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1 Introduction

The ABJM/AdS4×CP3 correspondence [1] has received a lot of interest. Many things work

as in the original case of N = 4 SYM vs. AdS5 × S5, but there are important differences.

In particular, there is a spin chain description and a corresponding Bethe ansatz for ABJM

operators [2–4], but the energy of a magnon does not have the formula compatible with

BMN scaling of operators of large charge (λ/J2 = g2N/J2 in N = 4 SYM), and instead

one has a nontrivial function h(λ) of the ’t Hooft coupling λ = N/k, giving [3, 5, 6]

ε(p) =
1

2

√
1 + 16h2(λ) sin2 p

2
, (1.1)

where p is the magnon momentum, which is = 2πk/J � 1 in the BMN limit, obtaining

ε(p) = 1/2
√

1 + 16π2h2(λ)k2/J2. The function h(λ) is nontrivial, and whereas at strong

coupling we have h(λ � 1) '
√
λ/2 + a1 + . . . as in the BMN case, at weak coupling we

have h(λ) = λ(1 + c1λ
2 + c2λ

4 + . . .). The subleading term at strong coupling, a1, was

the subject of some debate, since it depends on the method of regularization for quantum
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worldsheet corrections (see e.g. [7]). In [8] it was argued that imposing a physical principle

can help define a regularization and a unique value for a1.

It is then important to consider other ABJM excitations than the closed strings corre-

sponding to the magnons above. In theories with objects in the fundamental of the gauge

group we can define open strings, as first introduced in [9]. But one can define also other

kinds of open strings, in particular ones that extend between D-branes. In the context of

N = 4 SYM, these have been studied in [10–12]. D-branes wrapping some cycles in the

gravity dual, with some angular momentum, are usually giant gravitons, i.e. states with

the momentum of a graviton, but extended in space.

In this paper we therefore study open strings with large angular momentum attached

to maximal giant gravitons in AdS4 × CP3, and their dual description in ABJM, as gauge

invariant operators with large R-charge. These can be thought of as excitations of the

giant gravitons. Giant gravitons in AdS4×CP3 have been studied among others in [13, 14]

and references therein. Within M theory, large R-charge states and their gravity dual have

been studied in [15].

We will study the anomalous dimensions of operators dual to these open strings on

giant gravitons, and we will find, perhaps not surprisingly, that the same formula valid for

the magnon dispersion relation (1.1) is valid now, at least for the leading terms at weak

coupling λ� 1 and strong coupling λ� 1.

In [16–18], an abelian reduction of the massive ABJM model down to a Landau-

Ginzburg system relevant for condensed matter physics was described, but the reduction

of the gravitational dual was not well understood. It seems however that if we consider

operators of large charge, we should obtain a pp wave in the gravity dual, and possi-

ble relevant states include giant gravitons on the pp wave and their excitations. There-

fore it is of great interest to understand the physics of giant gravitons on pp waves and

their excitations.

The paper is organized as follows. Section 2 reviews the giant gravitons we are con-

sidering from ABJM, D4-branes wrapping a CP2 ⊂ CP3 and the eleventh dimension. In

section 3 we describe the Penrose limit of the AdS4 × CP3 background relevant for our

calculation, and the quantization of open strings on D-branes in the resulting pp wave

background. In section 4 we describe the construction of operators corresponding to giant

gravitons with open strings on them, and with excited open string states. In section 5 we

calculate the first, 2-loop correction to the anomalous dimension of open string operators

with one impurity, and compare with the string theory side. In section 6 we describe the

Hamiltonian analysis using Cuntz oscillators that gives the complete perturbative result

(resumming the 2-loop result and being valid at arbitrary magnon momentum), and in

section 7 we conclude. In appendix A we show the details of how the analysis of the

Hamiltonian for BMN operators works in N = 4 SYM using Cuntz oscillators, which is

paralleled in our case. In appendix B we give the details of the 2-loop calculation for the

anomalous dimension.
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2 Review of giant gravitons in AdS4 × CP3

In this section we summarize a particular embedding of a giant graviton in AdS4 × CP3.

We consider a D4-brane wrapping a submanifold of CP3, stabilized by the presence of the

four-form flux, balancing their tension. It is well-known that a large class of M5-branes,

known as sphere giant gravitons, can be embedded into the background AdS4×S7 of eleven

dimensional supergravity. Several configurations of this kind were constructed in [19] for

different backgrounds and with different amount of preserved supersymmetries.

In there, by embedding an S7 in C4 and considering intersections with holomorphic

surfaces in C4, it was possible to obtain configurations preserving 1/2, 1/4, and 1/8 super-

symmetries. More explicitly, the worldsurface of the giant graviton at time t is described

by the following constraints in C4,

4∑
M=1

|ZM |2 = 1 ,

F (e−i t/RZM ) = 0 M = 1..4 . (2.1)

Spherical giant gravitons of the form F (ZM ) = 0 preserve 1/2 of the supersymmetry (a

particular solution of this type has been considered in [20]), those of the form F (ZM , ZN ) =

0 preserve 1/4 and those given by F (ZM , ZN , ZP ) = 0 and F (ZM , ZN , ZP , ZQ) = 0 preserve

1/8 (solutions of this type have been considered in [14]. See [21] for a classification of the

topology of giant gravitons). We are particularly interested in those given by holomorphic

curves of the type F (ZN , ZM ) = 0, which after the dimensional reduction to IIA string

theory wrap a subspace of CP3.

2.1 D4-brane giant graviton on CP3

We consider an M5−brane wrapping an S5 ⊂ S7 in the AdS4×S7/Zk background of eleven

dimensional supergravity.

The background is given by

ds2 = R2 (ds2
AdS4

+ ds2
S7/Zk) , (2.2)

with the radius of the sphere R = (32π2Nk)1/6 in string units. Since S7 is an S1 fibered

over CP3, we can write the S7/Zk metric as

ds2
S7/Zk =

(
1

k
dτ +A

)2

+ ds2
CP3 , (2.3)

where τ ∈ [0, 2π].

To compute the explicit form for this metric decomposition, we start with the metric

of C4 [22, 23],

ds2 =

4∑
M=1

|dZM |2 , (2.4)
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and restrict to S7 by the constraint

4∑
M=1

|ZM |2 = 1. (2.5)

To restrict further to S7/Zk, or CP3 in the limit k → ∞ relevant for AdS/CFT, we

impose the equivalence ZM ∼ ZMeiα, where α = 2π/k for S7/Zk and α is arbitrary for CP3.

In other words, CP3 is the the space of orbits under the action of U(1) on the homoge-

nous coordinates Zi. We can then forget the constraint (2.5) which becomes irrelevant as

we rescale all the Zi by an arbitrary quantity, and think of the Zi as homogenous coordi-

nates for the CP3. We can define inhomogenous (affine) coordinates on CP3 that get rid of

the U(1) (S1) fiber coordinate τ from the point of view of S7,

ζl =
Zl
Z4
, Z4 = |Z4|eiτ , l = 1, 2, 3 , (2.6)

in terms of which the metric of S7 is given by

ds2
S7 = (dτ +A)2 +

∑
l |dζl|2

(1 +
∑

l |ζl|2)
−
∑

l,k ζlζ̄kdζldζ̄k

(1 +
∑

l |ζl|2)2
, (2.7)

which is the sought-for explicit form of (2.3). Here A =
i
∑
l ζ̄ldζl−c.c

2(1+
∑
l |ζl|2)

, and the metric is

known as the Fubini-Study metric. By dropping the first term in the above equation, we

get the metric of CP3.

It is also useful to introduce a real six-dimensional metric on CP3 by defining 6 angles as

ζ1 = tanµ sinα sin(θ/2) ei(ψ−φ)/2 eiχ/2,

ζ2 = tanµ cosα eiχ/2,

ζ3 = tanµ sinα cos(θ/2) ei(ψ+φ)/2 eiχ/2 , (2.8)

in terms of which the metric on CP3 is

ds2
CP3 = dµ2 + sin2 µ

[
dα2 +

1

4
sin2 α

(
σ2

1 + σ2
2 + cos2 ασ2

3

)
+

1

4
cos2 µ

(
dχ+ sin2 ασ3

)2]
.

(2.9)

Here σ1,2,3 are left-invariant 1-forms on an S3, given explicitly by

σ1 = cosψ dθ + sinψ sin θ dφ ,

σ2 = sinψ dθ − cosψ sin θ dφ ,

σ3 = dψ + cos θ dφ. (2.10)

The range of the 6 angles is

0 ≤ µ, α ≤ π

2
, 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π , 0 ≤ ψ, χ ≤ 4π , (2.11)

and the 1-form defining the embedding in M-theory is

A =
1

2
sin2 µ

(
dχ+ sin2 α

(
dψ − cos θ dφ)

)
. (2.12)
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We could similarly write an S5 as an S1 bundle over the CP2 by

ds2
S5 = (dχ′ +A)2 + ds2

CP2 . (2.13)

The CP2 is written in terms of the CP3 angles as

ds2
CP2 = dα2 +

1

4
sin2 α

(
σ2

1 + σ2
2 + cos2 ασ2

3

)
. (2.14)

From (2.9) and (2.14) we see the embedding of CP2 ⊂ CP3. Specifically, we have

ds2
CP3 = dµ2 + sin2 µ

[
cos2 µ(dχ′ +A)2 + ds2

CP2

]
. (2.15)

(2.13) means that the embedding of CP2 ⊂ S5 is also a S1 fibration, like the embedding

of CP3 ⊂ S7 in (2.3).

We would like to consider the brane whose spatial components are wrapping the sub-

space

ds2
CP3

(
µ =

π

4
, α = 0

)
. (2.16)

We are unsure whether this brane can be described using a holomorphic function

(which would immediately imply supersymmetry) as in the discussion following (2.1).1

3 PP-wave limit and open strings in AdS4 × CP 3

We consider composite operators in ABJM carrying large R-charge J . As we have learned

from the BMN case [24], the states with J2 ∼ λ are well described in the gravitational side

by a Penrose limit of the gravitational background. In this section we shall consider the

Penrose limit of type IIA background AdS4 × CP3.

3.1 Penrose limit along the giant

The metric of AdS4 in global coordinates is

ds2
AdS4

= R2
(
−cosh2ρ dt2 + dρ2 + sinh2ρ dΩ2

2

)
, (3.1)

and the metric on CP3 was given in (2.9).

We would like to take the Penrose limit defined by focusing on the geodesic propagating

at the speed of light along χ, with µ = π/4 , α = 0 and ρ = 0, which corresponds to the

position of the maximal giant graviton. The giant graviton wraps (ψ, θ, φ, χ), so the Penrose

limit is along the giant, since we want to describe open string states propagating in χ, not

giant graviton states.2 The Penrose limit is then defined by the transformations

ρ =
ρ̃

R
, µ =

π

4
+
u

R
, α =

r

R
, x+ =

t+ χ/2

2
, x− = R2 t− χ/2

2
, (3.2)

1We would like to thank Andrea Prinsloo for pointing out to us that a proposal for a function F that

appeared in the first version of the paper was incorrect.
2Note that there is a topologically nontrivial S5/Zk cycle inside S7/Zk, that cannot shrink to a point

continuously, like a surface wrapped by a giant graviton should. However, we are in the k →∞ limit, since

we want in the field theory side to be in the N → ∞ limit, with λ = N/k fixed, and then the nontrivial

circle on which Zk acts shrinks to a point, removing all nontrivial topological issues.
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followed by taking R→∞. The metric then reduces to [3]

ds2 = −4dx+dx− + du2 + dρ̃2 + ρ̃2dΩ2
2 + dr2 +

r2

4

3∑
i=1

σ2
i − (u2 + ρ̃2)(dx+)2 +

1

2
r2σ3dx

+

= −4dx+dx− + du2 +
3∑
i=1

dy2
i +

2∑
a=1

dzadz̄a −

(
u2 +

3∑
i=1

y2
i

)
(dx+)2

− i

2

2∑
a=1

(z̄adza − zadz̄a)dx+ , (3.3)

where yi, i = 1, 2, 3 are cartesian coordinates for the spherical coordinates ρ̃,Ω2, and z1,

z2 are complex coordinates on C2 with spherical coordinates (r, θ, φ, ψ). After a further

coordinate change

za = e−ix
+/2wa, z̄a = eix

+/2w̄a, (3.4)

the metric takes the standard pp-wave form (with an extra term),

ds2 = −4dx+dx− + du2 +

3∑
i=1

dy2
i +

2∑
a=1

dwadw̄a −

(
u2 +

3∑
i=1

y2
i +

1

4

2∑
a=1

|wa|2
)

(dx+)2

− i
2

∑
a=1,2

(wadw̄a − w̄adwa) dx+. (3.5)

The extra term can be absorbed by a transformation in x− such as,

dx− → dx− − i

8

∑
a=1,2

(wadw̄a − w̄adwa) . (3.6)

The fluxes reduces to
F2 = −dx+ ∧ du,
F4 = −3dx+ ∧ dy1 ∧ dy2 ∧ dy3.

(3.7)

The brane in this background is wrapping the light-cone directions plus an S3 embed-

ded in the four-dimensional space spanned by (w1, w2). Note that the Penrose limit breaks

the isometry group SO(2, 4)× (SU(4)/Z(SU(4)) of AdS4 × CP3 down to U(1)± ×U(1)u ×
SO(3)r×SO(3) ∼ U(1)±×U(1)u×SU(2)r×SU(2)L. Here U(1)± corresponds to x± boosts

(coming from boosts along the compact coordinate χ), U(1)u to translations along the

(compact) coordinate u, SU(2)r rotates (y1, y2, y3), whereas SU(2)L is the rotation group

acting on the complex coordinates (w1, w2). Note that if (w1, w2) were written as 4 real

coordinates, there would be an SO(4) = SU(2)L×SU(2)R action on them, but now SU(2)R
is broken to its Cartan generator (with rotations e+iα and eiα on the diagonal), identified

with U(1)± because of (3.4).

In the pp-wave background, i.e. after the Penrose limit, the open string attached to

the D4-brane is moving with U(1)± angular momentum given by Jχ = −i∂χ, and in global

AdS4 coordinates its energy is given by E = i∂t. In terms of the ABJM theory, these

should corresponds to the conformal weight ∆ and R-charge under a particular U(1), for

– 6 –
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a state of the field theory on S2 × R. The pp wave light-cone momentum 2p+ and energy

2p− of the open string are related to the AdS4 quantities as follows.

2p+ =
i(∂t − ∂χ)

R̃2
=

∆ + Jχ

R̃2
, 2p− = i(∂t + ∂χ) = ∆− Jχ . (3.8)

Here R̃2 = 25/2π
√
λ is the radius in string units in terms of the ABJM quantities. A state

spinning with finite p+ should correspond in the field theory to a state with R-charge of

order Jχ ∼ R̃2 ∼
√
λ. Since k is an integer, the largest coupling corresponds to k = 1,

which suggests that the maximal charge for operators should be of order Jχ ∼
√
N . We

will come back to this issue after we define states in the field theory dual to the pp wave.

3.2 Quantum open string on the pp wave

The quantization of open strings in pp-waves backgrounds and its relation to CFT operators

has been described in [9].

In the context of D−p-branes it was considered in [25]. In the light cone gauge x+ = τ ,

Γ+Θ = 0, the Green-Schwarz action for the type IIA string is, following the conventions

of [26]), (see also [27, 28])

S =
1

4πα′

∫
dt

∫ πα′p+

0
dσ

{
8∑

A=1

[
(ẊA)2 − (XA′)2

]
−

4∑
M=1

(XM )2 − 1

4

8∑
N=5

(XN )2

− i
2

Θ̄Γ−
[
∂τ + Γ11∂σ −

1

4
Γ1Γ11 − 3

4
Γ234

]
Θ

}
.

(3.9)

Here we have denoted (u, yi) = (XM ), M = 1 · · · 4 and (wa, w̄a) = (XN ), N = 5 · · · 8.

The open string we are interested in ends on a D4-brane wrapping the space spanned by

(x±, XN ). It follows that we should impose Neumann boundary conditions on the directions

XN , N = 5, 6, 7, 8 and Dirichlet boundary conditions for the remaining coordinates,

∂σX
N = 0 for j = 5, 6, 7, 8. ∂τX

M = 0, for M = 1, 2, 3, 4 . (3.10)

The bosonic excitations of the type IIA string in this pp-wave background have light cone

spectrum

H =

4∑
M=1

∞∑
n=−∞

N (M)
n

√
1 +

n2

(α′p+)2
+

8∑
N=5

∞∑
n=−∞

N (N)
n

√
1

4
+

n2

(α′p+)2
. (3.11)

In terms of the ABJM gauge theory variables, we have R2/α′ = 25/2π
√
λ and p+ = J/R2.

Thus we have 4 excitations of frequency 1/2 at n = 0, corresponding to (wa, w̄a), and 4

excitations of frequency 1 at n = 0, corresponding to (yi, u). In this paper we will focus

on the 4 excitations of frequency 1/2 at n = 0.

The Green-Schwarz action has bosonic symmetry group [3] SU(2)i × U(1) × SO(4),

where SO(4) corresponds to rotations along the directions of the worldvolume of the D4-

brane XN , N = 5, 6, 7, 8, and SU(2)r corresponds to rotations in the 3 directions transverse

– 7 –
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to the brane i = 1, 2, 3 (Note that XM splits as (u, yi), i = 1, 2, 3, and the action (3.9)

has only SO(3) = SU(2) symmetry, not SO(4), because of the fermionic part).

The vacuum of the string should be chosen such that it is invariant under rotations

transverse to the giant and has a given charge q′ under SU(2)i.

4 Open strings from operators in ABJM

Type IIA strings on AdS4×CP3 has been argued in [1] to be dual to N = 6 Chern-Simons

matter theory in three dimension with level (k,−k) and gauge group U(N) × U(N). The

theory becomes weakly coupled when the level k is large, hence in the large N limit the

coupling analogous to ’t Hooft coupling is given by λ = N/k, which is kept finite. The

gauge fields are coupled to four chiral superfields in the bifundamental representation of

the gauge group U(N) × U(N), and in the fundamental representation of the SU(4) R-

symmetry. We denote the complex scalars in these 4 chiral multiplets as (A1, A2, B̄1, B̄2).

Here A1, A2 are in the (N, N̄) representation of U(N) × U(N), whereas B1, B2 are in the

conjugate, (N̄ ,N). Under the SU(4)R R-symmetry group (A1, A2, B̄1, B̄2) transform in the

4 representation. There is also a U(1)R under which all of (A1, A2, B̄1, B̄2) have charge +1.

Differentiating between Ai and Bi, for instance by adding a mass deformation the

ABJM Lagrangean breaks SU(4)R to SU(2)A × SU(2)B ×U(1), under which Ai transform

as (2, 1,+1), i.e. a doublet under SU(2)A, singlet under SU(2)B and charge J̃(Ai) = +1

under U(1); and Bi transform as (1, 2,−1), i.e. singlet under SU(2)A, doublet under SU(2)B
and charge J̃(Bi) = −1 under U(1).

Note however that there is another possible breaking of SU(4)R which will turn out to

be relevant for us, namely to SU(2)G×SU(2)G′×U(1)′. Under this breaking, (A1, B̄1) trans-

forms as a doublet of SU(2)G and a singlet of SU(2)G′ , and have U(1)′ charge J ′(A1, B1) =

+1; and (A2, B̄2) transform as a doublet of SU(2)G′ and a singlet of SU(2)G and have U(1)′

charge J ′(A2, Ā2) = −1.

Analogously to the N = 4 SYM case, a giant graviton brane wrapping some cycle in

the background should be identified with a semi-determinant of scalars [29], but since the

scalars Aa, Ba carry indices in different U(N) on the left and the right, unlike in N = 4

SYM, we should build composite fields which carry indices in the same U(N) on both

sides, i.e. in the adjoint of one of the U(N)’s. If such giant gravitons wrap the compact

sector CP3 (as opposed to the AdS4 piece, which also has its giant gravitons), their angular

momentum is bounded from above due to the finite radius of CP3, and the maximal giant

should be described in the field theory by a full determinant. We are particularly interested

in the maximal giant graviton wrapping a subspace M4 ⊂ CP3.

We would like to obtain the open string spectrum (3.11) in the field theory from a

string of composite operators in the adjoint of U(N). Analogously to the closed string

case [3], let us choose the vacuum of the string as,

W a
b = [(A2B2)J ]ab . (4.1)

– 8 –
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It should correspond to a zero energy configuration above the energy of the D4-brane

2p− = H = 0 , which means in the field theory we need(
∆− J(A2B̄2)

)[
(A2B2)

]
= 0 , (4.2)

∆ being the conformal dimension, which classically is 1/2 for both Aa and Ba. In order to

have J = 1 forA2B2, we need J to be J(A2B̄2), i.e. the Cartan generator of the SU(2)(A2B̄2) =

SU(2)G′ which rotates (A2B̄2) as a doublet, with (normalized) charge +1/2 for A2 and −1/2

for B̄2, so +1/2 for B2.

On the other hand, the vacuum operator W a
b is invariant under the action of the

SU(2)(A1B̄1) = SU(2)G group rotating (A1B̄1). Therefore, it is natural to suggest that

the open string is attached to the giant graviton D4-brane described by the following

determinant operator,3

Og = εm1,...,mN ε
p1,...,pN (A1B1)m1

p1 . . . (A1B1)mNpN . (4.3)

The full bosonic symmetry of the above string vacuum is U(1)′, together with SU(2)G×
U(1)D × SO(3)r, a subgroup of SU(2|2), whose generators commute with U(1)′, where

SO(3)r acts on the 3 worldvolume coordinates yi, the generator D = ∆− J .

We can now easily identify this symmetry with the pp wave isometry group.4 The

breaking of SU(4)→ SU(2)L×SU(2)R×U(1)u corresponds to SU(4)→ SU(2)G×SU(2)G′×
U(1)′, meaning that U(1)u identified with U(1)′, SU(2)L with SU(2)G and U(1)D with

U(1)±. Then SO(3)r is the same in both cases, meaning the total symmetry is U(1)′ ×
SU(2)G ×U(1)D × SO(3)r = U(1)u × SU(2)L ×U(1)± × SO(3)r.

The fact that Og is not charged under the Casimir J of SU(2)G′ = SU(2)(A2B̄2), i.e,

J(A2B̄2)

[
(A1B1)

]
= 0 , (4.4)

is understood as being due to the fact the propagating direction of the open string is

parallel to the giant graviton D4-brane, hence the propagation direction for the string is

different than the propagating direction for the giant, i.e. the charge J for the open string

is different than the charge J1 = J(A1B̄1) = Casimir of SU(2)G for the giant, under which

the giant has zero energy (J1(A1) = J1(B1) = 1/2 and ∆ = 1/2 give (∆− J1)(A1B1) = 0).

The identification of U(1)D with U(1)± means that J (the Casimir of SU(2)G) is

identified with Jχ, the angular momentum in the χ direction of CP3, so that we can

3Note that a different proposal for the giant corresponding to this operator was put forward in [30] as

being two CP2 giants intersecting over a CP1, since the determinant splits into detA detB, but the A and

B matrices are bifundamental, so it is not clear that they can be interpreted by themselves as D-branes,

and we would instead suggest that there is an identification of those two would-be D-branes needed, leading

to our interpretation. We would like to thank David Berestein for comments on his work.
4The correct matching of the symmetries must be with the isometry group on the pp wave, even if the

symmetry before the Penrose limit would be different. However, note that the brane wrapping the cycle in

eq. (2.16) in the background (2.15) has a symmetry (transverse to AdS4) of SU(2)×U(1), since the SU(4)

symmetry of the CP3 is broken to SU(3)×U(1) by the choice µ = π/4, as seen from (2.15), and the SU(3)

symmetry of the CP2 is broken to SU(2) by the choice α = 0, as seen from (2.14). This SU(2) × U(1) is

part of the symmetry of the pp wave.
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formally write

Jχ(A2) = Jχ(B2) =
1

2
, Jχ(A1) = Jχ(B1) = 0 . (4.5)

From (4.5) we have 6 combinations in the adjoint of the first U(N), classified according

to ∆− Jχ as

(∆− Jχ) = 0 : A2B2,

(∆− Jχ) = 1/2 : A2B1, A2Ā1, A1B2, B̄1B2,

(∆− Jχ) = 1 : A1B1. (4.6)

Summarizing, we would like to describe the vacuum of the open string-brane system by

the following operator in ABJM

εm1,...,mN ε
p1,...,pN (A1B1)m1

p1 . . . (A1B1)
mN−1
pN−1 [W ]mNpN . (4.7)

It has been argued in [12, 31] that if we set an (A1B1) at the border of W , the operator

factorizes, so we do not want to consider that situation, although it should be interesting

to study that phenomenon at both sides. In fact, an operator as (4.7) can be expanded in

terms of traces (closed strings), but for maximal giant, which is the case we are considering,

the mixing with closed strings is suppressed.5 This operator carries anomalous dimension

minus Jχ charge of ∆− Jχ = N − 1.

Note that for the string in the pp wave, we obtained a maximum Jχ of order Jχ ∼
√
N .

This suggests that W in (4.7) should contain at most O(
√
N) (A2B2) combinations, though

it is not clear why we should have this constraint from a field theory point of view. Perhaps

for larger Jχ the open string oscillation starts to modify the giant graviton itself (which

has an energy of N − 1, as seen above), here assumed to be a fixed background.

As in the BMN case [24], we should relate excitations of the string theory ground state

with appropriate insertions into the string of operators W .

Excitations in directions XM coming from the AdS4, i.e. yi, correspond to insertion

of covariant derivatives Di (with ∆ − Jχ = 1) in the dual operator, but we are not going

to consider those here. Excitations along CP3 should be identified with insertions of com-

posite operators. From (4.6) we find that the last excitation with frequency ∆ − Jχ = 1,

corresponding to the direction u, is A1B1. A single excitation along the (wa, w̄a) directions

(XN , N = 5, . . . , 8) in the gravity side increases the energy of the vacuum by 1/2, as we

can see from (3.11). From (4.6) we see that the insertions increasing the energy of the

ground state (4.7) by 1/2 are given by

A2B1, A2Ā1, A1B2, B̄1B2 . (4.8)

5Note that the same factorization happens for an (A1B2) or (A2B1) impurity (see shortly afterwards)

put at the border of W , and then a determinant of A1 or B1 appears, in which case it would seem like there

are different boundary conditions at left and right for these impurities. Note however that, as explained in

the footnote 3, this picture refers to the alternative description in terms of two CP2’s intersecting over a

CP1. Since the A’s and B’s are bifundamental, in our description we suggest an identification of the two

corresponding D-branes, leading to the same boundary condition on both string endpoints, namely (3.10).

In the alternative description, the boundary condition would be Neumann-Dirichlet, affecting the choice of

dual operator, thus modifying (4.10) and further equations.
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For example, one of those excitations should be given by the insertion of an (A2B1)

i.e, corresponds to the operator,

Ol = εm1,...,mN ε
p1,...,pN (A1B1)m1

p1 . . . (A1B1)
mN−1
pN−1 [(A2B2)l(A2B1)(A2B2)J−l]mNpN , (4.9)

which has ∆ − Jχ = 1
2 . As for single trace operators, higher (massive) oscillator states of

the open string, are described by operators with the insertions above accompanied by a

phase position-dependent factor representing the given level. Explicitly, we associate the

following operator with a single excitation of the string

On = εm1,...,mN ε
p1,...,pN (A1B1)m1

p1 . . . (A1B1)
mN−1
pN−1 ×

×
J∑
l=0

[
(A2B2)l(A2B1)(A2B2)J−l

]mN
pN

cos

(
πnl

J

)
. (4.10)

5 Anomalous dimension of ABJM operators

5.1 Single excitation

We now move to the computation of the anomalous dimension of the operator in (4.10).

We show in appendix B that the leading planar contribution comes only from interactions

of the open chain, i.e. the term in square brackets. For single trace operators in the planar

limit, at two-loops we only get mixing between nearest neighbours (from the point of view

of the (AB) pairs, i.e. next to nearest neighbours from the point of view of individual A

and B fields), through the interactions terms in the Lagrangean

V =
4π2

k2
Tr
[
−2(B̄2Ā2B̄1B1A2B2) + (B̄1Ā2B̄2B1A2B2) + (B̄2Ā2B̄1B2A2B1)

]
(5.1)

=
4π2

k2
Tr
[
−2(B̄2Ā2B̄1B1A2B2) + ((B̄1Ā2)B̄2B1(A2B2)) + ((B̄2Ā2)B̄1B2(A2B1))

]
,

the first term is diagonal, the second one moves the impurity to the left (adding for free an

inert A2 on the left, this term connects A2B1(A2B2) with Ā2B̄2(Ā2B̄1)) and the third one

move the impurity to the right (adding an intert A2 on the left, it connects A2B2(A2B1)

with Ā2B̄1(Ā2B̄2)).

Then, just like in the BMN case for N = 4 SYM, the operator On in (4.10) diagonalizes

the interaction term (5.1) and the action of the interaction term on it produces a global

phase (independent of the sum index l) coming from

−2 cos

(
πn(l)

J

)
+cos

(
πn(l + 1)

J

)
+cos

(
πn(l − 1)

J

)
= 2 cos

(
πn(l)

J

)[
−1 + cos

(πn
J

)]
.

(5.2)

Collecting the results from appendix B, we can write the two-point function at one-

loop as

〈On(x)On(0)〉1−loop

〈On(x)On(0)〉tree
= 1 + 8λ2

[
1− cos

(πn
J

)]
ln(xΛ)

≡ (1 + (∆− J)anom. ln(xΛ)) . (5.3)
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Note that at tree level (classical dimension) ∆ = Jχ+1/2 for our operator. Expanding

the cosine for small πn
J we get that the contribution to the anomalous dimension coming

from the open string interactions is

(∆− Jχ)anom. =
4π2n2

J2
λ2 ⇒ ∆− Jχ =

1

2

[
1 +

8π2n2

J2
λ2

]
. (5.4)

This agrees with the closed string calculation in (1.1).

On the other hand, at strong coupling, the string theory result is given by the expres-

sion for the frequencies in the CP3 directions in (3.11),

w(r)
n =

√
1

4
+

n2

(α′p+)2
. (5.5)

After using R2/α′ = 25/2π
√
λ and p+ = J/R2 to get α′p+ = J/(25/2π

√
λ), we obtain for

the frequencies

w(r)
n =

1

2

√
1 +

23π2n2λ

J2
. (5.6)

This agrees with the closed string result (1.1).

Expanding for small λn2/J2 so as to compare with the SYM case, we obtain

w(r)
n '

1

2

[
1 +

4π2n2

J2
λ

]
. (5.7)

As in the closed string case, it seems that the BMN scaling is violated for ABJM, since

the strong coupling λ� 1 and weak coupling λ� 1 results have different behaviours. This

is the same discrepancy from (1.1) for the closed string case, first noticed by [3, 5].

6 Hamiltonian effective description on the ABJM operators

In this section we would like to find a Hamiltonian description for the ABJM open string

using Cuntz oscillators, similar to the N = 4 SYM case described in appendix A. We will

not give all the details which are the same as in the N = 4 SYM case, since they can be

found in the appendix.

The operator-state correspondence for 3 dimensional field theories relates operators

on R3 with states on the cylinder S2 × Rt, found at the boundary of global AdS4. Fields

on R3 are KK reduced on S2 and give creation and annihilation operators on Rt, which

can act on states. Fields without derivatives on R3 correspond to the zero modes of the

KK reduction on S2. The new feature now is that we have pairs of fields that appear

naturally, e.g. (A1B1)(x), (A2B1)(x), (A2B2)(x), so we can consider them together under

dimensional reduction on S2. We denote (A2B2)(x) ↔ a†, (A2B1)(x) ↔ b†. Like in the

case of N = 4 SYM, the vacuum |0〉J for the open string is defined by acting with J field

objects on the true vacuum |0〉, but unlike that case, now we act with composite operators
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(A2B1)(x) and (A2B2)(x)6

[0J ]mNpN = [(A2B2)J ]mNpN ⇒
|[0]mNpN 〉J = [(a†)J ]mNpN |0〉. (6.1)

But as explained in appendix A, the oscillators appearing here are actually Cuntz oscilla-

tors, satisfying (A.1), because there is an implicit group structure (the creation operators

have matrix indices) that means that the order matters, and then the Hilbert space can be

mapped to the Hilbert space of Cuntz oscillators.

For excited states, we have also operators insertions of (A2B1)(x) on R3, which we can

replace by insertions of b† along the string of a†’s, at site i. Equivalently, we can consider

the independent Cuntz oscillators at each site bj , as in (A.7). In order for this to be a good

definition, we need to have very few cases where the b†’s appear at the same site, namely

we need to be in the “dilute gas” approximation.

The action of the interaction potential on operators through Feynman diagrams in R3

generates a Hamiltonian action on states in the S2 × Rt picture. Indeed, by acting with

the interaction potential (5.1) through Wick contractions onto a one-impurity operator

[Ol]mNpN =
[
(A2B2)l(A2B1)(A2B2)J−l

]mN
pN

, (6.2)

we obtain the action (we have a factor of 4π2/k2 in front of the action and a factor of

N2 coming from the index loops, instead of the factors g2
YMN/2 for N = 4 SYM in the

appendix, allowing us to write the result in terms of the ’t Hooft coupling λ = N/k)

V · [Ol]mNpN = λ2[−2Ol +Ol+1 +Ol−1]mNpN + 3− impurity , (6.3)

which is the fact we have actually used in (5.2). Therefore we can define the action of V

on the states in the dilute gas approximation (where various b†j excitations don’t interact

with each other) by the Hamiltonian terms in V :

λ2
[
−b†l bl − blb

†
l + b†l bl+1 + b†l+1bl

]
, (6.4)

plus terms with two b†’s and with two b’s. In fact, as in appendix A, these terms are needed

because of 1+1 dimensional relativistic invariance, requiring that we obtain the combination

(field) φj = (bj + b†j)/
√

2, which determines uniquely the interaction Hamiltonian.

The final result for the full interacting Hamiltonian, including the kinetic terms, is the

nearest-neighbour result

H =
J∑
l=1

b†l bl + blb
†
l

2
+ λ2

J∑
l=1

(
b†l+1 + bl+1 − b†l − bl

)2
. (6.5)

As in appendix A, we can do a Fourier transform from the oscillators bj to oscillators

bn by

bj =
J∑
j=1

e
2πi j n
J bn , (6.6)

6For the sake of simplicity, we are going to drop the determinant factor along this section, but it is

understood that the free indices mN , pN are attached to it as in (4.10).
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after which the Hamiltonian becomes

H =

J∑
j=1

bnb
†
n + b†nbn

2
(6.7)

+ λ2
J∑
j=1

[
bnbn(eip − 1) + bnb

†
n(eip − 1) + b†nbn(e−ip − 1) + b†nb

†
n(eip − 1)

]
,

where p = 2π n/J is the magnon momentum. We further redefine

bn =
cn,1 + cn,2√

2
, bJ−n+1 =

cn,1 − cn,2√
2

, (6.8)

such that the Hamiltonian becomes

H =

J/2∑
j=1

cn,1c
†
n,1 + c†n,1cn,1

2
+
cn,2c

†
n,2 + c†n,2cn,2

2

+ λ2
J∑
j=1

[
αn(cn,1 + c†n,1)2)− αn(cn,2 − c†n,2)2 − βn[(cn,1 − c†n,1), (cn,2 + c†n,2)]

]
. (6.9)

Here

αn = 2(cos(p)− 1) = −4 sin2
(πn
J

)
, βn = sin

(
2πn

J

)
. (6.10)

In the dilute gas approximation (see appendix A for more details) we can see that the

operators bn satisfy to leading order the usual harmonic oscillator algebra,

[bn, b
†
m] ∼ δm,n +O(1/J) , (6.11)

from which it is easy to see that the last commutator in (6.9) vanishes. Then the hamilto-

nian is given in the large J limit by a sum of perturbed harmonic oscillators as in (A.18),

and we can follow the same recipe as in appendix A to do a Bogoliubov transformation on

the Hamiltonian to find the eigenstates and their energy,

ωn =
√

1 + 4λ2|αn| =
√

1 + 16λ2 sin2
(p

2

)
. (6.12)

This agrees with the closed string result (1.1) at weak coupling, and by expanding in n/J �
1 and in λ � 1 agrees also with the two-loop computation in section 5. But the result

obtained in here is much more general, since it resums the 2-loop Hamiltonian contributions

to the energy, and it applies for arbitrary magnon momentum p, not just p� 1.

7 Conclusions

In this paper we have considered open strings ending on D4-brane giant gravitons in AdS4×
CP3, and the operators dual to them in ABJM. The D4-brane giant moves in a CP2 ⊂ CP3,

and we considered a large R-charge limit for the operators corresponding to a pp wave limit

in the gravity dual. We have described the operators corresponding to open strings with
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excitations on them, and the resulting magnon dispersion relation coincides with the one

in the closed string case, (1.1). In particular, we calculated the first, two-loop, correction

to the energy and noted the different scaling from the string theory result, as in the closed

string case. We showed explicitly how to derive the magnon dispersion relation in the

N = 4 SYM case using a Hamiltonian description based on Cuntz oscillators, that was only

implicit in [24], and then showed how to parallel that analysis for open string operators

in ABJM.
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A Hamiltonian description for large charge N = 4 SYM operators using

Cuntz oscillators

In this appendix we review the Hamiltonian calculation using Cuntz oscillators for the

N = 4 SYM case, which was implicit in [24]. The result gives explicitly the sin2(p/2)

factor inside the square root for the energy, generalizing a bit the result in [24].

As explained in [24], one considers N = 4 SYM KK reduced on S3×Rt (the boundary

of AdS5×S5), and after the dimensional reduction on the S3 factor one gets a Hamiltonian

description for SYM.

The SYM fields on R4 are organized in terms of ∆ − J , corresponding to energy in

the dual pp wave string theory. Here J is a U(1) R-charge that rotates the complex field

Z = X1 + iX2 by a phase. The vacuum is made up of Z fields, with ∆−J = 0. The string

oscillators are the fields with ∆ − J = 1, namely the 4 φI ’s, 4 derivatives of Z, DmZ, and

8 fermions χaJ=1/2. Then there are fields of ∆ − Z > 1, like Z̄, χaJ=−1/2 and the higher

derivatives of the string oscillator fields.

Under dimensional reduction on S3, arising from the operator-state correspondence for

conformal field theories (which in 4 dimensions relates S3 × Rt ↔ R4, the same way as in

the more familiar 2 dimensional case it relates the cylinder S1 × Rt with the plane R2),

the KK modes of a field, which correspond to higher spherical harmonics on the sphere

S3, are mapped to the higher derivative modes Dm1 . . . Dmn of R4 fields. The Rt “mass”

under S3 KK reduction (i.e., frequency of harmonic oscillators) has an extra term due to

the curvature coupling to the scalars, so that even the constant mode of Z, i.e. the field Z

on R4, has frequency equal to 1. The corresponding harmonic oscillators are called (a†)ij
(here i, j are SU(N) indices). The R4 fields of ∆ − J = 1, φI , DmZ, correspond to their

constant mode on S3, having frequency equal to 2, and the corresponding oscillators are

denoted by (b†)ij (here we have supressed the I,m indices on b). Together, the set of a†,

b† and higher KK modes are called a†α.
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A large J charge single trace operator (such an operator is leading in the large N limit)

then corresponds on Rt to a ordered string (or “word”) of a†α’s acting on the vacuum |0〉.
In the sector of fixed J (corresponding to fixed p+ momemntum on a pp wave string), the

vacuum |0〉J , is Tr [(a†)J ]|0 >, mapped to the operator Tr [ZJ ] on R4. We will drop the J

index in the following, assuming we are in the J vacuum.

Next one uses the observation of [32], or rather of [33], that the Hilbert space of n

independent large N random matrices acting on a vacuum, M̂1M̂2M̂3 . . . |0〉 (where the

order is important, so that one has to consider a word made of M̂i’s) is the same as the

Hilbert space of so-called Cuntz oscillators ai, i = 1, . . . , n, satisfying

ai|0〉 = 0; aia
†
j = δij ;

n∑
i=1

a†iai = 1− |0〉〈0| (A.1)

and no other relations (in particular no relations between a†ia
†
j and a†ja

†
i , so that the order

is important).

For a single Cuntz oscillator we would have

a|0〉 = 0; aa† = 1; a†a = 1− |0〉〈0| , (A.2)

and the number operator is

N̂ =
a†a

1− a†a
=

∞∑
k=1

(a†)kak. (A.3)

In general,

N̂ =

∞∑
k=1

∑
i1,...ik

a†i1 . . . a
†
ik
aik . . . ai1 . (A.4)

Note that the equality of the large N Matrix Hilbert space with the Cuntz algebra

Hilbert space is a fact and is independent of the main subject of [32], which was to describe

random matrix correlators by a “master field” M(z) (or M̂(a, a†)), i.e. such that

Tr [Mp] = lim
N→∞

∫
DMe−NTr V (M) 1

N
Tr [Mp] = 〈0|M̂(a, a†)p|0〉. (A.5)

For that, one needed to define inner products and use properties of Matrix models. Here

we restrict ourselves to Hamiltonians acting on states, for which [33] suffices.

One thing which is not taken into account in the formalism is the fact that our Hilbert

space is for traces of matrices, which are cyclic, thus cyclicity must be imposed by hand.

Hamiltonian. The particular case studied in [24] involves particular types of words, with

mostly Z’s, corresponding to a†’s, and few b†’s (the “dilute gas” approximation). Thus an

additional simplification was used: in a a† . . . a†b†a† . . . a†b†a† . . . a†|0〉 type string of length

J (with J a†’s), we can forget the a Cuntz oscillators and consider that we have a chain

of J sites, and at each site a different independent Cuntz oscillator b†j (here j = 1, . . . , J

labels sites), i.e. consider

[bi, bj ] = [b†i , bj ] = [b†i , b
†
j ] = 0, i 6= j , (A.6)
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and

bib
†
i = 1, b†ibi = 1− (|0〉〈0|)i; bi|0〉i = 0. (A.7)

Of course, there is still the supressed index I,m corresponding to the type of oscillator.

Defining Fourier modes,

bj =
1√
J

J∑
n=1

e
2πijn
J bn , (A.8)

we get the commutation relations

[bn, b
†
m] =

1

J

J∑
j=1

e
2πij(m−n)

J (|0〉〈0|)j ; [bn, bm] = [b†n, b
†
m] = 0. (A.9)

This is in general a complicated operator, but if we act on states in the dilute gas

approximation, i.e. on states

|ψ{ni}〉 = |0〉1 . . . |ni1〉 . . . |nik〉 . . . |0〉J , (A.10)

we get

[bn, b
†
m]|ψ{ni}〉 =

(
δnm −

1

J

∑
k

e2πiik
m−n
J

)
|ψ{ni}〉 , (A.11)

that is, the operator gives 1/J corrections in the dilute gas approximation. In particular,

[bn, b
†
m]|0〉 = δm,n, as for usual oscillators. Since also bn|0〉 = 0 as we can easily check, the

bn’ act as usual creation/annihilation operators, exactly on the vacuum and approximately

on dilute gas states.

With these Cuntz oscillators for the b’s, the interaction term

Lint = −
g2
YM

2
Tr [z, φ][z̄, φ] , (A.12)

where 4πgs = g2
YM , in the lagrangian becomes equivalent to

− gsN

π

∑
j

(φj − φj+1)2 , (A.13)

where φj = (bj+b
†
j)/
√

2. (With the usual oscillator one would have extra factors of 1/
√

2 in

the (b†j)
2 terms.) An obvious term is the one with 2 b†’s,

∑
j b
†
jb
†
j+1+b†j+1b

†
j−(b†j)

2−(b†j+1)2.

It arises from the contraction of the z̄ in Lint ∼ 2z̄φzφ − z̄φ2z − z̄zφ2 with one z in the

state. All the other terms can be obtained similarly, or we can consider the fact that

1+1 dimensional relativistic invariance requires that the combination φj = (bj + b†j)/
√

2 to

appear in the interaction Lagrangean. We will denote by λ = g2
YMN the ’t Hooft coupling.

Then the total hamiltonian (equal to a free part plus the interaction part, that is,

minus the interaction Lagrangean from above) should be

H =

J∑
j=1

bjb
†
j + b†jbj

2
+

λ

8π2

J∑
j=1

[(bj+1 + b†j+1)(bj + b†j)− (bj + b†j)
2]. (A.14)
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Notice however that H|0〉 = const.|0〉 + (λ/8π2)
∑

j(b
†
j+1b

†
j − b

†
jb
†
j)|0〉 6= 0. Since we

know that TrZJ is a good vacuum (∆ − J remains zero, as this state is BPS), it follows

that on Rt we must have H|0〉 = 0, hence we must assume that susy cures the discrepancy

e.g. by fermion loops, and one can have a redefined Hamiltonian H̃ such that H̃|0〉 = 0.

We will thus put H|0〉 = 0 in the following by hand.

After going to the Fourier modes bn and then redefining the oscillators by

bn =
cn,1 + cn,2√

2

bJ−n =
cn,1 − cn,2√

2
, (A.15)

the hamiltonian becomes (for J = 2k + 1, term n = 0, or rather J , drops out of the sum

from 0 to J)

H =

[J/2]∑
n=1

[
c†n,1cn,1 + cn,1c

†
n,1

2
+
c†n,2cn,2 + cn,2c

†
n,2

2

+ αn(cn,1 + c†n,1)2 − αn(cn,2 − c†n,2)2 + βn[cn,1 − c†n,1, cn,2 + c†n,2]

]
, (A.16)

where

αn =
λ

8π2
(cos(2πn/J)− 1) = − λ

(2π)2
sin2 πn

J

βn = i
λ

(2π)2
sin(2πn/J). (A.17)

However, with our commutation relation for [bn, b
†
m] one can check that the commutator

term vanishes and the hamiltonian is now diagonal, albeit with nontrivial oscillators cn,a.

Moreover, it is now exactly in the form of a sum of perturbed oscillators. Indeed, a

generic hamiltonian

H =
aa† + a†a

2
± µ2

2

(a± a†)2

2
=

(
1 +

µ2

2

)
aa† + a†a

2
± µ2

4
(a2 + a†

2
) , (A.18)

under the Bogoliubov transformation

b = αa± βa†

α− β = 1/
√
ω α+ β =

√
ω

ω =
√

1 + µ2 (A.19)

becomes

H = ω
bb† + b†b

2
. (A.20)

Here if we had usual oscillators we would have [a, a†] = [b, b†], i.e. the commutation

relations would be preserved. In the case of a single Cuntz oscillator this is still true, but

now for many different Cuntz oscillators the algebra will change.
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A Bogoliubov transformation in terms of usual oscillators will give a new vacuum

after the transformation, since a|0〉 = 0 will imply b|0〉 6= 0, and b|0′〉 = 0 gives |0′〉 =

exp(−β(a†)2/α)|0〉. But now we don’t have usual oscillators.

Applying this Bogoliubov transformation to our Hamiltonian we get

H =

J/2∑
n=1

ωn

[
c̃†n,1c̃n,1 + c̃n,1c̃

†
n,1

2
+
c̃†n,2c̃n,2 + c̃n,2c̃

†
n,2

2

]
, (A.21)

where the relations between oscillators are

c̃n,1 = ancn1 + bnc
†
n,1

c̃n,2 = ancn1 − bnc
†
n,1

an =
(1 + αn)1/4 + (1 + αn)−1/4

2

bn =
(1 + αn)1/4 − (1 + αn)−1/4

2
, (A.22)

and the energy of the eigenstates is

ωn =
√

1 + 4|αn| =

√
1 +

4λ

(2π)2
sin2 πn

J
=

√
1 +

4gsN

π
sin2 πn

J
. (A.23)

As we can see, this calculation was exact, both in λ and in n/J , as long as J →∞ and we

have a dilute gas approximation. For n ∼ 1� J , we obtain for the energy

ωn '
√

1 +
λn2

J2
=

√
1 +

4πgsNn2

J2
, (A.24)

which is the case used in [24].

Note that the result here is exact in λ, but a priori needed not be, since the calculation

was one-loop in SYM, and the square root form came about because of the Bogoliubov

transformation, so was a sort of resumming of various one-loop contributions, similar to

the exponentiation of the IR divergences of gluon amplitudes in the Sudakov factor ∼
exp[λa1 +O(λ2)].

That means that in general, we expect the λ inside the square root to be replaced by

a more general function of λ, and this is indeed what happens in the ABJM case.

B First correction to anomalous dimension

In this appendix we compute the anomalous dimension of the first excited state (4.10) at

first order in λ2 = 16π2N2/k2. The basic propagators we need are

〈Aiab̄(x)Ājc̄d(0)〉 = 〈Bi
b̄a(x)B̄j

dc̄(0)〉 =
δijδadδb̄c̄

4π|x|
, (B.1)

from where obtain the following composite operators two-point functions,

〈(AiBi)ab(x)(AjBj)cd(0)〉 = N
δijδadδbc
16π2|x|2

. (B.2)
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Note that in principle, for operators with order N fields, we cannot consider only nonpla-

nar diagrams, but need to include nonplanar diagrams, so in particular we couldn’t use

just the propagators (B.2), since there the subleading 1/N factors are cancelled by order

N multipliticities. So in particular, one would need to consider, instead of the basis of

single trace operators, the Schur polynomial basis (see, e.g. [35]). But the operators we

consider have, besides the sub-determinant representing the giant graviton (which is in-

deed the correct operator), the object W which represents the open string with excitations

(impurities), which however, as we saw in section 3.1 in the gravity dual, can only have a

maximum number of Jχ ∼
√
N fields, so for them we never reach the problematic region of

the order N fields. Moreover, we will verify a posteriori that only the open-open (W-W)

contractions contribute, so we can consider effectively only the W piece, for which as we

saw there is no problem.

In our conventions the scalar potential in ABJM is given by

V = Tr
(
|Mα|2 + |Nα|2

)
, (B.3)

where

Mα =
2π

k

(
2B̄[αBβB̄

β] +AβĀβB̄
α − B̄αĀβA

β + 2B̄βĀβA
α − 2AαĀβB̄

β
)
,

Nα =
2π

k

(
2A[αĀβA

β] + B̄βBβA
α −AαBβB̄β + 2AβBβB̄

α − 2B̄αBβA
β
)
. (B.4)

Since the potential is purely sextic (thus proportional to λ2, i.e. g4
YM ), the first quan-

tum corrections to the anomalous dimension appear at two-loops (we can also check that

the 6-vertex connecting 3 fields in one operator with 3 fields in another gives a 2-loop

graph). Since the composite operators we are going to use are in the adjoint of U(N), the

computation is very similar as the open string on giant in the N = 4 SYM [34]. We split

the computation as follows:

• Tree level : the three level two point function of the state (4.10) is given by

〈On(x)On(0)〉tree = NN+J−1 N !2 (N − 1)!

(4π|x|)2(N+J−1)
. (B.5)

As we see from (B.2), each propagator for composite fields (AB) contributes with a

factor of N , producing a total contribution of NN+J−1. The factor of (N−1)! counts

all the possible contractions between A1B
′
1s, and N !2 comes from the full contractions

of two pairs of Levi-Civita symbols. NJ−1 comes from planar delta’s contractions in

the chain of (A2B1)′s.

Two-loops.

• The contribution coming from the interaction between giant graviton bits (compo-

nents) vanishes :
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Since the giant graviton dual is built only from (A1B1) composites, the only (possibly)

non-vanishing contributions from interactions are those with only A1 and B1’s in it.

|M1|2 =
4π2

k2

(
−A1Ā1B̄1 + B̄1Ā1A1

)(
−A1Ā1B̄1 + B̄1Ā1A1

)†
,

=
4π2

k2

(
A1Ā1B̄1Ā1A1B1 − B̄1Ā1A1Ā1A1B1

−A1Ā1B̄1B1A1Ā1 + B̄1Ā1A1B1A1Ā1

)
(B.6)

One can see that there are (
2N − 2

3

)2

(2N − 2)! (B.7)

graphs of the following form for each term in (B.6),

but for each of these graphs, there exist 16 different ways of contracting the fields into

the vertex with the fields in the operators. (For example, for the first term in (B.6)

A1Ā1B̄1Ā1A1B1, there are two ways of contracting A1 with it, times two ways of

contracting Ā with it, times four ways of contracting the remaining B′s and B̄′s.)

Each of those 16 different contractions produces 8 odd permutations, plus 8 even

permutations. Therefore, since each term in (B.6) contributes the same number of

odd permutations plus the same number of even permutations, the total sum just

vanishes.

It is interesting to note that in this case the giant graviton does not develop anomalous

dimension (at least at one-loop) without the need for supersymmetry.

• Contractions between open strings bits : contractions between giant gravitons bits are

as at tree level, N !2(N−1)!, as well as NN coming from propagators. Into any planar

diagram in our conventions, each closed line contributes with an N , each propagator

contributes with one (B.1), and each vertex contributes with a 4π2/k2. Hence at tree

level for example,
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we have from the open string NJ−1δiN ,jN , as we already mentioned. The first leading

planar correction for the open string chain looks like

and produces a coupling constant and N dependence from the open string part of

the operator of NJ−3 42π2N4

k2
= 42π2NJ−1λ2 .

The total result for the diagram is(
N

16π2|x|2

)N+J−1

42π2N !2(N − 1)!λ2 I(|x|) = 42π2λ2 〈On(x)On(0)〉tree I(|x|) ,

(B.8)

where (there are two equal divergent contributions to the result, one at y = 0 and

another at y = x)

I(|x|) =
|x|3

(4π)3

∫
d3y

|x− y|3|y|3
∼ 1

8π2
ln(xΛ) . (B.9)

Here we have introduced a cut-off Λ in order to regulate de divergent behaviour of

the integral.

• Contractions between operators in the open strings and the giant : from the giant

graviton bits, we have (N − 1)2 possible choices for the fields that will interact with

open string. That leaves (N − 2)! ways to contract the remaining bits freely and

produces an additional (N − 2)!2 coming form the contractions of the Levi-Civitas.

Again we obtain an NN factor from the propagators.

There is no way to connect planarly the open string to the determinant building the

giant (as long as the impurities do not reach the boundary of the chain, which we are

not considering here). As we see from the graph below, the leading contribution is

given by NJ−1N . We have J graphs of this type, coming from the different choices

of the open bits to interact with the determinant. The total result for the diagram

is:

4π2

k2

(
N

16π2|x|2

)N+J−1

(N − 1)2(N − 2)!3 JN I(|x|) =
λ2 J

N4
〈On(x)On(0)〉tree I(|x|) ,

(B.10)

which is subleading respect to (B.8).
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