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1 Introduction

Angular correlations among jets produced together with heavy particles have been studied

actively for a long time, because they can provide important information about the heavy

particles [1–7]. For instance it has been shown that the distribution of the azimuthal

angle difference ∆φ = φ1 − φ2 between two partons in the gluon fusion production of a

Higgs boson plus the two partons is very sensitive to a charge-conjugation and parity (CP)

property of the Higgs boson [1–5]. By observing the ∆φ distribution and comparing it with

theoretical predictions, we can measure CP violation in the Higgs sector [3, 4].

In order to read the information of heavy particles from angular correlations among jets

produced in association with them, it will be necessary to produce the accurate predictions

of observables, such as ∆φ, which measure the angular correlations. Tree level merging

algorithms [8–22], which combine leading order (LO) cross sections for multiparton final

state with the parton shower, are nowadays standard tools used for simulating processes

including multijet final state. Models of the parton shower base the Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) evolution equation [23–25] and thus the parton shower

guarantees the leading logarithmic (LL) accuracy for the kinematics of produced partons.

Therefore, the accuracy guaranteed in merging algorithms can be seen as the LO plus LL.

The virtue of merging algorithms is that they can combine LO cross sections smoothly

with the LL parton shower so that the dependence on an artificial scale at which they are

combined is minimised, and produce fully inclusive event samples.

A LO multi-parton production cross section predicts angular correlations among the

produced partons at the LO accuracy, while the LL parton shower does not have ability to

predict angular correlations among any partons. Considering this fact, when our objective

is to predict angular correlations among constructed jets, the accuracy minimally required

for the kinematics of the jets should be the LO. If the kinematics of a jet is determined or

largely influenced by the LL parton shower during a merging procedure, it hardly has the

LO accuracy and hence it is not appropriate to use the event containing this jet. Merging
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algorithms in the literature potentially have the ambiguity in the accuracy of jets, namely

it is not necessarily clear whether the kinematics of a jet constructed by clustering particles

in final state after a merging procedure has the LO accuracy or not. This is because their

virtue is smooth combination of LO cross sections and the LL parton shower.

In ref. [26], the azimuthal angle difference ∆φ = φ1 − φ2 between the two highest

transverse momentum pT jets with a large rapidity separation in the tt̄ production is studied

by using the CKKW-L merging algorithm [9, 12, 20] with the parton shower model [27–29]

in PYTHIA8 [30, 31]. There, it is found that the correlation between the two jets can be

lost in a non-negligible fraction of the events when the LO cross sections for the tt̄+ 0, 1, 2-

parton are merged with the parton shower, because a jet originating from the parton shower

has a higher pT than one of the two jets originating from the two partons of the LO cross

section. This shows one example of the case that the kinematics of a jet is determined

or largely influenced by the LL parton shower during a merging procedure. Although it

is also found that the loss of the correlation can be avoided by merging the LO tt̄ + 3-

parton cross section additionally, calculating LO cross sections for higher multiplicity is

time-consuming, thus we want to avoid it.

In this work, I construct a merging algorithm which does guarantee the LO accuracy

of angular correlations among jets and hence does not have the above ambiguity. The

algorithm proceeds in a similar way as the MLM [13, 14] and the k⊥-jet MLM [14, 16]

algorithms. The difference from these existing algorithms is that the following idea is

implemented:

• The definition of jets used during a merging procedure is set identical to the one used

during physics analyses of jets.

As a result, the n-jet events are generated exclusively according to the LO n-parton pro-

duction cross section and furthermore each of the n jets is close (matched) to each of the

n partons in terms of the jet measure. The kinematics of each of the n jets strictly follows

that of each of the n partons and thus the LO accuracy of angular correlations among the

n jets is preserved. When n = nmax, where nmax denotes the maximal number of partons

produced by a LO cross section, the LO nmax-parton production cross section generates

the inclusive nmax-jet events (njets ≥ nmax, where njets denotes the number of jets) and

each of the nmax highest pT jets is matched to each of the nmax partons in terms of the jet

measure. Therefore, this algorithm produces fully inclusive event samples as other existing

merging algorithms. In the produced inclusive event samples, the kinematics of each of up

to the nmax highest pT jets strictly follows that of each of the LO matrix-element partons.

Therefore, as long as the highest pT jets are always picked up, the LO accuracy of angular

correlations among up to nmax jets is preserved.

The MLM and the k⊥-jet MLM algorithms use the traditional cone algorithm and

the exclusive k⊥-jet algorithm [32], respectively, as a clustering algorithm, and parameters

that the clustering algorithm contains are chosen independently of the definition of jets

used during analyses of jets. In other words, the definition of jets used at the analysis

level is nothing to do with the merging setup in these merging algorithms. In the new

merging algorithm, the merging setup is determined according to the definition of jets used
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at the analysis level. This might sound in conflict with the strategy of merging algorithms.

It is described in ref. [13] that a good merging algorithm should produce fully inclusive

event samples and any definition of jets can be used at the analysis level of the produced

event samples. However, when the LO accuracy is strictly required for the kinematics of

each jet, the merging setup can be determined only after the definition of jets used at the

analysis level is fixed, as in the new algorithm. If the definition of jets is changed, the new

inclusive event samples have to be generated with the merging setup corresponding to the

new definition of jets.

The tt̄ production in proton-proton collisions is simulated by using the new merging

algorithm with nmax = 2, 3. Several observables and quantities, including the azimuthal

angle differences ∆φ = φ1−φ2 between the two highest pT jets with vector boson fusion cuts

as an angular correlation observable, are studied. The results are compared with those of

other existing algorithms, the CKKW-L and the MLM algorithms. It is found that the new

algorithm produces quite similar results with the MLM algorithm, when jets are defined by

the anti-kT algorithm [33]. As to ∆φ, the CKKW-Lnmax=2 results consistently show visible

discrepancies from the other results near the bottom region (|∆φ| ∼ 0) and the peak region

(|∆φ| ∼ 2), while all the other results agree well with each other.

In section 2, the new merging algorithm and an event generation procedure according

to it are described in detail. In section 3, the results of the simulation are presented. In

section 4, I summarise my findings.

2 Algorithm

In this section, the ideas of the new merging algorithm and the merging procedure are

described in detail.

The new algorithm is constructed with a goal of eliminating the ambiguity in the

accuracy of jets which potentially exists in merging algorithms as discussed in section 1

and guaranteeing the leading order (LO) accuracy of angular correlations among jets. The

algorithm proceeds based on the same philosophy of the MLM [13, 14] algorithm that a

parton shower evolution of a matrix-element parton should not change the kinematics of

the parton significantly and the event which does not satisfy this condition is vetoed. This

vetoing procedure effectively corresponds to the calculation of the Sudakov form factors in

the CKKW [8, 10, 17, 18] and the CKKW-L algorithms [9, 12, 20]. The following idea is

implemented in the new algorithm,

• The definition of jets used during a merging procedure is set identical to the one used

during physics analyses of jets.

As a result, the generated event samples achieve the following:

The n-jet events are generated exclusively according to the LO n-parton production cross

section and furthermore each of the n jets is close to each of the n partons in terms of the

jet measure.
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The virtue of this achievement is that the kinematics of each of the n jets strictly follows

that of each of the matrix-element n partons. The LO accuracy of angular correlations

among the n jets is also guaranteed. In order for the generated event samples to be fully

inclusive, we make them further satisfy the following:

The inclusive nmax-jet events are generated exclusively according to the LO nmax-parton

production cross section and furthermore each of the nmax highest transverse momentum

jets is close to each of the nmax partons in terms of the jet measure.

Here nmax denotes the maximal number of partons produced by a LO cross section. The

kinematics of each of the nmax highest pT jets strictly follows that of each of the matrix-

element nmax partons. Therefore, in the generated fully inclusive event samples, as long

as the highest transverse momentum pT jets are always picked up, the LO accuracy of

angular correlations among up to nmax jets is preserved. The kinematics of the additional

jets (jets softer than the nmax highest pT jets in terms of pT ) is determined by the leading

logarithmic (LL) parton shower, hence they do not have correct angular correlations with

any other jets.

In my numerical studies given in the following section, the anti-kT algorithm [33] is

chosen as a jet clustering algorithm when distributions of jets are studied. Therefore, it is

also used during the merging procedure in the new merging algorithm. Below I describe

the merging procedure in detail by focusing on the case of using the anti-kT algorithm.

Differences induced by the use of other clustering algorithms are also discussed.

Let us consider merging the event samples X + 0, 1, 2, · · · , nmax-parton produced by

the LO cross sections, where X denotes a heavy object such as a Z boson or tt̄, with the

parton shower. The soft and collinear divergences in the LO cross sections are regularised

by a generation cutoff QME
cut . The definition of QME

cut has to respect the definition of jets

used in the merging procedure (thus used at the analysis level, too, in the new algorithm).

Jets are defined by a clustering algorithm and parameters that the algorithm contains.

The anti-kT algorithm basically contains two parameters which we can choose their values

freely, the radius parameter Rjet and the lower pT cutoff on jets pjet
T cut. Hence QME

cut should

be defined by

∆Rij =
√

(yi − yj)2 + (φi − φj)2 > RME
cut , (2.1a)

pT i > pME
T cut, (2.1b)

where pT i, yi and φi are the pT , rapidity and azimuthal angle of outgoing parton i. Impos-

ing cutoffs on the rapidity of partons is not needed. This generation cutoff in eq. (2.1) is the

same as the one used in the MLM algorithm which uses the traditional cone jet clustering

algorithm. The inclusive kT algorithm [34] and the inclusive pp Cambridge/Aachen algo-

rithm [35, 36] contain the same two parameters with the anti-kT algorithm. Therefore, the

generation cutoff QME
cut should also be defined by eq. (2.1), when one of these two clustering

algorithms is used. The exclusive kT algorithm [32] introduces the radius parameter Rjet
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and a scale djet
cut. The generation cutoff QME

cut should be defined by

dij = min
(
pT i, pTj

)
∆Rij/R

ME
cut > dME

cut , (2.2a)

pT i > dME
cut . (2.2b)

This generation cutoff is used in the k⊥-jet MLM algorithm, since the k⊥-jet MLM algo-

rithm uses the exclusive kT algorithm during the merging procedure. In order to avoid

missed phase space, the generation cutoff must satisfy

pjet
T cut ≥ p

ME
T cut, Rjet ≥ RME

cut , djet
cut ≥ dME

cut . (2.3)

An event sample of the X + n-parton, where n < nmax, is treated as follows. A parton

shower program is executed on the event sample. Once the shower evolution is performed

until the shower cutoff scale, all final state partons within a rapidity range |y| < yclus
cut are

clustered to construct jets according to the anti-kT algorithm with Rjet and pjet
T cut. If the

number of the constructed jets njets is not identical to n, the event sample is vetoed. If the

event sample survives (njets=n), the distance parameters ∆R defined in eq. (2.1a) between

the n jets and the n partons are calculated, and then it is checked whether the following

relation is satisfied between each of the n jets and each of the n partons, or not

∆Rjet, parton < Cmatch ×Rjet, (2.4)

where Cmatch is a factor of O(1) and its explanation is given in the next paragraph. If

the jet satisfies the above relation with the parton, it means that the jet is close to the

parton in terms of the measure of the anti-kT algorithm. The jet is called matched with

the parton. If the matching between the jet and the parton is confirmed for all of the n

jets and all of the n partons, then the event sample is accepted. Once the event sample

is accepted, all final state partons are again clustered to construct jets which are defined

in the same way as above, but this time only those within a rapidity range |y| < ydetect
cut

are clustered. A value for ydetect
cut should reflect an actual experimental detector and can be

different from yclus
cut . The following relation should be satisfied between the two cutoffs,

ydetect
cut ≤ yclus

cut . (2.5)

The constructed jets will be used for physics analyses. If the values for yclus
cut and ydetect

cut

are different, the jets constructed at this stage can also be different from those constructed

before and therefore njets 6= n and/or the jets are not necessarily matched with the n

partons in some of the events. However, when ydetect
cut is large enough so that there is only a

small fraction of the events of the X+n-parton above ydetect
cut , the difference is expected to be

small. When the inclusive kT algorithm or the inclusive pp Cambridge/Aachen algorithm

is used for the clustering after the parton shower evolution, the check of the matching

between the jet and the parton can be performed by using the same equation in eq. (2.4).

If the exclusive kT algorithm with Rjet and djet
cut is used, the matching should be checked

by using the following relation:

min
(
pT jet, pTparton

)
∆Rjet, parton/R

jet < Cmatch × d
jet
cut. (2.6)
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The same relation with Cmatch = 1 is used in the k⊥-jet MLM algorithm. An event sample

of the X + nmax-parton is treated in a different way. After the parton shower evolution of

the event sample and the subsequent jet clustering in the same way as in the event samples

of the X+n-parton (n < nmax), the event sample is vetoed if the number of the constructed

jets njets is less than nmax (njets < nmax). If the event sample survives (njets ≥ nmax), the

matching between the jets and the partons is checked by using the same matching measure

in eq. (2.4). If the nmax highest pT jets are matched with the nmax partons, the event

sample is accepted.

The parameter Cmatch in eqs. (2.4) and (2.6) is an important parameter, since it de-

termines how far away the jet is allowed to be from the matrix-element parton. In ad-

dition to this, the Sudakov suppression can depend on it. The implementations of the

MLM algorithm in Alpgen [13, 14] and in MadGraph5_aMC@NLO [37] use a constant

value Cmatch = 1.5. However, there is nothing that uniquely determines Cmatch. This

is considered as a tuning parameter and even non-constant values may be possible. In

my implementation of the new merging algorithm, the same constant value Cmatch = 1.5

is chosen.

Below I describe event generation steps for completeness. The numerical study in

section 3 is performed according to these.

1. Generate the event samples for the X + 0, 1, . . . , nmax-parton production processes

at proton-proton (pp) collisions according to the LO cross sections, where X = tt̄

and nmax = 2 or 3. The soft and collinear singularity is regularised by imposing the

generation cutoff in eq. (2.1). A fixed value tΛ = 20 GeV is used for the scales in the

strong couplings αs and in the parton distribution functions (PDFs).

2. Select an event sample for the X + n-parton process, where n = 0, 1, · · · , nmax, with

the probability proportional to its integrated LO cross section obtained in the step 1,

Pn =
σ(pp→ X + n)∑nmax
i=0 σ(pp→ X + i)

. (2.7)

3. Construct a PYTHIA8 parton shower history of the event sample by successively

clustering two partons into one parton. This is done by doing the exact inverse

of the shower generation [27–29] of PYTHIA8. If I let {p}X+n denotes a com-

plete specification of the event sample, the history consists of intermediate events

{p}X+(n−1), {p}X+(n−2), · · · , {p}X+i, · · · , {p}X+1, {p}X with the ordered clustering

scales tn < tn−1 < · · · < ti+1 < · · · < t2 < t1. Below I give some technical details in

the history construction:

- The clustering 2 → 1 must respect the QCD 1 → 2 vertices and an intermedi-

ate event after the clustering must be one of the possible configurations. For

instance, the lowest order configuration {p}X must be either gg → tt̄ or qq̄ → tt̄

where q and q̄ have the same flavour.

- Sequential clustering scales are required to be ordered, from lower scales to

higher scales.
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- If there are more than one candidates for a clustering pair at a clustering step,

the one which has the lowest clustering scale is always chosen.

- In some events, the shower history construction stops because (1) an intermedi-

ate event cannot have one of the possible configurations or (2) a clustering pair

which gives a higher scale than the previous clustering scale cannot be found. In

such an event, a shower history is not constructed and the PDF and αs weight

in the step 4 is calculated differently.

4. Calculate the PDF and αs weight based on the parton shower history. Let us define

the energy fractions and the parton types of the incoming partons in the {p}X+i by

x
(i)
1 , x

(i)
2 and f

(i)
1 , f

(i)
2 , respectively. The weight for the {p}X+i is given by [20]

f
(
zi+1, ti+1; {p}X+i

)
=
αs(ti+1)

αs(tΛ)

f
(i)
1 (x

(i)
1 , ti)

f
(i)
1 (x

(i)
1 , ti+1)

f
(i)
2 (x

(i)
2 , ti)

f
(i)
2 (x

(i)
2 , ti+1)

, (2.8)

from which the total weight for the event sample {p}X+n is

n∏
i=0

f
(
zi+1, ti+1; {p}X+i

)
, (2.9)

where t0 = tX (defined below) and tn+1 = tΛ (defined in the step 1). The αs value

in eq. (2.8) is set identical to the one used in the shower evolution of PYTHIA8 and

is αs(mz) = 0.1365 in PYTHIA8 version 8212. The scale tX is determined from the

constructed lowest order configuration {p}X and is defined by

t2X = E2
T (t) + E2

T (t̄), (2.10)

where ET (t) is the transverse energy E2
T = m2+p2

T of the top quark and ET (t̄) is that

of the anti-top quark. This scale tX is also used as the scale of the strong couplings

α2
s for the lowest order configuration,

α2
s(tX)

α2
s(tΛ)

. (2.11)

This is added as a multiplicative factor in eq. (2.9). αs(mz) = 0.13 is used in this

factor. If the parton shower history of the event sample is not constructed in the

step 3, the PDF and αs weight is calculated based only on the information of the

generated event {p}X+n:

α2
s(tX)

α2
s(tΛ)

αs

(
ET (1)

)
αs

(
ET (2)

)
· · ·αs

(
ET (n)

)
αn
s (tΛ)

f
(n)
1 (x

(n)
1 , tX)

f
(n)
1 (x

(n)
1 , tΛ)

f
(n)
2 (x

(n)
2 , tX)

f
(n)
2 (x

(n)
2 , tΛ)

, (2.12)

where ET (i) is the transverse energy ET of a parton i in the {p}X+n and tX is

defined by

t2X = E2
T (t) + E2

T (t̄) +

n∑
i=1

E2
T (i). (2.13)
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Once the PDF and αs weight is calculated, the event sample is re-weighted. However,

since the weight is not bounded above by unity, the upper bound of the weight must

be found at first by calculating the weight for a large number of the events {p}X+n.

The integrated LO cross section obtained in the step 1 has to be multiplied by the

obtained upper bound of the weight.

5. A parton shower evolution is performed on the event sample, and the exclusive n-

jet event is produced when n < nmax or the inclusive n-jet event is produced when

n = nmax, by using the method described in this section. The parameter Cmatch is

set to a constant value Cmatch = 1.5. The parton shower starting scale, which is

the maximal shower evolution scale, is determined based on the information of the

generated event {p}X+n (independently of the shower history) and is defined by a

square root of

1

6

{
E2

T (t) + E2
T (t̄) +

n∑
i=1

E2
T (i)

}
. (2.14)

The overall factor 1/6 is chosen so that the total cross section after merging is not

deviated so much from the LO inclusive cross section σ(pp → X) (the total cross

section will be given in table 1).

6. Repeat the above procedure from the step 2 to the step 5 until a large number of the

accepted event samples are obtained.

3 Numerical studies

In this section, the new merging algorithm described in section 2 is numerically studied in

detail. I call it the modelA algorithm in this paper. The top quark pair production process

at the 14 TeV LHC is simulated. The results are compared against those of other existing

merging algorithms, the CKKW-L [9, 12, 20] and the MLM [13, 14] algorithms.

3.1 Setup and the cross section

In my implementation of the CKKW-L algorithm,1 the PDF and αs weight is calculated

in the same way as the steps 3 and 4 of the merging procedure described in section 2.

The Sudakov form factors are calculated by using the Sudakov veto algorithm [9] based

on the information of the constructed parton shower history. If the shower history is not

constructed (see the step 3 of the merging procedure), the intermediate Sudakov form

factors are set unity and instead the PDF and αs weight takes the following form which is

smaller than eq. (2.12):

α2+n
s (tX)

α2+n
s (tΛ)

f
(n)
1 (x

(n)
1 , tX)

f
(n)
1 (x

(n)
1 , tΛ)

f
(n)
2 (x

(n)
2 , tX)

f
(n)
2 (x

(n)
2 , tΛ)

. (3.1)

1The method of phase space separation is slightly different from the original one in my implementation.

This is the one called the CKKW-L+ algorithm in ref. [26]. However, numerical differences are found small.

The difference appears as the different values of the cross section σ(tt̄+ 1) for nmax = 2 and 3 shown in the

third and fourth rows of table 1.
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σ(tt̄+ 0) (pb) σ(tt̄+ 1) (pb) σ(tt̄+ 2) (pb) σ(tt̄+ 3) (pb) Total (pb)

ModelA 2 240 155 118 - 513

ModelA 3 240 155 68 43 506

CKKWL 2 133 160 232 - 525

CKKWL 3 133 159 109 97 498

MLM 2 230 153 124 - 507

MLM 3 230 153 69 46 498

Table 1. The contribution to the total cross section from each of the LO tt̄ + 0, 1, 2, 3-parton

production cross sections and the sum of them in unit of pico barn (pb). The index after the name

of the merging algorithm means nmax. The LO inclusive cross section is 496 pb.

The definitions of the several variables in the above weight are given in the steps 3 and 4 of

the merging procedure in section 2 and tX is defined by eq. (2.13). In my implementation

of the MLM algorithm, the PDF and αs weight is calculated exactly in the same way

as the modelA algorithm and the parton shower starting scale is also set in the same

way (eq. (2.14)). When the parton shower history cannot be constructed, the PDF and

αs weight in the CKKW-L algorithm (eq. (3.1)) is different from that in the other two

algorithms (eq. (2.12)). However, I have found that the ratio of the shower history non-

constructed events divided by the total events is negligibly small: 0% in the tt̄+ 1-parton

process, 0.04% in the tt̄+2-parton process and 0.09% in the tt̄+3-parton process. Therefore,

with my implementations of the three merging algorithms, the difference among the three

algorithms is only how the Sudakov suppression is calculated. Note that the parameter

Cmatch also takes the same value

Cmatch = 1.5 (3.2)

in the modelA and the MLM algorithms.

The generation cutoff QME
cut in eq. (2.1) is set the same in all of the three algorithms:

RME
cut = 0.4, pME

T cut = 20 GeV. (3.3)

The rapidity cutoffs yclus
cut and ydetect

cut on final state partons for the jet clustering, which are

defined above eqs. (2.4) and (2.5) respectively, are set to

yclus
cut = ydetect

cut = 5, (3.4)

and jets are defined by the anti-kT algorithm with the parameters

Rjet = 0.4, pjet
T cut = 30 GeV. (3.5)

The rapidity cutoff on jets is set to

yjet
cut = 4.8. (3.6)

The merging scales in the three algorithms are set as follows:
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- ModelA : RMS = 0.4, pMS
T cut = 30 GeV

- CKKW-L : RMS = 0.4, pMS
T cut = 20 GeV

- MLM : RMS = 0.4, EMS
T cut = 30 GeV

The merging scale in the modelA algorithm is the same as the parameters of the anti-kT
algorithm defined in eq. (3.5) by definition. The CKKW-L algorithm allows us to set

the merging scale equal to the generation cutoff. In the cone jet algorithm used in the

MLM algorithm, a cutoff on jets is given not by the transverse momentum pT but by the

transverse energy ET . Since ET ≥ pT is always true, the merging scale choice in the MLM

algorithm corresponds to a smaller merging scale than that in the modelA algorithm.

The event samples for the tt̄ + 0, 1, 2, 3-parton production processes at proton-proton

(pp) collisions are generated according to the leading order (LO) cross sections by using

MadGraph5_aMC@NLO [38] version 5.2.2.1. For the PDFs set, CTEQ6L1 [39] is used.

PYTHIA8 [30, 31] version 8212 is used for the parton shower evolution. Fastjet [40] version

3.1.0 is used for executing the anti-kT algorithm. The cone jet clustering algorithm in

the MLM algorithm is executed by using the CellJet routine implemented in PYTHIA8.

The tt̄ is assumed stable, since the main purpose of this study is to investigate a way of

accurately modelling the kinematic activity of jets induced by the hard process. Hence the

hadronisation after the shower evolution and the multiple interaction in PYTHIA8 are also

turned off. The tt̄ will not be clustered to construct jets.

In table 1, the contribution to the total cross section from each of the leading order

(LO) tt̄ + 0, 1, 2, 3-parton production cross sections and the sum of them in unit of pico

barn (pb) are summarised. The index after the name of the merging algorithm represents

the maximal number of partons produced by the LO cross section, nmax. This notation is

used hereafter. It is shown that the modelA results reasonably reproduce the LO inclusive

cross section, which is 496 pb. The tt̄ + 2, 3-parton cross sections in the CKKWL results

are particularly larger than those in the other results, and those in the MLM results are

slightly larger than those in the modelA results. These observations reflect the fact that

the smaller the merging scale is, the larger the contribution from a cross section for higher

parton multiplicity will be.

3.2 Distributions

In figure 1, I show the normalised distributions of kT scales [32] di associated with merging

from i+1 to i jets for i = 1, 2, 3 and the scalar sum HT of the pT of the tt̄ and all jets. In all

of the panels, the solid curves represent the modelA 3 results, the dashed curves represent

the modelA 2 results and ×, �, � and O points represent the CKKWL 3, CKKWL 2,

MLM 3 and MLM 2 results, respectively. The ratios with respect to the modelA 3 results

are shown in the lower part of each panel. When the different algorithms are compared, the

algorithms with the same nmax should be compared, to be fair. It is shown that the modelA

results agree very well with the MLM results. The agreement between the modelA results

and the CKKWL results is also reasonably good as a whole. However, the CKKWL results

slightly tend to show harder distributions. We can confirm the validity of the modelA

– 10 –
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Figure 1. The normalised distributions of kT scales di associated with merging from i + 1 to i

jets for i = 1, 2, 3 and the scalar sum HT of the pT of the tt̄ and all jets. The solid curves give

the modelA 3 results, the dashed curves give the modelA 2 results and ×, �, � and O points give

the CKKWL 3, CKKWL 2, MLM 3 and MLM 2 results, respectively. The ratios with respect to

the modelA 3 results are shown in the lower part of each panel. The index after the name of the

merging algorithm means the maximal number of partons produced by the LO cross section, nmax.

algorithm as a merging algorithm from the good agreement with the other results and the

smooth distributions of the modelA results.

Not only the fully inclusive events are produced, but also the behaviour of jets must

be described appropriately by a merging algorithm. In figure 2, I show the normalised
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differential cross sections as functions of the pT and rapidity y of the highest pT jet and those

of the second highest pT jet in the inclusive two-jet events (njets ≥ 2, where njets denotes the

number of jets). The correspondence between the curves/points and the merging methods

is shown inside the upper left panel and it is the same as in figure 1. The ratios with respect

to the modelA 3 results are shown in the lower part of each panel. The modelA results

again show good agreement with the MLM results in all of the observables. When the

three algorithms are compared for nmax = 3, the CKKWL result shows harder pT spectra

and broader y spectra than the other two results. This is consistent with the observation in

ref. [14], where the CKKW-L algorithm implemented in Ariadne and the CKKW algorithm

implemented in SHERPA tend to show harder pT and broader pseudo-rapidity spectra of

jets than the MLM algorithms implemented in Alpgen and Helac and the kT -jet MLM

algorithm implemented in MadGraph. In my implementations of the three algorithms, the

PDF and αs weight is calculated in a common way and the matrix-element generator and

the parton shower generator are also the same. Therefore, it can be concluded that these

discrepancies in the pT and y spectra originate from the different ways of calculating the

Sudakov suppression.

As an observable that measures angular correlations among jets, I choose the azimuthal

angle difference [6, 7] between the two highest pT jets:

∆φ = φ1 − φ2. (3.7)

The following rapidity cuts are imposed on the two highest pT jets

y2 < 0 < y1, ∆y = y1 − y2 > 4, (3.8)

which are often called the vector boson fusion (VBF) cuts and enhance the correlation.

One of the two jets which has a positive rapidity y1 is chosen for the φ1 and the other jet

which has a negative rapidity y2 is chosen for the φ2. In order to enhance the correlation

in ∆φ further, the following cut is imposed on the tt̄ invariant mass [7],

mtt̄ < 600 GeV. (3.9)

Before I show the ∆φ distributions, I study the minimum ∆R =
√

∆y2 + ∆φ2 between

the highest pT jet and the matrix-element parton, labelled as ∆R1, and that between the

second highest pT jet and the matrix-element parton, labelled as ∆R2. A large value in

∆R1 or ∆R2 implies that the corresponding jet loses the kinematic information of the

matrix-element parton. Therefore, large values in either or both of ∆R1,2 imply the loss of

the LO accuracy of the angular correlation in ∆φ. ∆R1,2 are calculated according to the

following procedure:

1. Pick up an event sample which contains at least two jets and further satisfies the cuts

in eqs. (3.8) and (3.9).

2. Pick up the highest pT jet from the two highest pT jets and calculate ∆R between

the jet and each of the n partons produced by the LO tt̄ + n-parton cross section.

The minimum value of ∆R becomes ∆R1.
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Figure 2. The normalised differential cross sections as functions of the pT and y of the highest

pT jet and those of the second highest pT jet in the inclusive two-jet events. The correspondence

between the curves/points and the merging methods is shown inside the left upper panel and it is

the same as in figure 1. The ratios with respect to the modelA 3 results are shown in the lower

part of each panel.

3. Pick up the second highest pT jet from the two highest pT jets and calculate ∆R

between the jet and each of the n partons produced by the LO tt̄ + n-parton cross

section. The parton which gives the ∆R1 in the step 2 will not be considered. The

minimum value of ∆R becomes ∆R2.

Figure 3 shows the normalised differential cross sections as functions of ∆R1 and ∆R2 in

the exclusive two-jet events (upper panels) and the inclusive two-jet events (lower panels).
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The correspondence between the curves/points and the merging methods is shown inside

the upper left panel and it is the same as in figure 1. The ratios with respect to the

CKKWL 2 results are shown in the lower part of each panel (Note that this is different

from the other figures. The reason is because the modelA 3 results give 0 in ∆R1,2).

The last bins in the ∆R1,2 distributions contain all of the events which give ∆R1,2 > 1.

When the two-jet events originate from either of the LO tt̄+ 0, 1-parton cross sections, the

angular correlation between the two jets is obviously not at the LO accuracy. In table 2,

I show the ratios of the contributions to the exclusive two-jet events from each of the LO

tt̄ + 0, 1, 2, 3-parton production cross sections divided by the sum of them in unit of %.

The events satisfy the cuts in eqs. (3.8) and (3.9). While the contributions from the LO

tt̄+0, 1-parton cross sections are zero in the modelA results, they are non-zero in the other

results. Note that the non-zero contribution from the LO tt̄+ 3-parton cross section in the

modelA 3 result is due to the fact that one of the three jets is removed by the rapidity

cut in eq. (3.6). When the event originates from the LO tt̄ + 0-parton cross section, both

of ∆R1,2 cannot be calculated and so the event will be contained in the last bins in the

∆R1,2 distributions. When the event originates from the LO tt̄ + 1-parton cross section,

∆R2 cannot be calculated and so the event will be contained in the last bin in the ∆R2

distribution.

In figure 3, the modelA results always give the sharp cutoff at ∆R1,2 = 0.6 and zero

above this, as expected from the construction of the modelA algorithm (eq. (2.4)) and

eqs. (3.2) and (3.5). In the exclusive two-jet events (upper two panels), the modelA 2

result and the modelA 3 result give the same distribution, since only the LO tt̄+ 2-parton

cross section contributes in the both cases (see table 2). The MLM results show differences

from the modelA results around ∆R1,2 = 0.6 due to the difference between the cone jet

algorithm used during the merging procedure and the anti-kT jet algorithm used to define

the jets in this figure. The MLM results give the visible contributions in the last bins,

while the modelA results do not. However, as a whole, the MLM results are very similar

to the modelA results. Since ∆R1,2 are not physical observables, the sharp cutoffs in their

distributions will not indicate the invalidity of the modelA and the MLM algorithms. The

∆R1 distribution in the njets = 2 events (upper left panel) shows that the CKKWL 3

result is the best in the sense that it has more events with small ∆R1 than the other

results. The other results are comparable with each other in the statistically dominant

region (∆R1 ' 0.0 ∼ 0.3). The ∆R2 distribution in the njets = 2 events (upper right

panel) shows that the CKKWL 2 result is the worst in the sense that it has more events

with large ∆R2 than the other results. The other results are comparable with each other in

the statistically dominant region (∆R2 ' 0.0 ∼ 0.3). As mentioned above, large values in

either or both of ∆R1 and ∆R2 imply the loss of the LO accuracy of the angular correlation

in ∆φ. Therefore, the upper two panels in figure 3 imply that the CKKWL 2 result contains

more events which lose the LO accuracy of the angular correlation in ∆φ than the other

results. The similar behaviour is observed in the njets ≥ 2 events (lower panels).

In figure 4, I show the normalised differential cross sections as functions of |∆φ|. The

results in the exclusive two-jet events are shown in the upper left panel and those in the

inclusive two-jets events are shown in the upper right panel. Furthermore, the results with
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Figure 3. The minimum ∆R =
√

∆y2 + ∆φ2 between the highest pT jet and the matrix-element

parton (labelled as ∆R1) and that between the second highest pT jet and the matrix-element parton

(labelled as ∆R2), in the exclusive (upper panels) and inclusive (lower panels) two-jet events. The

cuts in eqs. (3.8) and (3.9) are imposed. The correspondence between the curves/points and the

merging methods is shown inside the upper left panel and it is the same as in figure 1. The ratios

with respect to the CKKWL 2 results are shown in the lower part of each panel. The last bins

contain all of the events which give ∆R1,2 > 1.
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σ(tt̄+ 0)/Total σ(tt̄+ 1)/Total σ(tt̄+ 2)/Total σ(tt̄+ 3)/Total

ModelA 2 0 0 100 -

ModelA 3 0 0 99.9 0.1

CKKWL 2 0.6 4.3 95.1 -

CKKWL 3 0.7 4.5 47.2 47.7

MLM 2 < 0.05 0.6 99.4 -

MLM 3 < 0.05 0.7 93.3 6.0

Table 2. The ratios of the contributions to the exclusive two-jet events from each of the LO

tt̄+ 0, 1, 2, 3-parton production cross sections divided by the sum of them in unit of %. The cuts in

eqs. (3.8) and (3.9) are imposed.

a different rapidity cut ∆y = y1 − y2 > 3 instead of ∆y > 4 in eq. (3.8) are shown in the

lower two panels. The correspondence between the curves/points and the merging methods

is shown inside the upper left panel and it is the same as in figure 1. The ratios with respect

to the modelA 3 results are shown in the lower part of each panel. It is shown that all the

results agree with each other in ±10%. This observation might be surprising considering

the differences found in figures 2 and 3. By looking carefully at the results, we can observe

that the CKKWL 2 results consistently show the visible deviations from the other results

near the bottom region (|∆φ| ∼ 0) and the peak region (|∆φ| ∼ 2) in all of the panels.

Since the CKKWL 2 results are deviated in a way that their distributions become flatter

than the other results, it can be concluded that these deviations are induced by the loss of

the LO accuracy of the angular correlation in ∆φ which has been already implied by the

large ∆R2 in figure 3. The differences between the modelA 2 results and the modelA 3

results in the njets ≥ 2 events are small. This is as expected from the construction of

the modelA algorithm that the LO accuracy of the angular correlation between the two

highest pT jets is preserved even in the inclusive two-jet events in the modelA 2 result.

The differences between the modelA results and the MLM results are found small.

4 Summary and discussion

In this paper, a new tree level merging algorithm which guarantees the leading order (LO)

accuracy of angular correlations among jets is proposed. The new algorithm proceeds based

on the same philosophy of the MLM algorithm and the following idea is additionally imple-

mented: the definition of jets used during a merging procedure is set identical to the one

used during analyses of jets. The new algorithm allows us to produce fully inclusive event

samples as other existing merging algorithms. In inclusive event samples, the kinematics of

each of up to the nmax highest transverse momentum pT jets strictly follows that of each of

the matrix-element partons, where nmax denotes the maximal number of partons produced

by a LO cross section. Therefore, as long as the highest pT jets are always picked up, the

LO accuracy of angular correlations among up to nmax jets is preserved.

The detailed merging procedure of the new merging algorithm (named modelA in this

paper) is explained in the case that the anti-kT algorithm is chosen as a jet clustering

algorithm used during the merging procedure and at the analysis level. The validation
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Figure 4. The normalised differential cross sections as functions of |∆φ| = |φ1−φ2| in the njets = 2

events (left panels) and the njets ≥ 2 events (right panels). The cuts in eqs. (3.8) and (3.9) are

imposed in the upper two panels. A different rapidity cut ∆y > 3 instead of ∆y > 4 is imposed in

the lower two panels. The correspondence between the curves/points and the merging methods is

shown inside the upper left panel and it is the same as in figure 1. The ratios with respect to the

modelA 3 results are shown in the lower part of each panel.
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test is also performed in this case (summarised below). However, the modelA algorithm

can be valid whatever the definition of jets is. The generation cutoff and the matching

measure corresponding to an arbitrary jet clustering algorithm can be easily read from the

measure of the jet clustering algorithm. I have explicitly presented those corresponding to

the inclusive/exclusive kT algorithms and the inclusive pp Cambridge/Aachen algorithm.

The kT scales di associated with merging from i + 1 to i jets for i = 1, 2, 3 and the

scalar sum HT of the pT of the top quark, the anti-top quark and all jets in the inclusive tt̄

events are produced. Furthermore, the pT and the rapidity y of the two highest pT jets in

the inclusive tt̄ plus two-jet events are studied. The results are compared with those of the

CKKW-L algorithm and the MLM algorithm. The results agree very well with the MLM

results. This observation confirms the validity of the modelA algorithm as a merging

algorithm, when jets are defined by the anti-kT algorithm. Compared to the CKKW-L

results, the modelA results (thus the MLM results, too) slightly tend to show softer pT and

narrower y spectra of jets. This is consistent with the observation in ref. [14]. Since the

PDF and αs weight is calculated in a common way and the matrix-element generator and

the parton shower generator are also the same in my implementations of the three merging

algorithms, I have concluded that these discrepancies originate from the different ways of

calculating the Sudakov suppression.

∆R1 (the minimum ∆R =
√

∆y2 + ∆φ2 between the highest pT jet and the matrix-

element parton) and ∆R2 (the minimum ∆R between the second highest pT jet and the

matrix-element parton) are found interesting quantities, since large values in either or both

of ∆R1,2 imply the loss of the LO accuracy of the angular correlation between the two

highest pT jets. Although the MLM results give some events which have large ∆R1,2, the

MLM results have quite similar spectra with the modelA results. In ∆R1, the CKKWL 3

results (the index indicates nmax) are the best (more events in smaller ∆R1), while the

other results are comparable with each other in statistically dominant region. In ∆R2, the

CKKWL 2 results are the worst (more events in larger ∆R2), while the other results are

comparable with each other in statistically dominant region.

As an angular correlation observable, the azimuthal angle difference ∆φ = φ1 − φ2

between the two highest pT jets is studied. The vector boson fusion cuts are imposed on

the jets. The results of all the three merging algorithms agree with each other in ±10%.

However, by looking carefully, it is observed that the CKKWL 2 results consistently show

the visible deviations from the other results near the bottom region (|∆φ| ∼ 0) and the peak

region (|∆φ| ∼ 2). The CKKWL 2 results are deviated in a way that their distributions

become flatter than the other results. Therefore, I have concluded that the deviations are

induced by the loss of the LO accuracy of the angular correlation, which has been already

implied by the large ∆R2 in the CKKWL 2 results.

The differences between the modelA results and the MLM results are found small

not only in the pT and y but also in the angular correlation observable ∆φ, when jets are

defined by the anti-kT algorithm. However, it has been shown that the MLM results contain

some event samples which have large ∆R1,2. Furthermore, if jets at the analysis level are

defined by other algorithms, the MLM results might contain the such event sample more

and the differences between the modelA result and the MLM result in angular correlation
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observables might become larger. Therefore, it will be safer to use the modelA algorithm

for jet angular correlation studies. An implementation of the modelA algorithm is as simple

as that of the MLM algorithm.

There are basically two parameters which cannot be determined uniquely in the new

algorithm, Cmatch and the definition of the parton shower starting scale (this is also the

case in the MLM algorithm). This fact might be seen as a weak point in the algorithm.

However, merging algorithms and parton shower programs are just models after all. An

appropriate approach may be to tune the algorithm together with a parton shower model by

using these parameters so that the pT and y distributions of jets in a given process become

consistent with the data at first and then make the predictions of angular correlations

among the jets.
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[12] N. Lavesson and L. Lönnblad, W+jets matrix elements and the dipole cascade, JHEP 07

(2005) 054 [hep-ph/0503293] [INSPIRE].

[13] M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and

shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013

[hep-ph/0611129] [INSPIRE].

[14] J. Alwall et al., Comparative study of various algorithms for the merging of parton showers

and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473

[arXiv:0706.2569] [INSPIRE].

[15] W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys.

Rev. D 78 (2008) 014026 [arXiv:0707.3652] [INSPIRE].

[16] J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored

particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [INSPIRE].

[17] S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated

showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].

[18] K. Hamilton, P. Richardson and J. Tully, A Modified CKKW matrix element merging

approach to angular-ordered parton showers, JHEP 11 (2009) 038 [arXiv:0905.3072]

[INSPIRE].

[19] W.T. Giele, D.A. Kosower and P.Z. Skands, Higher-Order Corrections to Timelike Jets,

Phys. Rev. D 84 (2011) 054003 [arXiv:1102.2126] [INSPIRE].
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