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Abstract

Neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) enforce an overwhelming
social and economic burden on society. They are primarily characterized through the accumulation of modified proteins,
which further trigger biological responses such as inflammation, oxidative stress, excitotoxicity and modulation
of signalling pathways. In a hope for cure, these diseases have been studied extensively over the last decade to
successfully develop symptom-oriented therapies. However, so far no definite cure has been found. Therefore,
there is a need to identify a class of drug capable of reversing neural damage and preventing further neural
death. This review therefore assesses the reliability of the neuroprotective benefits of epigallocatechin-gallate
(EGCG) by shedding light on their biological, pharmacological, antioxidant and metal chelation properties, with
emphasis on their ability to invoke a range of cellular mechanisms in the brain. It also discusses the possible use
of nanotechnology to enhance the neuroprotective benefits of EGCG.
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Introduction
Neurodegenerative diseases impose a significant social
and economic burden. Since the population of developed
countries are rapidly aging, age related disorders have
become predominant. AD is the most common neurode-
generative disease with projected prevalence figures of
81 million people by 2040 [1]. It clinically characterized
by the presence of extracellular amyloid plaques and
intracellular neurofibrillary tangles that instigate the
selective loss of neurons in the cerebral cortex and
hippocampus through several mechanisms. Proposed
mechanisms include microglia-triggered inflammation,
over activation of glutamate receptors, increased intra-
cellular calcium levels, generation of nitric oxide species,
release of free radicals, mitochondrial dysfunction, syn-
aptic dysfunction and loss [2]. PD on the other hand is
the second most common neurodegenerative disease
with projected prevalence figures of 7.1 million people
by 2025 [1]. It is clinically characterized by the presence
resting tremors, bradykinesia and rigidity triggered
through dopaminergic neuronal loss in the substantia

nigra. An important feature of PD is the presence of
lewy bodies that are mainly composed of ubiquinated α-
synuclein, neurofilament, synaptic vesicle protein and
parkin. These lewy bodies trigger multiple mechanisms
in the brain including mitochondrial dysfunction, release
of free radicals, generation of nitric oxide species, JNK
pathway activated apoptosis, microglia-triggered inflam-
mation and disruption of protein degradation pathways
[2] (Fig. 1).
Currently there is no effective treatment for either

disease. As marketed therapeutic drugs are predomin-
antly symptom-oriented with multiple side effects,
where the adversity of the side effect increases in a dose
dependent manner. They are therefore useful as long as
their benefits outweigh any side effect [3]. Other highly
specific interfering drugs currently being studied also
do more harm than good, for instance, if we block sig-
nal peptidases for amyloid precursor processing to pre-
vent plaques, we end blocking the other functions of
the said secretase in the process [4]. Therefore there is
a need to develop therapeutic agents with lower side
effects and a broader spectrum of targets to not only treat
the symptoms but also potentially reverse the pathology of
the disease.
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In the last decade, green tea polyphenols particularly
its active component EGCG has gained a lot of attention
as a potential therapeutic agent for preventing neurode-
generative [5, 6], inflammatory diseases [7] and cancer
[8, 9] mainly due to their beneficial effects on human
health. This ability is mostly attributed to their antioxi-
dant [5, 6], radical scavenging [6], metal chelating [6, 9],
anti-carcinogenic [9], anti-apoptotic [5, 6, 10] and anti-
inflammatory properties [7]. Extensive research on
EGCG have brought into light their potential to promote

healthy ageing by improving the morphologic and func-
tional alterations that occur in a natural ageing brain,
their ability to suppress cognitive dysfunction [11], in-
crease the learning ability [12] and reduce oxidative
damage in the brain [12, 13].
Studies with PD have reported EGCG’s potential to at-

tenuate apoptosis, supress accumulation of reactive oxy-
gen species and free intracellular calcium, alter signalling
pathways, lower nitric oxide levels and reduce oxidative
stress [5]. While in case of AD, inhibition of reactive

Fig. 1 Proposed mechanism of Neurodegeneration in Alzheimer’s Disease and Parkinson’s Disease. Abbreviations: Akt – is another name for protein
kinase B, GSK 3β – Glycogen synthase kinase 3 beta, JNK – c-Jun N-terminal kinases, Misfolded α-syn – Modified alpha synuclein, REDD1 – regulated in
development and DNA damage responses 1, ROS – reactive oxygen species
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oxygen species accumulation, promotion of beta amyloid
degradation, reduction in the production of beta amyloid,
lower levels of beta and gamma secretase activity, higher
levels of alpha secretase activity and suppression in phos-
phorylation of tau protein has been noted [14].
Therefore, in line with this evidence, added attention

is being paid towards studying the neuroprotective and
neurorescue roles of EGCG, in addition to their antioxi-
dant, metal chelation and radical scavenging properties
[14]. Important advances have been made in under-
standing the molecular events that cause the decline of
signal transduction in neurodegenerative diseases and
the role that EGCG plays in the modulation of these sig-
nalling pathways, particularly, their effect on cell death,
survival genes [15] and signalling pathways such as mito-
gen activated protein kinase (MAPK), protein kinase C
(PKC), protein kinase A and phosphatidylinostide 3-OH
kinase/AKT pathways [16, 17]. So, here we will focus on
the role of EGCG and its molecular mechanisms of neuro-
protective action.

Current status of knowledge
Green tea polyphenols
Green tea is a traditional drink made from Camellia
sinesis plant, widely consumed in Asian countries [18].
They are broadly made up of 4 derivatives based on their
structural variations, including; epicatechin (EC), epi-
gallocatechin (EGC), epicatechin gallate (ECG) and
epigallocatechin-3-gallate (EGCG) (Fig. 2). Where, EGCG
accounts for about 10 % of the extract dry weight [18, 19]

and 50–80 % i.e. 200–300 mg in a brewed cup of green
tea [20].
A few human studies have looked into the beneficial ef-

fect of tea consumption and have reported an inverse dose
response relation between green tea consumption and
cognitive dysfunction in dementia, AD and PD [21, 22].
Case controlled studies in Japan and United states have
shown that consumption of 2 or more cups of tea per day
reduced the prevalence of cognitive impairment [23, 24]
and decreased the risk of PD [25, 26]. In support to this
finding a 13 years long Finnish study with 30,000 adults
aged 25–74 years also reported reduced risk of PD when 3
or more cups of tea were consumed per day [27]. In a
more recent large scale cohort 20 year follow up analysis
with approximately 50,000 men and 80,000 women,
EGCG intake was found to be associated with 40 % lower
PD risk [28]. Several case-controlled and cohort studies
across North American, European and Asian populations
have reported lower PD risk with tea consumption, how-
ever this effect was more significant in Asian populations
[29]. Particularly, in Chinese populations a 28 % lower PD
risk has been reported with tea consumption (3 cups/day
for 10 years) [30]. These studies therefore suggest the
presence of a relationship between tea consumption and
lower rates of neurodegenerative disorders.
The metabolism of green tea polyphenols in the body

has been also been studied. It was reported that green
tea polyphenols are absorbed, distributed, metabolised
and excreted from the body within 24 hours. In human
studies, when 1.2 g of decaffeinated green tea was

Fig. 2 Structure of Green Tea Catechins and its four derivatives. Namely, Epicatechin, Epigallocatechin, Epicatechin-3-Gallate and Epigallocatechin-3-Gallate
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ingested, plasma levels ranged between 46 – 268 ng/ml
within 1 hour of ingestion with cumulative excretion
levels in the first 24 hours ranging from 1.6 – 3.2 mg
[31]. With ingestion of five cups of tea in a day, the
green tea polyphenol concentration in the plasma in-
creased by twelve folds [8], which is enough to exert
antioxidant activity against oxidative damage [32]. This
data was further supported by animal studies, where
administration 35 mg/kg/day of green tea polyphenols
prevented not only oxidative damage and memory re-
gression but also sufficiently delayed senescence [12].
EGCG has been reported to be more effective as radical

scavengers when compared to vitamin E and C [19].
Within the derivatives the order of protective effects in
vitro has been reported to be; ECG > EGCG>EC > EGC
[33] and their order of antioxidant potential; EGCG ≥
ECG> EGC> EC [34]. The radical scavenging property has
been attributed to the presence of an ortho-3’, 4’-dihydroxy
moiety or an ortho-trihydroxyl group not their steric struc-
tures. In addition, with increase in the number of hydroxyls,
the radical scavenging property becomes stronger, implying
EGCG has stronger scavenging activity as they possess a tri-
hydroxyl group in the B ring and also contain a galloyl
moiety with three hydroxyl groups in the C ring [19].
In addition to the radical scavenging properties, EGCG

also possess metal chelating properties. The two struc-
tures which give this compound its property of metal
chelation include the ortho-3’, 4’-dihydroxy moiety and
the 4-keto, 3-hydroxyl or 4-keto and 5-hydroxyl moiety
[35]. These structures act as points of attachment for
transition metals and neutralize their activity by convert-
ing their active form into a redox inactive complex to
prevents oxidative damage of cells [36].
However, before EGCG’s role in neuroprotection can

be established it is first important to determine whether
EGCG is capable of crossing the blood brain barrier
(BBB). In vitro studies with brain endothelial cell lines
co-cultured with astrocytes have reported the successful
diffusion of many flavonoids [37], which is also sup-
ported by in vivo studies. Oral administration of EGCG
for a period of 5 days and EC for a period of 10 days has
reported the presence of both compounds in brain tissue
samples [38, 39]. Thereby implying that EGCG is cap-
able of diffusing and localize in the brain.

EGCG a potential therapeutic agent for
neurodegenerative diseases
Neurodegenerative diseases are characterized by differ-
ent structural and pathological conditions including the
accumulation of modified or diseased proteins such as
α-synuclein in PD [40], β-amyloid peptide and tau protein
in AD [3, 41] that further contribute towards inflamma-
tion [42], elevate expression levels of pro-apoptotic pro-
teins [43, 44], trigger glutamatergic excitotoxicity [45],

iron accumulation [46] and oxidative stress [47]. It is
therefore necessary to look for drugs capable of simultan-
eously manipulate multiple desired targets and exerting
higher therapeutic effectiveness [48]. Since EGCG has a
broad spectrum of biological and pharmacological ac-
tivities, it can be measured as a much-anticipated
therapeutic agent in the treatment of neurodegenerative
diseases (Fig. 3) [49–54].
AD is an age-dependent neurodegenerative disease

that instigates gradual deterioration of cognitive functions
including memory loss and impairment in reasoning along
with irreversible neuron loss. Neuropathologically, the
hallmarks of AD include positive lesions such as amyloid
plaques, neurofibrillary tangles, glial responses and cere-
bral amyloid angiopathy along with negative lesions such
as neuronal loss and synaptic loss. The important bio-
markers in AD pathology are considered to be phosphory-
lated tau protein (P-tau) and the 42 amino acid form of
beta amyloid (Aβ42). Therefore agents that inhibit the for-
mation of these 2 biomarkers can be used in the preven-
tion of AD [55]. For instance in vitro studies, where
neuronal cells were treated with 10 μM EGCG showed a
protective effect against Aβ-induced cytotoxicity, either
via the activation of the Akt signalling pathway [56] or by
increasing the levels of acetylcholine, by EGCG acting as
an acetylcholinesterase inhibitor [57]. While, the neuro-
protective effects against Aβ-induced neuronal apoptosis
were produced via its ability to efficiently scavenge re-
active oxygen species [58]. EGCG has also shown the
potential to inhibit Al (III) induced Aβ42 fibrillation
and significantly reduce this Aβ42 fibrillation by pre-
venting further conversion of Aβ42 monomers into a
folded conformation. At the same time, it also has the
ability to remold the preformed, mature, toxic fibrils
into low toxic amorphous aggregates. Moreover, it
could be implied that EGCG basically reverses the con-
formation of the complexes formed between Al (III)
and Aβ42 in order to inhibit and remold Aβ42 fibrilla-
tion [Unpublished observations]. In addition to EGCG’s
ability to reduce Aβ42 fibrillation, it also inhibits the ag-
gregation of tau protein into toxic oligomers and at the
same time remold existing oligomers to an unfolded
monomeric state to rescue neuronal cells from tau-
induced neurotoxicity [59]. EGCG administration in
Alzheimer transgenic mice regulated the tau profile and
markedly suppressed the phosphorylated tau isoforms
[60]. This clearance of the phosphorylated tau isoforms
occurred in a highly specific manner through the adaptor
protein expression [61]. Furthermore, long-term oral ad-
ministration of EGCG also reported significant improve-
ment in spatial cognitive learning ability in rats [60, 62].
These studies therefore, demonstrate EGCG’s ability to
reduce Aβ and tau toxicity and inhibit apoptosis, thus
showing its potential for prevention of AD.
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PD is the second most common neurodegenerative
disease. It is characterized by features such as rigidity, pos-
tural instability and slowness of movement and tremors
along with cognitive and psychiatric deficits. Neuropatho-
logically, the hallmarks of PD include misfolding and ag-
gregation of α-synuclein protein, damage and loss of
dopamine (DA) neurons in the substantia nigra pars com-
pacta (SN) along with oxidative stress caused due to mito-
chondrial dysfunction [63]. Therefore, agents that would
target these hallmarks could be considered as important
candidates for the treatment of PD. Oral administration of
EGCG (2 and 10 mg/kg) in vivo, has shown to signifi-
cantly reduce DA neuron loss in the SN and also prevent
striatal DA and tyrosine hydroxylase protein level deple-
tion [64]. In addition EGCG (200 μM) has also exhibited
significant inhibitory effects against oxidative stress in-
duced apoptosis [10]. These studies therefore suggest
EGCG’s potential use as a therapeutic agent in the treat-
ment of PD.

Neuroprotective properties of EGCG
Green tea polyphenols are known to possess neuropro-
tective and neurorescue action. In particular, EGCG has
shown to increase cell viability, decrease reactive oxygen
species [65] and expression levels of endoplasmic reticulum
stress markers and apoptotic markers [66, 67]. They also
protect cells against mitochondrial dysfunction [68], 6-
hydroxydopamine (6-OHDA) induced toxicity [69],

apoptosis induced by mitochondrial oxidative stress
[70] and glutamate excitotoxicity [71]. EGCG also pre-
serves mitochondrial energetics [72] and limits the in-
flammation of the brain and neuronal damage [73, 74],
which in turn prolongs the onset of symptoms, life span
[75], cognitive skill and learning ability of the patient
[62, 76, 77]. Not only does EGCG exert neuroprotective
effects, it also wields neurorescue activity by promoting
neurite growth [78]. Which, makes EGCG a good candi-
date for a potent disease-modifying agent with neurores-
cue and neuroprotective properties [79].

Free radical scavenging and antioxidant action
Reactive oxygen and nitrogen species such as nitrite
oxide, superoxide and hydroxyl free radicals are naturally
produced to assist the host system in defence against
oxidative stress and inflammation triggered through
pathogens and infectious agents. But these species have
a two faced nature, when overproduced in the body, they
initiate a deleterious process making them a mediator to
cell structure damage including DNA, proteins and lipids,
which eventually leads to apoptosis and cell death [80].
Green tea polyphenols are biological antioxidants with

radical scavenging properties. Among the green tea poly-
phenol family, EGCG and ECG are the most potent radical
scavengers. This is attributed to the presence of an ortho-
trihydroxyl group in the B ring [19], 4-keto and 5-hydroxyl
group in the C ring i.e. the galloyl moiety [35] and the A

Fig. 3 Green tea polyphenols – a potential therapeutic agent for Neurodegenerative Diseases, Aging, Cancer, Inflammatory Diseases, Stroke,
Metabolic Disorders, Obesity and Cardiovascular Diseases
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ring in their structures. Also, the difference between
antioxidant activities of EGCG and ECG is slight and is
attributed to the number of hydroxyl groups each pos-
sesses [81]. In general they can scavenge 1,1-diphenyl-3-
picrylhydrazyl radicals, peroxyl radicals [82], nitric oxide,
lipid free radicals, singlet oxygen, peroxynitrite [83], hy-
droxyl free radicals and superoxide anion radicals [84]
through three possible mechanisms. First, by chelating
metal ions to their inactive forms [85]. Second, by direct
interaction between catechins and peroxyl radical via a
fast mechanism of electron (H-atom) transfer, to prevent
DNA strand breakage [86]. And third, by preventing the
deaminating ability of free radicals by forming stable semi-
quinone free radicals [87].
Oral administration of EGCG, in vivo has reported sig-

nificant reduction in levels of lipid peroxidation products
with elevated levels of enzymatic and non-enzymatic anti-
oxidants [88]. Complete reversal of the damaging effects
of AlCl3 on superoxide dismutase activity was noted along
with markedly improvement in glutathione peroxidase,
cytochrome C oxidase and acetylcholinesterase activity
[89]. To better understand the antioxidant potential of
EGCG, it was administered long-term in both young and
old rats. Significant improvement in enzymatic and non-
enzymatic antioxidant levels, 50 % reduction in the levels
of malondialdehyde and 39 % reduction in protein car-
bonyl levels was also reported in both rats. Even with the
reduction in dose from 100 mg/kg body weight to 2 mg/kg
the same effects was observed [9, 90].
Consumption of green tea polyphenols in humans has

shown to increase the antioxidant levels in the body.
Long-term consumption of approximately 2-3 cups a day
has reported an increase in both total antioxidant activity
and total polyphenol content with a decrease in peroxide
levels, glutathione levels and lipid hydroperoxide levels
[91, 92]. Suggesting, that green tea polyphenols like EGCG
could directly or indirectly regulate the antioxidant levels
to reduce oxidative stress.
In addition to deterring oxidative stress, EGCG has

also shown to hinder inflammation. It is a potent inhibi-
tor of leukocyte elastase, which mediates the activation
of matrix metalloproteinases (MMP) MMP-2 and MMP-
9, which further trigger inflammation [93]. Oral admin-
istration of EGCG in vivo has also shown to significantly
reduce inflammation in pulmonary fibrosis, block neu-
trophil mediated angiogenesis in inflammatory models
[94] and also inhibit proinflammatory mediators such as
myeloperoxidases in a dose dependent manner [95]. Im-
plying that EGCG is a potent anti-inflammatory agent
with therapeutic potential.

Iron chelating activity
Iron accumulation is one of the major pathologies of
neurodegenerative diseases causing neuron death at the

site of iron accumulation [96]. This has generated a need
for iron chelators such as EGCG. The mechanism of ac-
tion involves the attachment of transition metal ions at
two points: 3’4’-dihydroxy position in the B ring and the
4-keto, 3-hydroxy or 4 keto and 5-hydroxy in the C ring,
which then inhibits the formation of transition metal
catalyzed free radicals providing antioxidant and neuro-
protective effects [35, 97]. Iron accumulation only occurs
when the ionic iron participates in the Fenton reaction
leading to the generation of reactive oxidative species,
which triggers oxidative stress and activates the inflam-
matory cascade. In the process, activating primary and
secondary messengers including cytokines (TNF α, IL-1
and IL-6), mast cells, histamine, transient receptor po-
tential channels (TRP), acid sensing ion channels
(ASIC), sodium channels and nuclear factor kappa-light-
chain-enhancer of activated B cells (NF – kB) [98].
In the PD brain iron accumulation induces oxidative

stress and reduction in the levels of neuromelanin that
are visible well before the clinical manifestation of the
disease develop, in vivo [99]. This accumulation of iron,
directly or indirectly induces α-synuclein fibril forma-
tion, which then acts in concert with dopamine to in-
duce the formation of lewy bodies and cause cell death
[100]. However, in case of AD iron accumulation occurs
in specific areas of the brain demonstrating it’s selective
vulnerability of specific regions of the brain including the
cerebral cortex, hippocampus and basal nucleus of mey-
nert. Colocalization in lesions, plaques and neurofibrillary
tangles along amyloid beta deposition; phosphorylation of
tau protein and tangle formation was also noted. Since,
these sites are centers of memory and thought, with the
progression of the disease, in the form of neuronal death,
these processes are gradually lost [101].
Treatment with EGCG for iron accumulation in AD

and PD has portrayed its ability to regulate APP through
the iron responsive element and at same time reduce the
toxic levels of amyloid beta peptide [102]. Suppression
of TNF – alpha and IL-1 beta levels along with inhib-
ition of NF-kB activity was also noted in vitro, implying
that EGCG’s iron chelating property plays an important
role in these protective effects [103]. The kinetics and
mechanisms of complex formation between iron and
EGCG has reported that one molecule of EGCG is cap-
able of reducing up to four iron (III) species [104]. In
addition through interaction with Ngal, a biomarker for
acute kidney injury, EGCG inhibits the chemical activity of
iron by forming a stable Ngal-EGCG-Iron complex [105].
Making, EGCG a powerful metal chelating antioxidant.

Lipid peroxidation
EGCG has been reported to protect from lipid peroxidation
and DNA deamination by guarding cells from the initiators
of lipid peroxidation i.e. t-butylhydroperoxide [106], 6-
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hydroxydopamine [107], iron [108], ultraviolet radiation
[109], hydrogen peroxide [110] and 3-hydroxykynurenine
[111]. In vivo studies designed to investigate the effect of
EGCG on lipid peroxidation have reported a significant
reduction in the extent of lipid peroxidation when thiobar-
bituric reactive substances (TBARS) levels were measured
[112]. Along with a significant decrease in the levels of lipid
peroxidation markers namely lipid hydroperoxides, 4-
hydroxynoneal and malondialdehyde, with an increase
in glutathione peroxidase activity and reduced glutathi-
one concentrations [113]. Thereby, implying that EGCG is
capable of protecting cells against lipid peroxidation.

Modulation of cell signalling pathways, cell survival
and death genes
EGCG protects not only through their antioxidant po-
tential but also through the modulation of signalling
pathways, cell survival and cell death genes. They inter-
act directly with neurotransmitter receptor, downstream
protein kinases or signalling cascades such as PKC, Akt
and MAPK signalling pathways. This interaction be-
tween EGCG and the signalling cascade further dictates
the response of the cell to environment or the stressor,
ultimately leading to responses such as cell proliferation,
apoptosis, synthesis of inflammatory mediators and neurite
growth [114, 115].

Activation of PKC signalling pathway
PKC is the largest serine/threonine kinase family, making
up almost 2 % of the human kinome. It is critical for nor-
mal cell growth [116] and plays an important role in the
cell signalling machinery including its integral role in
transduction pathways for hormones and growth factors.
It also has an important role in the amalgamation of
different types of memories [117]. An increase in PKC ex-
pression could potentially enhance memory, cognition
and learning along with anti-dementia action [118] which,
in turn would restore the normal PKC signalling. Con-
sequently stimulation of neurotrophic activity, synaptic
remodelling and synaptogenesis leads to the reduction
of amyloid beta accumulation, tau hyperphosphoryla-
tion and apoptotic processes in the brain [119]. Making
PKC activation in the neurons a prerequisite for neuro-
protection [120].
The 12 isoforms of PKC are categorized into 3 subclasses

based on their activators: conventional (α, βI, βII, γ), novel
(δ, ε, θ, η, μ) and atypical (ι, λ, ζ). Here conventional iso-
forms are activated via phospholipids such as phosphatidyl-
serine (PS), diacylglycerol (DAG) and Ca2+, whereas PS
and DA activate novel isoforms as they lack Ca2+ binding
site. Atypical isoforms are insensitive to both DAG and
Ca2+ and are thus activated by phosphatidylinositols, phos-
phatidic acid, arachidonic acid and ceramide [121, 122].
The mechanism for PKC activation requires: first the

phosphorylation of 3 distinct sites within the activation
loop, turn motif and hydrophobic domain. Followed by
binding of DAG and PS to promote the conformational ac-
tivation of the proteins [123].
PKC isoforms are mainly targets for survival signalling.

For instance, in vitro, EGCG effectively increases expres-
sion levels of PKC, in order activate the normal PKC sig-
nalling pathway. This activation offers neuroprotection
against amyloid beta neurotoxicity, serum withdrawal, 6-
OHDA and provides neurorescue action against neur-
onal cell damage [18, 78] along with rapid translocation
and activation of Phospholipase D (PLD) in astroglioma
cells [124]. Long term administration of EGCG has also
shown to effectively protect against 6-OHDA and 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) tox-
icity, as enhanced expression levels of PKCα and PKCε
have been observed. In addition, upregulation of previ-
ously depleted levels of PKCα has also been noted with
further activation of Bcl – 2, signal related kinases –
ERK 1, ERK 2 with a reduction in the levels of proapop-
totic caspase 6, bax, bad, TRAIL and fas ligand [125].
Moreover, EGCG efficiently prevents the dissipation of
the mitochondrial membrane potential with reduction in
Bad levels [17, 126]. With PKC inhibition this protective
effect was also abolished suggesting that these protective
effects were PKC mediated.
In AD, amyloid beta fibrillation in particular was

inhibited via the PKC signalling pathway. Where the fi-
brils generated due to the extracellular deposition of
beta amyloid peptide, derived via the proteolytic cleav-
age of amyloid precursor protein (APP) by β and γ
secretase instead of α secretase [127, 128] were inhib-
ited when treated with EGCG in both cell and animal
models. Transgenic studies have also suggested that
these diminished levels of beta amyloid peptide and
plaques stemmed due to the enhanced levels of PKC
isoforms and α secretase expression [109, 129] which,
implied that EGCG induced non-amyloidogenic sAPPα
release and inhibited the generation of beta amyloid
peptide via the PKC dependent activation of α secre-
tase. To support this data transgenic studies with over-
expression of PKCε reported significant decrease in
beta amyloid peptide levels, plaque burden, reactive
astrocytosis and neuritic dystrophy with increase in ac-
tivity of endothelial converting enzyme that degraded
the beta amyloid peptide and inhibited amyloid beta
fibrillation [130].
In PD, treatment with EGCG has shown to induce a

dose dependent inhibitory effect on DA presynaptic
transporters (DAT) in the dopaminergic cells where
PKC activation regulates DAT internalization and en-
hances synaptic DA levels. Also, this effect was completely
abolished when PKC activation was blocked [131]. EGCG
also inhibited the activity of catechol-O-methyltransferase
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(COMT) and in turn inhibited COMT catalysed methyla-
tion of endogenous and exogenous compounds, delivering
a neuroprotective effect in both animal and cell models of
PD [132].

Inhibition of MAPK signalling pathway
Mitogen activated protein kinases (MAPK) belong to a
large family of serine/threonine kinases. They are im-
portant members of the signalling cascades involved in
cell proliferation, inflammation, cytokine and inducible
nitric oxide synthase expression [133]. MAPKs can be
classified into 3 classes including ERK1/2 (p42/p44), c-
Jun N-terminal kinase (JNK) and p38 [134]. Where ERK
act as a determinant for cell growth, cell survival, motil-
ity, cell differentiation and pro-survival signalling [135].
JNK also known as stress-activated protein kinases
(SAPK) maintains growth control and regulate apoptosis
[136]. While p38 MAPK regulates cell cycle, cell death,
inflammation, tumorigenesis, senescence and cell differ-
entiation [137].
These classes of MAPKs have different modes of ac-

tion through which they regulate their respective signal-
ling cascades. For instance the activated ERK MAPKs
regulate their signalling cascades through activation of
cAMP response element binding protein (CREB) [138]
and through upregulation of anti-apoptotic proteins
[139]. While JNK MAPKs first become activated through
an environmental stimulus followed by the activation of
factors such as c-Jun, JunB, JunD and activating transcrip-
tion factor 2 (ATF2) that help regulate the apoptotic-
signalling cascade [136, 140]. In case of p38 MAPKs,
cellular stressors, for example osmotic shock, inflamma-
tory cytokines and growth factors are required for activa-
tion, which then phosphorylate transcription factors like
ATF2, myc-associated factor X (Max) and myocyte enhan-
cer factor 2 (MEF2) in order to regulate their respective
signalling cascade in diseases like AD, rheumatoid arthritis
and inflammatory bowel disease [137, 141].
Derivatives of green tea polyphenols have shown to

interact with ERK, JNK and p38 pathways of MAPKs.
For instance, in vitro treatment with EC effectively in-
creased CREB and ERK phosphorylation along with sig-
nificant increase in the mRNA levels of the glutamate
receptor subunit (GluR2) and the GluR2 protein, which
suggested that EC had the ability to regulate neurotrans-
mission, plasticity and synaptogenesis [142]. Similarly,
ECG through inhibition of p38 and ERK protected cells
against H2O2 induced oxidative stress. At low concentra-
tions EC reduced the activation of JNK [143]. Likewise
EGCG induced cell death and increased cell survival in
vitro [144] through the production of redox sensitive tran-
scription factors like NF-kB, activator protein-1 (AP-1) and
nuclear transcription factor erythroid 2p45 related factor
(Nrf2), via the ERK pathway [145]. Furthermore, EGCG

also triggered the expression of several antioxidant en-
zymes such as glutamate-cysteine ligase (GCL), haem
oxygenase 1 (HO-1), manganese superoxide dismutase
(MnSOD) and enhanced antioxidant response element
binding (ARE) and the transcription activity of Nrf2,
which in turn provided cells defence against oxidative
stress [146] and neuron loss [147].

Activation of PI3K/Akt signalling pathway
One of the strongest pro-survival signalling systems is
the PI3K/Akt pathway, which regulates many cellular
responses and functions including cell survival, cell
division, cell transformation [148], nutrient metabol-
ism, myogenic differentiation and glycogen metabolism
[149, 150]. In their activated form this pathway effect-
ively blocks apoptosis. Conversely, when inhibited they
accelerate apoptosis and abolish cell survival [151].
This mechanism involves first the activation of PI3K
enzymes that catalyse production of phosphatidylinositol-
3,4,5-triphosphate (PIP3). The activated form of PIP3 sub-
sequently activates phosphoinositide-dependent protein
kinase 1 (PDK1) [152], which in turn activates Akt and
PKC isoenzymes [153]. The activated form of Akt
maintains the inhibited state of glycogen synthase kin-
ase 3β (GSK3β). With reduction in Akt activity, GSK3β
hyper-phosphorylates [154], triggering tau accumulation
in the brain, which further instigates the generation of
neurofibrillary tangles (NFTs), ultimately causing neuron
death [155].
Treatment with EGCG, in vitro has shown to activate

PI3K/Akt pathway to inhibit cell death and increase cell
survivability [156] via the suppression of apoptotic genes
such as the Fas ligand, inhibition of GSK3β mediated tau
protein hyperphosphorylation and through the enhanced
expressions of all genes downstream of Nrf2 [157]. More-
over, it acts as a GSK3β inhibitor as it prevents hyper-
phosphorylation of GSK3β via the activation of PIP3 and
the PI3K/Akt pathway. EGCG also regulates the tau path-
ology through the suppression of phosphorylated tau iso-
forms [158]. Thus, affecting the downstream signalling
cascade and preventing NFT generation [109, 159].
Therefore, it can be hypothesised that EGCG affects

neuronal survivability and cognitive performance via the
activation of PKC and PI3K/Akt and the inhibition of
the MAPK pathway. It also promotes neuronal communi-
cation, synaptic plasticity, angiogenesis and neurogenesis.
On the other hand, via the inhibition of JNK and ASK-1
pathway, EGCG inhibits pro apoptotic-signalling and in-
flammation markers, which help in preventing neurode-
generation and aging. These specific interactions between
EGCG and the signalling cascades consequently, increase
strength of neuronal connections and expression of neu-
romodulatory proteins in the neurons. Thus increasing
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the expression of neuroprotection [145]. Hence, put to-
gether these studies have helped reveal novel pathways
through which EGCG induces its neuroprotective effects
(Fig. 4).

Modulation of cell death and cell survival genes
Modulation of cell survival and death genes via EGCG oc-
curs in a dose dependent manner. For instance, treatment
with low concentration of EGCG, both in vitro and in vivo
models effectively lowers neurotoxicity via the reduction
in the expression of pro-apoptotic genes; bax, bad, mdm1,
caspase 1, caspase 6, TRAIL, p21, gadd45 and fas ligand
with no effect on anti-apoptotic genes; bcl-w, bcl-2 and
bcl-xL. Suggesting that EGCG induces this protective
effect through the inactivation of cell death promoting
genes rather than the up regulation of mitochondrial
acting anti-apoptotic genes [54, 160–163]. Additionally,
the decline in bad and bax expression activates secondary
messengers including Ca2+, gangliosides, reactive oxygen
species and stress kinases that further regulate the
mitochondrial membrane permeabilization. This regu-
lation in the membrane permeabilization increases the
ratio of Bcl-2/Bcl-xL to Bax/Bad proteins, which heightens
mitochondrial stability and protects the mitochondrial in-
tegrity [164, 165].
Likewise, treatment with higher concentrations of EGCG

induces a pro apoptotic or a pro toxic pattern of expression
rather than an anti-apoptotic effect. In vitro higher levels

of bax, bad, gadd45, p21/WAF1, fas, fas ligand, caspase 3,
caspase 6 and caspase 10 expression were reported
[161, 163]. Along with reduced expression levels of bcl-
2, bcl-xL and bcl-w [15, 162]. This suggested that
EGCG at higher concentrations in cell models, inhibited
the cell survival genes and induced apoptosis, it also ele-
vated p53 activity, activated caspase 9 and reduced expres-
sion of phosphorylated ERK 1/2, Bcl-2 and Bcl-xL proteins
[166–168]. Thus proposing the first pharmacogenomics
evidence of EGCG’s dose dependent mechanism of tar-
geted action (Fig. 5). With support of this data highlighted
through the years, we can consider EGCG as a good
candidate for a therapeutic agent with neuroprotective
properties (Table 1).

New treatment approach
Although EGCG is a good candidate for a neuroprotec-
tive agent due to its ability to manipulate multiple de-
sired targets, its use as a therapeutic agent is limited.
This is due to its poor availability, solubility and stability.
Factors such as temperature, light, pH of the stomach,
first pass metabolism, enzymes of the gut, interaction
with food, insufficient absorption time and insufficient
transport through the BBB limit the beneficial attributes
of EGCG [169].
Nanotechnology based oral drug delivery systems

could be employed to resolve these shortcomings easily.
It is known that nanoparticles are generally non-toxic,

Fig. 4 Proposed mechanism for Neuroprotection and Neurorescue action of EGCG. Abbreviations: α Syn – alpha synuclein, Aβ – amyloid beta
peptide, COMT – catechol-o-methyl transferase, DAT – dopamine transporter, PKCα – protein kinase C alpha, PKCε – protein kinase C epsilon,
ROS – reactive oxygen species and sAPPα – alpha secretase
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size-controllable, produce fewer side effects and have
high drug bioavailability and absorption capacity [170].
With particle sizes lower than 200 nm, these nanoparti-
cles are capable of easily diffusing across the BBB [171].
To appraise the value of this new approach, our re-

search group has delved into this subject. So far we have
successfully encapsulated green tea polyphenols including
catechin and EGCG into gold [172], casein [173], poly
(D,L-lactic-co-glycolic acid) (PLGA) biopolymer [174] and
polylactic acid (PLA) – polyethylene glycol (PEG) co-
polymer nanoparticles [Unpublished observations], which
are not only eco-friendly and biodegradable in nature but
have also shown high drug bioavailability and absorption
capacity. For EGCG PLA-PEG nanoparticles in particular,
maximum drug entrapment of 96.25 % with the particle
sizes ranging between 101.5 nm to 192.2 nm has been ob-
served. Making their diffusion across the BBB possible.
Furthermore, the release of the drug from the nanoparti-
cles was also modulated to give a slow, sustained and con-
trolled release for over 33 hours (under physiological

conditions, pH 7.4). To protect against the pH of the
stomach, first pass metabolism, enzymes of the gut and
food interaction, a PEG coating on nanoparticles was in-
troduced. 2 fold enhancement in neuroprotective proper-
ties such as antioxidant potential and metal chelation was
observed, along with a significant improvement in the in-
hibition of Aβ42 fibrillation and remolding of toxic, in-
soluble Aβ42 oligomers was seen [Unpublished
observations]. Therefore the encapsulation of EGCG
into nanoparticles could not only help overcome all
limitations of the pure drug but also enhance the neu-
roprotective effect of the agent. Making it a sensible
option for oral drug delivery.

Conclusion
The multi-etiological character of neurodegenerative
diseases demands the need for the development of
therapeutic agents capable of manipulating multiple de-
sired targets. Green tea polyphenols, in particular
EGCG is able to fulfil this criterion both in vitro and in

Fig. 5 Overview of the possible gene targets involved in anti-apoptotic and pro-apoptotic actions of low and high concentrations of EGCG.
Abbreviations: Akt – is another name for protein kinase B, ERK – extracellular signal-regulated kinase, MEK – is a member of MAPK signalling cascade,
PI3K – phosphoinositide-3-kinase, PKC – protein kinase C, SAPK – stress activated protein kinase, TRAIL – TNF related apoptosis inducing ligand
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Table 1 Neuroprotective effects of EGCG in in vitro and in vivo models of neurotoxicity

Sr
No

Mol. Mech Drug Model Effect Ref.

1 Antioxidant Effects EGCG • SOD1-G93A transgenic mice • Regulates the expression of PI3-K, pAkt,
and pGSK-3 signals
• Reduces activation of NF-KB and
caspase-3
• Prolongs the life span
• Delays the onset of symptoms

[75,
175]

2 Antioxidant Effects EGCG • Age-associated oxidative
damage in rat brain

• Increases activity levels of enzymic
antioxidants like SOD and catalase
• Increases activity of non-enzymic
antioxidants like tocopherol and
ascorbic acid

[90]

3 Antioxidant Effects EGCG • Glucose oxidase-induced
neurotoxicity in H 19-7 cells

• Increases cellular resistance to glucose
oxidase-mediated oxidative damage
• Activates transcription factor Nrf2a

[176]

4 Antioxidant Effects EGCG • Glutamate-induced toxicity
in HT22 mouse hippocampus
neuronal cells
• Kainic acid-induced neurotoxicity
in rats

• Decreases glutamate-induced
oxidative cytotoxicity
• Inactivates NF-kB signaling pathwayb

• Reduces ROS accumulation

[177]

5 Antioxidant Effects Tea
poly-phenol

• NMDA-induced neurotoxicity
in mice

• Decreases ROS production [178]

6 Antioxidant Effects Tea
poly-phenol

• Mice NMDA toxicity model • Enhances behavioral and neurotoxic
effects of NMDA
• Decreases ROS production

[179]

7 Modulation of Signalling Pathways EGCG • 6-OHDA induced neurotoxicity
in human neuroblastoma (NB)
SH-SY5Y cell

• Modulates Aktc signaling pathways [69]

8 Modulation of Signalling Pathways EGCG • 6-OHDA induced neurotoxicity
in human neuroblastoma (NB)
SH-SY5Y cell

• Modulates Erk1/2d pathway [15]

9 Modulation of Signalling Pathways EGCG • Inflammatory response induced
by IL -1β and Aβ [25–35] in human
astrocytoma, U373MG cells

• Modulates NF-kB signaling pathway [180]

10 Modulation of Signalling Pathways EGCG • Inflammatory response induced
by IL -1β and Aβ [25–35] in human
astrocytoma, U373MG cells

• Modulates MAPKe signaling pathway [180]

11 Modulation of Signalling Pathways EGCG • Long-term serum deprivation
of human SH-SY5Y neuroblastoma
cells

• Modulates HIF-1αf pathway [181]

12 Modulation of Signalling Pathways EGCG • β-amyloid (Aβ) induced toxicity
in human SH-SY5Y neuroblastoma
cells

• Modulates PKCg pathway [182]

13 Protective effect against protein
aggregation

EGCG • Long-term serum deprivation
of human SH-SY5Y neuroblastoma
cells

• Regulates APP
• Reduced levels of toxic β-amyloid
peptides in CHO cells over-expressing
the APP “Swedish” mutation.

[102]

14 Protective effect against protein
aggregation

EGCG • MPTP- and DA-induced neurode
generation in mice and rats

• Prevents the accumulation of iron
and α-synuclein in the substantia
nigra

[54]

15 Protective effect against protein
aggregation

EGCG • β-amyloid (Aβ) induced toxicity
in human SH-SY5Y neuroblastoma
cells.
• C57/BL mice

• Increases PKCα and PKC levels
• Enhances release of
non-amyloidogenic sAPPα

[15]

16 Protective effect against protein
aggregation

EGCG • Biochemical assay • Binds to β-sheet-rich aggregates
• Converts mature α-synuclein and
Aβ fibrils into smaller nontoxic
aggregates

[183]
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vivo. EGCG has demonstrated good radical scavenging
and metal chelation properties, in addition to its ability
to invoke a range of cellular mechanisms including activa-
tion and inhibition of signalling pathways (PKC, MAPK
and PI3K/Akt), enhancement of antioxidant action (rad-
ical scavenging, lipid peroxidation and production of en-
dogenous defences), modulation of cell survival genes and
cell death genes (anti-apoptotic action), neurite growth
and bioenergetic action (stabilization of the mitochondrial
potential), induction of iron-chelating effects on Aβ, tau
and α-synuclein, elevation of synaptic DA (via COMT ac-
tivity inhibition and DAT internalization), production of

non-amyloidogenic sAPPα (by increasing α secretase
levels for preferential APP processing) and inhibition of
Aβ fibrillation, plaques, tau accumulation, NFT generation
and α-synuclein fibrillation. These properties together give
EGCG its neuroprotective and neurorescue abilities.
Therefore, with the support from this data we propose
EGCG as an iron chelating - brain permeable - antioxi-
dant agent, which can modulate multiple brain targets.
However, there is a need for examining this neuropro-
tective effect in depth through human clinical trials,
since presently very few studies have delved into this
subject.

Table 1 Neuroprotective effects of EGCG in in vitro and in vivo models of neurotoxicity (Continued)

17 Protective effect against protein
aggregation

EGCG • Biochemical assay • Inhibits amyloid-fibril formation [184]

18 Protective effect against protein
aggregation

EGCG • Biochemical assay • Inhibits the fibrillogenesis of both
α-synuclein and Aβ
• Promotes formation of nontoxic
α-synuclein and Aβ oligomers.
Prevents their conversion into
toxic aggregates

[185]

19 Protective effect against
protein aggregation

EGCG • N2a cells stably transfected
with “Swedish” mutant
human APP

• Elevates active ADAM10 protein
• Increases APP α cleavage and
α-secretase activity
• Produces no alteration in β-or
γ-secretase activities

[186]

20 Protective effect against
protein aggregation

EGCG • PS2 transgenic mice model
of AD

• Enhances memory function
• Induces α -secretase activity
• Reduces β- and γ-secretase
activities

[187]

21 Modulation of cell death
and survival genes

EGCG • 6-OHDA induced neurotoxicity
in neuroblastoma SH-SY5Y cells

• Decreases expression of
pro-apoptotic genes like bax,
bad, mdm1, caspase 1, caspase 6,
TRAIL, p21, gadd45 and fas ligand.
• No effect on the expression of
anti-apoptotic genes like bcl-w,
bcl-2 and bcl-xL

[162,
163]

22 Modulation of cell death
and survival genes

EGCG • 6-OHDA induced neurotoxicity
in neuroblastoma SH-SY5Y cells

• Decreases expression levels of
bcl-2, bcl-xL and bcl-w.

[162]

23 Modulation of cell death
and survival genes

EGCG • 6-OHDA induced neurotoxicity
in neuroblastoma SH-SY5Y cells

• Increases expression levels of bax,
bad, gadd45, fas, fas ligand,
caspase 3, caspase 6 and
caspase 10

[163]

24 Modulation of cell death
and survival genes

EGCG • MPTP and 6-OHDA induced
toxicity in Male C57-BL mice

• Decreases bax, caspase-6,
gadd45 and TRAIL expression
levels

[54]

25 Modulation of cell death
and survival genes

EGCG • Head and neck squamous
cell carcinoma (HNSCC) cells

• Decreases levels of Bcl-2 and
Bcl-XL proteins
• Increases Bax protein levels
• Activates caspase 9

[166]

26 Modulation of cell death
and survival genes

EGCG • Human prostate carcinoma LNCaP
cells

• Decreases expression of the
proapoptotic protein Bcl-2
• Activates p21/WAF1, Bax and
caspase 3.

[167]

aTranscription factor Nrf2 is a master regulator of the antioxidant response
bNFkB signalling pathway is the pathway which is activated in response to cell stress
cAkt signalling pathway promotes survival and growth in response to extracellular signals
dERK1/2 cascade plays an important role in cellular proliferation, differentiation and survival
eMAPK signalling pathway plays an important role in cellular proliferation, differentiation and survival
fHIF – 1α plays an integral role in the body's response to low oxygen concentrations
gPKC signalling pathway regulates many cellular responses such as gene expression, cell proliferation, and inflammatory responses
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