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Abstract

Although many problems for transmission control protocol (TCP) in multi-hop wireless networks have been studied
with many proposals in the literature, they are not solved completely yet. Different from the existing proposals to
mitigate the limitation of TCP in multi-hop wireless networks, we propose a framework of semi-TCP which decouples
two functionalities of traditional TCP, i.e., congestion control and reliability control, in order to get rid of the constraint
of TCP’s congestion window on performance enhancement. Specifically, we employ hop-by-hop congestion control
which is more efficient than its end-to-end counterpart since the control efficiency of the later relies on the availability
of end-to-end connectivity which is difficult to sustain in wireless networks. We implement hop-by-hop congestion
control via intra-node and inter-node congestion control, and propose a distributed hop-by-hop congestion control
algorithm based on the widely used request-to-send/clear-to-send protocol. Such a semi-TCP retains the reliability
control in original TCP. Extensive simulations based on network simulator-2 show the promising performance of
semi-TCP over traditional schemes.

1 Introduction
Many studies show that transmission control protocol
(TCP) cannot perform well in multi-hop ad hoc networks
[1-3]. This is because TCP cannot allow the source node
to quickly learn the exact congestion situation in wireless
networks so that no proper action can be taken immedi-
ately to both ongoing and released congestions. Moreover,
some characteristics of wireless networks, such as unre-
liable radio links, shared media, and terminal mobility,
cause some networking functions such as routing to per-
form poorly, which further degrades TCP performance.
TCP in wireless networks has been studied for more

than one decade with many proposals published in the
literature. Although these proposals vary in designs, they
share a similarity in effort to improve TCP’s capability of
judging congestion status in networks usingmore efficient
mechanisms. Typical schemes include negative acknowl-
edgement [4-7], explicit congestion notification [8], and
measurement using probing or monitoring mechanisms
[9,10]. Extensive surveys on TCP in wireless networks can
be found in [1,2,11-13].

*Correspondence: richard_yu@carleton.ca
1Department of Systems and Computer Engineering, Carleton University,
Ottawa, ON K1S 5B6, Canada
Full list of author information is available at the end of the article

Although these proposals can improve TCP’s perfor-
mance in wireless networks, they do not solve its prob-
lems completely. Recently, some proposals such as [14-17]
apply hop-by-hop congestion control in multi-hop wire-
less networks to improve performance significantly. This
approach was originally proposed for high performance
in wired networks since it can react fast to both ongoing
and released congestions, but its implementation is com-
plex since every node along a path needs to be involved in
congestion control so that it is rare to be really deployed
in wide-area networks. However, we think that such con-
gestion control is a solution of TCP’s many problems in
shared-media wireless networks. And as what our study
in the following shows, some features of wireless networks
can be exploited to implement such a control without a
big increase in complexity.
To this end, we propose a novel framework termed

semi-TCP [18]. Different from existing works, semi-TCP
jointly considers the efficiency of congestion control and
the functionalities of a transmission control protocol.
An approach to tackle TCP’s disability to obtain the
exact knowledge of network congestion is to use hop-by-
hop congestion control instead of end-to-end congestion
control. If a hop-by-hop congestion control is imple-
mented below the transport layer, the same function of
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TCP becomes redundant. In this case, semi-TCP suggests
decoupling congestion control from TCP and moving
it down to lower layers, and only its reliability control
function is retained. With semi-TCP, the TCP congestion
window is no longer used to regulate packet sending rate
so that the throughput will not be limited by the round-
trip time and the performance can be further improved.
Furthermore, with the hop-by-hop congestion control, the
congestion control efficiency will not rely on the availabil-
ity of path connectivity.
The most related work with semi-TCP is the ad hoc

transport protocol (ATP), an ‘antithesis of TCP’ [19].
ATP has the following characteristics: (1) A rate-based
congestion control is used to replace the window-based
congestion control of TCP; (2) A selective acknowledg-
ment (ACK) is used to replace the accumulative ACK of
TCP; (3) For congestion control, the intermediate nodes
in the network provide congestion information which is
consolidated at the ATP receiver and is fed back to the
ATP sender. However, the congestion control in ATP
still employs end-to-end congestion control on the trans-
port layer. Such approach requires the coordination of
the network and data link layers to provide the infor-
mation required by the per-flow rate-based congestion
control carried out by the source. This may complicate its
implementation.
The contributions of this paper are as follows:

• We study the concrete protocol design issues in the
framework of semi-TCP. Even the idea of
hop-by-hop control can trace back to the age to
ATM, there are still not very extensive literature in
this line of research especially when the two major
functionalities of TCP are decoupled.

• An important problem in hop-by-hop congestion
control is its complexity since it requires the network
to involve in the congestion control procedure. Here,
we implement the hop-by-hop congestion control
scheme based on widely used
request-to-send/clear-to-send (RTS/CTS) protocol.
Our scheme is simple to realize since only media
access control (MAC) layer is involved and we take
advantage of the broadcasting nature of wireless
media to ease hop-by-hop congestion control.

• In the protocol design for hop-by-hop congestion
control, we observe the deadlock problem which
prevents congestion situations to be efficiently
released. An algorithm is then proposed to fully
address the deadlock problem.

• From extensive simulations on our platform
developed based on network simulator-2 (NS-2), we
find out significant performance gain of semi-TCP
comparing with the state-of-the-art such as
TCP-adaptive pacing (AP) [20].

The remainder of the paper is organized as follows.
Section 2 discusses in detail the major reasons for decou-
pling congestion control from TCP, and a semi-TCP
scheme using RTS/CTS-based hop-by-hop congestion
control is described in Section 3. A simulation investiga-
tion in NS-2 is provided in Section 4. Finally, the paper is
summarized in Section 5.

2 Motivations for congestion control decoupling
In general, TCP faces the following problems: the effect
of the round-trip time (RTT) and ACK, misjudgment on
non-congestive losses, and slow reaction to congestion.
This section discusses the necessity of decoupling conges-
tion control from TCP in multi-hop wireless networks.

2.1 Constraint of congestion window
Since TCP adopts a congestion control window to con-
trol the amount of output traffic based on the reception
of ACKs returned by the destination node, the round-
trip time (RTT) between the source and destination
nodes significantly affects TCP’s throughput. This RTT
mainly includes packet queuing delay, transmission time,
and propagation delay, and increases with path lengths.
According to [21], in the wired-line network, the maxi-
mum sending rate for a TCP connection over a single cycle
of the steady-state model is

λm ≤ 1.5l
R

√
2
3p

, (1)

where R is the minimum round-trip time, p is the steady-
state link drop rate, and l is the maximum TCP segment
size.
For a TCP connection consisting of n links, each of

which has a round-trip time of τ with a dropping rate of p
for packets, R can be estimated by nτ , and the throughput
is bounded by

χ ≤ l
nτ

√
3
2p

(1 − p)n, (2)

which shows that the throughput decreases rapidly with n
especially with small p, as illustrated in Figure 1. This is
because in this case, n is the dominant factor that affects
the performance. This phenomenon has been observed
empirically as reported in the literature such as [22].

2.2 Effect of RTT and ACK
The reliability control in TCP is realized through seg-
ment retransmission, i.e., a TCP source retransmits each
transmitted packet that has not been acknowledged suc-
cessfully. The congestion control is performed by a source
through throttling output traffic following its congestion
window, which is determined according to the congestion
status inferred through the reception of ACK segments. In
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Figure 1Maximum throughput of TCP ( l
τ

= 1) versus p and n.

the case of congestion, the congestion window is shrunk;
otherwise, it is increased for every received ACK and
almost doubled every RTT.
Although the size of an ACK packet is much smaller

than that of a data segment, it needs to go through the
same MAC contention procedure as for a data segment
to access the wireless channel. Therefore, reducing the
number of ACK transmitted along the reverse route can
lessen the MAC contention on the forward route since
the wireless channel is a shared media. Therefore, delay-
ing ACK transmission to make one ACK to acknowledge
more segments can significantly improve TCP perfor-
mance [23,24]. However, reducing the number of ACK to
be sent by the destination will slow down the growth of
the congestion window at the TCP source, thus decreasing
the network throughput.

2.3 Misjudgment on congestion status
In wireless networks especially multi-hop ad hoc net-
works, many new issues arise for TCP. One problem is that
TCP cannot distinguish between congestive losses and
other losses caused by channel unreliability and terminal
mobility. This problem causes the TCP source to unnec-
essarily decrease its congestion control window once a
retransmission timeout (RTO) occurs, resulting in low
network throughput. Furthermore, lost and delayed ACKs
in the reverse route may also cause the source not to
receive ACKs in time, which is also regarded as congestive
losses on the forward route by the source node.
Another type of misjudgment is that even if the initial

judgment on congestion status in a route is correct, this
judgment may become invalid due to instant changes in
the route. This change may be caused by either a routing
protocol that cannot underpin a path or terminal mobil-
ity which changes radio links frequently. If the original
route is changed, all effort for congestion control along

this route no longer makes sense since the original con-
gested node may not be part of the current route due to
mobility, whichmay also cause a congested link to become
part of an original congestion-free route.
The above problems are mainly due to the fact that TCP

cannot have enough information on the network status for
congestion control. Therefore, decoupling the congestion
control fromTCP andmoving down this function to lower
layers can avoid these problems since the lower layers can
know immediately what happens in the network.

2.4 Slow reaction to congestions
A TCP source cannot react quickly to a congestion espe-
cially with a large RTT as discussed below. Once conges-
tion occurs no matter where it is, the minimum reaction
time, which is the time interval between when a conges-
tion occurs to when the source’s reaction arrives at the
congested node, is at least one RTT. This is because the
TCP source infers the network congestion status accord-
ing to the reception of ACKs fed back by the destination.
Due to the same reason, it will take at least one RTT for
the source to learn whether a congestion state is released,
and more time will be taken by the TCP source to restore
its normal congestion window due to the slow start and
congestion avoidance mechanisms adopted by TCP. In
both cases, the network bandwidth is wasted. Different
from wired networks, the bandwidth in wireless networks
is scarce so that any bandwidth waste is undesirable.
If congestion control is carried out by the data link

layer, the upstream node can take an immediate action
on the congestion occurring at its downstream node by
a link round-trip delay, which is much shorter than an
end-to-end RTT.

2.5 Hop-by-hop congestion control in wireless networks
Although the hop-by-hop congestion control is more
efficient than the end-to-end control and suitable for
multi-hop mobile ad hoc networks (MANETs), its
implementation complexity is high due to per-node
involvement in congestion control. However with the
MAC implemented in shared-media wireless networks,
each node needs to detect activities of other nodes and
even to interact with each other. Therefore, some mech-
anisms for information capture and exchange between
neighbors have been already implemented in wireless net-
works. In this case, it is relatively easy to implement a hop-
by-hop congestion control with piggyback mechanisms
without a big increase in implementation complexity.
Take the IEEE 802.11 DCF [25] as an example. To

address the hidden terminal problem, an RTS/CTS hand-
shake protocol has been adopted and standardized. Basi-
cally, the RTS/CTS protocol requires a node to send an
RTS first to the receiver, who will send back a CTS if
it is clear to receive. It is not difficult to find that this
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RTS/CTS exchange can be slightly modified by includ-
ing congestion information for hop-by-hop congestion
control. Actually, this is just the basic idea behind the
hop-by-hop congestion control discussed in [26].
There are also some other hop-by-hop congestion con-

trol schemes at the data link layer such as [14], which
changes MAC parameters such as CWmin and CWmax
of IEEE 802.11e to carry congestion control informa-
tion. In [16], an implicit hop-by-hop congestion control
is discussed, by which the information on congestion
status and control is obtained through observing trans-
mission activities of its neighboring nodes rather than
explicit information exchange. Some cross-layer-designed
hop-by-hop congestion control schemes have been also
investigated [15,17,27]. All these hop-by-hop congestion
control schemes have been investigated without decou-
pling congestion control from TCP, thought it makes the
congestion control in TCP redundant.

3 A semi-TCP based on RTS/CTS protocol
Motivated by the previous section, this section discusses
the protocol design of semi-TCP in IEEE 802.11 multi-
hop wireless networks. The two aspects of the scheme are
intra-node and inter-node congestion control. In intra-
node congestion control, the upper layer in a wireless
node limits the delivery of data packets to the lower layer
according to the congestion situation in the lower queue.
In inter-node congestion control, the neighboring nodes
cooperate to release the congestion. We also spot out and
discuss the deadlock situation in hop-by-hop congestion
control. An effective scheme is proposed to solve this
problem accordingly.
The following notations are used in the discussion.

• L: buffer capacity.
• ℵ: queue length, i.e., the occupancy of the buffer.
• Tc: general congestion threshold (Tc ≤ L).
• m: buffer spaces reserved for transient traffic.
• k : the number of packets the congested node

transmits before it is considered not congested.
• g: buffer spaces reserved to avoid the deadlock

situation discussed in Section 3.3.

3.1 Intra-node congestion control
As mentioned earlier, semi-TCP does not use the conges-
tion window of TCP to control the number of segments
injected into the network. Instead, the number of seg-
ments to be transmitted is determined by the congestion
status of the buffer at the lower layer, particularly the
MAC sub-layer, as illustrated in Figure 2. In general,
the buffer is regarded free of congestion if the following
condition is satisfied:

ℵ < Tc. (3)

Here, the congestion is a logical status rather than a
physical congestion state in which the whole buffer has
been occupied.
In a multi-hop MANET, a node can be both a traffic

source and a router simultaneously. Under heavy traffic
load, the source traffic of a node may dominate its buffer,
causing transient traffic from other nodes to have less or
even no opportunity to use the buffer. Therefore, some
buffer spaces need to be reserved for transient traffic,
which is admitted if

ℵ < Tc + m. (4)

Another important function of TCP is the end-to-end
reliability control, through which each unacknowledged
segment is retransmitted by the source node once the
RTO is due, until the segment is positively acknowl-
edged. Only this part is kept in semi-TCP. Note that with
TCP, duplicate ACKs are sent by the destination for the
fast retransmission of out-of-order segments and the fast
recovery of congestion widow. Since with semi-TCP, the
congestion window is no longer used so that no dupli-
cate ACKs are required to send in order to reduce the
traffic load on the reverse route to further improve the
performance.

3.2 Inter-node congestion control based on RTS/CTS
With inter-node congestion control, the congestion sit-
uation in the region will be implicitly fed back to the
source node such that the sending rate of the source
node will be throttled. Even there are many perfor-
mance issues in the IEEE 802.11 when it is applied in
multi-hop wireless networks, IEEE 802.11-like protocols
are deployed in many testbeds [28]. So here, we imple-
ment the inter-node congestion control scheme based
on IEEE 802.11 RTS/CTS protocol. We first introduce
two subtypes of RTS and CTS to carry the congestion
information: request-to-send-congested (RTSC) indicates
that the sender of this RTSC is congested; clear-to-
send-congested (CTSC) indicates that the sender of this
CTSC is congested. We can implement these two sub-
types by setting the idle bits in the original RTS and CTS
frames.
In the following, we will introduce the procedure of the

hop-by-hop congestion control algorithm based on the
widely used RTS/CTS protocol. For the ease of presen-
tation, we denote the two nodes involved as node A and
node B. Suppose node A first senses the idle channel, and
it has a packet for node B.
According to the situations of node A and node B which

are in, all possible combinations of RTS(C) and CTS(C)
used by this semi-TCP implementation are depicted in
Figure 3 and are discussed below. When node A has a
frame to send to node B, node A needs to first decide
whether it should contend for the channel according to
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Figure 2 Threshold settings of logical congestion status at the MAC buffer.

Algorithm 1 Node A has a packet for node B
1: if Node B is congested then
2: Defer transmission
3: else
4: if Node A is congested then
5: Send RTSC
6: else
7: if There is no neighboring node congested then
8: Send RTS
9: else

10: Defer transmission

the congestion status of its neighboring nodes. Node A
detects the congestion situation of the neighboring nodes
(e. g., node B) by overhearing the channel. Whenever
an RTSC or a CTSC frame transmitted by node B is
monitored, node B is regarded as congestion by node A,
and a timer is started for node B. When node B has trans-
mitted k packets or the timer times out, nodeAwill justify
that the congestion in node B has been released. For the
nodes overhearing either an RTS or a CTS, they just follow

the network allocation vector carried by the RTS and CTS
to decide their behaviors, which are the same as defined in
the IEEE 802.11 DCF.
Algorithm 1 is the procedure when node A has a packet

to send to node B. If node A is not congested and some
node(s) in its vicinity are congested, node A needs to
postpone the channel contention until the congestion is
released in order to accelerate congestion release.During
node A’s waiting for an RTS or RTSC resubmission,
if it receives an RTS(C) from another node, say node
C, node A should not grant this request in order to
release its own congestion. Then, node C will receive
nothing and needs to resubmit this RTS(C) according
to the IEEE 802.11 DCF, which defines a station short
retry limit (SSRL) for the resubmission. However, a large
SSRL may affect congestion release at node B since its
transmission may be affected by such RTS resubmission.
Therefore, the number of such retransmissions should be
limited.
Once node B receives an RTS(C) from node A, if there

exists the hidden terminal problem, it just does noth-
ing as defined in the original DCF protocol; otherwise,

A
No congestion

(a)
RTS A

No congestion

(b)
RTS A

Congested

(c)
RTSC

B
CTS

No congestion
B

RTSC

Congested
B

CTS

No congestion

A
Congested

(d)
RTSC A

Congested

RTSC

(e)
RTSC

Released Congested

frame

Congested & deadlocked
B

CTSC

Deadlocked & monopolized
B

CTSC RTSCACK

Figure 3 Combinations of RTS(C)/CTS(C) handshaking without hidden terminals: shorter dashed line means that node Amay not be the
receiver. (a) No congestion. (b) Node B is congested. (c) Node A is congested. (d) Both are congested and the deadlock situation. (e) Deadlock and
monopolized.
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Algorithm 2 Node B receives RTS or RTSC from node A
1: if Node B is congested then
2: if Node A had sent node B a CTSC then
3: Send CTS
4: else
5: ifThe type of request from nodeA is RTSC then
6: if The HOL packet in node B is to node A, i.e.,

deadlock then
7: Send CTSC
8: else
9: Do not reply, and set the minimum con-

tention window as MIN_CONGESTION
10: else
11: Send RTSC for the HOL packet immediately

to reuse the channel
12: else
13: Send CTS

node B simply returns a CTS to node A if node B is not
congested, as illustrated in Figure 3a,c. However, if node B
is congested, it needs to further take into account the fol-
lowing factors inmaking its decision. (1) If node B receives
an RTS from node A, it knows that node A is not con-
gested and tries to release its own congestion first. To
this end, node B submits an RTSC to the destination of
the first frame in the queue, as illustrated in Figure 3b.
Once node A receives or overhears this RTSC, it knows
that its RTS is rejected. (2) If node B receives an RTSC
from node A, node B has to return a CTSC to node A if
there is a deadlock situation, as illustrated in Figure 3d;
otherwise in the case of monopolization, node B sends

an RTSC to release its own congestion, as illustrated
in Figure 3e. Algorithm 2 depicts the above decision
process when node B receives a request from node A.
More discussion on the deadlock situation is given in
Section 3.3.

3.3 Deadlock andmonopolization situations
Since in the proposed hop-by-hop congestion control, an
RTS may be rejected due to the congestion status at the
receiver. This rejection may lead to a deadlock situation,
as illustrated in Figure 4a, where both node A and node B
just reject each other since they both are congested as dis-
cussed below. To release the congestion in node A, node
A has to send out frames in its buffer. If the destination of
the first frame queued in node A is just node B, node A’s
request will be rejected by node B if it is also congested.
A deadlock takes place if the destination of the first frame
queued in node B is just node A since node A will also
reject node B’s request. In this case, the congestion in both
node A and node B cannot be released unless dropping is
carried out.
A solution of this deadlock situation is to reserve some

buffer spaces (g) to avoid the above mutual rejections, as
illustrated in Figure 4b. That is, if node B receives an RTSC
from node A while node B is also congested with its first
frame to be sent to node A, it then infers that a dead-
lock situation takes place. In this case, it has to grant node
A’s request by returning node A a CTSC rather than a
CTS to indicate its congestion status. Since some buffer
spaces have been reserved for transient traffic discussed
above and the deadlock is relevant to transient traffic, the
buffer reservation for deadlock should be privileged over

Request for transmission

A B
Reject  request

detsegnoCdetsegnoC

Request for transmission

R j
frame to B frame to A

a)

Reject  request

Request for transmission

A B

Logical
congestion

Logical
congestion

Request for transmission

Accept for deadlock

Request for transmission

frame to B frame to A

b) k

Request for transmission

Accept if B is congested

Figure 4 Deadlock situation and an avoidance solution; (a) deadlock situation, (b) solution to avoid deadlock.
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transient traffic. Therefore, the buffer availability to avoid
the deadlock situation is justified by

ℵ < Tc + m + g. (5)

However, the above solution may lead to node A’s
monopolization as illustrated in Figure 5, where both node
A and node B are congested and deadlocked each other.
That is, after node B returns a CTSC to node A, node A
has successfully transmitted a frame and released its con-
gestion. Then, node A can accept a request from other
nodes such as node B or node C. If node B fails in channel
contention while nodeC wins, nodeA becomes congested
again after it receives a frame from node C. In this case, if
the first frame queued in node A is still toward node B, a
deadlock between node A and node B occurs again, which
forces node B to accept another frame from node A, caus-
ing node B more congested. To solve this problem, node
B should only grant the first RTSC from node A while
rejecting its subsequent RTSCs if any.

3.4 Settings of Tc,m, and k
The condition for the transport layer to send a segment
to the MAC layer is dominant by Eq. (3), where Tc needs
to be determined. Obviously, the larger Tc, the higher link
utilization is since in this case, the link need not wait
for traffic from the upper layer, instead it will start to
content the channel once the wireless channel is available.
However, in a shared-media network where MAC has to
be used to arbitrate nodes for using media, the heavier
traffic load, the higher MAC contention will be, which
causes the hidden terminal problemmore severe. Thus,Tc
should not be set too large. Intuitively, if the queue is not
empty, the link will not be wasted; hence, Tc can be set to
1 by default.
To balance media access opportunity between the

source traffic and transient traffic at a node, Eq. (4) is used
to give a priority to transient traffic with a reservation of
m buffer spaces, as illustrated in Figure 2. As mentioned

above, high buffer occupancy is undesirable in a shared-
media network so that each neighboring node should have
only a buffer space reservation; hence, a maximum m
equal to the number of its neighboring nodes while a min-
imum m equal to 1 in the case of Tc = 1. Similarly for
g used in Eq. (5) to avoid the deadlock situation, we can
roughly reserve one buffer space for each node while g can
also be simply set to 1 in the s case of Tc = 1.
Regarding k, its minimum value is 1, which means that

a congestion state can be released after a frame has been
sent out by other nodes. Consider the worst case in which
a congested node has to transmit g + m frames to release
a congestion, the maximum k should beset to g + m
as well.

4 Simulation investigation
Here, we study the performance of semi-TCP through
simulation in NS-2 by focusing on some fundamental
performance characteristics of semi-TCPa.

4.1 Simulation model
The simulation adopts AODV [29] for routing and the
IEEE 802.11 MAC with the modified RTS/CTS protocol
discussed in Section 3.2. Similar to [30,31], chain, parallel,
spindle, cross, and random mobile topologies illustrated
in Figure 6 are simulated. The successful radio transmis-
sion range is set to 250 m while the interference range
to 500 m. The default two-ray ground reflection channel
model is used. A channel data rate of 2 Mbps is used
for data transmissions and a basic rate of 1 Mbps for
control frames, i.e., RTS(C), CTS(C), and ACK. FTP is
simulated with a segment size of 512 bytes.All simula-
tions last more than 500 s to ensure enough packets
to go through the network. A sub-queue is provided
to store control frames, which are privileged over data
frames.The simulated environment for the random and
mobile scenario as illustrated in Figure 6e is an a× b rect-
angle. For node motion, the random way point mobility
model is adopted, which is configured with a maximum

Figure 5Monopolization situation.
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speed (Smax), a minimum speed (Smin), and a pause
time (PT).
This investigation compares semi-TCP with TCP-AP

[32] as explained below. TCP-AP has been demonstrated
much better than TCP-NewReno [33] in IEEE 802.11
multi-hop ad hoc networks. The basic idea of TCP-AP
is that each TCP source node needs to control the inter-
val of sending packets down to be close to the current
four-hop propagation delay by jointly using TCP conges-
tion window control. This is because this delay actually
corresponds to the distance between two mutually hid-
den terminals in the multi-hop ad hoc network using the
IEEE 802.11MAC protocol. Therefore, the number of col-
lisions caused by hidden terminals can be largely reduced
through AP. Obviously, such efficiency largely depends
on the estimation accuracy for the four-hop propaga-
tion delay, which however is dynamic by nature espe-
cially in mobile environments or with time-varying traffic
loads.
The major performance indicators for comparison

include throughput, delay, dropping ratio, and path length,
which are defined below.

• Throughput: average number of data bytes
successfully received by the destination node per time
unit.

• Delay: average time interval between a frame’s arrival
at the MAC layer of the source node and its arrival at
the MAC layer of the destination node.

• Dropping ratio: ratio of the total number of data
segments dropped to the total number of data
segments transmitted in the network during a
simulation.

• Path length: average number of hops that a frame has
traveled from the source node to its destination node.

4.2 Effect of station short retry limit
Asmentioned earlier, SSRL defines the maximum number
of RTS retrials per data frame. An RTS failure after SSRL
retransmissions will cause a frame dropping. Therefore,
SSRL is an important parameter to the network perfor-
mance. Figures 7, 8, and 9 plot the throughput, dropping
ratio, and delay given by TCP-AP (AP) and semi-TCP
(Semi) against SSRL for three topologies. Here, both the
source and destination are set to be fixed in order to focus
on SSRL’s effect.
As shown in Figure 7, for both TCP-AP and semi-

TCP, their throughput increases with SSRL until SSRL is
roughly equal to 9 for the chain and parallel topologies.
For the random mobile topology, two scenarios are sim-
ulated. In scenario 1 (S1), the space size is set to 1,500
m × 300 m, and the speed is fixed at 20 m/s for each
node except for the source and destination which are
stationary, while in scenario 2 (S2), the size is 1,500 m
× 4,800 m, and the speed ranges from 5 to 45 m/s for
each node. The above phenomenon can also be found
in S1 but not in S2. In general, a large SSRL can pro-
vide more chance for an RTS to pass through, resulting in
low dropping ratio, as illustrated in Figure 8. However, as
SSRL continues to increase, for both the chain and parallel
topologies as illustrated in Figure 8a,b, dropping is almost
zero but their throughput decreases or converges, as illus-
trated in Figure 7a,b. This is due to that in this case, fre-
quent RTS retrials intensify the MAC contention, leading
to a decrease in MAC effective throughput. Once MAC
contention degree reaches its maximum, the throughput
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converges. The same explanation holds for the delay
depicted in Figure 9. For both TCP-AP and semi-TCP,
the source node will carry out retransmission for every
unacknowledged segment. The less MAC frame dropping
with larger SSRL, the less retransmissions to be carried
out by the source node, resulting in short delay. How-
ever, high MAC contention will contribute significantly
to long delay. To further verify the above analysis, the
effective MAC throughput (� , which is defined as the
average number of data bytes successfully transmitted by
the MAC layer) of the bottleneck node in a connection
is also plotted for the chain topology, as illustrated in
Figure 7a. For TCP-AP, when SSRL < 5, the through-
put is much lower than � . This is mainly due to TCP’s
misjudgment of non-congestive frame dropping caused by
RTS failure, which leads to unnecessarily shrinking of its
congestion window. Since the MAC layer may retransmit
several times a MAC frame for one TCP segment, � is
higher than the throughput.
Now, we discuss performance differences between sta-

tionary and random mobile topologies. The convergence
depicted in Figure 7a,b for the stationary topologies
becomes slower in the random mobile topology, as illus-
trated in Figure 7c. This is because in the former two
topologies, the available links will not be broken by node
mobility, which however takes place in the randommobile

topology. If a link is broken, any RTS retrial cannot
increase successful transmission (Figure 8) but only MAC
contention degree, leading tomoreMAC contention over-
head. Also, due to node mobility, a transmitted frame may
not reach its destination or cannot be acknowledged due
to sudden link break. Both reduce the throughput in the
random mobile topology. Compared to S1, S2 is set with
a looser node density and higher mobility so that link
break takes place more frequently in S2. As illustrated in
Figure 7c, the setting of SSRL = 4 yields the maximum
throughput for semi-TCP in S2 rather than SSRL = 9
in S1 because large SSRL does not make sense in increas-
ing throughput in this case. As illustrated in Figure 8c,
frequent link break in S2 causes much higher dropping
ratio than in S1 for TCP-AP, but this does not happen to
semi-TCP. This is because frequent link break causesmore
droppings for both, but TCP-AP takes a long time for
segment retransmission due to its slow reaction as dis-
cussed in Section 2.4. However, this is not the case for
semi-TCP. Furthermore, due to lower traffic load caused
by the misjudgment on congestion status in TCP-AP, the
delay here is much shorter than that in S1, as illustrated in
Figure 9c.
As discussed in Section 2, semi-TCP outperforms TCP

in terms of throughput, which is illustrated in Figure 7.
For the parallel topology depicted in Figure 7a, semi-TCP
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Table 1 Effect of Tc and k on throughput: two flows, SSRL = 9, Smin = Smax = 20 m/s, PT = 0
Topology Parallel Randommobile

Tc 1 2 3 4 1 2 3 4

k = 1 89.69 79.69 99.81 88.77 95.93 93.52 88.95 85.25

k = 2 117.1 100.0 99.35 87.52 95.54 92.42 87.90 87.11

k = 3 90.01 94.23 89.88 85.24 91.67 90.52 88.51 84.27

outperforms TCP-AP for SSRL roughly between 4 and
14 with an improvement up to about 40%, but it then
performs poorer because the high MAC contention with
semi-TCP makes the hidden terminal problem more
severe. This is because that traffic load at the MAC layer
with semi-TCP is heavier than with TCP-AP, which also
causes longer delays, as illustrated in Figure 9. However,
for the parallel topology depicted in Figure 7b, semi-TCP
always outperforms TCP-AP with a maximum improve-
ment of about 40%, and the same for the random mobile
topology but with a much larger improvement up to 120%,
as illustrated in Figure 7b. The reason is that TCP mis-
judges the congestion status much more frequently in the
mobile case, which makes TCP-AP less efficient.

4.3 Settings of parameters Tc and k
As discussed in Section 3.4, some parameters need to
be decided for semi-TCP. From the above discussion,

SSRL = 9 is good for both TCP-AP and semi-TCP to yield
the highest throughput in the most of the scenarios dis-
cussed above. Therefore, this setting is adopted here to
investigate the setting of congestion threshold (Tc) and
the number of frames necessarily to be transmitted to
release a congestion (k). The buffer reservation (g and m)
here is set to 1 to simplify the discussion since these
parameters are less important than Tc and k for conges-
tion control.
As illustrated in Table 1, for the random mobile topol-

ogy, the setting of [Tc = 1, k = 1] is the best for the
throughput and [Tc = 1, k = 2] for the parallel topol-
ogy. As discussed in Section 3.4, with semi-TCP, traffic is
distributed in each node with Tc > 0, leading to higher
MAC utilization than with TCP-AP. However, with a large
Tc, MAC contention degree will also become higher so
that nodes need to take more time to contend for chan-
nel access, resulting in throughput decrease. Meanwhile,
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Figure 10 Throughput against path lengths (n): two flows; (a) parallel, (b) spindle, and (c) cross.
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higher MAC contention may also make the hidden termi-
nal problem more severe, leading to more collision, which
also degrades the performance. Regarding k, the larger k,
the longer a node may need to wait before contending for
channel access, which causes a channel waste especially
if the link with the congested node is broken. Therefore,
k should not be set larger, which is demonstrated by the
most of the results listed in Table 1.
From the above discussion, the setting of SSRL = 9,

Tc = 1, and k = 1 can yield the best performance in the
most of the scenarios. Therefore, this setting along with
g = m = 1 is used in the following simulation study if not
specified otherwise.

4.4 Effect of path lengths
Only with stationary topologies, path length can be pre-
set. Therefore here, the parallel, spindle, and cross topolo-
gies are investigated with two flows and path lengths (n)
ranging from one to ten hops.
Figure 10 compares the throughput given by TCP-AP

and semi-TCP. We can find that semi-TCP outperforms
TCP-AP in most cases as n increases. In some cases,
the improvement can reach 65% in the cross topology, as
illustrated in Figure 10c. For both semi-TCP and TCP-
AP, their throughput declines dramatically with n. This is
mainly due to as n increases, the hidden terminal prob-
lem becomes more severe as well as the channel sharing

limit imposed by the MAC-layer contention. As discussed
in [34], for the chain topology, this factor will bound per-
node throughput up to one-third of the channel capacity.
Therefore, the throughput of semi-TCP trends to be sta-
ble when n > 3. However, the throughput of TCP-AP
becomes lower than that of semi-TCP as n increases.
A similar phenomenon can also be found for the spin-
dle and cross topologies but with a lower throughput, as
illustrated in Figure 10b,c. This is because the MAC con-
tention in these topologies is higher than in the parallel. As
illustrated in Figure 6c,d, one segment between the source
and destination is shared by two flows in the spindle while
one node in the cross topology, and this node becomes
the bottleneck of both flows. In the parallel topology, two
flows travel along two separate paths.
Regarding the delay plotted in Figure 11, it is not sur-

prising that the delay increases with n since the longer the
path, the more travel time a packet has to experience. The
delay given by semi-TCP is almost always longer than that
by TCP-AP since semi-TCP needs to handle more traffic
than TCP-AP.

4.5 Mutual effect of TCP and UDP
Figure 12 shows the ratio of performance indicators
against the number of TCP and user datagram protocol
(UDP) flows in the random mobile topology. As illus-
trated in Figure 12a where no UDP flows compete with
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TCP flows, as the number of TCP flows increases, the
superiority of semi-TCP over TCP-AP increases too, with
a maximum ratio up to about 2.6 for throughput, and
similar for delay, path lengths, and dropping ratio. This
is because the more TCP flows, the more misjudgment
on network congestion status may happen with TCP-AP,
which degrades its performance while such misjudgment
rarely happens in semi-TCP. When UDP flows join the
competition as illustrated in Figure 12b, where the num-
ber of TCP flows is fixed at 15 and that of UDP flows
is increased, the superiority of semi-TCP over TCP-AP
decreases in terms of TCP throughput. The reason is
that in this case, more bandwidth which should have
been allocated to TCP is taken away by UDP. In semi-
TCP, a UDP segment is treated in the same way as
that for a TCP segment with the hop-by-hop congestion
control.
For UDP, TCP-AP can provide better support than

semi-TCP as illustrated in Figure 12b. This is because
semi-TCP can allocate more bandwidth to TCP than
TCP-AP so that the remaining bandwidth that UDP
can use with semi-TCP is less than that with TCP-
AP. However, this superiority slightly decreases with the
number of UDP flows. Recall that TCP-AP adopts AP
to alleviate the impact of the hidden terminal prob-
lem by spacing the departure time interval between two
consecutive segments. However, UDP segments are not
regulated by either congestion window or AP, which weak-
ens the efficiency of AP for TCP segments since UDP

segments also cause the hidden terminal problem, lead-
ing to more TCP segments to be retransmitted. This
reduces the remaining bandwidth that UDP flows can
use, and such impact increases with the number of UDP
flows.

5 Conclusions
Since the hop-by-hop congestion control is more efficient
than the end-to-end control used by TCP, and TCP’s con-
gestion window limits further performance improvement
offered by the hop-by-hop congestion control, decoupling
congestion control from TCP, called semi-TCP, becomes
an alternative approach to solve TCP’s problems in multi-
hop ad hoc networks, especially multi-hop MANETs.
This paper investigates such a semi-TCP implementation
in NS-2 using a hop-by-hop congestion control, which
slightly modifies the IEEE 802.11 RTS/CTS protocol. The
simulation studies show that semi-TCP can much outper-
form TCP-AP. Compared with many other proposals only
modifying TCP, the semi-TCP may not be the best solu-
tion in terms of end-to-end inter-operability with TCP.
However, since TCP has so many problems in mobile
wireless networks while some characteristics of wire-
less networks favorable for the hop-by-hop congestion
control, it may be worth of exploiting such decoupling
approach in order to achieve higher performance for
multi-hop ad hoc networks.
Note that the RTS/CTS handshake protocol may not

always be used in the implementation. In this case, the
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information on the congestion status of a node can be pig-
gybacked by other frames such as data frames or MAC
ACK frames, which is under investigation by one of our
ongoing research programs. Another research activity is
to investigate semi-TCP against the effect of other net-
working functions such as routing protocols and acknowl-
edgment schemes.

Endnote
aThe source code is available at http://sce.carleton.ca/~

ycai/semitcp.tar.gz

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
We thank the reviewers for their detailed reviews and constructive comments,
which have helped to improve the quality of this article.

Author details
1Department of Systems and Computer Engineering, Carleton University,
Ottawa, ON K1S 5B6, Canada. 2Marine Internet Laboratory (MILAB), College of
Information Engineering, Shanghai Maritime University, Shanghai, China .
3School of Electronic and Information Engineering, South China University of
Technology, Guangzhou 510641, People’s Republic of China.

Received: 12 November 2012 Accepted: 10 May 2013
Published: 3 June 2013

References
1. AA Hanbali, E Altman, P Nain, A survey of TCP over Ad hoc networks.

IEEE Commun. Surv. Tutorials. 7(3), 22–36 (2005)
2. KC Leung, VOK Li, Transmission control protocol (TCP) in wireless

networks: issues, approaches, and challenges. IEEE Commun. Surv.
Tutorials. 8(4), 64–79 (2006)

3. S Chokhandre, U Shrawankar, in Proc. Int. Conf. Computer Commun. &
Management (CSIT). TCP over multi-hop wireless mesh network, vol. 5
(IACSIT Press Singapore, 2011)

4. H Balakrishnan, S Sehan, R Katz, Improving reliable transport and handoff
performance in cellular wireless networks. ACM Wireless Netw. (WINET).
1(4), 469–481 (1995)

5. S Vangala, M Mehta, in Proc. IEEE Veh. Tech. Conf. (VTC) - Fall. The TCP
SACK-aware snoop protocol for TCP over wireless networks, vol. 4
(Orlando, FL, 6–9 October 2003), pp. 2624–2628

6. FL Sun, VOK Li, SC Liew, in Proc. IEEEWireless Commun. & Networking Conf.
(WCNC). Design of SNACK mechanism for wireless TCP with new snoop,
vol. 5 (Atlanta, GA, 21–25 March 2004), pp. 1046–1051

7. CD Lai, KC Leung, VOK Li, in Proc. IEEE INFOCOM. Enhancing wireless TCP: a
serialized-timer approach (San Diego, CA, 14), pp. 1–5

8. SG Holland, N Vaidya, Analysis of TCP performance on mobile Ad Hoc
network on wireless. ACM Wireless Netw. (WINET). 8(2-3), 275–288 (2002)

9. V Tsaoussidis, H Badr, in Proc. IEEE Int. Conf. Net. Protocols (ICNP).
TCP-probing: towards an error control scheme with energy and
throughput performance gains (Osaka, 2000), pp. 12–21

10. M Gerla, MY Sanadidi, R Wang, A Zanella, C Casetti, S Mascolo, in Proc. IEEE
Global Tele. Conf. (GLOBOCOM). TCP Westwood: congestion window
control using bandwidth estimation, vol. 3 (San Antonio TX, 2001),
pp. 1698–1702

11. B Sardar, D Saha, Survey of TCP enhancements for last-hop wireless
networks. IEEE Commun. Surv. Tutorials. 8(3), 20–34 (2006)

12. AM Al-Jubari, M Othman, BM Ali, NAWA Hamid, TCP performance in
multi-hop wireless ad hoc networks: challenges and solution. EURASIP J.
Wireless Commun. Netw. 2011, 198 (2011)

13. C Luo, FR Yu, H Ji, VCM Leung, Cross-layer design for TCP performance
improvement in cognitive radio networks. IEEE. 59(5), 2485–2495 (2010)

14. B Sadeghi, A Yamdad, A Fujiwara, L Yang, in Proc. Annual Int. Wireless
Internet Conf. (WICON). A simple and efficient hop-by-hop congestion
control protocol for wireless mesh networks (Boston, TX, 2006)

15. Y Yi, S Shakkottai, Hop-by-hop congestion control over a wireless
multi-hop network. ACM/IEEE Trans. Netw. 15, 133–144 (2007)

16. B Scheuermann, C Locherta, M Mauve, Implicit hop-by-hop congestion
control in wireless multihop networks. Ad Hoc Netw. 6, 260–288 (2008)

17. XY Wang, D Perkins, in Proc. IEEEWireless Commun. & Networking Conf.
(WCNC). Cross-layer hop-by-hop congestion control in mobile ad hoc
networks (Las Vegas, NV, March 31–April 3 2008), pp. 2456–2461

18. S Jiang, Q Zuo, G Wei, in Proc. of the 4th ACMworkshop on Challenged
networks. Decoupling congestion control from TCP for multi-hop wireless
networks: semi-TCP (CHANTS ’09, ACM New York, 2009), pp. 27–34

19. K Sundaresan, V Anantharaman, HY Hsieh, R Sivakumar, ATP: A reliable
transport protocol for Ad Hoc networks. IEEE Trans. Mobile Comput.
4(6), 588–603 (2005)

20. SM ElRakabawy, C Lindemann, A practical adaptive pacing scheme for
TCP in multihop wireless networks. IEEE/ACM Trans. Netw.
19(4), 975–988 (2011)

21. S Floyd, K Fall, Promoting the use of end-to-end congestion control.
ACM/IEEE Trans. Netw. 7(4), 458–472 (1999)

22. S Xu, T Saadawi, Does the IEEE 802.11 MAC protocol work well in multihop
wireless ad hoc networks? IEEE Commun. Mag. 39(4), 130–137 (2001)

23. E Altman, T Jimenez, in Proc. IEEE Int. Conf. on Personal Wireless Comm.
Novel delayed ACK techniques for improving TCP performance in
multihop wireless networks (Venice, 23–25 September 2003), pp. 237–242

24. AK Singh, K Kankipati, in Proc. IEEEWireless Commun. & Networking Conf.
(WCNC). DTCP-ADA: TCP with adaptive delayed acknowledgement for
mobile ad hoc networks, vol. 3 (Atlanta, GA, 2004), pp. 1685–1690

25. IEEE Std 802.11, Medium Access Control (MAC) sub layer and 3 Physical
Layer Specifications, IEEE, (1997)

26. HQ Zhai, JF Wang, YG Fang, in Proc. IEEEWireless Commun. & Networking
Conf. (WCNC). Distributed packet scheduling for multihop flows in ad hoc
networks, vol. 2 (Atlanta, GA, 21–25 March 2004), pp. 1081–1086

27. K Chen, K Nahrstedt, N Vaidya, in Proc. IEEEWireless Commun. & Networking
Conf. (WCNC). The utility of explicit rate-based flow control in mobile ad
hoc networks, vol. 3 (Atlanta, GA, 21), pp. 1921–1926

28. W Kiess, M Mauve, A survey on real-world implementations of mobile
ad-hoc networks. Ad Hoc Netw. 5(3), 324–339 (2007)

29. CE Perkins, EM Belding-Royer, SR Das, Ad hoc on-demand distance vector
(AODV) routing. IETF RFC3561 (2003)

30. M Gerla, K Tang, R Bagrodia, in Proc. IEEEWS. Mobile Computing Systems &
App. (WMCSA). TCP performance in wireless multi-hop networks
(New Orleans, LA, 25–26 Feb 1999), pp. 41–50

31. Z Fu, P Zerfos, H Luo, SW Lu, LX Zhang, M Gerla, The impact of multihop
wireless channel on TCP throughput and loss. IEEE Trans. Mobile Comput.
4(2), 209–221 (2005)

32. SM ElRakabawy, K Alexander, L Christoph, in Proc. ACM Int. Sym. Mobile Ad
Hoc Networking and Computing (MobiHoc). TCP with adaptive pacing for
multihop wireless networks (New York, NY, 2005), pp. 288–299

33. S Floyd, T Henderson, The New-Reno modification to TCP’s fast recovery
algorithm. IETF RFC 2582 (1999)

34. D Berger, ZQ Ye, P Sinha, S Krishnamurthy, M Faloutsos, SK Tripathi, in
Proc. IEEE Int. Conf. Mobile Ad-hoc & Sensor Systems. TCP-friendly medium
access control for ad-hoc wireless networks: alleviating self-contention
(Port Lauderdale, FL, 2004), pp. 214–223

doi:10.1186/1687-1499-2013-149
Cite this article as: Cai et al.: Decoupling congestion control from TCP
(semi-TCP) for multi-hop wireless networks. EURASIP Journal on Wireless
Communications and Networking 2013 2013:149.

http://sce.carleton.ca/~ycai/semitcp.tar.gz
http://sce.carleton.ca/~ycai/semitcp.tar.gz

	Abstract
	Introduction
	Motivations for congestion control decoupling
	Constraint of congestion window
	Effect of RTT and ACK
	Misjudgment on congestion status
	Slow reaction to congestions
	Hop-by-hop congestion control in wireless networks

	A semi-TCP based on RTS/CTS protocol
	Intra-node congestion control
	Inter-node congestion control based on RTS/CTS
	Deadlock and monopolization situations
	Settings of Tc, m, and k

	Simulation investigation
	Simulation model
	Effect of station short retry limit
	Settings of parameters Tc and k
	Effect of path lengths
	Mutual effect of TCP and UDP

	Conclusions
	Competing interests
	Acknowledgements
	Author details
	References

