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Methanolic extract of Agerantum conyzoides
exhibited toxicity and growth disruption
activities against Anopheles gambiae sensu
stricto and Anopheles arabiensis larvae
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Abstract

Background: Vector control remains the mainstay to effective malaria management. The negative implications
following persistent application of synthetic insecticides geared towards regulation of mosquito populations have
necessitated prospection for ecofriendly effective chemistries. Plant-derived compounds have the potential to
control malaria-transmitting mosquito populations. Previously, Agerantum conyzoides extracts have demonstrated
toxicity effects on disease-transmitting mosquitoes. However, their efficacy in controlling Afrotropical malaria
vectors remains unclear. Herein, the toxicity and growth disruption activities of crude methanolic leaf extract of A.
conyzoides on Anopheles gambiae sensu stricto and An. arabiensis larvae were assessed.

Methods: Late third (L3) instars of An. gambiae s.s and An. arabiensis larvae were challenged with increasing doses
of crude methanolic extract of A. conyzoides. The larval mortality rates were recorded every 24 h and the LC50
values determined at their associated 95% confidence levels. ANOVA followed by Post-hoc Student-Newman-Keuls
(SNK) test was used to compare results between treatment and control groups. Phytochemical profiling of the
extract was performed using standard chemical procedures.

Results: Treatment of larvae with the methanolic extract depicted dose-dependent effects with highest mortality
percentages of ≥ 69% observed when exposed with 250 ppm and 500 ppm for 48 h while growth disruption
effects were induced by sublethal doses of between 50–100 ppm for both species. Relative to experimental controls,
the extract significantly reduced larval survival in both mosquito species (ANOVA, F(8,126) = 43.16776, P < 0.001). The LC50
values of the extract against An. gambiae s.s ranged between 84.71–232.70 ppm (95% CI 81.17–239.20), while against
An. arabiensis the values ranged between 133.46–406.35 ppm (95% CI 131.51–411.25). The development of the juvenile
stages was arrested at pupal-larval intermediates and adult emergence. The presence of alkaloids, aglycone flavonoids,
triterpenoids, tannins and coumarins can partly be associated with the observed effects.

Conclusion: The extract displayed considerable larvicidal activity and inhibited emergence of adult mosquitoes relative
to experimental controls, a phenomenon probably associated with induced developmental hormone imbalance.
Optimization of the bioactive compounds could open pathways into vector control programmes for improved
mosquito control and reduced malaria transmission rates.
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Background
The operational scale up of indoor residual spraying
(IRS), long-lasting insecticide treated nets (LLINs) and
artemisinin-based combined therapy (ACT) over the last
decade progressively declined transmission rates of mal-
aria to vulnerable children and pregnant women [1]. An
estimate of 69% fewer malaria cases has been reported
in sub-Saharan Africa between 2001–2015 following the
widespread deployment of the three key interventions
[1]. However, evolution of resistance to the active ingre-
dients of these tools and little consideration of develop-
ing new complementary compounds targeting the ever
changing behavioral traits of Afrotropical malaria vec-
tors have greatly challenged efforts geared to bring
malaria under control [2–4]. Nevertheless, vector con-
trol forms the integral platform of integrated malaria
management aimed to reduce malaria reproduction rate
to less than 1 [5, 6].
Larviciding, a less-practiced component of integrated

vector management (IVM) and larval source management
(LSM), appears a promising approach of suppressing both
indoor and outdoor feeding mosquito populations [7–9].
Impressive stories from Brazil and Egypt following its im-
pactful malaria eradication motivates its revival [10] with
current operation in Kenya [11], The Gambia [8], Burkina
Faso, Benin [12] and Tanzania [13]. Low immobility,
confinement to shallow water bodies, susceptibility to
chemical attacks and less chances of developing resistance
favor this vector control approach [14, 15]. Additionally,
manipulation and/or modification of larval habitat bio-
physicochemical parameters negatively influence vector
competence of resultant mosquitoes suggesting a feasible
target of mosquito control [16, 17]. For millennia, mos-
quito control has considerably relied on chemicals that
inevitably reduced environmental quality and facilitated
emergence of resistant mosquito strains a phenomenon
that has limited their continued reliance, prompting for
alternative chemistries [18].
One feasible way of averting the aforementioned draw-

backs is prospecting for novel compounds with less
environmental impacts and selectively toxic to target ar-
thropods [19, 20]. In addition to being a rich source of
bioactive pharmacophores, plants produce allelochem-
icals with great potential of controlling crop pests and
disease-transmitting vectors [21, 22]. Among these are
essential oils documented to repel nuisance human
biting mosquitoes in addition to inducing toxicity to
developing juveniles [23–25]. Non-volatiles, for instance,
Azadirachtin and its derivatives from neem tree and
plant-based ecdysteroidal analogs potentially inhibit lar-
val development and adult emergence terminating insect
metamorphosis immaturely [25, 26]. Additionally, these
compounds induce growth disruption effects resulting
into mortalities and non-viable females incapable of

lineage progression [27–29]. Taken together, plant-derived
compounds are promising sources of effective insecticides
with meager chances of resistance development afforded
by multimodal targets [30, 31].
Agerantum conyzoides L. is an Asteraceae herbaceous

weed that grows in many countries worldwide. Ethno-
pharmacological surveys of this polyherbal plant have
documented biological activities such as analgesic,
anti-inflammatory, purgative, febrifuge, anti-asthmatic,
antibacterial, antifungal, antispasmodic, anti-diarrhoeic,
headache relief, antihelmintic and nematicidal [32, 33].
Phytochemically, the plant contain various bioactive com-
pounds including alkaloids, coumarins, flavonoids, tannins
and essential oils [34, 35]. Of considerable interest, the
plant extracts have shown detrimental effects on survival,
development and adult emergence of mosquitoes such as
Aedes albopictus [36], Culex quinquefasciatus [37], Aedes
aegypti and Anopheles stephensi [38] which has been at-
tributed to possibility of compounds with anti-juvenile
hormone activity. However, effectiveness of the plant ex-
tracts to control the principal Afrotropical malaria vectors
An. gambiae sensu stricto and An. arabiensis remain ob-
scure. Therefore, we sought to evaluate the larvicidal and
developmental disruption effects of A. conyzoides against
An. gambiae s.s and An. arabiensis. Our findings demon-
strate for the first time to the best of our knowledge that,
the methanolic leaf extract of A. conyzoides had consider-
able larvicidal and development inhibition activities in a
dose-dependent manner against Afrotropical malaria
vectors. In addition, we identified alkaloids, aglycone
flavonoids, triterpenoids, tannins and coumarins as
phytochemicals that were associated with the observed
bioactivities.

Methods
Collection of plant material
Ethnobotanical survey was conducted to identify the
existing gaps of A. conyzoides based on chemotaxo-
nomic criterion. A. conyzoides leaf samples were col-
lected from Shinyalu in Kakamega County of western
Kenya in September, 2015. The plant was identified by
Mr. Thomas Mbasi an ethnobotanical specialist at
Kakamega Forest Reserve, and a voucher specimen de-
posited at the same institution. The leaf samples were
packaged in a non-sterile adsorbent paper and trans-
ported to the laboratory for processing, extraction and
bioactivity assays.

Preparation of crude leaf extracts
The leaves were shade-dried at room temperature to a
constant weight and ground into a fine powder using an
electric miller (Retsch Muhle, Haan, Germany). A 100 g
of the leaf powder was subjected to methanol (Sigma
Aldrich, St. Louis, USA) (2 L) extraction using soxhlet
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extraction technique for 8–10 h. After cooling to room
temperature, the resultant extract was concentrated
using a rotary evaporator (Laborota 4000 efficient,
Heidolph, Germany) at a temperature of 40 °C under
vacuum and stored at −20 °C until required for larvicidal
bioassays.

Phytochemical profiling
The principal bioactive secondary metabolites includ-
ing alkaloids, terpenoids, steroids, aglycone flavonoids,
tannins and coumarins were assayed using standard
procedures [39].

Mosquito colony culture
The experiments were carried out with An. gambiae s.s
and An. arabiensis larvae from a colony maintained at
the International Centre of Insect Physiology and Ecol-
ogy (icipe) Insect Mass Rearing Unit. The larvae were
separately reared under laboratory conditions of water
temperature (28 ± 2 °C), relative humidity of 55–60%
and 12:12 h (light: dark) photoperiod. The larvae were
reared in large plastic pans (37 × 31 × 6 cm) with distilled
water at densities of 200–300 per pan and supplemented
with artificial diet Tetramin® fish meal (Tetra GmbH,
Melle, Germany). The rearing water was replaced with
fresh water and diet after every two days. Pupae were
held in plastic cups and transferred into standard 30 ×
30 × 30 cm rearing cages. Emergent adults were provided
with 10% sucrose solution contained in a glass tube (2 ×
8 cm) connected to a paper tube as a wick. Female mos-
quitoes were blood-fed on restrained Swiss albino mice
about 4–5 days post-emergence and provided with ovi-
position plastic containers (11.5 cm in diameter and ~
6.2 cm in depth, lined interiorly with a piece of filter
paper as oviposition site) for egg collection 2–3 days
after blood meal. The eggs were air-dried under insect-
arium conditions ready for colony cycle maintenance.

Larvicidal bioassays
The bioassays were conducted in accordance with the
World Health Organization guidelines for testing larvi-
cides [40] and adopted by Nyamoita et al., [41]. Crude
methanolic extract (250 mg, 125 mg, 50 mg and 25 mg)
was separately dissolved in 1 ml of analytical grade etha-
nol (Fisher Scientific, Loughborough, UK) and diluted
with 499 ml of distilled water to make a 500 ml stock
solution. This was then dispensed into five beakers each
100 ml to make the required concentrations of 500 ppm,
250 ppm, 100 ppm and 50 ppm, respectively. The bioas-
says were performed with batches of 20 (n = 20) late
third instar larvae (L3) of An. gambiae and An. arabien-
sis per beaker. The assays were replicated five times and
ran simultaneously yielding a total of 100 larvae for each
dosage. The control was set up with 1 ml of ethanol

diluted in 499 ml distilled water and dispensed into five
beakers. The larvae were fed on TetraMin® fish meal
(Tetra GmbH, Melle, Germany) during the testing
period. Larval mortality (at higher doses) and morpho-
logical defects (at lower doses) were monitored at intervals
of 24 h until the death of the last larva or emergence of an
adult. Larvae were considered dead if they remained irre-
sponsive within a span of two minutes when gently
probed with a pipette. The number of the dead larvae was
expressed as average percentage mortality for each
concentration relative to negative controls.

Statistical analysis
The corrected larval mortality was expressed as % mean
± S.D of experimental replicates for each dosage of the
extract. Dose-responses were analyzed by non-linear re-
gression and half-maximal lethal concentrations (LC50)
estimated at their associated 95% confidence levels using
R software version 3.2.3 [42]. Significant differences be-
tween treatment means were established with analysis of
variance (ANOVA) followed by Student-Newman-Keuls
(SNK) test and p values of less than 0.05 considered
statistically significant. Graphs were designed using
GraphPad Prism version 7.01 for Windows (GraphPad
Software, San Diego, California, USA).

Results
Phytochemical analysis
Qualitative analysis of A. conyzoides leaf extract revealed
presence of alkaloids, aglycone flavonoids, triterpenoids,
coumarins and tannins (Table 1).

Effect of the crude extracts on larval survival
The toxicity of crude methanolic extract of A. conyzoides
against late 3rd instars of An. gambiae s.s and An. ara-
biensis was evaluated. The toxicity of the extract was
demonstrated to be dose-dependent with high doses of
250 ppm and 500 ppm showing ≥ 69% larval mortality at
48 h post-exposure compared to the lower doses of
50 ppm and 100 ppm which gave < 50% larval mortality
(Table 2). Maximum larval mortality (100%) was re-
corded at 500 ppm on exposure to An. gambiae s.s
larvae for 48 h with only 88% attained against An.

Table 1 Phytochemical constituents of crude leaf extract of A.
conyzoides

Phytochemical constituent Absence/presence

Alkaloids +

Flavonoids +

Tannins +

Coumarins +

Terpenoids +

+ (Presence), − (Absence)
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arabiensis. A 100% larval survival was noted in the nega-
tive control group for the entire analysis period. Relative
to controls, the extract significantly reduced survival
rates of An. gambiae s.s (ANOVA, F(4,70) = 115.5534,
P < 0.001) and An. arabiensis larvae (ANOVA, F(4,70)
= 31.7382, P < 0.001). There was significant suscepti-
bility difference between the two mosquito species to
the extract (ANOVA, F(8,111) = 25.6398, P < 0.001). A
time- and dose-dependent reduction in survival rates
of extract-challenged mosquito larvae was demon-
strated in Fig. 1.

Developmental disruption effects
Besides lethality of high doses, the extract remarkably
accelerated the growth of larvae into pupae resulting
into incomplete melanization and abnormal dead larval-
pupal intermediates as depicted in Fig. 2. At sublethal
doses of 50 ppm and 100 ppm, molting continued nor-
mally but the development of the immature stages was
greatly affected. Microscopic examination of the dead
immature stages at 25× magnification revealed morpho-
logical defects evident as:- abnormal dead larval-pupal
intermediates and emergent adults with mouthparts and
wings folded within the pupal exuvium (Fig. 2). The
adults that luckily emerged from the extract-treated

water were unable to escape from the pupal caste and
died on the surface of test solution. Overall, the extract
at sublethal doses induced prolonged larval phase
duration by 7 more days prior to pupation relative to
negative controls (2 days).

Discussion
In search for better insecticides to replace or comple-
ment the synthetic insecticides and alleviate resistance
pressure on malaria vectors, scientists have turned inter-
ests into nature for alternative controls. Many plants
have been reported around the globe to have bioactivity
against mosquitoes and their multiple targets of actions
against mosquitoes assure effectiveness as alternative
bio-insecticides. The toxic efficacy of these botanicals
against various mosquito vectors vary depending on
different factors such as the part of the plant used,
method of extraction adopted, solvent used, geograph-
ical locality the plant was obtained, the concentration
of the extract used and photosensitivity of some plant
compounds [43].
In the current study, we challenged late third (L3)

instar larvae of An. gambiae s.s and An. arabiensis with
crude extract of A. conyzoides to evaluate their re-
sponses. Our data demonstrate that the extract had

Table 2 Mean larval mortality evoked by the A. conyzoides extract at different concentrations against 3rd instar larvae of An. gambiae
s.s and An. arabiensis

Time % mean mortality ± S.Da Lethal concentration (ppm)

500 ppm 250 ppm 100 ppm 50 ppm Control LC50 95% CI

An. gambiae s.s larvae

24 h 84 ± 11.94 64 ± 17.82 35 ± 8.37 0 ± 0.00 0 ± 0.00 232.70 228.85–239.20

48 h 100 ± 0.00 93 ± 8.37 65 ± 23.45 19 ± 12.94 0 ± 0.00 84.31 81.17–90.88

72 h 100 ± 0.00 93 ± 8.37 65 ± 23.45 19 ± 12.94 0 ± 0.00 84.31 81.17–90.88

An. arabiensis larvae

24 h 60 ± 15.41 27 ± 10.37 20 ± 2.24 0 ± 0.00 0 ± 0.00 406.35 403.56–411.25

48 h 88 ± 5.70 69 ± 15.97 36 ± 6.52 24 ± 9.62 0 ± 0.00 133.46 131.51–136.16

72 h 88 ± 5.70 93 ± 5.70 68 ± 10.37 49 ± 10.25 0 ± 0.00 133.46 131.51–136.16

Data expressed as % mean mortality ± standard deviation (S.D), LC50- lethal concentration that killed 50% of mosquito larvae population, CI Confidence Interval
aMortality means are significantly different at p ≤ 0.05 (Student-Newman-Keuls test)

Fig. 1 Dose-response curves for An. gambiae s.s and An. arabiensis larvae to A. conyzoides extract for 24 h, 48 h and 72 h post exposure. Doses
are log-transformed and each point on the plots represents percentage mean (± S.D) larval mortality of 5 replicates for each dose of the extract
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detrimental effects on both survival and development of
An. gambiae s.s and An. arabiensis in a dose-dependent
response manner. High dosages of 250 ppm and
500 ppm evoked acute toxicity to the developing larvae
while the sublethal doses of 50 and 100 ppm induced de-
velopmental disruptions as shown by Fig. 2(b-e). The
toxic effect of the plant extract could be attributed to its
bioactive phytochemical constituents (Table 1). The
LC50 values of the plant extract have shown significant
potential of controlling An. gambiae s.s and An. arabien-
sis. It has been previously reported that the plant extract

had larvicidal activity against Ae. albopictus [36], C.
quinquefasciatus [37], Ae. aegypti and An. stephensi [38]
which is similar to our data though slight variation was
noted. This could be attributed to the solvents used for
extraction, susceptibility differences of mosquito vectors
used and geographical differences of the plant. Methano-
lic extract of A. conyzoides leaves was used in the
present study and found effective against An. gambiae
s.s and An. arabiensis larvae.
Moreover, phytochemicals extracted from many plant

species have been reported to show growth inhibiting

Fig. 2 Development disruption effects of A. conyzoides extract to An. gambiae s.s and An. arabiensis. a Demelanized An. gambiae s.s larvae (b)
Abnormal An. gambiae s.s larval-pupal intermediate (c) Arrested adult emergence in An. gambiae (d) Abnormal An. arabiensis larval-pupal intermediate
(e) Failed adult emergence in An. arabiensis (f) An. gambiae s.s control larvae (g) Normal An. gambiae s.s larval-pupal intermediate (h) An. arabiensis
control larvae (i) Normal An. arabiensis larval-pupal intermediate (Light microscopy visualization conducted at magnification 25×)

Muema et al. BMC Complementary and Alternative Medicine  (2016) 16:475 Page 5 of 8



effects on the various developmental stages of different
mosquito species [27–29, 40, 43]. Various pre-emergent
effects such as prolongation of larval instar and pupae
durations, inhibition of larval and pupal molting, mor-
phological abnormalities and mortality may occur espe-
cially during molting and melanization processes.
Developmental disruption effects induced by the plant
extracts can be associated with disturbed hormonal
balance or interference in chitin synthesis during the
molting process. Our data recorded morphological ef-
fects on An. gambiae s.s and An. arabiensis where the
immature stages failed to transform into a normal adult
leading to eventual death (Fig. 2c and e). Similar results
on morphological abnormalities were reported on An.
stephensi, Ae. aegypti and C. quinquefasciatus exposed
to A. conyzoides extract. The phenomenon has been re-
ported by Okunade, [35] as a result of perturbation of
hormonal homeostasis by precocene-3,4-epoxide, a me-
tabolite generated by cytochrome P450s in the insect
body [44]. The metabolite may either antagonize or
agonize the biosynthesis and subsequent release of ju-
venile hormone, the regulator of insect metamorphosis.
Studies carried out by Nyamoita et al., [41], Nathan et

al., [45] and Nathan et al., [46] reported that in addition
to their lethality, the secondary metabolites of the botan-
icals used resulted in protracted larval phase, disrupted
growth and malformation of the exoskeleton. Although
there was no elongation of gut as observed in [29] and
[47], incomplete melanization process was observed in
larvae and some pupae examined under light microscopy
(Fig. 2). Our data corroborated with that obtained by
Ndung’u et al., [28] where limonoids from methanolic
extracts of the root of Turraea mombassana Hiern
(Meliaceae) resulted in larval and pupal morphological
deformities in An. gambiae s.s due to incomplete mela-
nization. Similarly, exposure of Anopheles stephensi to
extracts of Melia azedarch resulted in similar observa-
tions [45]. Also, compounds from Azadirachta indica
and Melia volkensii (Meliceae) extracts induced growth
disruption effects to mosquito larvae besides feeding deter-
rence and toxicity [48]. Studies performed by Govindachari
et al., [49], Martinez and Van Emden, [50] and Nathan et
al., [51] confirmed the above effects of Azadirachtin on in-
sects. Elsewhere, dichloromethane extract of Hyptis brevis
(Lamiaceae) displayed strong growth inhibition on Spodop-
tera littoralis larvae by arresting metamorphosis [52]. The
same phenomenon has been reported by Cespedes et al.,
[53].
Several plant species produce a myriad of bioactive

chemicals as part of defenses against herbivory attacks
majorly classified as volatile compounds (essential oils)
and non-volatiles. The non-volatiles include the alka-
loids, flavonoids, terpenoids, glucosinolates, cyanogenic
glycosides, phenolic acids among others [31]. Majority of

these non-volatiles particularly phytoecdysteriods, phy-
tojuvenoids and anti-juvenile hormones act as insect
growth regulators (IGRs) reducing survival rates and
development of insects upon ingestion [54]. Previous re-
ports indicate various insecticidal compounds isolated
and identified from A. conyzoides extracts such as ste-
roids, flavonoids, coumarins, pyrrolizidine alkaloids, tri-
terpenoids, and chromenes [36, 55–57]. In this regard,
phytochemical analysis revealed presence of main com-
pounds such as alkaloids, terpenoids (e.g. precocene I
and precocene II) [56], flavones (e.g. ageconyflavones A,
B and C) [57], coumarins and tannins which equally
agree with these reports. All these compounds may act
in a concerted manner to nonspecifically induce toxicity
to insects. More specifically, precocenes (terpenoids)
have been reported to be anti-juvenile hormone, acceler-
ating the development of insects and inducing dwarfness
associated with low survival rates [43]. Phytochemicals
that agonize or antagonize the effects of insect devel-
opment hormones have been reported to be good
bio-pesticides [53]. These compounds disrupt the nor-
mal metabolism of the insect hormones during the
development of the juveniles leading to failure of
adult emergence [55].
Two important insect developmental hormones that

interplay are 20-hydroxyecdysone (20-E) and juvenile
hormone (JH) [58]. It is the balance in levels of these
two hormones that define the outcome of each develop-
mental transition [59]. Ligand-binding to the insect
juvenile receptor complex disrupt insect endocrine sig-
naling and regulation causing abnormal development
and lethality [21]. The accumulation of these plant com-
pounds above threshold levels disrupt the insects’ devel-
opmental progression culminating into premature death
or failure to emerge as a normal adult [60]. The active
compounds from A. conyzoides extract induced toxicity
and growth inhibition effects to developing mosquito
larvae and could potentially be isolated for formulating
effective mosquito control agents. Further, identification
of molecular targets, ligand docking and simulation as-
says accompanied by field applications could be pursued
for improved mosquito control.

Conclusions
The findings of our study showed promising larvicidal
and development disrupting effects of A. conyzoides
extract on the main Afrotropical malaria vectors, An.
gambiae s.s and An. arabiensis. Phytochemicals present
within the extract including alkaloids, aglycone flavo-
noids, triterpenoids, tannins and coumarins were associ-
ated with the observed experimental effects. They have
potential of being used as insecticides for controlling
mosquito populations around human dwellings by
targeting the immature stages. Noteworthy, prior to
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commercial application of this botanical larvicide, fac-
tors such as safety of non-targets and beneficial organ-
isms, efficacy in actual field conditions, and residual
half-life must be put into consideration.
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