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Abstract
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1. Introduction
A tree is a graph G = {T, E} that is connected and contains no circuits. Given any two

vertices s, t(s ≠ t Î T), let σ t be the unique path connecting s and t. Define the

graph distance d(s, t) to be the number of edges contained in the path σ t.

Let TC,N be a Cayley tree. In this tree, the root (denoted by o) has only N neighbors,

and all other vertices have N + 1 neighbors. Let TB,N be a Bethe tree, on which each

vertex has N + 1 neighboring vertices. Here, both TC,N and TB,N are homogeneous

tree. An infinite tree with uniformly bounded degree is that the numbers of neighbors

of any vertices in this tree are uniformly bounded. Therefore, the homogeneous tree is

the special case of infinite tree with uniformly bounded degree. In this paper, we

mainly consider a general infinite tree with uniformly bounded degree, that is, the tree

is formed by an infinite tree that has uniformly bounded degree with the root o con-

necting with another point denoted by the root -1. In order to understand this tree

graph, we give a figure (see Figure 1), which is formed by a TC,2 with the root o con-

necting with another root -1. When the context permits, this type of trees is all

denoted simply by T.

Let s, t(s, t ≠ o, -1) be vertices of a general infinite tree with uniformly bounded

degree T. Write t ≤ s if t is on the unique path connecting o to s, and |s| for the

number of edges on this path. For any two vertices s, t(s, t ≠ o, -1) of tree T, denote

by s ∧ t the vertex farthest from o satisfying s ∧ t ≤ s and s ∧ t ≤ t.

The set of all vertices with distance n from root o is called the nth generation of T,

which is denoted by Ln. We say that Ln is the set of all vertices on level n and espe-

cially root-1 is on the -1st level on tree T. We denote by T(n) the subtree of a general
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infinite tree with uniformly bounded degree T containing the vertices from level -1

(the root -1) to level n. Let t(≠ o, -1) be a vertex of a general infinite tree with uni-

formly bounded degree T. Predecessor of the vertex t is another vertex that is nearest

from t on the unique path from root -1 to t. We denote the predecessor of t by 1t and

the predecessor of 1t by 2t. We also say that 2t is the second predecessor of t. XA =

{Xt, t Î A} and denoted by |A| the number of vertices of A, and xA is the realization of

XA.

Definition 1 Let G = {1, 2, ..., N} and P(z|y, x) be a nonnegative functions on G3. Let

P = (P(z|y, x)), P(z|y, x) ≥ 0, x, y, z ∈ G.

If ∑
z∈G

P(z|y, x) = 1,

P will be called a second-order transition matrix.

Definition 2 Let T be a general infinite tree, G = {1, 2, ..., N} be a finite state space,

and {Xt, t Î T} be a collection of G-valued random variables defined on the probability

space (�,F ,P). Let

P = (p(x, y)), x, y ∈ G (1)

be a distribution on G2, and

P = (P(z|y, x)), x, y, z ∈ G (2)

be a second-order transition matrix. If for any vertex t (t ≠ o, -1),

P(Xt = z|X1t = y,X2t = x, and Xσ for σ ∧ t ≤ 1t)

= P(Xt = z|X1t = y,X2t = x) = P(z|y, x) ∀x, y ∈ G,
(3)

and

P(X−1 = x,Xo = y) = p(x, y), x, y ∈ G, (4)

{Xt, t Î T} will be called a G-valued second-order Markov chain indexed by a general

infinite tree T with the initial distribution (1) and second-order transition matrix (2) or

called a T-indexed second-order Markov chain.
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Figure 1 A general infinite tree with uniformly bounded degree.
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The subject of tree-indexed processes is rather young. Benjamini and Peres (see [1])

have given the notion of the tree-indexed Markov chains and studied the recurrence

and ray-recurrence for them. Berger and Ye (see [2]) have studied the existence of

entropy rate for some stationary random fields on a homogeneous tree. Ye and Berger

(see [3,4]), by using Pemantle’s result(see [5]) and a combinatorial approach, have stu-

died the Shannon- McMillan theorem with convergence in probability for a PPG-invar-

iant and ergodic random field on a homogeneous tree. Yang and Liu(see [6])have

studied a strong law of large numbers for the frequency of occurrence of states for

Markov chains field on a homogeneous tree (a particular case of tree-indexed Markov

chains field and PPG-invariant random field). Yang (see [7]) has studied the strong law

of large numbers for frequency of occurrence of state and Shannon-McMillan theorem

for homogeneous Markov chains indexed by a homogeneous tree. Takacs (see [8]) has

studied the strong law of large numbers for the univariate functions of finite Markov

chains indexed by an infinite tree with uniformly bounded degree. Recently, Yang (see

[9]) has studied the strong law of large numbers and Shannon-McMillan theorem for

nonhomogeneous Markov chains indexed by a homogeneous tree. Huang and Yang

(see [10]) have studied the strong law of large numbers for Markov chains indexed by

an infinite tree with uniformly bounded degree, which generalize the result of [8]. Shi

and Yang (see [11]) have also studied a limit property of random transition probability

for a second-order nonhomogeneous Markov chains indexed by a tree.

In this paper, we first study a convergence theorem for a finite second-order Markov

chain indexed by a general infinite tree with uniformly bounded degree. As corollaries,

we obtain some limit theorems for the frequencies of occurrence of states for this

Markov chain. Finally, we obtain the strong law of large numbers and Shannon-

McMillan theorem for a class of finite second-order Markov chain indexed by a gen-

eral infinite tree with uniformly bounded degree.

2. Strong limit theorems
Lemma 1 Let T be a general infinite tree with uniformly bounded degree. Let {Xt, t Î
T} be a T-indexed second-order Markov chain with state space G defined as in Defini-

tion 2, {gt(x, y, z), t Î T} be a collection of functions defined on G3. Let L-1 = {-1}, L0
= {o} and Fn = σ (XT(n)

)(n ≥ 1). Set

Fn(ω) =
∑

t∈T(n)\{o}{−1}
gt(X2t ,X1t ,Xt) (5)

and

tn(λ,ω) =
eλFn(ω)∏

t∈T(n)\{o}{−1}
E

[
eλgt(x2t ,X1t ,X,)|X1t , X2t

] , (6)

where l is a real number. Then {tn(λ,ω),Fn,n ≥ 1} is a nonnegative martingale.

Proof: The proof of Lemma 1 is similar to Lemma 2.1 in [9], so we omit it.

Theorem 1 Let {Xt, t Î T} and {gt(x, y, z), t Î T} be defined as Lemma 1,

Gn(ω) =
∑

t∈T(n)\{o}{−1}
E[gt(X2t X1t , Xt)|X1t , X2t ], (7)
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and {an, n ≥ 1} be a sequence of nonnegative random variables. Let a >0. Set

A = { lim
n→∞ an = ∞}

and

D(a) =
{
lim sup
n→∞

1
an

∑
t∈T(n)\{o}{−1}

E[gt2(X2t , X1t , Xt)ea|gt(X2t ,X1t ,Xt)|X1t ,X2t ] = M(ω) < ∞
}

∩ A.

(8)

Then

lim
n→∞

1
an

(Fn(ω) − Gn(ω)) = 0 a.e. ω ∈ D(a). (9)

Proof: By Lemma 1, we have known that {tn(λ,ω),Fn,n ≥ 1} is a nonnegative mar-

tingale. According to Doob martingale convergence theorem, we have

lim
n→∞ tn(λ,ω) = t(λ,ω) < ∞ a.e. (10)

By (10) we have

lim sup
n→∞

1
an

ln tn(λ,ω) ≤ 0 a.e. ω ∈ A. (11)

By (5), (6) and (11), we get

lim sup
n→∞

1
an

⎧⎨
⎩λFn(ω) −

∑
t∈T(n)\{o}{−1}

lnE[eλgt(X2t ,X1t ,Xt)|X1t ,X2t ]

⎫⎬
⎭ ≤ 0 a.e. ω ∈ A. (12)

By (12) and inequalities ln x ≤ x - 1 (x >0), 0 ≤ ex − 1 − x ≤ x2

2 e
|x|, as 0 <|l| ≤ a we

have

lim sup
n→∞

1
an

⎧⎨
⎩λFn(ω) − λ

∑
t∈T(n)\{o}{−1}

E[gt(X2t ,X1t ,Xt)|X1t ,X2t ]

⎫⎬
⎭

≤ lim sup
n→∞

1
an

{
∑

t∈T(n)\{o}{−1}
lnE[eλgt(X2t ,X1t ,Xt)|X1t , X2t ]

−λ
∑

t∈T(n)\{o}{−1}
E[gt(X2t ,X1t , Xt)|X1t , X2t ]}

= lim sup
n→∞

1
an

∑
t∈T(n)\{o}{−1}

{lnE[eλgt(X2t ,X1t ,Xt)|X1t , X2t ] − E[λgt(X2t , X1t , Xt)|X1t , X2t ]}

≤ lim sup
n→∞

1
an

∑
t∈T(n)\{o}{−1}

{E[eλgt(X2t ,X1t ,Xt)|X1t , X2t ] − 1 − E[λgt(X2t , X1t , Xt)|X1t , X2t ]}

≤ λ2

2
lim sup
n→∞

1
an

∑
t∈T(n)\{o}{−1}

{E[gt2(X2t , X1t , Xt)ea|gt(X2t ,X1t ,Xt)||X1t , X2t ]}

=
λ2

2
M(ω) ω ∈ D(a), a.e.

(13)

Letting 0 < l ≤ a, by (13), we have

lim sup
n→∞

1
an

⎧⎨
⎩Fn(ω) −

∑
t∈T(n)\{o}{−1}

E[gt(X2t ,X1t ,Xt)|X1t ,X2t ]

⎫⎬
⎭ ≤ λ

2
M(ω), ω ∈ D(a). (14)
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Let l ® 0+ in (14), by (8) we have

lim sup
n→∞

1
an

⎧⎨
⎩Fn(ω) −

∑
t∈T(n)\{o}{−1}

E[gt(X2t ,X1t ,Xt)|X1t ,X2t ]

⎫⎬
⎭ ≤ 0, ω ∈ D(a). (15)

Taking -a ≤ l <0 in (15), similarly we get

lim sup
n→∞

1
an

⎧⎨
⎩Fn(ω) −

∑
t∈T(n)\{o}{−1}

E[gt(X2t ,X1t ,Xt)|X1t ,X2t ]

⎫⎬
⎭ ≥ 0, ω ∈ D(a). (16)

Combining (7), (15) and (16), we obtain (9).

Corollary 1 Let {Xt, t Î T} be a general infinite tree T with uniformly bounded

degree defined by Definition 2. Let {gt(x, y, z), t Î T} be a collection of uniformly

bounded functions defined on G3. That is, there exists K >0 such that |gt(x, y, z)| ≤ K.

Fn(ω) and Gn(ω) be given by (5) and (7), respectively. Let N ≥ 0, then

lim
n→∞

1

|T(n+N)|(Fn(ω) − Gn(ω)) = 0, a.e. (17)

Proof: Letting an = |T(n+N)| in Theorem 1, noticing that {gt(x, y), t Î T} are uni-

formly bounded, and then D(a) = Ω for all a >0. This corollary follows from Theorem

1 directly.

In the following, let Ik(x) =
{
1 x = k
0 x 
= k

. We always let N ≥ 0, m, l, k Î G, d0(t) := 1

and denoted by

dN(t) := |τ ∈ T : Nτ = t|, (18)

SNl,k(A) :=
∑
t∈A

Il(X1t )Ik(Xt)dN(t), (19)

SNm,l,k(A) :=
∑
t∈A

Im(X2t )Il(X1t )Ik(Xt)dN(t). (20)

Corollary 2 Let T be a general infinite tree with uniformly bounded degree. Let {Xt, t

Î T} be a T-indexed second-order Markov chain with state space G defined by Defini-

tion 2. Then for all m, l, k Î G, N ≥ 0, we have

lim
n→∞

1

|T(n+N)| {S
N
l,k(T

(n)\{−1}) −
∑
m∈G

SN+1
m,l (T

(n−1)\{−1})P(k|m, l)} = 0 a.e. (21)

Proof: Because of the uniformly bounded degree of T, there is a <∞ with dN(t) < aN.

Let gt(x, y, z) = dN(t)Il(y)Ik(z), an = |T(n+N)|. Obviously, {gt(x, y, z), t Î T} are uniformly

bounded. Since

Fn(ω) =
∑

t∈T(n)\{o}{−1}
gt(X2t ,X1t ,Xt)

=
∑

t∈T(n)\{o}{−1}
Il(X1t)Ik(Xt)dN(t)

= SNl,k(T
(n)\{−1}) − Il(X−1)Ik(Xo)dN(o),

(22)
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and

Gn(ω) =
∑

t∈T(n)\{o}{−1}
E[gt(X2t ,X1t ,Xt)|X1t ,X2t ]

=
∑

t∈T(n)\{o}{−1}

∑
xt∈G

gi(X2t ,X1t , xt)P(xt|X1t , X2t )

=
∑

t∈T(n)\{o}{−1}

∑
xt∈G

Il(X1t )Ik(xt)d
N(t)P(xt|X1t , X2t )

=
∑

t∈T(n)\{o}{−1}
Il(X1t)d

N(t)P(k|X1t ,X2t )

=
∑
m∈G

∑
t∈T(n)\{o}{−1}

Im(X2t )Il(X1t)d
N(t)P(k|l,m)

=
∑
m∈G

∑
t∈T(n−1)\{−1}

Im(X1t)Il(Xt)dN+1(t)F(k|l,m)

=
∑
m∈G

SN+1
m,l (T

(n−1)\{−1})P(k|l,m).

(23)

This corollary follows from Corollary 1 directly.

Corollary 3 Let {Xt, t Î T} be a second-order Markov chain taking values in G

indexed by a general infinite tree with uniformly bounded degree defined as before.

Then for all m, l, k Î G, we have

lim
n→∞

1

|T(n+N)| {S
N
m,l,k(T

(n)\{o}{−1}) − SN+1
m,l (T

(n−1)\{−1})P(k|m, l)} = 0 a.e. (24)

Proof: Let gt(x, y, z) = dN(t) Im(x)Il(y)Ik(z), an = |T(n+N)|. Obviously, {gt(x, y, z), t Î T}

are uniformly bounded. Since

Fn(ω) =
∑

t∈T(n)\{o}{−1}
gt(X2t ,X1t ,Xt)

=
∑

t∈T(n)\{o}{−1}
Im(X2t )Il(X1t )Ik(Xt)dN(t)

= SNm,l,k(T
(n)\{o}{−1}),

(25)

and

Gn(ω) =
∑

t∈T(n)\{o}{−1}
E[gt(X2t ,X1t ,Xt)|X1t ,X2t ]

=
∑

t∈T(n)\{o}{−1}

∑
xt∈G

gt(X2t , X1t , xt)P(xt|X1t , X2t )

=
∑

t∈T(n)\{o}{−1}

∑
xt∈G

Im(X2t )Il(X1t)Ik(xt)d
N(t)P(xt|X1t , X2t )

=
∑

t∈T(n)\{o}{−1}
Im(X2t)Il(X1t)d

N(t)P(k|l,m)

=
∑

t∈T(n−1)\{−1}
Im(X1t )Il(Xt)dN+1(t)P(k|l,m)

= SN+1
m,l (T

(n−1)\{−1})P(k|l,m).

(26)

This corollary follows from Corollary 1 directly.
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3. LLN and Shannon-McMillan theorems
In this section, we study the strong law of large numbers and the Shannon-McMillan

theorems for a second-order Markov chain indexed by a general infinite tree with uni-

formly bounded degree. In the following, we first give a definition and a lemma.

Definition 3 Let G = (1, 2, ..., N) be a finite state space, and

P = (p(k|l,m)), m, l, k ∈ G (27)

be a second-order transition matrix. Define a stochastic matrix as follows:

P̄ = (p((l, k)|(m, i))), (m, i), (l, k) ∈ G2, (28)

where

p((l, k)|(m, i)) =
{
p(k|l,m) l = i
0 otherwise.

(29)

Then P̄ is called a two-dimensional stochastic matrix determined by the second-

order transition matrix P.

Lemma 2 (see [12])

Let P̄ be a two-dimensional stochastic matrix determined by the second-order transi-

tion matrix P. If the elements of P are all positive, i.e.,

P = (p(k|l,m)), p(k|l,m) > 0,m, l, k ∈ G,

then P̄ is ergodic.

Theorem 2 Let T be a general infinite tree with uniformly bounded degree. Let {Xt, t

Î T} be a T-indexed second-order Markov chain taking values in G generated by P.

Let the two-dimensional stochastic matrix P̄ determined by P be ergodic. Then for all

m, l, k Î G, we have

lim
n→∞

SNl,k(T
(n)\{−1})

|T(n+N)| = π(l, k) a.e., (30)

lim
n→∞

SNm,l,k(T
(n)\{o}{−1})

|T(n+N)| = π(m, l)P(k|l,m) a.e., (31)

where {π(l, k), l, k Î G} is the stationary distribution determined by P̄.

Proof: By (21) and (29), we have

lim
n→∞

⎧⎨
⎩SNl,k(T

(n)\{−1})
|T(n+N)| −

∑
(m,i)∈G2

SN+1
m,i (T

(n−1)\{−1})
|T(n+N)| P((l, k)(m, i))

⎫⎬
⎭ = 0. a.e.(32)

We now prove the following equation by induction: Fixed N ≥ 0 and for all h ≥ 1, we

have

lim
n→∞

⎧⎨
⎩SNl,k(T

(n)\{−1})
|T(n+N)| −

∑
(m,i)∈G2

SN+h
m,i (T

(n−h)\{−1})
|T(n+N)| Ph((l, k)(m, i))

⎫⎬
⎭ = 0. a.e. (33)
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The case h = 1 is immediate from the equation (32). The case h + 1 follows by
⎧⎨
⎩SNl,k(T

(n)\{−1})
|T(n+N)| −

∑
(m,i)∈G2

SN+h+1
m,i (T(n−h−1)\{−1})

|T(n+N)| Ph+1((l, k)|(m, i))

⎫⎬
⎭

=

⎧⎨
⎩SNl,k(T

(n)\{−1})
|T(n+N)| −

∑
(m,i)∈G2

∑
(s,t)∈G2

SN+h+1
m,i (T(n−h−1)\{−1})

|T(n+N)| Ph((l, k)—(s, t))P((s, t)|(m, i))

⎫⎬
⎭

=

⎧⎨
⎩SNl,k(T

(n)\{−1})
|T(n+N)| −

∑
(s,t)∈G2

SN+h
s,t (T(n−h)\{−1})

|T(n+N)| Ph((l, k)|(s, t))
⎫⎬
⎭

+{
∑

(s,t)∈G2

[
SN+h
s,t (T(n−h)\{−1})

|T(n+N)|

−
∑

(m,i)∈G2

SN+h+1
m,i (T(n−h−1)\{−1})

|T(n+N)| P((s, t)|(m, i))

⎤
⎦ Ph((l, k)|(s, t))}

(34)

Notice that the first term vanishes as n ® ∞, because of the induction hypothesis.

According to the equation (32), the second term approximates to zero as n ® ∞. By

induction, we have (33) holds for all h ≥ 1. Since∑
(m,i)∈G2

Sh+Nm,l (T
(n−h)\{−1}) = |T(n+N)| − |T(h+N−1)|. By (33), we have

lim sup
n→∞

|S
N
l,k(T

(n)\{−1})
|T(n+N)| − π(l, k)|

≤ lim sup
n→∞

|
∑

(m,i)∈G2

SN+h
m,i (T

(n−h)\{−1})
|T(n+N)| Ph((l, k)|(m, i)) − π(l, k)|

= lim sup
n→∞

|
∑

(m,i)∈G2

SN+h
m,i (T

(n−h)\{−1})
|T(n+N)| (Ph((l, k)|(m, i)) − π(l, k)) − |T(N+h−1)|

|T(n+N)| π(l, k)|

≤ lim sup
n→∞

∑
(m,i)∈G2

SN+h
m,i (T

(n−h)\{−1})
|T(n+N)| |Ph((l, k)|(m, i)) − π(l, k)) + lim sup

n→∞
|T(N+h−1)|
|T(n+N)| π(l, k)

≤
∑

(m,i)∈G2

|Ph((l, k)|(m, i)) − π(l, k)| a.e.

(35)

Since

lim
n→∞ Ph((l, k)|(m, i)) = π(l, k), ∀(m, i) ∈ G2, (36)

(30) follows from (35) and (36), (31) follows from (30) and (24).

Corollary 4 Under the conditions of Theorem 2, let

Sm,l,k(T(n)\{o}{−1}) := S0m,l,k(T
(n)\{o}{−1} = |{t ∈ T(n) : (X2t , X1t , Xt) = (m, l, k)}|. Then

lim
n→∞

Sm,l,k(T(n)\{o}{−1})
|T(n)| = π(m, l)P(k|m, l) a.e. (37)

Let T be a tree, {Xt, t Î T} be a stochastic process indexed by tree T taking values in

G, xT
(n) be the realization of XT(n). Denote

P(xT
(n)
) = P(XT(n)

= xT
(n)
).

Let

fn(ω) = − 1

|T(n)| lnP(XT(n)
),
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fn(ω) is called the entropy density of XT(n). If {Xt, t Î T} is a second-order Markov

chain indexed by a general infinite tree with uniformly bounded tree defined as in

Definition 2, we easily have

fn(ω) =
1

|T(n)|

⎡
⎣ln P(X−1,Xo) +

∑
t∈T(n)\{o}{−1}

lnP(Xt|X1t ,X2t )

⎤
⎦ . (38)

The convergence of fn(ω) to a constant in a sense (L1 convergence, convergence in

probability, a.e. convergence) is called the Shannon-McMillan theorem, or the entropy

theorem or the AEP in information theory. Here from Theorems 1, 2, and Corollary 4,

we can easily obtain the Shannon-McMillan theorem with a.e. convergence for a sec-

ond-order Markov chain indexed by a general infinite tree with uniformly bounded

tree.

Theorem 3 Let {Xt, t Î T} be a second-order Markov chain taking values in G

indexed by a general infinite tree with uniformly bounded tree T, and fn(ω) be defined

as (38). Then

lim
n→∞ fn(ω) = −

∑
m∈G

∑
l∈G

∑
k∈G

π(m, l)P(k|l,m) ln P(k|l,m) a.e. (39)

Proof:

lim
n→∞ fn(ω) = − lim

n→∞
1

|T(n)|

⎡
⎣ln P(X−1,Xo) +

∑
t∈T(n)\{o}{−1}

lnP(Xt|X1t ,X2t )

⎤
⎦

= − lim
n→∞

1
|T(n)|

∑
t∈T(n)\{o}{−1}

lnP(Xt|X1t , X2t )

= −
∑
m∈G

∑
l∈G

∑
k∈G

lim
n→∞

1
|T(n)|

∑
t∈T(n)\{o}{−1}

Im(X2t)Il(X1t )Ik(Xt) ln P(k|l,m)

= −
∑
m∈G

∑
l∈G

∑
k∈G

lim
n→∞

Sm,l,k(T(n)\{o}{−1})
|T(n)| ln P(k|l,m),

(40)

Equation (39) follows from (40) and (37) directly.
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