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ABSTRACT: The uplift of SO(8) gauged N = 8 supergravity to 11-dimensional supergravity
is well studied in the literature. It is given by consistent relations between the respective
vector and scalar fields of both theories. For example, recent work provided non-linear uplift
Ansétze for the scalar degrees of freedom on the internal manifold: the inverse metric and
the three-form flux with mixed index structure. However, one always found the metric of
the compactified manifold by inverting the inverse metric — a task that was only possible
in particular cases, e.g. for the G2, SO(3)xSO(3) or SU(3)xU(1)xU(1) invariant solutions
of 11-dimensional supergravity.

In this paper, I present a direct non-linear uplift Ansatz for the internal metric in
terms of the four-dimensional scalars and the Killing forms on the compactified background
manifold. Based on this formula, I also find new uplift Ansétze for the warp factor and
the full internal three-form flux, as well as for the internal four-form field-strength. The
new formula for the four-form only depends on the metric, the flux as well as the four-
dimensional scalars and background Killing forms — it does not require to calculate the
derivative of the flux. All the Ansétze presented in this work pass a very non-trivial test
for a Go invariant solution of 11-dimensional supergravity.

My results may be generalized to other compactifications, e.g. the reduction from type
IIB supergravity to five dimensions.
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1 Introduction

A supergravity theory in D > 4 dimensions may be related to a four-dimensional theory
of gravity coupled to matter. This is the idea of Kaluza-Klein theory: a D-dimensional
manifold splits into a four-dimensional and a compact (D — 4)-dimensional manifold,

Mp =My x Mp_y. (1.1)

This splitting is called compactification of the (D—4) extra dimensions. An action including
the D-dimensional Einstein-Hilbert term is given by

S:/BD+WMK (1.2)

where Rp denotes the Ricci scalar in D dimensions. For a consistent compactification,
eq. (1.2) contains the four-dimensional Einstein-Hilbert action. All other terms correspond
to matter. For example, T. Kaluza and O. Klein presented one of the first attempts to unify
gravity and electromagnetism [1, 2]. They constructed a five-dimensional theory of gravity,

S5 = / RsdV (1.3)

such that the extra components of the metric were given by a photon and a scalar field. In
that case, the fifth dimension was compactified on a circle,

M5:M4><Sl. (1.4)



A physicist naturally is in another situation. He ‘observes’ a four-dimensional theory of
gravity coupled to matter and may ask the following question: is there a higher-dimensional
theory, which consistently reduces to the observed theory via compactification of the extra
dimensions? This is called an uplift: one constructs the D-dimensional fields (e.g. the
metric) out of a given four-dimensional theory of gravity. The main task in establishing such
a program is to find Ansétze for the D-dimensional fields in terms of the four-dimensional
ones, such that they satisfy the higher-dimensional equations of motion. The uplift is
consistent only when the latter is satisfied.

One of the few known examples is the uplift of N = 8 supergravity to 11-dimensional
supergravity. N = 8 supergravity represents the low-energy limit of string theory. It is the
maximally supersymmetric theory of gravity and contains a local SU(8) gauge symmetry.
It was first investigated in the beginning of the 80s [3, 4]. At the same time, 11-dimensional
supergravity was developed [5], which is the highest dimensional supergravity theory [6].
The respective Lagrangian is also locally SU(8) gauge invariant.

11-dimensional supergravity may spontaneously compactify to SO(8) gauged N = 8
supergravity [7-10]. The seven extra dimensions therefore compactify on a seven-sphere,!

M1 = My x ST (1.5)

This work is based on the uplift of SO(8) gauged N = 8 supergravity to 11-dimensional
supergravity [9, 11-14]. It is given by non-linear Ansétze for the 11-dimensional scalar and
vector fields in terms of the four-dimensional ones. These include the correct relations
between the 28 vector fields of 11-dimensional supergravity and the 28 vectors of N = 8
supergravity. On the other hand, the 70 scalar degrees of freedom of 11-dimensional super-
gravity are contained in certain fields that are defined on the internal space (a deformed
seven-sphere): the metric gy, the three-form potential A, and the six-form potential
Am,..mg- For the complete uplift, these fields must be related to the 35 scalars uijl J and
pseudo-scalars v;; 17 of N = 8 supergravity.

There is an old explicit formula for the inverse metric A~1g™" [15], as well as non-
linear Ansétze for the full internal six-form potential and the three-form flux with mixed
index-structure [14]. There are two technical problems arising here: first, one must invert
A~1g™" ‘by hand’ in order to obtain Ag,,,. Secondly, one must extract the warp factor A
from these expressions by computing their determinants. Both, the inversion of the metric
and the calculation of the warp factor can only be done in particular cases, e.g. when the
theory is Go, SO(3)xSO(3) or SU(3)xU(1)xU(1) invariant [16-19]. Only in such cases, it
is then possible to compute the full internal three-form potential A,,y.

In this paper, I present a new simple non-linear Ansatz for the full internal metric

Gmn; L-€. .
A_ngn(x7 y) = ﬁ (Amijkl - Bmijkl> (Anijkl - Bnijkl> (.%', y)' (1'6)

The tensors A,," % and B,," %" are given in terms of the Killing forms on the seven-sphere
and the four-dimensional scalar fields (egs. (4.4)—(4.7)). In combination with the previous

1S0(8) is the isometry group for S”.



uplift formulas for the inverse metric and the three-form with mixed index structure, I also
find new non-linear Ansdtze for the warp factor and the full internal three-form potential
Apnp- They are given by

- 1 mn 17
A 3('1:7 y) = 28 . 4 Cijl (.'13', y)c ]klmn(xa y)7 (17)
—3 V2i 1J ij ij 1] grst
AN g ,) = — o Ko () (017 09 17) () ™ (29) (Apart — Bpgr) (.1,

(1.8)

where the tensor Cp,/* is defined similarly to A,;,“* and B,,"* in eq. (4.10). The two-
forms K,,,'’ denote the derivative of the Killing vectors K,,,’” on the round seven-sphere.

During completion of this paper, a work by Oscar Varela derived similar coordinate-
free Ansétze for the metric, the warp factor and the flux [20]. These expressions however,
are given in a different form that is based on the tensor hierarchy formalism of gauged
supergravity (see egs. (24-26) of [20]). This makes it complicated to actually compare my
formulas to those of Varela’s work. In order to illustrate the simplicity of the Ansétze above,
I test them for a Go invariant solution of 11-dimensional supergravity. This essential part of
the present work is done in section 6. It turns out that the new formulas in egs. (1.6)—(1.8)
appear to be very suitable for this test.

In the second part of this paper, I derive a new uplift Ansatz for the internal four-form
field-strength

Fonpg = 4! Dy Ay - (1.9)

Here, Dm denotes the covariant derivative with respect to the internal background metric
Jmn- So far, eq. (1.9) could only be used in particular cases — when an explicit expression
for the internal three-form potential was already given. However, it was rather complicated
to compute the derivative of A, in such cases, for example to find the Gy or SO(3) xSO(3)
invariant solutions of 11-dimensional supergravity [16, 17]. With the new general Ansatz
for Ap,np above, I derive a simple direct formula for the four-form field-strength, i.e.

_ ° S AT1T27T3
anpq = m7Ags[m (46npq]r1r2r3 A

= 39y Apge K" T K (g vij ) (0 gep + 07 5F) ) (1.10)

Here, my denotes the inverse S7 radius and €r, .., 18 the internal e-tensor.

A formula for the complete four-form field-strength occurs in eq. (28) of Varela’s
work [20]. Again, it is hard to compare both formulas because the expression in [20]
is given in a form based on the tensor hierarchy formalism of gauged supergravity. In
section 6, I will demonstrate once more that the present Ansatz above is given in a very
convenient form — it can be directly used for a test against the Go invariant solution of
11-dimensional supergravity.



The new non-linear Ansatz in eq. (1.10) provides another remarkable result: the above
expression is ‘almost’ covariant?, which means that raising the indices is simple,

Fmnpg m7A§5tgt[m (46npq]r1r2r35Arlr2r3
_ g4 KT ers KL (uz’ju + vijIJ) (uinL + Vi K1) ) (1.11)

Up to now, it was far more complicated to derive F™"P? — by raising each single index
of Fnpg with the explicit expression for the inverse metric g"". For example, this was
one of the hardest tasks in verifying the SO(3) xSO(3) invariant solution of 11-dimensional
supergravity [17]. In the case of maximally symmetric spacetimes, these results can be
used to compute the components of the Ricci tensor via the equations of motion.

In the next section, I collect the main steps to find the consistent uplift of N = 8
supergravity to 11-dimensional supergravity. In section 3, I re-derive the known non-
linear Ansitze for the inverse metric A~'¢g™" the three-form with mixed index structure
Apn? and the six-form potential A, ...;ms. In section 4, I present the new uplift Ansatze
for the metric gp,n, the warp factor A and the full internal three-form potential Ajyp.
Furthermore, I find the new non-linear Ansatz for the four-form field-strength (F,ppq and
F™mP2) in section 5. In section 6, I test the new uplift Ansétze for the Gg invariant
solution of 11-dimensional supergravity: I compute the metric and the four-form field-
strength using the new formulas in eqgs. (1.6), (1.10)® and compare with the results of [16].
Finally, I conclude in section 7.

2 The uplift of N = 8 supergravity to 11-dimensional supergravity

The bosonic field content of 11-dimensional supergravity is an elfbein Ep?(z,y) and a
three-form potential Ay np(x,y). The set of coordinates splits into four spacetime (ex-
ternal) coordinates x and seven internal coordinates y. Capital Roman letters denote 11-
dimensional indices. These split into external (Greek letters) and internal indices (lower
case Roman letters). As a rule of thumb: letters from the middle of an alphabet always
denote curved spacetime indices and letters from the beginning of an alphabet are the
corresponding tangent space indices.

The bosonic Lagrangian of 11-dimensional supergravity is written in terms of the elf-
bein, the three-form potential and the four-form field-strength [7]. The latter is defined by

F(4) = dA(3) = FMNPQ = 4! 8[MANPQ]‘ (2.1)

The Lagrangian can also be written in terms of dual fields [21]: for example, one could
replace Fy) by its dual seven-form

F(7) = *F(4) (2.2)

2Indices of §mn and the Killing forms are raised and lowered with the background metric. All other
tensors are covariant.

3 A combination of the old Ansétze for A~1¢g™", Amn? and the new metric Ansatz yields the new formulas
for the warp factor A and the internal three-form A,,,,. The old expressions for the inverse metric and
the three-form potential with mixed index structure have already been tested in [16]. Hence, it suffices to
test the Ansétze for the metric gmn and the four-form field-strength Finnpq for a G2 invariant solution of
11-dimensional supergravity.



and the three-form potential by its dual six-form Ay, ...a7,. The latter is the potential for
the dual seven-form field-strength,

Fipy = dAgg) + 3V2A(3) A Fy) + fermionic terms. (2.3)

Later, one needs the six-form potential to describe certain vector and scalar degrees of
freedom.
Let us count the scalar and vector fields in 11-dimensional supergravity. The elfbein

e, B, en?®
EMA: (g “e am>. (2.4)
m

is given by

It contains the vierbein e,*(z,y), seven vectors B,™(x,y) and 28 scalar fields e,,*(x,y).
On the other hand, the three-form potential splits into the components

AMNP = (A,uzzpa A,u,z/ma A,umny Amnp) . (25)

There are 21 vector fields in A mn(z,y). Furthermore, A, (z,y) contains seven and
Apmnp(2,y) 35 scalar degrees of freedom. The remaining components A, ,(x,y) represent
the potential for the external field-strength

Fuupa (.%', y) = 4! a[uAVpa] (x7 y) (26)

and hence, contain no more scalar or vector degrees of freedom. This is because for all
dimensional reductions,

F,uupa(liy y) = ifFR(xa y)ﬁ,ul/pm (27)

The Freund-Rubin parameter fpg is constant for Freund-Rubin compactifications [22] and
Muwpo Tepresents the volume form in four dimensions. All in all, there are 7 4+ 21 = 28
vectors and 28 4+ 7 + 35 = 70 scalar degrees of freedom in 11-dimensional supergravity.

The bosonic field content of N = 8 supergravity is a vierbein é,%*(x), 28 ‘electric’
vector fields 4,17 (x) as well as 35 scalar and 35 pseudo-scalar fields u;;’7 (), vij r7(z). All
these fields only depend on the four spacetime coordinates z. The (antisymmetric) bi-vector
indices I.J belong to the 28-dimensional representation of SL(8,R) and the (antisymmetric)
bi-vector indices ij belong to the 28-dimensional representation of the local SU(8). The
bosonic degrees of freedom of both, N = 8 supergravity and 11-dimensional supergravity
coincide. This is at least, necessary for a consistent uplift.

In order to uplift N = 8 supergravity to 11-dimensional supergravity, one must ex-
plicitly relate the vierbeine, as well as the scalar and vector fields of both theories to each
other. In the following, I will restrict to the S7 compactification [10]. The matching was
found by comparing the supersymmetry transformations of the four- and 11-dimensional
fields [14, 23]. It is based on a global E7(7y symmetry in N = 8 supergravity [3]. Ez(7) is not
a symmetry of 11-dimensional supergravity. However, one may emphasize the respective
E7(7) structures as much as possible in order to compare the fields with those of N = 8
supergravity.



The correct relation between the vierbeine of N = 8 supergravity and 11-dimensional
supergravity is
e (z,y) = Az, y) /%, (x). (2.8)

The proportionality factor A(z,y) is called the warp factor. Let é,,* be the siebenbein for
the round seven-sphere and §,,, denote the respective background metric and let g,,, be
the full internal metric of the deformed S7 [12],

.&mn = émaénm Imn = emaena- (29)
Then, the warp factor is defined by
det (e,%) det(gmn)
A pu— pu— . 2-10
det (€,,*) \/ det (Gmn) (2.10)

In order to match the scalar degrees of freedom, one first observes that the 35 scalars

and 35 pseudo-scalars of N = 8 supergravity parametrize an element of E7/SU(8). This
co-set space is indeed, 70-dimensional. Both, scalars and pseudo-scalars together form an
element ]A)Mij(a;) in the fundamental representation 56 of E(7). Its SL(8,R) decomposition

is given by
VM= (ﬁ (uig" +vij 1), =35 (uig" - Uij[J)) , (2.11)
56 — 28 & 28. (2.12)

The 56 representation is labeled by indices M, A, ..., which are raised and lowered with
the symplectic form Qaqn (see [3]). The SU(8) indices ij are raised and lowered via complex
conjugation,

upy = (uiju)* , I = (v )" (2.13)

One also writes the scalar fields of 11-dimensional supergravity in an E;(7) covariant
way. Therefore, it is convenient to describe all scalars by the fields e,,%, Ay, ...mg and Ayupp
(rather than using A,,.,,). Indeed, the internal dual six-form potential Ay, ...;mq contains
the same scalar degrees of freedom as A,,,,,. In a second step, one converts this scalar field
content (€m®, Amy..mg and Appp) into components of a ‘56-bein’ of Ery, i.e. [13, 24]

2
V™ = —*S[A—l/zr?;; : (2.14)

2
an AB — _\8[A_1/2 (an AB + 6\/§Amnpri3) ) (215)

V2 1 e
Vg = _? . a77mnp1 ps A—1/2 Ty ps AB + 60\/§Ap1p2p3]-_‘p4p5 AB

V2
- 6!\/5 <qu1~~p5 - TAQP1PQAP3P4P5 1_‘qAB ’ (2-16)



2 1
Vo AB = _£ ) fﬁpr“mA—l/Q

g Tl (Pp1~~~p7rm)AB + 126\/§Amp1p2rp3~~p7 AB

V2
+ 3\/5' 7! (Ampl"~p5 + TAmplpzApsmm 1ﬂ176p7 AB

9! V2
+ 5 (Amp1~~~p5 + 12AmP1P2AP3P4P5> A:D6:D7IIF?4B] : (2'17)

These components constitute the GL(7,R) decomposition of the 56-bein

VMg = <VmAB7 Vi AB, V" 4B, VmAB> 7 (2.18)

56 > 7321621 7. (2.19)

The SU(8) indices A, B, ... are raised and lowered by complex conjugation* and the 8x8
[-matrices are defined in appendix A.

The correct relation between the 56-bein in 11 dimensions and the four-dimensional
scalars V of N = 8 supergravity was found by considering the respective supersymmetry
transformations [14].° Tt is given by

VMup(,y) = RMa(y) na (v) ms (y) WV i (2). (2.20)

Here, 77f4 are the eight Killing spinors defined on the internal geometry. The upper index
M of the transformation matrix R/ is decomposed under GL(7,R) (eq. (2.19)) whereas
the lower index N is decomposed under SL(8,R) (eq. (2.12)),

RmIJ RmIJ
R R 1J

RM/\/': mnlJ mn . (221)
RmnIJ Rmn]J

I
Rm[] Rm 7

The non-zero components are [14]

R™15() = 1K™ (), (222)
Ronn®? () = 7 Ko (1), (229
Ry (y) = ¢ (BN ) (), (224

R () = 1 (¢"Bonn?? = K™ () (225)

They depend on the Killing vectors K,,’/(y) and -forms K,,,,'”(y) as well as on the dual
volume potential Cm(y) of the seven-sphere. The Killing vectors and -forms are defined

Tt should always be clear from the context whether A, B,... are SU(8)- or 11-dimensional tangent
space indices.
®Note that initially, eq. (2.20) follows from the respective uplift relation for the vectors in eq. (2.34).



in appendix A. The (seven dimensional) dual of (™(y) is the six-form potential for the
internal background volume form 7, ...m-,

o . o o 1 . o
Cn = 6nnml mGle.‘.m(i, le“‘m(} = W T]ml...m7 Cm7, (226)
7!D[m1 Cm2~~-m7] = m7ﬁm1...m7. (2.27)
Note the non-standard normalization of C ™ which is more convenient for my purposes. my

denotes the inverse radius of the round S7.
Using eqgs. (2.11), (2.22)—(2.25), one finally finds the components of

Vi (@,y) = RMy )WV (@), (2.28)
namely
Vms(z,y) = \/siKm B (y) (wig™ + vij 1) (2), (2.29)
Vi) = =% Ko 0) (05" — v5.1) (@) 2:30)
V(e y) = \/si (25[’”1?(”] - Km””) () (uig™ +vij 17) (2), (2.31)
Vs i (2, ) = —\f (f”Kmn” - Km”> (W) (ui™ — vij 1s) (@). (2.32)

In order to match the vector degrees of freedom, one first dualizes the 28 ‘electric’
vector fields A,7/(z) in N = 8 supergravity to form 28 ‘magnetic’ vector fields A, 1s(x).
Only electric and magnetic vector fields together fit into the 56 representation of Er7y:
they represent the SL(8,R) decomposition of

AM= (A7, Aury) (2.33)

along the lines of eq. (2.12). One also extends the 28 vector fields B,™ and A, in 11-
dimensional supergravity such that they fit into the 56 representation of E7(7). There are
21 dual vectors A, ...ms coming from the six-form potential and seven ‘dual graviphotons’
that have no physical interpretation [13]. Similar to the case of scalar fields, one defines a
56-bein B,M of E7(7y, which decomposes under GL(7,R) into the various vector degrees of
freedom above. Since this work concentrates on the uplift of the scalar fields, I do not give
the explicit GL(7,R) decomposition for BMM here. The interested reader may have a look
at [13, 14, 24].

The consistent relation between the vector fields A#M(x) of N = 8 supergravity and
the 11-dimensional vectors B, (z,y) is similar to eq. (2.20)°,

BM(z,y) = RM v () AN (2). (2.34)

It has also been found by a careful analysis of the supersymmetry transformations in four
and 11 dimensions.

5The last seven components of B;/V1 belong to the non-physical dual graviphotons. Eq. (2.34) therefore,
does only make sense in the first 49 components.



Here is a simple example for the readers convenience: the first seven components of
B, M are proportional to the vectors B,™. With egs. (2.34), (2.22) one then finds the old
Ansatz for the vector fields in Kaluza-Klein theory [25], i.e.

B, (z,y) oc K™ (y) A, (2). (2.35)

The task of uplifting N = 8 supergravity to 11-dimensional supergravity is now the
following: starting from egs. (2.20), (2.34), one must seek explicit expressions for the 11-
dimensional vector and scalar fields in terms of the four-dimensional ones,

(Bum, Ay Apmyoms, dual graviphotons) & <AMU, AMU) , (2.36)

(gmn, Apmnp, Aml"'mﬁ) & (uij”, Uz'jIJ) . (2.37)

In principle, these relations have been found in [14, 15]. However, instead of a relation
for the metric gmn(z,y), the authors only found an expression for the inverse metric
A=1g™n(x,y), scaled with the warp factor. Furthermore, the Ansitze for the three-form
and six-form potentials require the full metric g,,,. Until now, the inversion of A=1g™" is
only possible in particular cases, e.g. for Ga, SO(3)xSO(3) or SU(3)xU(1)xU(1) invariant
solutions [16-19]. Also the warp factor can only be computed from an explicit expression
for the metric g, (by taking the determinant).

The reader familiar with the uplift Ansétze presented in [14] may skip the next sec-
tion, which repeats the derivation of the known scalar uplifts. Section 4 then presents
new non-linear Ansétze for the full internal metric g,,,, the warp factor A and the in-
ternal three-form potential A,,,;,. These hold for the uplift of N = 8 supergravity to
11-dimensional maximally gauged supergravity, even without further restrictions (such as
Ga, SO(3)xS0O(3) or SU(3)xU(1)xU(1) invariance).

3 Known Ansatze for A~1g™", A,.,P and A,,,...mq

For the readers convenience, I repeat the steps to derive the known uplift relations for the
inverse metric A~1¢g™", the three-form with mixed index structure A,,,” and the six-form
potential Ay, ..;mg. This was done in [14] and is the basis to understand the new Ansétze
for the metric gp,n, the warp factor A and the full internal three-form potential A, in
section 4.

The main problem of comparing the vielbein components in eqs. (2.14)—(2.17) and
egs. (2.29)—(2.32) is the occurrence of the Killing spinors in eq. (2.20). However, these
are orthonormal and would drop out in non-linear SU(8)-invariant combinations of the
vielbeine. For example, let us consider the expression

Indeed, the Killing spinors n%(y) drop out. One now uses eq. (2.14) on the Lh.s. and

eq. (2.29) on the r.h.s., which results in a non-linear uplift Ansatz for the inverse metric,
ie.

AT, y) = K™ )R ) (w5 v 1) (@) (s 07 K0 (). (3:2)

Here, I used the Clifford algebra of the I'-matrices, given in appendix A.



In a similar way, one relates
anABVpsAB = anijvpgija (33)

which yields a non-linear uplift Ansatz for the three-form. Indeed, using eqs. (2.14), (2.15)
on the Lh.s. as well as egs. (2.29), (2.30) on the r.h.s., one finds

V2i

A_lAmnp ) = T Tan
(z,y) 96

Ko7 () KP 5L (y) (0 17 — 07 1) (g™ v k1) (2). (3.4)
In order to derive an uplift Ansatz for the internal six-form potential Ay, ...;q, I intro-
duce the (seven dimensional) dual one-form

AT = e g (3.5)

Similar to the dual volume potential on the round seven-sphere, Com, I use a non-standard
normalization for later convenience. The six-form potential A is a tensor in the internal
space and its (seven dimensional) dual Ay is constructed with the full e-tensor. However,
one can convert this e-tensor to the tensor density 7 (= £1,0) using the internal seven-
bein e,,*

ai

s em7a7ﬁa1"-a7 = Aﬁml-"mr (3'6)

€my--my = €my
Here, I used the definition of the warp factor in eq. (2.10). Eq. (3.5) then reads

6. A

An == Znnmlmmb‘Aml..-mG And Am1"~m6 - mﬁml'“m7‘4m7‘ (37)

Note that the indices of the six-form potential and its dual are raised and lowered with the
full internal metric.
Now, let us consider the relation

anABVpgAB — anijvp&'j (3.8)

and insert the various vielbein components in egs. (2.14), (2.16) and egs. (2.29), (2.31).
This gives an equation for A", i.e.

V2

? (AA[m + 3\/§§[m> gn]p = ﬁmnqlqu}quszqsqw&s

A 3 -~
+ ﬂKmnIJKpKL (uijIJ + vy ]]) (UUKL + ¥ KL) . (3.9)

When contracting this relation with gy, the first term on the r.h.s. drops out because
ApnpAgrs) = 0. (3.10)

One finds

Aéf/’;)gnp(x, y) K™ ()

x KPRE(y) (uig" +vijrs) (w9 gp + 07 50 (2) (3.11)

AA™(z,y) + 3V2("(y) =

~10 -



and dualizes this expression using eq. (3.7), (2.26),

V2

Aml---mﬁ + 3\/§ém1m6 = m

Enmy g Gpg P T UKL (UijIJ +i1g) (uinL 1yt KL) '
(3.12)
Here, I suppressed the explicit dependence on the coordinates.
The r.h.s. of egs. (3.11), (3.12) further simplifies using the uplift Ansatz for the in-
verse metric in eq. (3.2) and the definition of the Killing two-form in eq. (A.15). It is
proportional to

° o 1 °
D™log A = A'D™A = 5gqu”{qpq, (3.13)
which finally gives a simpler non-linear Ansatz for the six-form potential, i.e.

9v2

AA™(z,y) +3V2"(y) = = D" log Az, y), (3.14)
7
; V2 oo o o
Ay (2,9) + 3V 26y g (y) = m%_,,mp log A(z, y). (3.15)

This result has already been derived in [26]. In comparison to egs. (3.11), (3.12), the
Ansétze in egs. (3.14), (3.15) do not contain the metric gn,. However, they require an
explicit expression for the warp factor, which also can only be given in particular cases.

4 New non-linear Ansatze for the metric g,,,, the warp factor A and
the full internal three-form potential A,,,,

In this section, I derive a new non-linear metric Ansatz for the uplift of SO(8) gauged
N = 8 supergravity to 11-dimensional supergravity. In combination with the expressions
for the inverse metric and the three-form with mixed index structure in egs. (3.2), (3.4), I
find further uplift Anséatze for the warp factor and the internal three-form potential A, .
Note that recent work derived similar coordinate-free formulas (egs. (24-26) of [20]) in a
different form.

Following the strategy of the previous section, I consider the relation

VinpaBVPE 0D Vng ABVBCP =y, yr8 ), [ a8kl (4.1)

Let us use egs. (2.14), (2.15) on the Lh.s.: all terms including a factor of A,,,, are of
the form

but such expressions vanish because an antisymmetric index pair [np] is contracted with a
symmetric index pair (np).

One finally computes the traces of the I'-matrices using eq. (A.32) and finds that the
Lh.s. of eq. (4.1) is proportional to the metric gnn,

_ 16
A Qan = ?Vmpijvpklvnq[]vqm]- (43)
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For the r.h.s., T use egs. (2.29), (2.30) and find that
1

@KmpIJKpKL (uii;™ = vpjrr) (ug ™" + v k1) - (4.4)

Vmp [ijvpkl} = -

For some readers, eqs. (4.3), (4.4) together already represent a useful metric Ansatz in terms
of the Killing forms and the four dimensional scalar fields. However, one may simplify the
resulting expression further: using egs. (A.26), (A.30) in appendix A yields

/)
Vipli V ki) = —3 (Amijer — Bmijrt) » (4.5)

where I defined the convenient tensors

1
Amiji (2, y) = iKmn[U(y)KnKL] () (uig" ua™ = vij v k) (@), (4.6)
Binijii(z,y) = K (y) (uig"™ opt ic — vij reun”™) (). (4.7)

By definition, these are totally antisymmetric in the SU(8) indices [ijkl] and depend on
all 11 coordinates (x,y). Note that a certain linear combination of both tensors is equal
to the ‘non-metricity’ Py, 4k in the SO(8) invariant vacuum [9, 26].7 One finally finds the
metric Ansatz in terms of these tensors, i.e.

1

A_2gmn($7 y) = E (Amijkl - Bmijkl) (Anijkl - Bnijkl) (l’, y) (4'8)

IJ and v;j 1J, Whereas the

This Ansatz is quartic in the four-dimensional scalar fields wu;;

Ansétze for the inverse metric and the mixed three-form potential were only quadratic.
Let us combine the Ansétze for the metric and the inverse metric in egs. (4.8), (3.2)

to get a new Ansatz for the warp factor. This can be done because the new metric Ansatz

contains a proportionality factor of A72. One finds

_ 1 mn 17
A 3(:1:7 y) = 28 . 4' Cz_]kl (.T7 y)c Jklmn(xa y)7 (49)
where the tensor Cpqijkl is defined as
Cpqijkl(ffa y) = KmU(y) (qu” + Upg IJ) () (Amijkl - Bmijkl) (. y). (4.10)

Similarly, one combines the Ansatz for the three-form with mixed index structure in
eq. (3.4) with the metric Ansatz in eq. (4.8) to obtain a new Ansatz for the full internal
three-form potential, i.e.

V2i

_3 _

KmnIJ(y) (uijIJ - Uij IJ) (1‘) Ciqut(xa y) (qurst - qurst) (1'7 y)
(4.11)
The new Ansétze for the warp factor and the three-form potential are sextic in the scalar

fields uij” and VijI1J-

"In [9], the non-metricity Py, i, was denoted by Ay, ijki-
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It may still be possible to simplify the new Ansitze using some E;(7) properties of
the uijl 7 and v;; 17 tensors [4, 9]. One such simplification concerns the Cpqij kl tensor that
occurs in both, the warp factor and the three-form potential. For the rest of this section,
I show that it factorizes into®

Cog ™ (. y) = %5[i[p (01 2F @, y) + 2Co M (2, y) — 2T, (93)> : (4.12)
where
Clpijk(m7y) _ KIJKL(y) (uij 1 yik IJ) (uimKMumeM _ yim KMvmeM) (z), (4.13)
Cgpijk(a:,y) _ KIJKL(y) (ujkIM i vjk]M) [(uim[JKUmeM] _ypim [JKumeM]>
- éé;; <umn[JKUanM] — ™" [‘]KuanM]> } (x). (4.14)
The selfdual tensor K/KL is defined as a certain combination of Killing vectors in

eq. (A.38). It satisfies some useful relations given in appendix A. The third term in
eq. (4.12) represents the T-tensor, which is defined in [4],

Tijk;l(l,) _ (uklIJ + vklIJ) (uimJKujmKI _ ,UimJvamK]) (). (4.15)
It only depends on spacetime coordinates x and satisfies the property
y y 4 .. .
(upg"” + vpq17) (U”IKUM TE i IKUMJK) = g(s[z[qu]]kl]' (4.16)

For further relations concerning the T-tensor, see [4, 9]. Note that the only difference
between C1,"% and the T-tensor is the K!/XL _factor in eq. (4.13) instead of a 6%/, -factor
in eq. (4.15). This gives rise to interpret C; and Cs as the y-dependent twins of the T-tensor.

In order to prove eq. (4.12), one starts with eq. (4.10) and replaces the tensors
An¥* and B, " with the respective expressions in eqs. (4.6), (4.7). Secondly, using
egs. (A.25), (A.41) gives

CpgH = —2KTIKL (44, I 4 0 1) (uij s Lo — v [TI LM])
g g 8 .. ‘
_ gIIKL (uquL + Upg kL) (UZJIMUkl IM _ ] IMuliM) _ g(g[z[qu]jkl]’ (4.17)
which can be rearranged,

Cpq”kl — o 1IKL (u[z]IJ + olid IJ) (ukl]KMupqLM _kl KMquLM>

g g ]
1 4K1IKL (u[”IM 1l IM) (ukl} K Vg L] — oFl [JKupqLM}) _

i ikl
55[ [qu]j .
(4.18)

81 thank Hadi Godazgar for pointing this out.
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Finally, I use eq. (4.7) of [4] and eq. (5.21) of [9], i.e.

(w iagua™ = v Mo gar) | gy = 55% (uj]mIMu”mJM Bl vﬂmIMv”mJM) ‘[IJ}
(4.19)
(w9 vk — v g ) ’[IJKLH = gd[z[k (u]]mIJUl]mKL - vj]m”uz]mKL> ‘[IJKLH
1 ..
= 0% (W Lrvmncn = 0" ™) | e
(4.20)

where \[I JK L)+ represents the projection onto the selfdual part. This completes the proof
of eq. (4.12). In order to keep the formulas short, I do not insert the factorization of the
Cpq’jkl tensor into the uplift Ansétze for the warp factor and the three-form. However, one
should always keep in mind that these expressions can still be simplified by eq. (4.12).

I must emphasize that the antisymmetry of the three-form potential A,,,, is not ap-
parent from the new Ansatz in eq. (4.11). This may be a hint that it still can be simplified
using the E;(7) properties of the u@-jI 7 and v;j 17 tensors. One should check such a sim-
plification in future work. Note that the recent three-form Ansatz in [20] is given in a
coordinate-free form, hence its components are fully antisymmetric by definition.

In section 6, I will test the new metric Ansatz for the Go invariant solution of 11-
dimensional supergravity. Note that the Ansétze for the warp factor and the flux originate
from the old formulas for A=™1¢g™" and A,,,” using the new metric Ansatz. Since these
old expressions were already tested for a Gy invariant solution [16], I do not re-check
egs. (4.9), (4.11) explicitly. For a consistent test, it will be sufficient to compute the metric
by eq. (4.8) and compare it with the existing expression in [16].

5 A new non-linear Ansatz for the four-form field-strength

In this section, I present a new non-linear Ansatz for the four-form field-strength
Fonpg = 4! Diyp Appg)- (5.1)

So far, the internal three-form potential was only known in particular cases and it was yet
very complicated to compute the derivative of an explicit expression for A,,,,. However, I
found a new general uplift Ansatz for A,,,, in the previous section. In particular, at the
level of 11-dimensional vielbein components (egs. (3.3), (4.1)), one finds

16v/2

Amnp = TA?’ Vi BV CPVIEEIVT 4 gV, 0DV EP (5.2)

With a look at egs. (2.14), (2.15) and using eq. (A.22), one has

1
Yl PVIEF] = 2 (1 CPVIEE 4 13 BECP). 5:3)

SWithin a Gy invariant solution, an expression for the metric has been found by inverting A~1g™"

‘by hand’.
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Furthermore, since all SU(8) indices in eq. (5.2) are fully contracted, I can replace the
11-dimensional vielbeine by the four dimensional expressions in egs. (2.29)-(2.32). This
finally yields a general expression for the four-form field-strength, i.e.

642 - o —
Frunpg = S22 Dy (A3 V1112 (v, fatayrisie oy, dsteyrisia) ps, Yo Vi) . (5.4)

One can now evaluate the derivative in general. First, one has
DA =3A3D,, log A, (5.5)

hence, one term in Fj,,,, will be proportional to A[mnplo)q] log A. Secondly, the covariant

background derivative D,, only acts on the y-dependent fields in the vielbein components:

the Killing forms and the dual volume potential Cm It does not act on the scalars uij”

and v;; 1. In general,
DoV7ss = 7 gy (275 = V705, 5.6
DinVapij = 2M7 i (—Vp} i + ¢ Vp}qz’j) :
D V™5 = —2myq (5m[n + (mcl" — ﬁmé[n) Vi — 2m7 GingC VP,
Dy Vnij = my (Com5np - f]mnép> Vpij —mry <5mp + 6P — bm&) Vipij-

Putting all this together, the resulting intermediate expression for F,,,, becomes

[S)
BN |

ot
co

(5.6)
(5.7)
(5.8)
(5.9)

rather long and I do not display it here. However, it should be clear that it contains the
tensors G, Cm as well as all four-dimensional vielbeine VM;;. The SU(8) indices ij ...
are fully contracted in pairs. I can therefore replace the VMij’s by the 11-dimensional
vielbein components VM 4. The final step is to use eqs. (2.14)—(2.17), which introduces
the 11-dimensional fields (e.g. Appp and Ay, ..mg) as well as I'-matrices. Using egs. (A.11)
for the traces of products of I'-matrices, I finally obtain

o 24 .
Founpy = =12y D 108 8+ Z2mz Ay (a4 +3vacr)
+ 4m7§mr1f7“mr7 (Qnrzgprzsgqm - 18Anp7"2Aq7’3r4) Ar5rsr7} ) (5‘10)

[mnpq]

where [(;,,pq denotes antisymmetrized indices mnpg. One eliminates the second term by
eq. (3.14),

anpq = —18A[mnqu] log A
(5.11)

+ 4m7§m7“1 79’7“1~~~r7 (gm"2 g}"‘3 qu - 18Anp7“2 Aqmm) AT‘5T‘67‘7:|
[mnpq]

For some readers, this expression is already in a desired form. However, one can further
simplify this expression. First, the term proportional to 7™ """ Ag;.p, Arsrer, can be replaced
using eq. (3.9). Together with eq. (3.14), this cancels the term proportional to Dy, log A.
Finally, one turns the tensor density 7”7 into the tensor €7 (eq. (3.6)) and obtains

o 5 AT1TOT
anpq = m7Ags[m <4€npq]r1r2r3 ATTRTS

= 39ny A

pq]rKrsIJKtKL (uijIJ + vy IJ) (uinL 4y KL) ) (5.12)

~15 —



This formula appears to be more feasible for practical tests than previous expressions
[20, 26].

It is not difficult to raise all indices with the inverse metric ¢"""*. Therefore, one must
keep in mind that the indices of the Killing forms and §.,,, are raised with the background
metric. All other tensors in eq. (5.12) are covariant, hence

Fmnpg — m7A§st9t[m (4€npq]r1r2rgsArlr2T3

— 3A™, KV s KL (i o3 1) (w5 4 v 5 ) (5.13)

Note the power of the last step: until now, the field-strength with upper indices has always
been found by raising each lower index of Fj,,,q with the explicit expression for the inverse
metric ¢™". This was one of the hardest tasks in verifying the SO(3)xSO(3) invariant
solution of 11-dimensional supergravity. With the new Ansatz above, it is much simpler
to find F™P4. For maximally symmetric spacetimes, these results may also be used to
calculate the Ricci tensor using the Einstein equations.

In the next section, I will test the new Ansatz for the four-form field-strength for the
G2 invariant solution of 11-dimensional supergravity.

6 Testing the new uplift Ansatze

This section presents an essential part of this work: I test the new non-linear Ansétze for
the metric gp,, and the four-form field-strength F,,,,, within a Gy invariant solution of
11-dimensional supergravity. In such a setup, the Ansitze for the inverse metric A=1g™"
(eq. (3.2)) and the three-form with mixed index structure (eq. (3.4)) were already checked
successfully [16]. The same reference computes the warp factor by taking the determinant
of the expression for A~1¢™" and the metric ¢, by inverting ¢"™". Finally, it calculates
the full internal three-form potential A,,,, by lowering the third index with the explicit
expression for gm,. It should be clear that a successful test for the metric Ansatz in
eq. (4.8) includes the tests of the Ansétze for the warp factor and the three-form potential
in egs. (4.9), (4.11), since these result from combining the old known Ansétze with the new
metric Ansatz.

Here, I compute the metric A~2g,,, by egs. (4.3), (4.4), which is equivalent to use
eq. (4.8). I follow the strategy of [16]: one first brings the E(7)-matrix that encodes the

four-dimensional scalars
1J
[ Wit Vijrg
V= <vijIJ ut > (6.1)
1J
into unitary gauge,

0
V =exp (d)IJKL ¢16KL> ; (6.2)

where ¢;jxr denotes the scalar vacuum expectation value. In this gauge, there is no
distinction between SU(8) indices ij ... and SL(8,R) indices I.J ... This allows us to write
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the scalar fields uijl 7 and v;j 1.7 in terms of the vacuum expectation value ¢ryxr. For a Go
invariant configuration, the latter takes the general form,

droxr(zr) = )\(21‘) (CLEE cos a(x) + iCL 5 sina(z)), (6.3)

where CJIFJ KL ig selfdual and CI/KL is anti-selfdual. The above expression also defines

a scalar field A\(z) and a rotation angle «(z). Using the explicit form of the vacuum

1J

expectation value in eq. (6.3), one finds the four-dimensional scalars w;;*” and v;jr; in

terms of the G invariants CL/KE ie.
1 1
uy K —p35 + 2pq cos aC’UKL ipq sin? aCT/ KL _ 8pq2 sin 2a DKL (6.4)

3 2 CIJKL

1
o —isin® )6k, + SP qeosa CL/KL

i .
VIJKL = (4 (COS + §p2q sinaC_
1
- §q3 sin 2a(sin o — i cos a) DY/ EL, (6.5)
where p = cosh A and ¢ = sinh A\. The tensors D1/%1 are defined as

DIJKL (CIJMNCMNKL:':CIJMNCMNKL). (66)

One now expands the Ci‘] KL tensors into the (anti-)selfdual bases provided by the
Killing forms defined in eq. (A.19), (A.20),

1 3
CIIKL — gKm[IJKm KL E‘Smen[IJKn KI] _ iKm[IJKnKL}émn’ (6.7)
CiJKL _ %Smnmen[IJKpKL]‘ (6.8)

The occurring components &, £™, €™ and S™ are SO(7) tensors'’ on the round S7,
hence, its indices are raised and lowered with the background metric §y,,. Note that S™"P
is totally antisymmetric by construction. Furthermore, one finds the useful relations [16]

fmn.&mn = fa gmfn = (9 - gz)émn - 6(3 - g)fmna gmfm = (21 + f)(?’ - 5)7 (69)

1 1
Smnrqur — 25}7)7(1}71 + éﬁmnquStSrSta S[mnpSQ]TS — Zﬁmnpq[rtuss]tu’

. (6.10)
Sm[npsqr}s _ éﬁnpqr(mtuss)tu‘

From the decomposition of the CL/XL tensors in egs. (6.7), (6.8), one finds the useful
contractions

CIJKLK KL _QfmnKnIJ anmnIJ, (6.11)
CURLR,,, K = g < 608 — 467,76, )qu”, (6.12)
oKL, KL — SmnpK”pU, (6.13)
CUELK, WKL = 28, KP1T — éﬁmnpl.._p5splp2p3Kp4p5 L (6.14)

101 [16], ™" was denoted by $™"P.
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as well as for the D{/KL tensors,

1,
DiJKLKmKL — <§Smnp _ fqunpq _ QSmanpq + %nmnpqrstquTSt> Kvn]uIJ7 (6.15)
2 1.
Di]KLKmnKL = <355mnp = 48m " Shlpg = 2Smng&p” + 1877mnpqrstfq5mt> KP4
1 f o rst
+ § f[msn]pq - Smnpgq - gnmnpqrsts
+ ﬁmnprstufquStu + ﬁ[m|pqr5tu€n]r58tu) Kt (616)
2
DiJKLKmKL — gSmnp’SnKpIJ
§ q q 1. q Qrst nplJ
+ g‘s’mnp + gm Snpq - QSmnqu - 3677mnpq7"st€ S K s (617)

2 1
DiJKLKmnKL = <_3£Smnp + 4§[mqsn}pq - 2Smnq§pq + 18707mnpq7“st§q5mt> KpIJ
1 . .
+ § (_f[msn]pq - Smnpgq + nmnprstugquStu - n[m\pqrstugn]TSStu) KP1 IJ'
(6.18)

Now, I write the metric g, in terms of the components &, £™, £ and S™"P de-
fined above. Therefore, one first computes Vy,,(;;V k) (or better: V11,V k1)) using

CI7EL and

eq. (4.4) and expands the scalar fields urs% Y and vy in terms of the
DKL tensors (eqs. (6.4), (6.5)). Secondly, one uses the contractions above together
with egs. (A.27), (A.28) in appendix A to bring V,,,1.;V k) into the basis provided by

egs. (A.19), (A.20),
Vmp [IJVPKL] — amKn[IJKnKL} + bmnKnp[IJKpKL]
+ e K KR P, R R (6.19)
The respective coefficients a.,, b,,", ¢, and d,;,,"P? are rather long expressions and I do
not display them here. However, it should be clear that they only depend on the SO(7)
tensors &, €™, £ and S""P. Finally, one computes the metric via eq. (4.3). For the

contractions of the indices IJK L, one uses eqs. (A.34)—(A.37) and for the contractions of
the SO(7) indices, one uses the identities in egs. (6.9), (6.10). This finally results in

A 2gm = by [ (bo + 3cvs) gmn + cvs §mn], (6.20)

where I made the following definitions:

9+¢
—cv

c = cosh 2, s = sinh 2, v = cos a, bo = ® +v%s% — 5

s.  (6.21)

The test for the inverse metric Ansatz (eq. (3.2)) was already performed in [16]. The
corresponding final expression is

Aflgm" = (03 + 1)353) gm" — cus(c + vs)EM™. (6.22)

~ 18 —



Combining the explicit expressions for the metric and its inverse in egs. (6.20), (6.22) and
using the identities in egs. (6.9), (6.10), one finds that

A_2gmpA_lgpn = b(Q) (C + U5)352L- (6.23)

This is exactly the combination of the metric and its inverse that defines the warp factor
in eq. (4.9), hence
A% = b3 (c+vs)®. (6.24)

The explicit expressions for the metric and the warp factor in egs. (6.20), (6.24) reproduce
the results of [16]. The reader may also check that the determinant of the metric in
eq. (6.20) indeed, reproduces eq. (6.24). The test is hence, successful.

For the remaining test of the field-strength Ansatz in eq. (5.12), I use the explicit
expression for A,,,, that was found in [16],

\/5 tana vs
Amnp = 72by ¢+ vs (91}3(0 0o Sl
1
+ Evs(c + 08) Dnnpgrst€1S" + (2¢ — vs) (3¢ — £Us)Smnp). (6.25)

Note that this expression is slightly simplified using the identities in egs. (6.9), (6.10).
Furthermore, the formula for A,,,, above differs from the expression given in [16] by a
factor of 1/6, which is due to my conventions. However, the definition of the field-strength
in eq. (5.1) differs from the corresponding definition in [16] by a factor of 6. Hence, the
new Ansatz for Fy,npq in eq. (5.12) should give the same expression as already computed
in [16] by calculating the derivative of eq. (6.25) directly.

A convenient way to use the new Ansatz is

anpq = {4m7A6§mr1 (A_anrz) (A_2gpr3) (A_2gqr4) ﬁnmr?Amraw_

— 3ma A (A_2gm) Apr K L et KL (uijIJ + v U) (uinL Y KL) } ‘[ ;
mnpq
(6.26)
such that one may use egs. (6.20), (6.24), (6.25) directly. For the term involving the Killing
forms and the four-dimensional scalars, I follow the same strategy as described earlier in
this section. I find

KmnIJKpKL (UijIJ + 'Uz'jIJ) (UinL + vinL)

8
= gevs (c+vs) mgnip
1 4
+ s?sin? o [12 vsé[qu"p]q —5Y® BIPIStE Sy — <86 + 351}5) Sm”p} . (6.27)
Putting all together and using eqgs. (6.9), (6.10) finally results in
V202%s% tan o c—vs 2c —vs - v?s?
Fonpg = Omn TS st mn
P4 3b, m?{ vg mnpa ST+ < T os b > EmSnpql
1 2c —vs (c—ws)? . "
- rgete 6.28
+ 6(3 — {) < ¢+ us bo ) g[mnnpq]rstug ) ( )

which matches exactly the expression found in [16]. The test is hence, successful.
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7 Conclusion

In this paper, I derive a new non-linear metric Ansatz for the uplift of N = 8 supergravity
to 11-dimensional supergravity. An uplift Ansatz for the inverse metric, scaled with the
warp factor, A~!1¢g™" has already been known for a long time [15]. However, inverting this
expression in order to find Ag,,, was only possible in certain cases, for example when the
theory is Ga, SO(3)xSO(3) or SU(3)xU(1)xU(1) invariant [16-19]. Also the warp factor
A could only be extracted by taking the determinant in such particular cases. Following
the strategy of [14], I present a new general uplift Ansatz for A=2g,,, in terms of the
four-dimensional scalar fields and the Killing forms on the background (eqgs. (4.3)—(4.8)).
Note that this Ansatz is similar to a recent coordinate-free expression [20]. However, the
formula presented here seems to be more feasible for practical tests: I tested the new metric
Ansatz within a Ge invariant solution of 11-dimensional supergravity in section 6.

Similarly to [20], the new formula can further be used in order to find non-linear uplift
Ansétze for the warp factor and the full internal three-form potential in general. For the
warp factor, I combine the old Ansatz for A~1¢g™" with the new one for A=2g,,,, which
gives a new Ansatz for A3 (eq. (4.9)). Furthermore, I derive a general Ansatz for the
full internal three-form potential A, (eq. (4.11)) by combining the old flux Ansatz for
ApnP [14] with the new metric Ansatz. However, this new formula does not reveal the
total antisymmetry of the three-form. This may be a hint that one can further simplify
the expression for Ay, using some E7(7) identities for the four-dimensional scalar fields. I
hope that I can provide such a simplification in future work.

In a second part of this paper, I derive a new general non-linear uplift Ansatz for
the four-form field-strength Fi;,,,q within the considered uplift of N = 8 supergravity to
11-dimensional supergravity. So far, the simplest way to derive Fj,,,; was to compute the
derivative of the three-form potential. However, this required an explicit expression for the
flux, which is only given in particular cases, e.g. the G2, SO(3)xSO(3) or SU(3)xU(1)xU(1)
invariant solutions of 11-dimensional supergravity. With the new Ansatz for the field-
strength (eq. (5.12)), there is no need to compute derivatives anymore. It is given in
terms of the metric, the flux as well as the four-dimensional scalars and background Killing
forms. The formula holds in general and also passes a very non-trivial test for a Go invariant
solution of 11-dimensional supergravity.

The new Ansatz for the field-strength also provides a simple expression for F""P4
(eq. (5.13)) in terms of the inverse metric, the flux as well as the four-dimensional scalars
and background Killing forms. This new formula makes it redundant to raise each index of
Frnpg with the explicit expression for the inverse metric, g”", which was so far, the only
way to derive F""P4. The new direct Ansatz for F"™"P? is also much more effective than
this old method — in order to verify the SO(3)xSO(3) invariant solution of 11-dimensional
supergravity, the index-raising of F,npq was one of the hardest tasks [26].

In future, one may also find new Ansétze for the Christoffel connections in 11-
dimensional supergravity in terms of the four-dimensional scalars and background Killing
forms. Since they are given by the first derivative of the metric, one could find new simple
expressions in full analogy to the derivation of the field-strength Ansatz. Similarly, one
could derive a non-linear Ansatz for the Riemann tensor.
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In this paper, all Ansétze are derived within the S” reduction of 11-dimensional super-
gravity. This leads to the compact gauging SO(8). However, the methods provided here
should also apply in general for other truncations. As a first example, one may extend the
theory to the non-compact CSO(p, ¢, ) gaugings [27, 28]. In this case, the I.J indices of the
Killing forms are raised and lowered with the CSO(p, ¢, 7)-metric 77 instead of the SO(8)
metric 67;. This effects the definition of the matrix Ry in egs. (2.22)-(2.25) and hence,
the Ay, ik and By, ik tensors in egs. (4.6), (4.7). Thus, the new Ansétze for the metric,
the three-form and warp-factor will be slightly modified. However, the new Ansatz for the
four-form field-strength will change more dramatically: egs. (5.6)—(5.9) do not hold if the
IJ indices of the Killing forms are raised and lowered with the full CSO(p, ¢, r) metric.
Since the new Ansatz for Fj,,,, depends on those identities, it will take much more effort
to derive an adapted Ansatz for the four-form within the non-compact gaugings. Finally,
the presented methods may also be used for the reduction from type IIB supergravity to
five dimensions [29-31].
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A Gamma matrices, Killing spinors, Killing vectors and Killing forms of
the S7

One defines a set of euclidean, antisymmetric and purely imaginary 8 x 8 I'-matrices

(TT =T'). These generate the euclidean Clifford algebra in seven dimensions,'!

{La, o} = 264pI8s- (A.1)

Let us choose a Majorana representation: the charge conjugation matrix that defines spinor
conjugates or raises and lowers spinor indices is set to the unit matrix. Thus, the eight
Killing spinors of the round S7 satisfy 7 = (n’)f. Furthermore, one may choose them to
be orthonormal,

n'n? =", n'ph =Tsxs. (A.2)

The flat I'-matrices define two types of ‘curved’ I'-matrices: first, matrices L =
en Ty are defined on the round seven-sphere, its indices are raised and lowered with the
background metric §my,. Secondly, matrices I'y, = €% T, are defined on the deformed S*
and its indices are raised and lowered with the full internal metric gyy,.

The Killing spinors are defined on the background S” and hence, satisfy

.o m7 o i _ m7 7o
iDpn! = 7rmnf . —iDpq! = 7nfrm. (A.3)

"1n the following, I suppress the SU(8) indices that label rows and columns of the matrices, I’y = (Ta) ap-
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Here, Dm is the covariant derivative with respect to the internal background metric gy,
and my is the inverse S* radius.
The I'mmatrices can be used to define two sets of 8 x 8 matrices,

Loy = Dy -+ Do Ty s = Dy -« Doy (A.4)
for i =2,...,7. For example,
1
anp = ? (anp + anm + Fpmn - 11m]zm - anp - Fpnm) . (A5)

I-matrices with one and two indices are antisymmetric and I'-matrices with three indices
are symmetric. The two sets <H8><8, lo“m, lo“mn, f‘mnp) and <H8><8, T, Do, me,) each
contain 147+ 214 35 = 64 independent matrices. Hence, they both span the vector space
of 8 x 8 matrices. In these bases,

Conome = —my.mz Isxs Uiy oome = —1€my . mrlsxs, (A.6)
Io‘mlmms = _iﬁmyum?f‘m?? lemma = _i6m1mm7rm77 (A'7)
Dinyoms = %ﬁm1...m7fm6m7v Pinyooms = %6m1...m7rm6m7v (A.8)
F'm1~~m4 = %ﬁm1~~~m7fm5mm7v Fm1--~m4 = %emlmm7rm5~-m7. (A.Q)

Beside the Clifford algebra, the [-matrices satisfy the useful relations

Tr (fmf"> —8§™,  Tr (f“mfnp) -0, Tr (fm"qu> — 16577, (A.10)
Tr (DI = 8g™", Tr (I™T7) = 0, Tr (I""T,) = —16577. (A1)

The Killing spinors define a set of Killing vectors and their derivatives,

K" =i’ Toun”, (A.12)
K" = 7' Tonn?” (A.13)
Kooy = i1 Ty (A.14)

Using eq. (A.3), one verifies that K,,,!’ is indeed, proportional to the derivative of K,,!’,
DK = miKon!, DpKon! = 2maippm K" (A.15)

Using eq. (A.8), one also finds that Ky, ...m;'7 is the (seven dimensional) dual to K,'7,

1,
Kosooms = =5y KO L. (A.16)

Note that curved seven dimensional indices of the Killing vectors and their derivatives are
always raised and lowered with the background metric G-
The following bi-linears in the I'-matrices represent a basis for (anti-)selfdual SU(8)
tensors on the deformed seven-sphere:
selfdual : I, (4B ¢y, Lonal™op)s a8 o) (A.17)

anti — selfdual : F[m"[ABFp}CD]. (A.18)

- 29 —



On the background, there is the respective basis of (anti-)selfdual SL(8) tensors in terms
of the Killing bi-linears, i.e.

selfdual : K,/ km&Y g, W rrEH g W g KL (A.19)
anti — selfdual : K,/ K. (A.20)

These bi-linears satisfy further useful relations [16, 32],

T4l cp) = T asT™op + 2065, (A.21)
Lo asT"cp) = % (T 45T D + T eI aB) (A.22)
"™ aplcop) = —%gp[mrn]q[ABFq cp] + F[mn[ABFp}CD]v (A.23)

T 4T op) = —2¢™PTU 45T ¢ py + 20" T o pT ™ o+
+ %gm[pgq]nrr aBl" cp) + F[mn[ABrpq]CD] (A.24)

as well as

O e o ) 7 (A.25)
K, 1 KR — % (KmnIJKnKL + KmnKLKnIJ) ’ (A.26)

L,
Kmn[IJKPKL] - _ggp[mKn [IJKqKL] + K[mn[IJKP]KL]’ (A27)

lg

Kmn[IJquKL] _ 2§m[qu] [IJKTLKL} _ 2.&”[qu] [[JKmKL]

2. 1J prr KL 1J - KL
One has furthermore [32]
CoinABT" 0D — inenl" ap = =4 (6c(al'm B1p — Sp[alm B1C) » (A.29)
Ky K EE — B KPR = 860 K, (A.30)

The bases in egs. (A.17)—(A.20) are in some sense ‘orthogonal’. Indeed, one has

I gl opIP aplcp = 16g™ P g™, (A.31)
LAl cp)lng Al cp = —192g5m, (A.32)
Ty 5P o D apTgep = —32000P, (A.33)
K KKK K5 = 16,0000 (A.34)
Kyl KPR G T RCOKE = 1924, (A.35)
K" Ky KR ar T sIKL — gogars (A.36)
whereas all other contractions, such as
" apl"opiTpgaslicp =0, Kl K, Pk, T KIEE =0 (A.37)
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vanish identically.

Finally, it is convenient to define the selfdual tensor

K1IKL — g [1 gm KL, (A.38)
which satisfies [26]

KUEKPR vinp = 661K 4 95[I[LKJK}MN}> (A.39)

KUJKL [ MINPQ _ éelJKLMNPQ X 12K[UK[N5LP(5M]Q], (A.40)

KmI KL MN _ 85[I[K5J][M6N}L} 4 45[MUKN]J]KL

+ 40 K g — 40 e K7 gy (A.41)
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