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1 Introduction
Professor Ivan Kiguradze is widely recognized as one of the leading contemporary ex-
perts in the qualitative theory of ordinary differential equations. His research has been
partly summarized in the monograph written jointly with Professor Chanturia [] where
many fundamental results on the asymptotic behavior of solutions to important classes
of nonlinear differential equations were collected. In particular, the Kiguradze lemma and
Kiguradze classes of solutions are well known to researchers working in the area and are
extensively used to advance the knowledge further.
In this tribute to Professor Kiguradze, we are concerned with the asymptotic behavior

of solutions to an odd-order delay differential equation

(
r(t)

(
x(n–)(t)

)γ )′ + p(t)
(
x(n–)(t)

)γ + q(t)xγ
(
g(t)

)
= , (.)

where t ≥ t >  and n ≥  is an odd natural number, γ >  is a ratio of odd natural num-
bers, r ∈ C([t,∞),R), p,q, g ∈ C([t,∞),R), r(t) > , r′(t) + p(t) ≥ , p(t) ≥ , q(t) > ,
g(t) ≤ t, and limt→∞ g(t) = ∞.
By a solution of (.) wemean a function x ∈ C([Tx,∞),R), Tx ≥ t, such that r(x(n–))γ ∈

C([Tx,∞),R) and x(t) satisfies (.) on [Tx,∞). We consider only those extendable solu-
tions of (.) that do not vanish eventually, that is, condition sup{|x(t)| : t ≥ T} >  holds
for all T ≥ Tx. We tacitly assume that (.) possesses such solutions. As customary, a so-
lution of (.) is said to be oscillatory if it has arbitrarily large zeros on the ray [Tx,∞);
otherwise, we call it non-oscillatory.
Analysis of the oscillatory and non-oscillatory behavior of solutions to different classes

of differential and functional differential equations has always attracted interest of re-
searchers; see, for instance, [–] and the references cited therein. One of the main rea-
sons for this lies in the fact that delay differential equations arise in many applied prob-
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lems in natural sciences, technology, and automatic control, cf., for instance, Hale []. In
particular, (.) may be viewed as a special case of a more general class of higher-order dif-
ferential equations with a one-dimensional p-Laplacian, which, as mentioned by Agarwal
et al. [], have applications in continuum mechanics.
Let us briefly comment on a number of closely related results whichmotivated our study.

In [, –, ], the authors investigated asymptotic properties of a third-order delay dif-
ferential equation

(
r(t)x′′(t)

)′ + p(t)x′(t) + q(t)x
(
σ (t)

)
= .

Using a Riccati substitution, Liu et al. [], Zhang et al. [], and Zhang et al. [] studied
oscillation of (.) assuming that n ≥  is even, g(t) ≤ t, and

∫ ∞

T

[

r(s)

exp

(
–

∫ s

T

p(τ )
r(τ )

dτ
)]/γ

ds =∞, for T ≥ T ≥ t. (.)

In the special case when p(t) = , (.) reduces to a two-term differential equation

(
r(t)

(
x(n–)(t)

)γ )′ + q(t)xγ
(
g(t)

)
= , (.)

which was studied by Zhang et al. [] who established the following result.

Theorem . ([, Corollary .]) Let

δ(t) :=
∫ ∞

t
r–/γ (s) ds

and assume that δ(t) < ∞. Suppose also that


((n – )!)γ

lim inf
t→∞

∫ t

g(t)
q(s)

(
gn–(s)
r/γ (g(s))

)γ

ds >

e

and, for some λ ∈ (, ),

lim sup
t→∞

∫ t

t

[
q(s)

(
λgn–(s)
(n – )!

)γ

δγ (s) –
γ γ+

(γ + )γ+δ(s)r/γ (s)

]
ds =∞.

Then every solution of (.) is either oscillatory or converges to zero as t → ∞.

To the best of our knowledge, only a few results are known regarding oscillation of (.)
for n odd. Furthermore, in this case themethods in [, ] which employ Riccati substitu-
tions cannot be applied to the analysis of (.). Therefore, the objective of this paper is to
extend the techniques exploited in [] to the study of (.) in the case when the integral
in (.) is finite, that is, for all T ≥ T ≥ t,

∫ ∞

T

[

r(s)

exp

(
–

∫ s

T

p(τ )
r(τ )

dτ
)]/γ

ds < ∞. (.)

As usual, all functional inequalities considered in this paper are supposed to hold for all t
large enough. Without loss of generality, we may deal only with positive solutions of (.),
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because under our assumption that γ is a ratio of odd natural numbers, if x(t) is a solution
of (.), so is –x(t).

2 Main results
We need the following auxiliary lemmas.

Lemma . Assume that (.) is satisfied and let x(t) be an eventually positive solution of
(.). Then there exists a sufficiently large t ≥ t such that, for all t ≥ t,

x(t) > , x(n–)(t) > , x(n)(t) < . (.)

Proof Let x(t) be an eventually positive solution of (.). Then there exists a T ≥ t such
that x(t) >  and x(g(t)) >  for all t ≥ T. By virtue of (.),

(
r(t)

(
x(n–)(t)

)γ )′ + p(t)
(
x(n–)(t)

)γ < .

Thus,

(
exp

(∫ t

t

p(τ )
r(τ )

dτ
)
r(t)

(
x(n–)(t)

)γ

)′
< , (.)

which means that the function

exp

(∫ t

t

p(τ )
r(τ )

dτ
)
r(t)

(
x(n–)(t)

)γ

is decreasing for t ≥ T. Therefore, x(n–)(t) does not change sign eventually, that is, there
exists a t ≥ T such that either x(n–)(t) >  or x(n–)(t) <  for all t ≥ t.
We claim that x(n–)(t) >  for all t ≥ t. Otherwise, there should exist a T ≥ t such that

exp

(∫ T

t

p(τ )
r(τ )

dτ
)
r(T)

(
x(n–)(T)

)γ =M exp

(∫ T

t

p(τ )
r(τ )

dτ
)
< 

and, for all t ≥ T ,

exp

(∫ t

t

p(τ )
r(τ )

dτ
)
r(t)

(
x(n–)(t)

)γ ≤M exp

(∫ T

t

p(τ )
r(τ )

dτ
)
< , (.)

where

M := r(T)
(
x(n–)(T)

)γ .

Inequality (.) yields

x(n–)(t)≤M/γ
[


r(t)

exp

(
–

∫ t

T

p(τ )
r(τ )

dτ
)]/γ

.

Integrating this inequality from T to t, T ≥ T , we conclude that

x(n–)(t) ≤ x(n–)(T) +M/γ
∫ t

T

[

r(s)

exp

(
–

∫ s

T

p(τ )
r(τ )

dτ
)]/γ

ds.
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Passing to the limit as t → ∞ and using (.), we deduce that

lim
t→∞x(n–)(t) = –∞.

It follows now from the inequalities x(n–)(t) <  and x(n–)(t) <  that x(t) < , which con-
tradicts our assumption that x(t) > . Finally, write (.) in the form

exp

(∫ t

t

p(τ )
r(τ )

dτ
)[

r′(t) + p(t)
](
x(n–)(t)

)γ

+ γ r(t) exp
(∫ t

t

p(τ )
r(τ )

dτ
)(

x(n–)(t)
)γ–x(n)(t) < ,

which implies that x(n)(t) < . This completes the proof. �

Lemma . (Agarwal et al. []) Assume that u ∈ Cn([t,∞),R+), u(n)(t) is non-positive for
all large t and not identically zero on [t,∞). If limt→∞ u(t) �= , then for every λ ∈ (, ),
there exists a tλ ∈ [t,∞) such that

u(t) ≥ λ

(n – )!
tn–

∣∣u(n–)(t)∣∣

holds on [tλ,∞).

Lemma . (Agarwal et al. []) The equation

(
r(t)

(
x′(t)

)γ )′ + a(t)xγ (t) = ,

where γ >  is a quotient of odd natural numbers, r ∈ C([t,∞), (,∞)), and a ∈
C([t,∞),R) is non-oscillatory if and only if there exist a number T ≥ t and a function
v ∈ C([T ,∞),R) such that, for all t ≥ T ,

v′(t) + γ
v(γ+)/γ (t)
r/γ (t)

+ a(t)≤ .

For a compact presentation of our results, we introduce the following notation:

E(k, l) := exp

(∫ l

k

p(τ )
r(τ )

dτ
)
, δ(t) :=

∫ ∞

t

ds
(r(s)E(t, s))/γ

,

ϕ(t) :=
p(t)
r(t)

+
γ γ+

(γ + )γ+
φ

γ+
+ (t)E(t, t)
δ(t)r/γ (t)

,

φ(t) :=


E/γ (t, t)
–


γ

δ(t)p(t)r(–γ )/γ (t), φ+(t) :=max
[
,φ(t)

]
.

Theorem . Assume that


((n – )!)γ

lim inf
t→∞

∫ t

g(t)

q(s)
r(g(s))

(
gn–(s)

)γE
(
g(s), s

)
ds >


e
. (.)

http://www.boundaryvalueproblems.com/content/2014/1/107


Li and Rogovchenko Boundary Value Problems 2014, 2014:107 Page 5 of 10
http://www.boundaryvalueproblems.com/content/2014/1/107

Then every solution x(t) of (.) is either oscillatory or satisfies

lim
t→∞x(t) =  (.)

provided that either
(i) (.) holds or
(ii) (.) is satisfied and, for some λ ∈ (, ),

lim sup
t→∞

∫ t

t

[
q(s)

(
λ

(n – )!
gn–(s)δ(s)

)γ

E(t, s) – ϕ(s)
]
ds =∞. (.)

Proof Assume that (.) has a non-oscillatory solution x(t) which is eventually positive
and such that

lim
t→∞x(t) �= . (.)

Case (i) By Lemma., we conclude that (.) holds for all t ≥ t, where t ≥ t is sufficiently
large. It follows from Lemma . that

x(t)≥ λtn–

(n – )!
x(n–)(t) =

λtn–

(n – )!r/γ (t)
r/γ (t)x(n–)(t),

for every λ ∈ (, ) and for all sufficiently large t. Let

y(t) := r(t)
(
x(n–)(t)

)γ .

By virtue of (.), we conclude that y(t) is a positive solution of a differential inequality

y′(t) +
p(t)
r(t)

y(t) + q(t)
(

λgn–(t)
(n – )!r/γ (g(t))

)γ

y
(
g(t)

) ≤ .

However, it follows from the result due to Werbowski [, Corollary ] that the latter in-
equality does not have positive solutions under the assumption (.), which is a contra-
diction. The proof of part (i) is complete.
Case (ii) Similar analysis to that in Lemma . leads to the conclusion that a non-

oscillatory positive solution with the property (.) satisfies, for t ≥ t, either conditions
(.) or

x(t) > , x(n–)(t) > , x(n–)(t) < , (.)

where t ≥ t is sufficiently large. Assume first that (.) holds. As in the proof of the
part (i), one arrives at a contradiction with the condition (.). Suppose now that (.)
holds. For t ≥ t, define a new function v(t) by

v(t) :=
r(t)(x(n–)(t))γ

(x(n–)(t))γ
. (.)

Then v(t) <  for t ≥ t. Since

(
r(t)

(
x(n–)(t)

)γE(t, t)
)′ = –q(t)xγ

(
g(t)

)
E(t, t) < ,
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we deduce that the function r(t)(x(n–)(t))γE(t, t) is decreasing. Thus, for s ≥ t ≥ t,

(
r(s)E(t, s)

)/γ x(n–)(s)≤ (
r(t)E(t, t)

)/γ x(n–)(t). (.)

Dividing both sides of (.) by (r(s)E(t, s))/γ and integrating the resulting inequality from
t to T , we obtain

x(n–)(T) ≤ x(n–)(t) +
(
r(t)E(t, t)

)/γ x(n–)(t)
∫ T

t

ds
(r(s)E(t, s))/γ

.

Letting T → ∞ and taking into account that x(n–)(t) <  and x(n–)(t) > , we conclude
that

lim
T→∞x(n–)(T)≥ .

Hence,

 ≤ x(n–)(t) +
(
r(t)E(t, t)

)/γ x(n–)(t)δ(t),
which yields

–
x(n–)(t)
x(n–)(t)

δ(t)
(
r(t)E(t, t)

)/γ ≤ .

Thus, by (.), we conclude that

–v(t)δγ (t)E(t, t)≤ . (.)

Differentiation of (.) yields

v′(t) =
(r(t)(x(n–)(t))γ )′

(x(n–)(t))γ
– γ

r(t)(x(n–)(t))γ+

(x(n–)(t))γ+
.

It follows now from (.) and (.) that

v′(t) = –p(t)
v(t)
r(t)

– q(t)
xγ (g(t))

(x(n–)(t))γ
– γ

v(γ+)/γ (t)
r/γ (t)

.

On the other hand, it follows from Lemma . that

x(t)≥ λ

(n – )!
tn–x(n–)(t),

for every λ ∈ (, ) and for all sufficiently large t. Therefore, (.) yields

v′(t)≤ p(t)
r(t)δγ (t)E(t, t)

– q(t)
(

x(g(t))
x(n–)(g(t))

)γ (
x(n–)(g(t))
x(n–)(t)

)γ

– γ

(
vγ+(t)
r(t)

)/γ

≤ p(t)
r(t)δγ (t)E(t, t)

– q(t)
(

λ

(n – )!
gn–(t)

)γ

– γ

(
vγ+(t)
r(t)

)/γ

. (.)
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Multiplying (.) by δγ (t)E(t, t) and integrating the resulting inequality from t to t, we
have

δγ (t)E(t, t)v(t) – δγ (t)E(t, t)v(t) –
∫ t

t

p(s)
r(s)

ds

+ γ

∫ t

t
r–/γ (s)δγ–(s)E(t, s)φ+(s)v(s) ds

+
∫ t

t
q(s)

(
λ

(n – )!
gn–(s)

)γ

δγ (s)E(t, s) ds

+
∫ t

t
γ

(
vγ+(s)
r(s)

)/γ

δγ (s)E(t, s) ds ≤ .

Let A := δγ (s)E(t, s)r–/γ (s) and B := r–/γ (s)δγ–(s)E(t, s)φ+(s). Using the fact that
v(γ+)/γ (s) = (–v(s))(γ+)/γ and the inequality

–Bv(s) –Av(γ+)/γ (s)≤ γ γ

(γ + )γ+
Bγ+

Aγ
, A > 

(see Zhang andWang [, Lemma .] for details) and the definition of ϕ, we derive from
(.) that

∫ t

t

[
q(s)

(
λ

(n – )!
gn–(s)

)γ

δγ (s)E(t, s) – ϕ(s)
]
ds ≤ δγ (t)E(t, t)v(t) + ,

which contradicts (.). This completes the proof for the part (ii). �

Remark . For a result similar to the one established in part (i) in Theorem ., see also
Zhang et al. [, Theorem .].

Remark . For p(t) = , Theorem . includes Theorem ..

In the remainder of this section, we use different approaches to arrive at the conclusion
of Theorem .. First, we employ the integral averaging technique to replace assumption
(.) with a Philos-type condition.
To this end, let D = {(t, s) : t ≥ s ≥ t}. We say that a function H ∈ C(D,R) belongs to the

class Pγ if

H(t, t) = , for t ≥ t, H(t, s) > , for t > s ≥ t,

and H has a non-positive continuous partial derivative ∂H/∂s with respect to the second
variable satisfying the condition

–
∂

∂s
H(t, s) = ξ (t, s)Hγ /(γ+)(t, s)

for some function ξ ∈ Lloc(D,R).

http://www.boundaryvalueproblems.com/content/2014/1/107
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Theorem . Let δ(t) be as in Theorem . and suppose that (.) and (.) hold. Assume
that there exists a function H ∈Pγ such that

lim sup
t→∞

∫ t

t

[
H(t, s)q(s)

(
λ

(n – )!
gn–(s)

)γ

–
H(t, s)p(s)

r(s)δγ (s)E(t, s)
–
r(s)(ξ (t, s))γ+

(γ + )γ+

]
ds > , (.)

for all t ≥ t and for some λ ∈ (, ). Then the conclusion of Theorem . remains intact.

Proof Assuming that x(t) is an eventually positive solution of (.) that satisfies (.) and
proceeding as in the proof of Theorem ., we arrive at the inequality (.) which holds
for all λ ∈ (, ). Multiplying (.) by H(t, s) and integrating the resulting inequality from
t to t, we obtain

∫ t

t
H(t, s)

[
q(s)

(
λgn–(s)
(n – )!

)γ

–
p(s)

r(s)δγ (s)E(t, s)

]
ds

≤H(t, t)v(t) +
∫ t

t

∂H(t, s)
∂s

v(s) ds –
∫ t

t
γH(t, s)

v(γ+)/γ (s)
r/γ (s)

ds

=H(t, t)v(t) –
∫ t

t
ξ (t, s)Hγ /(γ+)(t, s)v(s) ds –

∫ t

t
γH(t, s)

v(γ+)/γ (s)
r/γ (s)

ds.

Let

A :=
(

γH(t, s)
(–v(s))(γ+)/γ

r/γ (s)

)γ /(γ+)

and

B :=
(

γ ξ (t, s)r/(γ+)(s)
(γ + )γ γ /(γ+)

)γ

.

Using the inequality

γ + 
γ

AB/γ –A(γ+)/γ ≤ 
γ
B(γ+)/γ ,

we obtain

∫ t

t

[
H(t, s)q(s)

(
λ

(n – )!
gn–(s)

)γ

–
H(t, s)p(s)

r(s)δγ (s)E(t, s)
–
r(s)ξγ+(t, s)
(γ + )γ+

]
ds

≤H(t, t)v(t) < ,

which contradicts assumption (.). This completes the proof. �

Finally, we formulate also a comparison result for (.) that leads to the conclusion of
Theorem ..

http://www.boundaryvalueproblems.com/content/2014/1/107
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Theorem . Let δ(t) be as above, and assume that (.) and (.) hold. If a second-order
half-linear ordinary differential equation

(
r(t)

(
u′(t)

)γ )′ +
[
q(t)

(
λ

(n – )!
gn–(t)

)γ

–
p(t)

r(t)δγ (t)E(t, t)

]
uγ (t) =  (.)

is oscillatory for some λ ∈ (, ), then the conclusion of Theorem . remains intact.

Proof Assuming again that x(t) is an eventually positive solution of (.) that satisfies
(.) and proceeding as in the proof of Theorem ., we obtain (.) which holds for
all λ ∈ (, ). By virtue of Lemma ., we conclude that (.) is non-oscillatory, which is a
contradiction. The proof is complete. �

3 Example
The following example illustrates possible applications of theoretical results obtained in
the previous section.

Example . For t ≥ , consider the third-order differential equation

(
tx′′(t)

)′ + x′′(t) +
t – 
e

x(t – ) = . (.)

It is not difficult to verify that (.) holds and

lim inf
t→∞

∫ t

g(t)
q(s)

(
gn–(s)
r/γ (g(s))

)γ

exp

(∫ s

g(s)

p(v)
r(v)

dv
)
ds

=

e

lim inf
t→∞

∫ t

t–
s(s – )ds =∞.

Let t = . Then δ(t) = /t, φ(t) = , ϕ(t) = /t, and thus

lim sup
t→∞

∫ t

t

[
q(s)

(
λgn–(s)δ(s)

(n – )!

)γ

exp

(∫ s

t

p(τ )
r(τ )

dτ
)
– ϕ(s)

]
ds

= lim sup
t→∞

∫ t



[
λ

(s – )

e
–

s

]
ds =∞,

for some λ ∈ (, ). Hence, by Theorem ., every solution of (.) is either oscillatory
or satisfies (.). As a matter of fact, x(t) = e–t is a solution of this equation satisfying
condition (.).

Remark . Note that Theorems ., ., and . ensure that every solution x(t) of (.)
is either oscillatory or satisfies (.) and, unfortunately, these results cannot distinguish
solutions with different behaviors. Since the sign of the derivative x′(t) is not known, it is
difficult to establish sufficient conditions which guarantee that all solutions of (.) are just
oscillatory and do not satisfy (.). Neither is it possible to use the technique exploited in
this paper for proving that all solutions of (.) satisfy (.). Therefore, these two interesting
problems remain for future research.

http://www.boundaryvalueproblems.com/content/2014/1/107
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