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Abstract In the present work we study parameter spaces of two line point configurations
introduced by Böröczky. These configurations are extremal from the point of view of the
Dirac–Motzkin Conjecture settled recently by Green and Tao (Discrete Comput Geom
50:409–468, 2013). They have appeared also recently in commutative algebra in connec-
tion with the containment problem for symbolic and ordinary powers of homogeneous ideals
(Dumnicki et al. in J Algebra 393:24–29, 2013) and in algebraic geometry in considerations
revolving around the Bounded Negativity Conjecture (Bauer et al. in DukeMath J 162:1877–
1894, 2013). We show that the parameter space of what we call B12 configurations is a three
dimensional rational variety. As a consequence we derive the existence of a three dimen-
sional family of rational B12 configurations. On the other hand the parameter space of B15
configurations is shown to be an elliptic curve with only finitely many rational points, all
corresponding to degenerate configurations. Thus, somewhat surprisingly, we conclude that
there are no rational B15 configurations.
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lampa.baczynska@wp.pl

1 Department of Mathematics, Pedagogical University of Cracow, Podchora̧żych 2, 30-084 Kraków,
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1 Introduction

Line point configurations are a classical subject of study in various branches of mathemat-
ics, e.g. geometry, combinatorics, topology. Recently they have appeared in commutative
algebra in connection with the Containment Problem between symbolic and ordinary pow-
ers of ideals [10,17] and in algebraic geometry in connection with the Bounded Negativity
Conjecture, more precisely in the computations of the linear Harbourne constant [2,9,18]. In
both of these problems the field of definition of the studied configurations plays an important
role. In the present note we focus on two types of real (i.e. defined over R) configurations
of lines. More specifically, configurations studied here were introduced by Böröczky, see
[5] for their probably first appearance in print. It has been realized that these configurations
are relevant from the point of view of two problems in combinatorial geometry: the number
of triangles in the simplicial partition of the plane by lines and in the Dirac–Motzkin Con-
jecture, see [11,12]. Recall that this Conjecture predicts a lower bound on the number of
ordinary intersection points (i.e. points where only two lines intersect) of a configuration of
real lines, which do not form a pencil. Böröczky examples are extremal from the point of
view of this Conjecture as the number of ordinary intersection points they generate is as low
as possible, cf. [12, Theorem 1.2]. We denote a Böröczky configuration of d lines by Bd . The
original configuration construction uses trigonometric functions. In this note we will give an
elementary, geometric construction of the configuration B12 based just on the Pappus Theo-
rem. This construction combined with an algebraic method of coordinatization introduced by
Sturmfels [16] allows us to study the parameter space of B12 configurations. This parameter
space is a quasi-projective rational variety (Theorem A). We describe its compactification
and discuss briefly resulting degenerate configurations in the Appendix. Next we pass to B15
configurations and show that somewhat surprisingly their compactified parameter space is
an elliptic curve with very few rational points (Theorem B).

Our interest in these configurations has been motivated by the following path of research.
The Containment Problem for ordinary and symbolic powers of ideals in its simplest form
is the following question raised by Huneke around 2000.

Question 1 (Huneke) LetK be an arbitrary field and let I be an ideal of finitely many points
in P

2(K). Is then the third symbolic power of I a subset of the second ordinary power of I?
That is does the containment

I (3) ⊂ I 2 (1)

hold?

In 2013 Dumnicki, Szemberg and Tutaj-Gasińska discovered a first counterexample to the
containment in (1), see [10]. They showed that forK = C the containment in (1) fails for the
ideal of all intersection points of a certain configuration of complex lines (the so called dual
Hesse configuration). In [6] it has been noticed that the ideal of all non ordinary intersection
points of a Bd configuration with d ≥ 12, provides a counterexample to (1) for K = R.
Harbourne and Seceleanu observed in passing in [13] that a B12 configuration can be defined
over the rational numbers and suggested that all Böröczky configurations can be defined over
Q. We show that at least for B15 this is not the case (Corollary 1) and this leads naturally to
an open Problem 1.

Our main results are

Theorem A AllB12 configurations form a 3 dimensional family parameterized by a rational
variety (an open set in (P1(R))3).
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Theorem B AllB15 configurations form a 1 dimensional family parameterized by an elliptic
curve.

Remark 1 It would be desirable to know parameter spaces for all Bd configuration, where
d is a multiple of 3. Preliminary considerations indicate that they are all of general type. We
hope to come back to this in the next future.

Theorem B has the following, somewhat surprising, consequence.

Corollary 1 There is no B15 configuration over the rational numbers.

As a consequence we conclude that from the point of view of combinatorics there is so
far just one known rational counterexample to Huneke’s Question 1. This is quite striking
and suggests for further considerations the following problem.

Problem 1 Construct more rational counterexamples to the containment problem.

More generally, it is natural to wonder if configurations of rational lines enjoy some
special combinatorial properties. We think here about analogies of the Green–Tao Theorem
which asserts for real configurations of lines the existence of high enough number of ordinary
intersection points, which is, for example, not the case for configurations of complex lines.
One has to gather more evidence in order to formulate even a conjectural answer to the
following question.

Problem 2 Provide combinatorial constrains for configurations of rational lines.

2 A configuration of 12 lines with 19 triple points

2.1 Geometric construction

In this section we provide a direct geometric construction of the Böröczky configuration of
12 lines, which works in a projective plane defined over an arbitrary field with sufficiently
many elements.

The main auxiliary results which come into the argument are the following.

Theorem 1 (Pappus’s Theorem) If triangles ABC and DEF are perspective in two ways
with perspective centers P, Q, then there is also a third perspective center R (see Fig. 1).

The following version of Bezout’s Theorem is taken from [1].

Theorem 2 If two projective curves C and D in P2 of degree n intersect at exactly n2 points
and if n · m of these points lie on irreducible curve E of degree m < n, then the remaining
n · (n − m) points lie on curve of degree at most n − m.

Now we are in the position to run our geometric construction.
To begin with let A, B and C be non-collinear points in P

2. Then choose three points
D, E , F on the lines AC , AB and BC , respectively, different from the points A, B, C . The
points D, E , F will be parameters of our construction. Then we define consecutively the
following 6 points.
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Fig. 1 Pappus’s Theorem R

Q

F

P

C

E
A

D

B

G = AF ∩ BD,

H = BD ∩ EF,

I = BC ∩ ED,

J = AF ∩ ED,

K = AC ∩ EF,

L = H J ∩ I K .

(2)

At this stage an additional incidence comes into the picture.

Lemma 1 The line AB passes through the point L.

Proof The incidences coming from the construction so far are indicated in Fig. 2.
Since triangles BJ K and AH I are perspective with perspective centers D, F , Theorem 1

yields that there is the third perspective center L = H J ∩ I K ∩ AB. In particular, the points
A, B and L are collinear. ��

Then we define the remaining 7 points:

M = BD ∩ I K ,

N = AC ∩ H J,
O = H J ∩ BC,

P = AF ∩ I K ,

Q = EF ∩ NG,

R = DE ∩ CP,

S = CP ∩ NG.

(3)

Here we claim two additional collinearities.

Lemma 2 From the above assumptions it follows that the points A, B and S are collinear.

Proof In order to prove the collinearity of points A, B and S we introduce an extra point
T = FN ∩ DP .

Claim The points T , L and E are collinear.
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A

B

D
F

H
I

J
K

L

Fig. 2 B 12 construction - phase 1

Note that this implies the collinearity of T with A and B as well. Figure 3 contains points
relevant for the proof of the Claim.

Pappus Theorem applied to triangles N PE and T J K yields that points L , T and E are
collinear.

By the same token we show the collinearity of points T , S and B. All relevant points are
marked on Fig. 4. We leave the exact argument to the reader.

We conclude that the points A, B and S are collinear as asserted in the Lemma. ��
Lemma 3 In the construction above the points M, O, Q and R are collinear.

Proof In order to prove the collinearity of points O , Q, R we take two reducible curves
α = K N ∪ FG ∪ BL and β = K L ∪ GN ∪ BF of degree 3. They intersect at 9 points and
since points C , P , S lie on a line, Theorem 2 yields that the remaining 6 points: B, F , G, K ,
L , N lie on a conic, see Fig. 5.

Now we will show that the points M , O and Q lie on one line. In order to prove it we take
the reducible cubics α = K L ∪ BF ∪ GN and β = BG ∪ LN ∪ FK . They intersect in 9
points and from the above statement we know that points B, F , G, K , L , N lie on a conic,
hence the remaining three points M , O and Q are collinear by Theorem 2, see Fig. 6.

Analogously, using Theorem 2 and taking curves α′ = BD ∪ CP ∪ J L and β ′ =
BL ∪CD∪ J P one can prove that the points B, C , D, J , L and P lie on a conic, and finally
taking α′′ = BD ∪ CP ∪ J L and β ′′ = BC ∪ DJ ∪ LP one can prove that the points M ,
O and R are collinear.

The collinearities of M , O , Q and M , O , R imply that the points M , O , Q and R lie on
a line as asserted. ��

The resulting configuration is indicated in Fig. 7.
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Fig. 3 B 12 construction - phase 2

B
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D
F

G

N
P

S

T

Fig. 4 B 12 construction - phase 3

2.2 Algebraic proof

In this section we provide another construction using algebraic methods in the spirit of
Sturmfels’ [16] and Tao’s survey [19]. This approach makes the study of the parameter
space, in particular degenerate cases, accessible. Since any two lines on the projective plane
are projectively equivalent wemay assume that points A, B andC are fundamental points, i.e.
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S

Fig. 5 B 12 construction - phase 4
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OQ

Fig. 6 B 12 construction - phase 5
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Fig. 7 B 12 - full configuration

A = (1:0:0), B = (0:1:0), C = (0:0:1).

Then we have the following equations of lines

AB: z = 0, AC : y = 0, BC : x = 0.

On these lines, we choose points E , D, F respectively, all distinct from the fundamental
points. Thus we may assume that their coordinates are:

D = (a2:0:a1), E = (b1:b2:0), F = (0:c1:c2),

with a1, a2, b1, b2, c1, c2 	= 0. Hence we obtain the following equations of lines

AF : c2y − c1z = 0,

BD: a1x − a2z = 0,

EF : b2c2x − b1c2y + b1c1z = 0,

ED: a1b2x − a1b1y − a2b2z = 0, (4)
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which gives us the coordinates of points

G = AF ∩ BD = (a2c2:a1c1:a1c2) ,

H = BD ∩ EF = (a2b1c2:a2b2c2 + a1b1c1:a1b1c2) ,

I = BC ∩ ED = (0:a2b2: − a1b1) ,

J = AF ∩ ED = (a1b1c1 + a2b2c2:a1b2c1:a1b2c2) ,

K = AC ∩ EF = (b1c1:0: − b2c2) . (5)

Then we obtain equations of the lines

H J : a1a2b22c22x + a21b
2
1c1c2y − (

a21b
2
1c

2
1 + a22b

2
2c

2
2 + a1a2b1b2c1c2

)
z = 0,

I K : a2b22c2x + a1b
2
1c1y + a2b1b2c1z = 0, (6)

and the point L = H J ∩ I K = (a1b21c1:−a2b22c2:0), hence it lies on the line through A and
B. This provides an alternative proof of Lemma 1.

We find the coordinates of the remaining points

M = BD ∩ I K = (−a1a2b
2
1c1:a22b22c2 + a1a2b1b2c1: − a21b

2
1c1

)
,

N = AC ∩ H J = (
a21b

2
1c

2
1 + a22b

2
2c

2
2 + a1a2b1b2c1c2:0:a1a2b22c22

)
,

O = H J ∩ BC = (
0:a21b21c21 + a22b

2
2c

2
2 + a1a2b1b2c1c2:a21b21c1c2

)
,

P = AF ∩ I K = (
a1b

2
1c

2
1 + a2b1b2c1c2: − a2b

2
2c1c2: − a2b

2
2c

2
2

)
. (7)

The remaining lines are

NG: a1a2b22c22x + (
a21b

2
1c1c2 + a1a2b1b2c

2
2

)
y

− (
a21b

2
1c

2
1 + a22b

2
2c

2
2 + a1a2b1b2c1c2

)
z = 0,

CP: a2b22c2x + (
a1b

2
1c1 + a2b1b2c2

)
y = 0, (8)

and finally we obtain the coordinates of points

Q = EF ∩ NG = (
a22b1b2c

2
2:a21b21c21 + 2a1a2b1b2c1c2 + a22b

2
2c

2
2:a21b21c1c2

+ 2a1a2b1b2c
2
2

)
,

R = DE ∩ CP = (
a1a2b

2
1c1 + a22b1b2c2: − a22b

2
2c2:a21b21c1 + 2a1a2b1b2c2

)
,

S = CP ∩ NG = (
a1b

2
1c1 + a2b1b2c2: − a2b

2
2c2:0

)
. (9)

Again, it is now obvious that S is collinear with A and B. This gives an alternative proof of
Lemma 2.

Checking the vanishing of determinants
∣∣∣∣∣∣

−a2a1b21c1 a22b
2
2c2 + a1a2b1b2c1 −a21b

2
1c1

0 a21b
2
1c

2
1 + a22b

2
2c

2
2 + a1a2b1b2c1c2 a21b

2
1c1c2

a22b1b2c
2
2 a21b

2
1c

2
1 + 2a1a2b1b2c1c2 + a22b

2
2c

2
2 a21b

2
1c1c2 + 2a2a1b1b2c22

∣∣∣∣∣∣
= 0

and
∣∣∣∣∣∣

−a2a1b21c1 a22b
2
2c2 + a1a2b1b2c1 −a21b

2
1c1

0 a21b
2
1c

2
1 + a22b

2
2c

2
2 + a1a2b1b2c1c2 a21b

2
1c1c2

a1a2b21c1 + a22b1b2c2 −a22b
2
2c2 a21b

2
1c1 + 2a1a2b1b2c2

∣∣∣∣∣∣
= 0
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we obtain the collinearity of pointsM, O, Q andM, O, R, what finally implies that all points
M, O, Q, R lie on a common line and

MO: a2
(
2a21b

2
2c

2
2 + a22b

2
1c

2
1 + 2a1a2b1b2c1c2

)
x + a1a

2
2b

2
1c1c2y

− a1
(
a22b

2
1c

2
1 + a21b

2
2c

2
2 + a1a2b1b2c1c2

)
z = 0. (10)

This gives an alternative proof of Lemma 3.
Results presented in this section put together provide also a proof of Theorem A.

Proof of Theorem A The construction described above depends on parameters ((a1:a2),
(b1:b2), (c1:c2)) ∈ (P1)3. In order to ensure that all 12 lines are distinct and also that their
intersection points do not fall together, there is a number of relations between the parameters
which must not be satisfied. All these relations are polynomial equations, thus they define
proper closed subset in (P1)3. They are explicitly discussed in the subsequent section. The
complement of the degeneracy loci is a non-empty open set. Thus Theorem A is established.

��

3 Parameter space for Böröczky configuration of 12 lines and
degenerations

All configurations in which the points D, E, F are mutually distinct from the points A, B,C
are parameterized by 3 parameters in (K∗)3, where K is the ground field (either R or Q).
For various reasons it is convenient to work with a compact parameter space. A natural
compactification cominghere into the picture isM = (P1(K))3. This is amulti-homogeneous
space with coordinates (a1:a2), (b1:b2) and (c1:c2) introduced in Sect. 2.2. Our motivation to
include degenerations stems also from the interest whether they lead to further containment
counterexamples.

We evaluate now the conditions that all points and lines appearing in the construction are
distinct. Comparing the coordinates of alls points and the equations of all lines we obtain the
following degeneracy conditions:

(i) a1a2b1b2c1c2 = 0,
(ii) a1b1c1 + a2b2c2 = 0,
(iii) a1b1c1 + 2a2b2c2 = 0.

This means that if the numbers a1, . . . , c2 do not satisfy any of above equations, then
the points A, . . . , S defined in the previous section together with appropriate lines form a
B12 configuration. The conditions (i), (ii) and (iii) define divisors D1, D2, D3 in (P1(K))3 of
multidegree (2, 2, 2), (1, 1, 1), and (1, 1, 1) respectively. Their union contains all degenerate
configurations.

Below we present degenerations of our configuration corresponding to points in these
divisors and their intersections.

3.1 Degenerations coming from the divisor D1

We begin with the divisor D1. This is the union of three pairs of disjoint “planes” (P1(K) ×
P
1(K)) in M. If the parameter m = ((a1:a2), (b1:b2), (c1:c2)) ∈ M is taken from D1

but does not belong to its singular locus, then just one coordinate is zero. Without loss of
generality we may assume that it is a1 = 0, i.e. D = A. Then the configuration degenerates
to the configuration of 7 lines with 6 triple points. These incidences are indicated in Fig. 8.
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A

BBBBBB

CC

EEE

FFFFFF

KKKKKK

PPP

R

Fig. 8 Degeneration a1 = 0

A

BB

CC

FFF

C

B

F
A

Fig. 9 Degeneration a1 = b1 = 0

Let now m be a double point on D1. Without loss of generality, we may assume that it is
defined by a1 = b1 = 0. Then the whole configuration degenerates to a quasi-pencil on four
lines, i.e. there are 4 lines and one triple point. The incidences are indicated in Fig. 9.

Finally, ifm is a triple point on D1, then everything degenerates to the trianglewith vertices
A, B,C .

3.2 Degenerations associated to D2

This case has an easy geometric interpretation, namely it occurs when the points D, E, F are
collinear, i.e. to begin with we get a Menelaus configuration. It implies that some points and
lines in the generic configuration coincide. In fact there are only six lines left. They intersect
in 4 triple and 3 double points. This is indicated in Fig. 10.
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A

B

C

DE

F

G

Fig. 10 Degeneration D2

A

B

D

E

I

H

C

F

G

J

K

L

M

N

O
P

Fig. 11 Degeneration D3

3.3 Degenerations associated to divisor D3

The last degenerating condition is (i i i). An interesting phenomenon in this case is that points
E, Q, R, S coincide so that the point E turns to a sixtuple point, there are 15 triple points
in this configuration and 6 double points, which are not named in Fig. 11 indicating the
incidences in this case.

Note that, compared to the general case, there are additional collinearities of points: NEG,
CEP , EMO and AI H . The last mentioned line is not a line of the original configuration.
We present incidences of this degeneration in Table 1.

The incidences between the divisors D1, D2 and D3 are explained in the next remark.

Remark 2 The intersection locus Z of any two divisors Di , Dj is contained also in the third
divisor Dk , for {i, j, k} = {1, 2, 3} and this set Z is contained in the singular locus of divisor
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Table 1 Incidence table for degeneration (iii)

AC AB BC AF BD EF DE HJ IK EG CE EM

A + + +

B + + +

C + + +

D + + +

E + + + + + +

F + + +

G + + +

H + + +

I + + +

J + + +

K + + +

L + + +

M + + +

N + + +

O + + +

P + + +

D1. The degenerations corresponding to points in Z (away of triple points of D1) are indicated
in Fig. 9.

We conclude the appendix by the following observation.

Corollary 2 None of degenerate configurations provides a counterexample to the contain-
ment problem. This shows in particular that being a counterexample configuration is not a
closed condition.

Proof Since we have concrete coordinates to work with, the claim can be easily checked
with a symbolic algebra program, we used Singular [7]. ��

4 A configuration of 15 lines with 31 triple points

The configuration we are now interested in is visualized in Fig. 12. For clarity the points in
the figure are labeled by numbers only. The number i in the picture corresponds to the point
Pi in the text below.

4.1 Construction

In this sectionwe construct a configuration of 15 lineswith 31 triple points using the algebraic
method. A geometric proof works along the same lines as in the case of a B12 configuration
and we leave it to a motivated reader. To begin with let P1, P2, P3 and P4 be the standard
points, i.e.

P1 = (1:0:0), P2 = (0:1:0), P3 = (0:0:1), P4 = (1:1:1).
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1
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28
26

2

18

Fig. 12 B 15 configuration

Then we have the following equations of lines

P1P4: − y + z = 0, P2P4: x − z = 0, P3P4: − x + y = 0.

On the line P3P4 we choose a point P5 distinct from the fundamental points. Thus we may
assume that its coordinates are:

P5 = (a:a:1)
with a /∈ {0, 1}. Hence we obtain the following equations of lines

P1P5: − y + az = 0,

P2P5: x − az = 0, (11)

which gives us coordinates of the points

P6 = P1P4 ∩ P2P5 = (a:1:1),
P7 = P2P4 ∩ P1P5 = (1:a:1).

Then we obtain the following equations of the lines and coordinates of points

P3P6: − x + ay = 0,

P3P7: ax − y = 0,
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P8 = P1P4 ∩ P3P7 = (1:a:a),

P2P8: ax − z = 0,

P9 = P2P4 ∩ P3P6 = (a:1:a),

P1P9: − ay + z = 0,

P10 = P2P8 ∩ P3P4 = (1:1:a).

Fact 1 The incidence P10 ∈ P1P9 follows from above choices.

Further we obtain coordinates of the points

P11 = P3P7 ∩ P1P9 = (
1:a:a2) ,

P12 = P3P6 ∩ P2P8 = (
a:1:a2) ,

P13 = P2P5 ∩ P3P7 = (
a:a2:1) ,

P14 = P1P5 ∩ P3P6 = (
a2:a:1) .

Now we encounter the second choice in this construction. On the line P3P4 we choose a
point P15 distinct from the fundamental points and the point P5. Thus we may assume that
its coordinates are:

P15 = (b:b:1)
with b /∈ {0, 1, a}.

Then we obtain the following equations of lines and coordinates of points

P14P15:(−a + b)x + (
a2 − b

)
y + (−a2b + ab

)
z = 0,

P13P15:
(−a2 + b

)
x + (a − b)y + (

a2b − ab
)
z = 0,

P16 = P2P8 ∩ P13P15 = (
a − b: − a3b + a2b + a2 − b:a2 − ab

)
,

P17 = P1P9 ∩ P14P15 = (
a3b − a2b − a2 + b: − a + b: − a2 + ab

)
,

P11P16:
(
−a5b + a4b + a4 − a3

)
x + (−a3 + a2b + a2 − ab

)
y

+ (
a3b − a2b − ab + b

)
z = 0,

P12P17:
(−a3 + a2b + a2 − ab

)
x +

(
−a5b + a4b + a4 − a3

)
y

+ (
a3b − a2b − ab + b

)
z = 0,

P18 = P1P4 ∩ P11P16

=
(
−a3b + a3 − a2 + 2ab − b: − a5b + a4b + a4 − a3: − a5b + a4b + a4 − a3

)
,

P19 = P2P4 ∩ P12P17

=
(
−a5b + a4b + a4 − a3: − a3b + a3 − a2 + 2ab − b: − a5b + a4b + a4 − a3

)
,

P20 = P1P5 ∩ P2P8 = (
1:a2:a)

,

P21 = P2P5 ∩ P1P9 = (
a2:1:a)

,

P18P20:
(
a7b − 2a6b − a6 + a5b − a4

)
x +

(
−a5b + 2a4b − 2a2b + ab

)
y

+
(
a5 − a4b − 2a4 + 2a3b + a3 − a2b

)
z = 0,
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P19P21:
(
−a5b + 2a4b − 2a2b + ab

)
x +

(
a7b − 2a6b − a6 + a5b − a4

)
y

+
(
a5 − a4b − 2a4 + 2a3b + a3 − a2b

)
z = 0,

P22 = P3P4 ∩ P11P16

=
(
a3b−a2b−ab+b:a3b−a2b−ab+b:a5b−a4b − a4+2a3 − a2b − a2 + ab

)
.

Fact 2 Note that the incidence P22 ∈ P12P17 does not impose any additional conditions on
a and b.

The coordinates of the remaining points are now easy to find:

P23 = P3P7 ∩ P12P17 =
(

− a3b + a2b + ab − b: − a4b + a3b + a2b − ab:
−a6b + a5b + a5 − a4 − a3 + a2b + a2 − ab

)
,

P24 = P3P6 ∩ P11P16 =
(

− a4b + a3b + a2b − ab: − a3b + a2b + ab − b:
−a6b + a5b + a5 − a4 − a3 + a2b + a2 − ab

)
,

P25 = P3P4 ∩ P18P20 =
(
a5 − a4b − 2a4 + 2a3b + a3 − a2b:

a5 − a4b − 2a4 + 2a3b + a3 − a2b:
−a7b + 2a6b + a6 − 2a5 − 2a4b + a4 + 2a2b − ab

)
,

P26 = P2P4 ∩ P11P16 =
(

− a3 + a2b + a2 − ab:
a5b − a4b − a4 − a3b + a3 + a2b + ab − b:
−a3 + a2b + a2 − ab

)
,

P27 = P1P4 ∩ P12P17 =
(
a5b − a4b − a4 − a3b + a3 + a2b + ab − b:

−a3 + a2b + a2 − ab: − a3 + a2b + a2 − ab
)
,

P28 = P2P5 ∩ P14P15 =
(
a3 − ab:a2b + a2 − 2ab:a2 − b

)
,

P29 = P1P5 ∩ P13P15 =
(
a2b + a2 − 2ab:a3 − ab:a2 − b

)
,

P30 = P2P4 ∩ P13P15 =
(
a − b: − a2b + a2 + ab − b:a − b

)
,

P31 = P1P4 ∩ P14P15 =
(

− a2b + a2 + ab − b:a − b:a − b
)
.

Fact 3 It is easy to see that P25 ∈ P19P21.

Finally we have to check under which conditions the following incidences are satisfied

P23 ∈ P18P20, P24 ∈ P19P21, P26 ∈ P14P15, P27 ∈ P13P15,

P28 ∈ P18P20, P29 ∈ P19P21, P30 ∈ P18P20, P31 ∈ P19P21. (12)

Evaluating algebraic conditions we obtain polynomial equations involving a and b and the
smallest ideal that contains all these polynomials is the ideal generated by the polynomial

(a − 1)2
(
a4b − a2b2 − a3 + a2b − ab2 + b2

)
.
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Since by assumption a 	= 1, it must be

f : = a4b − a2b2 − a3 + a2b − ab2 + b2 = 0. (13)

4.2 The parameter curve

The polynomial f in (13) defines a singular curve in the planeR2 with coordinates (a, b). We
want to pass to its smoothmodel.More precisely, we are interested in theminimalWeierstrass
form of this curve, see [15, Chapter III, § 3]. To this end we substitute

b = (a − 1)aT + a2 + a4

2
(
a2 + a − 1

)

into the Eq. (13) and we get

(a − 1)2a2
(−a4 − 2a3 − 5a2 + T 2 − 4a

) = 0.

We can again localize at a = 1, so that it is enough to study the curve

C : T 2 = a(1 + a)(4 + a + a2).

Performing additional substitutions

a = 1

X
, T = 2Y + X + 1

X2

we obtain a smooth elliptic curve E in the canonical form

E :Y 2 + XY + Y = X3 + X2.

This is the parameter space for B15 configurations and thus Theorem B is proved.
It is known (see Cremona basis [4]) that E contains only 4 rational points. Each of them

corresponds to forbidden values of a and b. Thus Corollary 1 follows.

Table 2 Degenerations of the B15 configuration

Type Parameters Number of lines t2 t3 t4 t5

I a = b = 1 3 0 1 0 0

II a = b = 0 6 3 4 0 0

a = b = −1

III a = − 1
2 ±

√
3
2 i 10 3 10 2 0

b = − 1
2

IV a = − 1
2 ±

√
3
2 i 11 6 9 2 1

b = 1

V a = − 1
2 ± 1

2

√
5 − 2

√
5i 15 0 25 0 3

b = 1−√
5

4 ∓
√
250−110

√
5

20 i

a = − 1
2 ∓ 1

2

√
5 + 2

√
5i

b = 1+√
5

4 ∓
√
250+110

√
5

20 i
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5 Degenerations of B15 configurations

Proceeding as in Sect. 3, i.e., evaluating the conditions for all points in the B15 configuration
to be distinct, we obtain the following list of degenerated configurations (we omit tedious
computations). The numbers tk in Table 2 denote the number of points where exactly k lines
meet.

There is one additional degeneration point at infinity, which corresponds to a degeneration
of type II.

Remark 3 Degeneration of type V is exactly the Fermat configuration of 15 lines. It provides
a counterexample to the containment in (1), see [14] for details.

Final remark Some preliminary calculations suggest that parameter spaces for B3k con-
figurations with k ≥ 6 are curves of genus ≥ 2. We hope to come back to their study in the
near future.
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