ei cannot be
greater than 3(i − 1) for i = 1, . . . ,m, otherwise at last one job in Ei is late. Under this
assumption the completion time CXm of the last job in the set Xm is minimal if the schedule
of jobs π∗ is as follows: (E1,X1,E2,X2,E3, . . . ,Ei,Xi,Ei+1, . . . ,Xm−1,Em,Xm). Thus,
the completion time of the last job in Xm for π∗ is equal to:

CXm

(
π∗) =

m∑

i=1

(
Wl + V (Xl)

)
.

Now we will show that the optimal schedule is in the form of π∗. To prove it we will use
the inductive principle.
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From Lemma 9 follows that before E1 no partition jobs are scheduled. First as-
sume that before an enforcer job from E2 at last 2 partition jobs are scheduled (i.e.,
E1,1,2, eN+1,3, eN+2, . . . , e2N, . . .). Note that jobs from Ei are indistinguishable (i =
1, . . . ,m). Observe that in this case the value V (X1) decreases by b3 (q ∈ X1 = {1,2,3})
and W2 increases by bE , where E2 = {eN+1, eN+2, . . . , e2N }. On this basis and taking into
consideration (17)–(19), the completion time of the last job in E2 can be estimated as fol-
lows:

CE2 = W1 + V (X1) − b3 + W2 + bE

> W1 + V1 + W2 + MN − (N + 3)B − 3

4
B

> W1 + V1 + W2 = dE2 .

Since CE2 > dE2 , then the last scheduled job in E2 is late. Observe that CE2 is greater if
more enforcer jobs from E2 are moved before job 3. Thus knowing that V (Xi) < Vi +
i(N + 3)B , any job from E2 is not late if jobs from E2 are scheduled one after another, i.e.,
(E1,1,2,E2,3, . . .):

CE2 = W1 + V (X1) − (
a − (N + 3)b3

) + W2 + NbE

< W1 + V1 + (N + 3)B − a + (N + 3)b3 + W2 + NbE

= dE − a + (N + 3)bE < dE2 .

However, if before E2 at last 2 partition jobs are scheduled, then CXm can be estimated as
follows:

CXm = CXm

(
π∗) − Nb3 + NbE

>

m∑

l=1

(Wl + Vl) + MN2 −
m∑

l=1

(

l(N + 3)B + 3

4
B

)

>

m∑

l=1

(Wl + Vl) = D.

Since CXm > D, then Lmax > 0. Taking it into consideration and based on Lemma 9, we
conclude that in the optimal solution jobs from E2 are processed one after another and 3
partition jobs are scheduled between E1 and E2, otherwise Lmax > 0.

Now we will show that if before E3 less than 6 partition jobs are scheduled, then
Lmax > 0. Assume we have at last 5 partition jobs scheduled before an enforcer job from
E3. First we will show that in the optimal solution of DLEL jobs from E3 have to be pro-
cessed one after another. From the previous considerations follows that the schedule is given
as follows: (E1,X1,E2,4,5, e2N+1,6, e2N+2, . . . , e3N, . . .). Thus, the completion time of the
last job in E3 can be estimated as follows:

CE3 =
2∑

l=1

(
Wl + V (Xl)

) − b6 + W3 + bE

>

2∑

l=1

(Wl + Vl) + W3 + MN −
2∑

l=1

(

l(N + 3)B + 3

4
B

)

> dE3 .
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Since CE3 > dE3 , then the last scheduled job in E3 is late. Observe that this value is greater
if more enforcer jobs from E3 are moved before job 6. Thus, E3 is not late if jobs from E3

are scheduled one after another, i.e., (E1,X1,E2,4,5,E3,6, . . .). However, if before E3 at
last 5 jobs are scheduled, then CXm can be estimated as follows:

CXm = CXm

(
π∗) − Nb6 + NbE

>

m∑

l=1

(Vl + Wl) + MN2 −
m∑

l=1

(

l(N + 3)B + 3

4
B

)

>

m∑

l=1

(Vl + Wl) = D.

Taking it into consideration and based on Lemma 9, we conclude that in the optimal solution
jobs from E3 are processed one after another and 3 partition jobs are scheduled between E2

and E3, otherwise Lmax > 0.
In order to proceed inductively consider the set Ei . Suppose that between El and El+1 ex-

actly 3 partition jobs are scheduled (l = 1, . . . , i−2). Assume that before Ei at last 3(i−1)−
1 partition jobs are scheduled. From the previous considerations follows that the schedule is
given as follows: (E1,X1,E2,X2,E3, . . . ,Ei−1,3(i − 1) − 2,3(i − 1) − 1, eiN+1,3(i − 1),

eiN+2, . . . , e(i+1)N , . . .). On this basis and taking into consideration (17)–(19), the comple-
tion time of the last job in Ei can be estimated as follows:

CEi
=

i−1∑

l=1

(
Wl + V (Xl)

) − b3(i−1) + Wi + bE

>

i−1∑

l=1

(Wl + Vl) + Wi + MN −
i−1∑

l=1

(

l(N + 3)B + 3

4
B

)

> dEi
,

for i = 2, . . . ,m. Thus, jobs from Ei must be scheduled one after another, i.e., (E1,X1, . . . ,

Ei−1,3(i − 1) − 2,3(i − 1) − 1,Ei,3(i − 1), . . .), otherwise the last job in Ei is late (for
i = 1, . . . ,m). However, if before Ei at last 3(i − 1) jobs are scheduled, then CXm can be
estimated as follows:

CXm = CXm

(
π∗) − Nb3(i−1) + NbE

>

m∑

l=1

(Vl + Wl) + MN2 −
m∑

l=1

(

l(N + 3)B + 3

4
B

)

> D,

for i = 1, . . . ,m − 1.
Thus, we conclude that in the optimal solution jobs from the set Ei are scheduled

one after another and between Ei and Ei+1 exactly 3 partition jobs are scheduled (for
i = 1, . . . ,m − 1), otherwise Lmax > 0. �
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